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The events following the 15 January 2022 explosions of the Hunga Tonga-Hunga Ha’apai
volcano highlighted the need for a better understanding of ocean-atmosphere interactions
when large amounts of energy are locally injected into one (or both). Starting from the
compressible Euler equations, a two-way coupled (TWC) system is derived governing
the long-wave behaviour of the ocean and atmosphere under isentropic constraint.
Bathymetry and topography are accounted for along with three-dimensional atmospheric
non-uniformities through their depth average over a spherical shell. A linear analysis,
yielding two pairs of gravito-acoustic waves, offers explanations for phenomena observed
during the Tonga event. A continuous transcritical regime (in terms of water depth)
is identified as the source of large wave generation in deep water bodies, removing
the singularity-driven Proudman-type resonance observed in one-way coupled models.
The refractive properties, governing the interaction of the atmospheric wave with step
changes in water depth, are derived to comment on mode-to-mode energy transfer.
Two-dimensional global simulations modelling the propagation of the atmospheric wave
(under realistic conditions on the day) and its worldwide effect on oceans are presented.
Local maxima of water-height disturbance in the farfield from the volcano, linked to
the atmospheric wave deformation (in agreement with observations), are identified,
emphasising the importance of the TWC model for any daylong predictions. The proposed
framework can be extended to include additional layers and physics, e.g. ocean and
atmosphere stratification. With the aim of contributing to warning system improvement,
the code necessary to simulate the event with the proposed model is made available.
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1. Introduction

On 15 January 2022 the Hunga Tonga Hunga Ha’apai volcano erupted violently in the
South Pacific (hereafter referred to as the ‘Tonga event’) after a month of volcanic activity,
triggering tsunamis that reached coasts around the Pacific rim and ‘exposed a blind spot in
Japan’s tsunami monitoring and warning system’ (Imamura et al. 2022). Japan’s warning
system disregarded ocean surface perturbations induced by the atmospheric pressure
waves generated by the eruption, delaying the evacuation process in the Amami Islands
(Imamura et al. 2022). This lack of understanding of the mechanisms behind the generated
tsunami has prompted the authors to investigate the matter. The eruption is one of the
largest recorded in modern times and has been compared with the eruption of Krakatoa in
1883 (Matoza 2022). Energy was released by the eruption into the atmosphere, ocean and
ground. It generated acoustic, gravity and seismic waves that were detected by an array
of instruments around the globe (Matoza 2022; Vergoz et al. 2022; Wright et al. 2022),
producing an abundance of available data for the study of the event. Infrasound stations,
weather satellites and ground weather stations recorded atmospheric pressure disturbances
propagating from Tonga to its antipode and back, in cycles of around 36 hrs, for more than
seven days (Díaz & Rigby 2022; Kulichkov et al. 2022; Otsuka 2022; Yuen et al. 2022).
Figure 1 shows the thermal signature of the atmospheric pressure waves for the 9.6 μm
centred infrared (IR) band captured by geostationary weather satellites. Different spectral
bands, each most sensitive to different altitudes, show similar signatures suggesting a
vertically coherent thermal wave across the atmosphere (see Appendix A for details).
Ground-based global navigation satellite system (GNSS) receivers, Swarm satellites and
the ionospheric connection explorer observed a depletion of the total electron content
(TEC) in the ionosphere for more than 10 hrs in the vicinity of the eruption as well as TEC
perturbations that propagated globally (Aa et al. 2022; Astafyeva et al. 2022; Maletckii &
Astafyeva 2022). The global seismic network reported two eruption sequences separated
by 4 hrs and attributed the vent to a volcanic explosivity index of around 6, one of the
largest recorded by modern instrumentation (Poli & Shapiro 2022; Tarumi & Yoshizawa
2023). Tide gauges and ocean bottom observation systems recorded leading waves earlier
