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Abstract Recent studies on metamorphic petrology as well as microstructural observations suggest the influ-
ence of mechanical effects upon chemically active metamorphic minerals. Thus, the understanding of such a
coupling is crucial to describe the dynamics of geomaterials. In this effort, we derive a thermodynamically
consistent framework to characterize the evolution of chemically active minerals. We model the metamorphic
mineral assemblages as a solid-species solution where the species mass transport and chemical reaction drive
the stress generation process. The theoretical foundations of the framework rely onmodern continuummechan-
ics, thermodynamics far from equilibrium, and the phase-field model. We treat the mineral solid solution as a
continuum body, and following the Larché and Cahn network model, we define displacement and strain fields.
Consequently, we obtain a set of coupled chemo-mechanical equations.We use the aforementioned framework
to study single minerals as solid solutions during metamorphism. Furthermore, we emphasise the use of the
phase-field framework as a promising tool to model complex multi-physics processes in geoscience. Without
loss of generality, we use common physical and chemical parameters found in the geoscience literature to por-
trait a comprehensive view of the underlying physics. Thereby, we carry out 2D and 3D numerical simulations
usingmaterial parameters formineral solid solutions to showcase and verify the chemo-mechanical interactions
of mineral solid solutions that undergo spinodal decomposition, chemical reactions, and deformation.
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1 Introduction

When considering a deformable medium, chemical reactions may affect the solid’s strength and its mechanical
properties. Analogously, high mechanical strength may restrict either the volumetric shrinkage or swelling1

associated with the local volume changes caused by the chemical processes. Therefore, the chemical processes,
associated with mass transport and chemical reactions, induce volume changes that lead to stresses around the
reaction site.

Finding innovativeways of approaching themodeling of solids is an essential open research topic in science
and engineering. For instance, areas such as material science and geoscience are continually searching for new
models that allow to improve the properties of materials or to understand the formation ofmineral assemblages,
which directly relate to solids undergoing chemical processes. In particular, metamorphic petrologists report
the reciprocal chemo-mechanical responses of minerals during metamorphism [1–7]. A variety of study cases
of this coupling ranges from grain-scale pressure variations in high-temperature metamorphic rocks to the
proper definition of pressure in order to define P/T conditions of mineral assemblages during a metamorphic
cycle. Without loss of generality, we use the aforementioned framework to study the tempo-spatial variations
of stress-assisted volume changes.

The description of solidity and its properties is crucial to describe the physical and chemical responses
of solids accurately. Gibbs’ comprehensive study set the foundations for the thermodynamical properties of
solids [8]. However, Gibbs’ solid model does not quantify the internal adjustment caused by compositional
changes since the solid-state diffusion concept did not exist in his time. Herein, we seek to model multicom-
ponent elastic solids that allow for changes in composition while remaining in the solid-state, and particularly,
the impact of compositional changes on stress generation [9–12]. Larché and Cahn introduced the equilibrium
conditions for deformable bodies, which change composition as a result of chemical processes [13–15]. For
instance, dissolution and precipitation at solid-fluid interfaces change the chemical composition of the solid,
which in turn induce stresses associated with volume changes. Larche-Cahn’s approach models the solid as a
network, which allows us to define the stress–strain relations. A solid network can be, for example, the unit
cell of the crystalline structure of a mineral, which arranges the atoms in a systematic and repeating pattern.
Thus, the network model of Larché and Cahn adequately describes a multicomponent solid.

The outline of this work is as follows. In Sect. 2, we present a detailed thermodynamically consistent
treatment to the chemo-mechanical responses of the mineral solid solution. The chemo-mechanical framework
relies on modern continuum mechanics, thermodynamics far from equilibrium, and the phase-field model.
Sect. 3 covers themain results for the dimensionless coupled chemo-mechanical framework and the description
of main equations and dimensionless vector and scalar numbers. Finally, in Sect. 4, we present 2D and 3D
numerical simulations for ternary systems. Our simulation results portrait the interleaving between chemical
and physical processes such as mass transport, chemical, interfacial effects and deformation. We also show
the weak form of a finite element approach to solve the coupled systems of equations in their primal form.

2 Chemo-mechanical framework

2.1 Kinematics of motion

We propose a continuum framework to capture the evolution of a multicomponent elastic solid undergoing
spinodal decomposition under multiple reversible chemical reactions. In our framework, the deformations
induced across the solid boundaries and compositional changes drive the stress generation process. Henceforth,
we refer to this mechanism as stress-assisted volume changes. Following the notation proposed by Fried and
Gurtin [9], we treat the solid as a continuum body that occupies an open subset B of the Euclidean space E .
A time-dependent deformation field χ : B x ]0,T[→ Bt ⊂ E describes the motion from a configuration B
onto another configuration Bt . We refer to B as the reference configuration and to X as the particles in B. The
reference configuration B represents an undeformed state of the solid. The deformation field characterizes the

1 Thermal expansion and swelling phenomenon are unrelated. However, they produce the samemechanical effect. The swelling
phenomenon produces changes in the hydrostatic part of the stress due to volumetric changes, which in turn are due to chemical
processes.
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kinematics of motion in the body, and after deformation, it assigns to each material particle X at a given t ∈ T
a spatial particle x in the current configuration Bt . Then, we express the deformation field as

x def= χ(X, t) = χ t (X), (1)

and abusing notation

Bt = χ t (B). (2)

The deformation field is invertible; namely, there exists an inverse deformation field χ−1 : Bt x T → B ⊂ E
such that

x = χ t (χ
−1(x, t)), (3)

which renders

X def= χ−1(x, t). (4)

2.2 Measure of strain

In deforming bodies undergoing mass transport and chemical reactions, the particles move relative to each
other as a result of external forces and compositional changes. A description of this movement measures the
relative displacement of the particles. We use a Lagrangian description of the displacement field u which
defines the kinematics of the motion, that is,

u = x(X, t) − X, (5)

and the deformation gradient

F = ∇χ t = ∇u + I, (6)

where I denotes the second-order identity tensor. To ensure an admissible deformation, that is, a continuum
body cannot penetrate itself, the Jacobian of the deformation gradient must fulfill the following constraint

J
def= det F > 0. (7)

The velocity of a material particle X as a function of the motion is

V
def= ∂χ(X, t)

∂t
, (8)

and its counterpart in the current configuration is

v
def= ∂χ(X, t)

∂t

∣
∣
∣
X=χ−1(x,t)

. (9)

Thus, the spatial velocity v describes a material particle located at x = χ t (X) at time t .
Given the definition of the deformation gradient and the spatial velocity, the right Cauchy-Green stress, is

given by

C = F�F, (10)

We apply the change of variables theorem to relate the reference and current configurations an infinitesimal
area and volume elements, that is,

da = JF−� daR, (11)

dv = J dvR. (12)
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2.3 Fundamental balances

We derive a set of balance equations in the form of partial differential equations that define how the mass,
linear and angular momenta, internal energy, and entropy vary in time as the solid-species system endures
mechanical and chemical processes. As suggested in [9–12], three primary fields govern the coupled chemo-
mechanical responses of the solid: the deformation χ(X, t), the species concentration ϕα

R (X, t) per unit of
reference volume, and the chemical potential μα

R (X, t) per unit of reference volume where α denotes the α-th
species that composes the solid.

Let P ⊂ B be an arbitrary control volume in conjunction with its boundary S = ∂P; analogously, consider
Pt as a bounded control volume of Bt such that Pt = χ(P) with boundary S = ∂Pt . According to Cauchy’s
theorem, the traction t on a surface da ⊂ S and whose normal n points outwards is t = T(x, t)n, this
traction characterizes the force exerted by the rest of the body Bt \ Pt on Pt through da ⊂ S [10,11], where
t depends linearly pointwise on the normal n through Cauchy’s stress tensor T [16]. Applying (11) to the
identity tR daR = t da, we find the force acting on the surface element da as a function of the surface element
daR [9,10]. This identity leads to the nominal stress tensor TR, that is, the first Piola-Kirchhoff,

TRN daR = Tn da with TR = JTF−�. (13)

As mentioned above, the chemo-mechanical interactions take place through an elastically deforming solid
composed by a network and constituent species. Consequently, we formulate balances of mass conservation
for both the solid and the constituent species. Thus, we define ϕα

R as the local concentration of the α-th species
per unit of undeformed configuration together with a spatial species outflux jα . In agreement with the balance
of mass conservation, the rate of mass change of the α-th species in the control volume P has to be equal to
the contribution from the mass supply, typically caused by chemical reactions between the species, and the net
mass flux through the boundary S, that is,

˙∫

P
ϕα

R dvR =
∫

P
sα dvR −

∫

S
jα · n da, (14)

where sα is the mass supply expressed in the reference configuration. The mass supply is composed of two
terms, an external contribution due to external agents and internal contributions caused by chemical reactions.
Thereby,

sα = sα
int + sα

ext. (15)

Using the divergence theorem, we transform the surface integral of the species flux into a volume integral
of the divergence of the species flux as follows

˙∫

P
ϕα

R dvR =
∫

P
sα dvR −

∫

Pt

divjα dv. (16)

The Lagrangian description of (16) is

˙∫

P
ϕα

R dvR =
∫

P
sα dvR −

∫

P
Divjα

R dvR, (17)

where we use the Piola transform. Thus, the material species flux is then jα
R = F−1(Jjα). Finally, the localized

version of (17) is
ϕ̇α

R = sα − Divjα
R . (18)

The concentration of each species is linearly dependent on the other, via the following constraint,

n
∑

α=1

ϕα
R = 1, (19)

which renders
n

∑

α=1

ϕ̇α
R = 0 and

n
∑

α=1

∇ϕα
R = 0, (20)
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where n stands for the total number of species. The mass constraint that (19) expresses must hold when the
solid is solely composed of the diffusing species. Herein, we restrict our attention to the case where mass
transport by vacancies is not feasible.

Henceforth, a superimposed dot (˙) stands for the material time derivative, for instance, ϕ̇α
R is the material

time derivative of the concentration species. Given the conservation of the solid mass, we define ρ and ρ0 as
the solid density in the current and reference configuration, respectively. Then, the balance of solid mass reads

∫

Pt

ρ dv =
∫

P
ρ0 dvR, (21)

In (21), we convert the volume integral in the current configuration into its counterpart in the reference
configuration by employing the relation (12). Finally, we use the localization theorem that leads to the local
conservation of solid mass

ρ0 = Jρ. (22)

Neglecting all inertial effects to focus on quasi-static processes, i.e., we assume the spatial velocity v is nearly
constant through the time, the balance of conservation of linear momentum reads

∫

S
t da +

∫

P
b dvR = 0. (23)

The balance of linear momentum relates forces to changes in the motion of the body. Such balance involves the
traction t acting on a surface element da as well as a body force b. Conventionally, the body force b accounts
for forces resulting from gravitational effects. Through the divergence theorem, we express the surface integral
in (23) as a volume integral

∫

Pt

divT dv +
∫

P
b dvR = 0, (24)

and after some straightforward manipulations in (24), the localized Lagrangian form of the balance of linear
momentum is

DivTR + b = 0. (25)

The balance of conservation of angular momentum is
∫

Pt

x × t dv +
∫

P
x × b dvR = 0. (26)

After using the definition of the balance of linear momentum, the divergence theorem, and the localization
theorem, this implies thatT� = T . The previous relation implies the symmetry of the Cauchy’s tensor [17,18].
Finally, the localized Lagrangian form of the balance of angular momenta is

skwTRF� = 0. (27)

Following the line of thought introduced by Gurtin and Fried [19–22], we separate balances of conservation
laws from constitutive equations. As a consequence, we include a balance of microforces, that is

∫

P
(πα + γ α) dvR = −

∫

S
ξα · n da, (28)

where the vector ξα and the scalar πα (γ α) correspond to the α-th microstress and α-th the internal (external)
microforce, respectively. In general, the microstresses and microforces are quantities associated with the
microscopic configuration of atoms. We express the microforce balances in a Lagrangian form

∫

P
(πα + γ α) dvR = −

∫

P
Divξα

R dvR, (29)

and after applying the locatization theorem, the microforce balances read

πα + γ α = −Divξα
R , (30)

where ξα
R = F−1(Jξα).
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2.4 Laws of thermodynamics and free-energy inequality

To describe the thermodynamics of this system, we introduce a power expenditureWext = Wext(P)+Wext(P)
externally to P and P done by the external microforce and force on P, and the microtraction and traction on S

Wext(P) =
n

∑

α=1

⎧

⎨

⎩

∫

P

γ αϕ̇α
R dvR

⎫

⎬

⎭
+

∫

P

b · v dvR, (31a)

Wext(P) =
n

∑

α=1

⎧

⎨

⎩

∫

S
ξα
S ϕ̇α

R da

⎫

⎬

⎭
+

∫

S
t · v da. (31b)

By neglecting all inertial effects and body forces, we use the first law of thermodynamics to characterize the
balance between the rate of internal energy ε̇ and the expenditure rate of the chemo-mechanical power, caused
by external forces, species transport, and chemical reactions. The first law is then,

˙∫

P
ε dvR = Wext −

∫

S
q · n da +

∫

P
r dvR −

n
∑

α=1

{∫

S
μα

R jα · n da −
∫

P
μα

R s
α
ext dvR

}

. (32)

There is no contribution of sα
int to the energy balance (32). The entropy imbalance, in the form of the Clausius–

Duhem inequality, states that the rate of growth of the entropy η is at least as large as the entropy flux q/ϑ
plus the contribution from the entropy supply q/ϑ , that is,

˙∫

P
η dvR ≥ −

∫

S
q · n
ϑ

da +
∫

P

r

ϑ
dvR, (33)

where q, r , and ϑ stand for the spatial heat flux, heat supply, and temperature, respectively. The localized
Lagrangian version of (32) and (33) read

ε̇ = Wext − DivqR + r −
n

∑

α=1

{

Divμα
R jα

R − μα
R s

α
ext

}

, (34)

and
η̇ ≥ −Divϑ−1qR + ϑ−1r, (35)

where qR = F−1(Jq) is the material heat flux. Moreover, Wext is

Wext =
n

∑

α=1

{

(Divξα
R + γ α)ϕ̇α

R + ξα
R · ∇ϕ̇α

R

} + (DivTR + b) · v + TR : Ḟ. (36)

Rewriting (34) and (35), and multiplying (35) by ϑ , we obtain

ε̇ = Wext − DivqR + r −
n

∑

α=1

{∇μα
R · jα

R + μα
R Divjα

R − μα
R s

α
ext

}

, (37)

and
ϑη̇ ≥ ϑ−1∇ϑ · qR − DivqR + r. (38)

We obtain Helmholtz free energy from applying the Legendre transform to the internal energy while replacing
the entropy of the system by the temperature as an independent variable., i.e., ψ̇ = ε̇− ϑ̇η−ϑη̇. Consequently,
we obtain

ψ̇ ≤ Wext −
n

∑

α=1

{∇μα
R · jα

R + μα
R Divjα

R − μα
R s

α
ext

} − ϑ−1∇ϑ · qR − ϑ̇η, (39)

Introducing the balances of both mass conservation and microforces into (39), the free-energy inequality under
isothermal conditions is

ψ̇ ≤ TR : Ḟ +
n

∑

α=1

{

(μα
R − πα)ϕ̇α

R + ξα
R · ∇ϕ̇α

R − jα
R · ∇μα

R − μα
R s

α
int

}

. (40)
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2.5 The principle of material frame indifference

Throughout the derivation of the constitutive behavior of the multicomponent solid, we use the Larché–Cahn
derivative for both scalar and gradient fields as expressed by [23], together with the mass constraint given
by (19). We assume the following constitutive dependence of the free energy ψ

ψ = ψ̂(ϕR, ∇ϕR,F) = ψ̂ch(ϕR, ∇ϕR) + ψ̂el(Fe(F, ϕR)). (41)

The objectivity principle requires the constitutive relation (41) to be invariant under a superposed rigid body
motion or equivalently, independent of the observer. We can relate two different displacement fields χ and χ∗
as follows

χ∗(X, t) = Q(t)χ(X, t) + c(t), (42)

where Q(t) represents a rotation tensor and c(t) the relative translations. Therefore, the transformation of the
potential (41) following (42) implies

ψ = ψ̂(ϕR, ∇ϕR,F) = ψ(ϕR,∇ϕR,C), (43)

which ensures consistency with the dissipation inequality (40) and the principle of frame-indifference.

2.6 Constitutive equations

By using the Coleman-Noll procedure [24], we find a set of constitutive equations as a pair for each kinematic
process. We then rewrite (40) following 41 as

(

TR− ∂ψ̂

∂F

)

: Ḟ+
n

∑

α=1

(

μα
R −πα− ∂ψ̂

∂ϕα
R

)

ϕ̇α
R +

n
∑

α=1

(

ξα
R − ∂ψ̂

∂∇ϕα
R

)

·∇ϕ̇α
R −

n
∑

α=1

{

jα
R · ∇μα

R + μα
R s

α
int

} ≥ 0. (44)

We seek to enforce (44) for arbitrary values of arbitrary values for Ḟ, ϕ̇α
R , ∇ϕ̇α

R , and ∇μα
R at any instant and

position.
Following the notation and the definition for the Larché–Cahn derivatives for both scalar and gradient

fields as proposed by [23], the relative chemical potential μα
Rσ results from the Larché–Cahn derivative as a

consequence of incorporating the mass constraint given by (19). According to Larché–Cahn [15], the relative
chemical potential expresses the chemical potential of α-th species measured relative to the chemical potential
of σ -th species. This definition entails that, for saturated systems, the mass constraint given by (19) must
always hold.Analogously, the relativemicroforce ξα

Rσ emerges from the constraint imposed in the concentration
gradients by (20). As a consequence, we rewrite (44) in the Larché–Cahn sense the following terms: πα := πα

σ ,
μα := μα

Rσ and ξα
R := ξα

Rσ as well as the material mass fluxes jα
R := jα

Rσ as all these quantities are expressed
relative to the σ -th reference species. Thus, the free-energy inequality is

(

TR− ∂ψ̂

∂F

)

: Ḟ+
n

∑

α=1

(

μα
Rσ −πα

σ − ∂(σ)ψ̂

∂ϕα
R

)

ϕ̇α
R +

n
∑

α=1

(

ξα
Rσ − ∂(σ)ψ̂

∂∇ϕα
R

)

·∇ϕ̇α
R −

n
∑

α=1

{

jα
Rσ · ∇μα

Rσ
+ μα

Rσ
sα
int

} ≥ 0.

(45)
The latter implies that the following relations must hold to keep consistency with the dissipation imbalance

TR = ∂ψ̂

∂F
, (46a)

πα
σ = μα

Rσ − ∂(σ)ψ̂

∂ϕα
R

, (46b)

ξα
Rσ = ∂(σ)ψ̂

∂∇ϕα
R

. (46c)



S. P. Clavijo et al.

We use a logarithmic multi-well potential together with a multi-gradient-type potential for the chemical
energy, that is,

ψ̂ch(ϕR, ∇ϕR) = NvkBϑ

(
n

∑

α=1

ϕα
R ln ϕα

R

)

+ Nv

n
∑

α=1

n
∑

β=1

�αβϕα
R ϕβ

R + 1

2

n
∑

α=1

n
∑

β=1

�αβ ∇ϕα
R · ∇ϕβ

R . (47)

This expression corresponds to the extension of the Cahn–Hilliard equation towards multicomponent sys-
tems [25,26]. The Ginzburg–Landau free energy governs the dynamics of the phase separation process under-
going spinodal decomposition. In (47), Nv is the number of molecules per unit volume, kB is the Boltzmann
constant, and�αβ represents the interaction energy between the mass fraction of the α-th and β-th species. The
interaction between the species α over β is reciprocal, thus�αβ is symmetric. The interaction energy is positive
and is related to the critical temperature for each pair of species, ϑ

αβ
c , (between the α-th and β-th species).

Following standard convention, we adopt that �αβ = 0 when α = β and � = 2kBϑ
αβ
c when α 
= β [25–27].

Furthermore,�αβ = σαβ�αβ [force] (no summation implied by the repeated indexes) represents the magnitude
of the interfacial energy between the α-th and β-th species. The parameters σαβ and lαβ are the interfacial
tension [force/length] and the interfacial thickness 2 for each pair of species (between the α-th and β-th species)
[length], respectively. In [25], the authors define the force �αβ as Nv�

αβ(�αβ)2.
Following [11], we assume that the elastic solid behaves as a compressible neo-Hookean material whose

elastic energy is given by

ψ̂el(Fe) = G

2

[

Fe : Fe − 3
] + G

β

[

(detFe)−β − 1
]

, (48)

where G and β are material parameters that relate to the shear modulus and the weak compressibility of
the material. β is a function of the Poisson ratio ν such that β = 2ν/1 − 2ν. In line with treatments of
thermoelasticity, we assume a multiplicative decomposition of the deformation gradient [11], that is,

Fe = FϕF, (49a)

Fϕ =
(

1 +
n

∑

α=1

ωα(ϕα
R − ϕα

R0)

)− 1
3

I, (49b)

Fϕ = J
− 1

3
ϕ I. (49c)

This expression suggests that when the local species concentrations change relative to their initial distribution,
the solid must undergo elastic deformation. The swelling material parameter ωα is associated with the molar
volume of the solute, the volume occupied by a mol of each species scaled by the maximum concentration
[10,11]. More recent works suggest that ωα can be modelled as a dilation tensor or as a function of the overall
reaction rate [28,29].

The evolution of the conserved field ϕα
R obeys a non-Fickian diffusion driven by the chemical potential

differences between the species. We combine (46b) and (46c) using the balance of microforces (30) and the
constitutive relation for the free energy (41) to express the relative chemical potential of the α-th species as

μα
Rσ = ∂(σ)ψ̂

∂ϕα
R

− Div
∂(σ)ψ̂

∂∇ϕα
R

− (γ α + γ σ ), (50)

and therefore,

μα
Rσ = NvkBϑ

(

ln
ϕα
R

ϕσ
R

)

+ 2Nv

n
∑

β=1

(�αβ − �σβ)ϕ
β
R

−
N

∑

β=1

(�αβ − �σβ)Div∇ϕ
β
R − 1

3
ωα

σ J
−1
ϕ tr[TRF�] − (γ α + γ σ ), (51)

2 This expression corresponds to the root mean square of the effective "interaction distance", as suggested by the work of Cahn
and Hilliard [25].
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Table 1 Coupled system of chemo-mechanical partial differential equations

Fundamental balances and constitutive responses Equation

Balance solid mass ρ0 = Jρ
Balance species concentration ϕ̇α

R = sα − Divjα
Rσ

Species mass flux jα
Rσ = − ∑n

β=1 M
αβ JC−1∇μ

β
Rσ

Species chemical potential μα
Rσ = ∂(σ)ψ

∂ϕα
R

− Div ∂(σ)ψ
∂(∇ϕα

R)
− (γ α + γ σ )

Chemical reaction source term sα
int = − ∑Ns

c=1(υαc − �αc)(k+
c

∏n
a=1(ϕ

a
R )υac − k−

c
∏n

a=1(ϕ
a
R )�ac )

Balance linear momentum 0 = DivTR + b
Stress tensor TR = GJ−1/3

ϕ [Fe − (detFe)−βFe−�]

where

ωα
σ = ωα − ωσ . (52)

The constitutive relation for the first Piola-Kirchhoff stress tensor is

TR = GJ−1/3
ϕ [Fe − (detFe)−βFe−�]. (53)

We also consider the off-diagonal terms in the Onsager reciprocal relations and thus, we describe the species
fluxes as

jα
Rσ

def= −
n

∑

β=1

Mαβ JC−1∇μβ
Rσ , (54)

whereMαβ are theOnsagermobility coefficients.We use the standard assumption that themobility coefficients
depend on the phase composition. In particular, we express this dependency in terms of the concentration of
each species.We use the definitionMαβ = Mαβϕα

R (δαβ −ϕ
β
R )I (no summation implied by the repeated indexes)

where δαβ and Mαβ are the Kronecker delta of dimension n and the mobility coefficients [26], respectively.

3 Dimensionless forms of the chemo-mechanical equations

This section presents the main equations and variables for the thermodynamically consistent theory for mineral
solid solutions following Sect. 2. Table 1 summarises fundamental balance equations together with constitutive
chemo-mechanical responses.

Moreover, we introduce a free-energy density ψ0 = 2NvkBϑ together with a set of diffusion coefficients
Dαβ such that

Dαβ = ψ0Mαβ (55)

To make the governing and constitutive equations dimensionless (Table 1), we define the following dimen-
sionless variables

u = u−1
0 u, x = L−1

0 x, t = D0l
2
0L

−4
0 t (56)

where u0, D0, and l0 account for a reference deformation state, the diffusion coefficient, and the interface
thickness of a reference species, respectively.We propose the following sets of scalar and vector dimensionless
numbers for the multicomponent chemo-mechanical system, that is,

ωα, k
c
+ = kc+D−1

0 �−2
0 L4

0, k
c
− = kc−D−1

0 �−2
0 L4

0, ϑ
αβ

c = ϑ−1ϑαβ
c ,

�
αβ = L−1

0 �αβ, ψ = ψ̂ψ−1
0 , σ αβ = σαβ(ψ0L0)

−1, β, b = G−1b,

G = Gψ−1
0 , l = u0L

−1
0 , D

αβ = DαβD−1
0 �−2

0 L2
0, γ α = ψ−1

0 γ α.

(57)
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By inserting the dimensionless quantities in (47) and (48), we find the following dimensionless forms of the
chemical energy

ψ
ch

(ϕR, ∇ϕR) = 1

2

(
n

∑

α=1

ϕα
R ln ϕα

R

)

+
n

∑

α=1

n
∑

β=1

ϑ
αβ

c ϕα
R ϕβ

R

+ 1

2

n
∑

α=1

n
∑

β=1

σαβ�
αβ ∇ϕα

R · ∇ϕβ
R , (58)

and the mechanical energy

ψ
el
(Fe) = G

{
1

2

[

Fe : Fe − 3
]

+ 1

β

[

(detFe)−β − 1
] }

, (59)

where Fe = J−1/3
ϕ (I + l∇u). We also define the dimensionless bulk free energy as

ψ
ϕ
(ϕR) = 1

2

(
n

∑

α=1

ϕα
R ln ϕα

R

)

+
n

∑

α=1

n
∑

β=1

ϑ
αβ

c ϕα
R ϕβ

R (60)

Likewise, the dimensionless forms of the governing and constitutive equations read

∂ϕα
R

∂t
= ∇ ·

( n
∑

β=1

D
αβ

M ∇μβ
Rσ

)

+ sα,

M = det(I + l∇u)(I + l∇u)−1(I + l∇u)−�,

μα
Rσ = 1

2

(

ln
ϕα

R

ϕσ
R

)

+ 2
n

∑

β=1

(ϑ
αβ

c − ϑ
αβ

c )ϕβ
R −

N
∑

β=1

(σαβ�
αβ − σσβ�

σβ
) �ϕβ

R

− 1

3
ωασ J−1

ϕ Gtr[TR(I + l∇u)�] − (γ α + γ σ ),

sα
int = −

ns∑

c=1

{

(υcα − � cα)(k
c
+

n
∏

a=1

(ϕa
R )υ

ca − k
c
−

n
∏

a=1

(ϕa
R )�

ca
)

}

,

0 = DivTR + b,

TR = J−1/3
ϕ [J−

1
3

ϕ (I + l∇u) − (detJ
− 1

3
ϕ (I + l∇u)−β(J

− 1
3

ϕ (I + l∇u))−�],

(61)

Hence, the set of equations (61) encompasses a system of partial differential equations, that subject to
both initial and boundary conditions, allows us to evolve the governing variables in this closed system: species
concentrations ϕα

R , chemical potentials μα
Rσ , and solid displacements u.

4 Numerical simulations of 2D and 3D ternary systems

In this section, we present 2D and 3D simulations of the temporal evolution of single materials modelled as
a solid solution composed of three phases A1, A2, and A3 to investigate their coupled chemo-mechanical
interactions. In particular, the 2D simulation shows how interfacial interactions, together with a reversible
chemical reaction between the phases, engender volumetric stresses as a result of local volume changes.
While the 3D simulation studies a ripening mechanism. The interfacial interactions between the phases drive
the phase separation process and allow for the Ostwald ripening and Gibbs-Thomson effects. We show the
dimensionless temporal evolution of the dimensionless phases concentrations as well as the dimensionless
displacements in each coordinate direction. By doing so, we seek to understand the interleaving between the
physical and the chemical responses of the mineral solid solutions. Figure 1 plots the bulk energy surface for
the ternary multi-well potential of (60) for a ternary system.
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Fig. 1 Dimensionless bulk energy surface plot for the ternary multi-well potential

4.1 Reversible chemical reaction of random distributed phases

The reversible chemical reaction between the phases is

A1 + A2 k+�
k−

2A3, (62)

where the stoichiometry vectors υαβ and �αβ are given by

υαβ = (1, 1, 0), and �αβ = (0, 0, 2). (63)

We study the stress-assisted volume changes triggered by the chemical processes. Therefore, we do not drive
the deformation by distorting the analysis domain. We set the external body forces and external microforces
such that b = 0 and γ α = 0, respectively. Moreover, we neglect all inertial effects. Consequently, the spatial
velocity v is nearly constant through the time. We assume that the three phases diffuse at the same rate.
Therefore, we only consider one diffusion coefficient. In this simulation example, we set k+ > k−. Thus, the
forward chemical reaction occurs faster than the backward one. Our initial condition serves as the reference
configuration, which we choose as an undeformed state of the body. The mass supply of each phase, captured
by the reaction term sα , results solely from internal contributions as the system (62) reacts. The initial spatial
distribution of the phase concentrations is random such that ϕα takes values between ϕα ± 0.05 where we
assume ϕα is 1/n. We calculate the concentration of A3 following the mass constraint given by (19). As
mentioned before, we apply this mass constraint when we compute the relative quantities resulting from the
Larché–Cahn derivative. By doing so, we guarantee the consistency of the process. Furthermore, there is no
mass flux at the solid boundaries.

Figure 2a shows the spatial distribution of the initial phases concentrations in conjunction with the initial
displacements. We set the parameters in the chemical energy such that we obtain a triple-well function. This
function allows us to model the phase separation process. The reactive system seeks to minimize its global
free energy. Thus, the reaction drives the given initial concentrations for the phases A1, A2, and A3 towards
the concentrations at the well points.

Table 2 summarises the parameters used to build up the dimensionless numbers (64) as outlined in (57).
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(a) t = 0

(b) t = 4.04× 10−6

(c) t = 9.03× 10−6

(d) t = 1.26× 10−5

Fig. 2 Temporal evolution of the three phase fields together with the magnitude of the displacement vector and its direction at
early stages
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Table 2 Chemical and physical parameters that control the spinodal decomposition process

Physical parameter Value Name

ψ0 [Jm−3] 1 × 105 Energy density
L0 [m] 10−6 Domain length
u0 [m] 10−6 Reference displacement
G [GPa] 40 Shear modulus
β [-] 0.17 Poisson’s ratio
ϑ [K] 727.0 Absolute temperature
ϑ12
c [K] 800.0 Critical temperature between phases 1 and 2

ϑ13
c [K] 800.0 Critical temperature between phases 1 and 3

ϑ23
c [K] 800.0 Critical temperature between phases 2 and 3

D [m2s−1] 10−20 Diffusion coefficient (same for all phases)
k+ [m2s−1] 10−14 Forward reaction rate
k− [m2s−1] 10−16 Backward reaction rate
σ [Jm−2] 0.817 Interfacial energy
� [m] 10−8 Interface thickness
γ [-] 0 External microforce (same for all phases)
b [ms−2] 0 Body force

Hence, the diffusion matrix for each entry α and β as well as the dimensionless numbers are given by

D̄
αβ = 1 × 104ϕα(δαβ − ϕβ)I ∀ 1 ≤ α, β ≤ n, ϑ̄αβ

c =
⎡

⎣

0 1.100 1.100
1.100 0 1.100
1.100 1.100 0

⎤

⎦ ,

σ̄ αβ �̄αβ = 10−2

⎡

⎣

8.17 0 0
0 8.17 0
0 0 8.17

⎤

⎦ , υαβ = [

1 1 0
]

,

�αβ = [

0 0 2
]

, k̄+ = 0.01, k̄− = 0.0001, G = 4 × 105

ω1 = 0.0383 ω2 = 0.0334 ω3 = 0.0165

(64)

where we choose D0 = D and �0 = � as the reference diffusion coefficient and interface thickness of
a reference phase, respectively, where swelling parameter is dimensionless in nature as it is scaled by the
maximum concentration.

The final system of coupled chemo-mechanical equations is

ϕ̇1 = −k+ϕ1ϕ2 + k−(ϕ3)2 − Divj1
R3, (65a)

ϕ̇2 = −k+ϕ1ϕ2 + k−(ϕ3)2 − Divj2
R3, (65b)

DivTR = 0. (65c)

In (65), we use the Larché–Cahn derivative with A3 as the reference phase. We solve the system of partial
differential equations in its primal form (66) and (68). We state the problem as follows: find {ϕ,u} ∈ C2(P)
such that (61) subjected to periodic boundary conditions up to the second derivative of ϕ, and uwith respect to
X in a square open region B = (0, 1)× (0, 1). We use PetIGA [30], a high-performance isogeometric analysis
framework built on top of PETSc [31]. We use a mesh with 64 × 64 elements of a polynomial degree 2 and
continuity 1.

We denote H2 as the Sobolev space of square integrable functions with square integrable first and second
derivatives and (·, ·)P as the L2 inner product over an arbitrary material part P with boundary S. We multiply
the Lagrangian version of the phases mass balance (16) by a test function �α , which belongs to H2, using the
definition for the material mass fluxes (54) and integrating by parts, the primal variational formulation is
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(�α, ϕ̇α)P = (�α, sα)P − (�α, jα
Rσ I,I )P

= (�α, sα)P + (�α
,I , j

α
Rσ I )P − (�α, jα

Rσ I NI )S

= (�α, sα)P + (�α
,I , −Mαβ(μβ

ϕ + μβ
s + pβ

ϕ ),JC
−1
J I J )P

− (�α,−Mαβ(μ
β
,J )C

−1
J I J NI )S

= (�α, sα)P − (�α
,I , M

αβμ
β
ϕ,JC

−1
J I J )P − (�α

,I , (M
αβμβ

s ),JC
−1
J I J )P

+ (�α
,I , (M

αβ
,J )μβ

s C
−1
J I J )P − (�α

,I , M
αβ pβ

ϕ,JC
−1
J I J )P

+ (�α, Mαβ(μ
β
,J )C

−1
J I J NI )S

= (�α, sα)P − (�α
,I , M

αβμ
β
ϕ,JC

−1
J I J )P + (�α

,I JC
−1
J I J, M

αβμβ
s )P

+ (�α
,I (C

−1
J I J ),J , M

αβμβ
s )P + (�α

,I , (M
αβ
,J )μβ

s C
−1
J I J )P

− (�α
,I , M

αβ pβ
ϕ,JC

−1
J I J )P + (�α, Mαβ(μ

β
,J )NIC

−1
J I J )S.

− (�α
,I NJC

−1
J I J, M

αβμβ
s )S (66)

where for convenience, we split the chemical potential μα
Rσ such that μα

Rσ = μα
ϕ + μα

s + pα
ϕ . Thereby,

μα
ϕ = NvkBϑ

(

ln
ϕα

R

ϕσ
R

)

+ 2Nv

n
∑

β=1

(�αβ − �σβ)ϕβ
R − (γ α + γ σ ),

μα
s = −

N
∑

β=1

(�αβ − �σβ)Div∇ϕβ
R ,

pα
ϕ = ωα

σ J
−1
ϕ p.

(67)

We define p := − 1
3 tr[TRF�] as the mechanical pressure (which differs from the thermodynamic pressure)

and emphasize that this pressure modifies themass transport rate. Therefore, for deformable bodies undergoing
mass transport, this physical quantity alters the driving force of the chemical process. Furthermore, the weak
formulation of the Lagrangian version of the linear momenta balance reads

(wi ,TRi I NI )S − (wi,I ,TRi I )P = 0, (68)

where we multiply (25) by a test function wi .
At early stages Fig. 2b, t < 4.04 × 10−6, the solution goes through an initial spinodal decomposition.

This spontaneous phase separation process occurs due to ϑ
αβ
c > ϑ . Otherwise, the mixture would only diffuse

without unmixing. As the phases Ai , i = 1, 2, 3, diffuse as a result of their separation, the solid undergoes
elastic deformation due to the mass transport. Analogously, the pressure pα

ϕ alters the rate at which the phases
diffuse. The deformation arises solely from mass transport since the reversible chemical reaction has no
significant impact. From Fig. 4, we verify that the phases masses do not change substantially in the range
0 < t < 4.04 × 10−6. As a consequence, there is no nucleation and growth of phases. With regards to the
interfacial energies, in the range 0 < t < 4.04×10−6 the energies decrease gently up to a point, t � 1.0×10−7,
where the interfacial energies become constant. A small change in the interfacial energies means that either
the phase separation has not evolved significantly or there is no substantial coarsening. Furthermore, at the
early stages, the deformation is small as the displacements (see Fig. 2) are not large since the phase separation
has not evolved such that the phases are unmixed. As expected, the displacements ux and uy in the solid move
following the mass transport.

Later on, in the range between 4.04× 10−6 < t < 9.03× 10−6, the phase separation becomes prominent
as it allows to form spatial domains rich in each component (see Fig. 2c). In particular, the phase A1 remains
partially unmixed as there are no rounded inclusions with large concentration (see Fig. 2c). On the contrary,
for phasesA2 andA3, rounded inclusions with large concentrations appear. At this stage, there is no influence
of the chemical reaction (see Fig. 4). Larger displacements are collocated with the larger inclusions for A2

and A3. This collocation is a consequence of the mass flux towards these points as the inclusions grow. The
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enlargement associated with the growth of the inclusions induces deformation. Fϕ captures this behavior. The
interfacial energies remain roughly constant, which implies that there is a balance between both the creating
and disassemble of phases interfaces. As expected, in the time interval between 0 < t < 9.03 × 10−6,
the tendency of the global free energy is monotonically decreasing as the system goes to a steady state of
maximum entropy (see Fig. 5). This free energy encompasses the contribution from both the chemical and the
mechanical energies. At the early stages, as the evolution towards a steady-state goes on, the system favors
phase separation.

For instance, Fig. 2d shows the evolution of small A1 inclusions in the range between 9.03 × 10−6 < t <
1.26 × 10−5. As suggested before, there is mass flux towards these points that allows the inclusion to grow
and deform the solid. Figure 2d also shows the larger displacements in the regions where the inclusions are.
On the other hand, A3 inclusions are large and close enough to start merging. This phenomenon is associated
with the minimization of the global free energy as the system reduces its interfacial energies. Nevertheless,
when considering the system undergoing chemical reactions, the interfacial energies evolve according to the
chemical reaction, which in this modeling example corresponds to a reversible chemical reaction. The growth
of more A3 as a result of the reversible chemical reaction creates more A3 interface. Figure 4 shows an
increase in A3 interfacial energy as well as its mass. On the other hand, the decomposition of A3 into A1 and
A2 following (62) must increase A1 and A2 masses, and their interfacial energies. However, this behavior
does not last since the rate of creation of A3 is faster than the decomposition into A1 and A2. This is due to
k+ >> k−.

From t = 5.64 × 10−5, the system shows the merging of large inclusions and the action of the reversible
chemical reaction (see Fig. 3a). At this stage, the creation of A3 predominates. One can verify such an asser-
tion by checking the masses. However, there is no interfacial energy growth since the larger inclusions are
merging. Therefore, the interfacial energies decrease. Moreover, the A1, A2, and A3 inclusions pass from
rounded to square-like structures. Such behavior results from the dependency of the chemical potential upon
the pressure pα

ϕ caused by deformation and the Gibbs-Thomson effect associated with the curvature �ϕα
R .

Along the boundaries of the inclusions, the driving force of the mass transport changes, which may generate
inclusions of asymmetric morphologies. Moreover, the creation of A1, A2, and A3 following (62) engenders
a mechanical pressure associated with nucleation and growth. Figure 3a also shows the large displacements
at the phase boundaries that account for the impact of the chemical reaction on the stress generation (pres-
sure).

Figure 3b shows the state at t = 4.26 × 10−4. The system forms a chain-like structure composed of the
phases A1 and A2, which is surrounded by the phase A3. This structure emerges as a result of the merging
processes and the reversible chemical reaction. The reversible chemical reaction continues to take at the
boundary between phases A1 and A2. Moreover, the phase A3 decomposes into A1 and A2. At this point in
the evolution, the phase A3 composes almost the whole solid due to k+ >> k−. The masses and interfacial
energies for phases A1 and A2 decrease (see Fig. 4). However, for phase A3, the mass increases while
reducing its interfacial energy (see Fig. 4). The phases are unmixed, whereby their concentrations correspond
to the concentrations at the well points in the triple-well function. The displacements ux and uy are in the
range of the previous stages. However, they move as the phases diffuse as a result of the relation between
mass transport and deformation. Figure 3b depicts the larger displacements are in line with the chain-like
structure.

Figure 3c shows the evolution at t = 5.72 × 10−4. The minimization of the global free energy as the
system goes to the steady-state reduces the thickness of the chain-like structure. Eventually, the chain is com-
posed of interleaved inclusions of phases A1 and A2. As the inclusions of A1 and A2 become smaller, the
phase A3 encloses A1 and A2. The interfacial energies and masses keep decreasing since the action of the
reversible chemical reaction has not ceased (see Fig. 4). The displacement field shows the interaction between
the mechanical and chemical processes. We observe smaller displacements inside the chain-like structure and
larger ones outside this region.

In the time interval between 5.72×10−4 < t < 1.84×10−3, the inclusions of phasesA1 andA2 shrink as
the reversible reaction continues (see Fig. 3d). When the reversible chemical reaction ceases, the inclusions are
rounded. The chemical reaction is active between 1× 10−5 < t < ×10−2. The larger (smaller) displacements
appear around the inclusions of phaseA1 (A2). These phases partially consumewhile the phaseA3 gains mass.
Finally, rounded structures composed of the three phases diffuse in the solid to generate displacements asso-
ciated with mass transport. Figure 3e portrays such a behaviour. Along with the whole evolution, free energy
always behaves monotonically decreasing (see Fig. 5). Figure 6 shows the microstructural configuration at the
steady-state.
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(a) t = 5.64× 10−5

(b) t = 4.26× 10−4

(c) t = 5.72× 10−4

(d) t = 1.84× 10−3

(e) t > 10−2

Fig. 3 Temporal evolution of the three phase fields together with the magnitude of the displacement vector and its direction
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Fig. 4 Interfacial energies for phasesA1,A2, andA3 along with their masses
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Fig. 5 During the whole evolution, the free energy is monotonically-decreasing

Fig. 6 Microstructural morphology of the ternary system at steady state t > ×10−2

4.2 Ripening
of spherical inclusions

Wecarry out a numerical simulation of a 3Dconfiguration of three spherical inclusions. The spherical inclusions
are composed of phasesA1 andA2 while phaseA3 serves as an interstitial phase. We study the stress-assisted
volume changes triggered by the mass transport of the spherical inclusions associated with interfacial effects.
We expect Ostwald ripening as a result of the differences in the size of the inclusions. We do not consider
external contributions from body forces and external microforces. Consequently, we set b = 0 and γ α = 0.
Regarding the kinematics of the motion, the spatial velocity v is nearly constant as we do not take into
account inertial effects during these quasi-steady processes. We do not allow for chemical reactions between
the phases, and therefore, the reactions rates k+ and k− are zero. The latter entails that sα = 0.0. Hence,
the stresses emerge solely from the mass transport associated with the interfacial interactions between the
phases. Without loss of generality, the initial condition serves as the reference configuration. We choose this
reference state as an undeformed configuration of the body. The initial and boundary conditions are given by
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S1 = (x − 0.25)2 + (y − 0.25)2 + (z − 0.25)2 − 0.22,

S2 = (x − 0.75)2 + (y − 0.75)2 + (z − 0.75)2 − 0.12,

S3 = (x − 0.75)2 + (y − 0.75)2 + (z − 0.3)2 − 0.082,

h = 0.2,

δ1 = 0.31 − 0.8

(

0.5 tanh

(
S1

0.01h(h + 2.0)

)

+ 0.5

)

,

δ2 = 0.31 − 0.8

(

0.5 tanh

(
S2

0.01h(h + 1.0)

)

+ 0.5

)

,

δ3 = 0.31 − 0.8

(

0.5 tanh

(
S3

0.01h(h + 0.8)

)

+ 0.5

)

,

ϕ1
0 = 1 + δ1 + δ2,

ϕ2
0 = δ3,

ϕ3
0 = 1 − ϕ1

0 − ϕ2
0 ,

u = 0,
inP, subjected to periodic boundary conditionson ∂P × (0, T ).

(69)

For the 3D numerical simulation in this section, we use the material parameters in Table 2. Neverthe-
less, we set the reaction rates k+ = 0 and k− = 0. As mentioned before, the phase A3 serves as
an interstitial phase following the mass constraint given by (19). Figure 7a shows the initial condition
for the phases distribution and displacements, respectively. The system of equations to solve is given by

ϕ̇1 = −Divj1
R3, (70a)

ϕ̇2 = −Divj2
R3, (70b)

DivTR = 0. (70c)

where we use the phaseA3 as the reference species. We solve the system of partial differential equation (70) in
its primal form (66) and (68). We state the problem as follows: find {ϕ,u} ∈ C2(P) such that (61) subjected to
periodic boundary conditions up to the second derivative of ϕ, and u with respect to X in a cubic open region
P = (0, 1) × (0, 1) × (0, 1). We use the PetIGA [30] to solve the 643 element mesh of a polynomial degree
2 and continuity 1.

At early stages Fig. 7b, t < 1.182 × 10−6, part of the phase A1 deposits on the surface of the inclusion
A2 as a new spherical inclusion A1 of same radius appears. As the evolution proceeds, between the time
range 1.182 × 10−6 < t < 2.79 × 10−6, the inclusion of phase A2 becomes smaller as its mass goes into
the solution. There is no deposition of phase A2 at this point in the evolution. Regarding the deformation, the
stresses associated with the volume changes are small since the displacements do not change substantially (see
Fig. 7c). Nevertheless, after t > 5.476 × 10−6, rings composed of phases A1 and A2 appear around A1. This
occurs as the solution gets supersaturated and the mass of phasesA1 andA2 migrate to the surface of the more
energetically stable structures in the system, which in this case correspond to the spherical inclusions (see
Fig. 7d). Such mass transport induces volumetric stresses and concomitant displacements around the spherical
inclusions (see Fig. 7d). As the system tries to minimise its free energy, the masses of phases A1, A2, and
A3 in the solution separate and merge to form new spherical structures. The phase A2 locates around the
spherical inclusions of A1. As mentioned before, the fact that the phases are diffusing induces volumetric
stresses. Consequently, we see displacements where the phases are separating and merging (see Fig. 7d).
Later on, t > 5.626 × 10−3, the spherical inclusions composed of phase A1 and A2 merge to form a more
energetically stable distribution of elongated structures (see Fig. 7e). Finally, the phase A2 wraps the phase
A1, andA3 acts as an interstitial phase. The structure at steady state emerges as a result of the coupled chemo-
mechanical interactions of the three-component system where the source of stress generation solely results
from the mass transport of the phases (see Fig. 7e). Figure 8 shows the microstructural configuration at the
steady-state.
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Fig. 7 The inclusions differ in size which drives the ripening process. The deformation will result from the mass transport of the
phases as the smaller inclusions go into the solution and deposit in the surface of the larger inclusions
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Fig. 8 Microstructural morphology at steady state for species concentration

5 Conclusions

We develop a thermodynamically consistent model that describes the evolution of chemically active min-
eral solid solutions. The theoretical foundations of the framework rely on modern continuum mechan-
ics, thermodynamics far from equilibrium, and the phase-field model, which allow us to derive a
set of coupled chemo-mechanical partial differential equations. Using 2D and 3D numerical simula-
tions, we show the evolution of the stress-assisted volume changes triggered by mass transport and
chemical reactions. We also include a constraint system using the Larché–Cahn derivative, which
takes into account the mass constraint imposed by the solid crystalline structure. Finally, we con-
clude that the influence of mechanical effects upon chemically active mineral solid solutions must be
taken into account and most importantly, they play a substantial role in the evolution of these geosys-
tems.
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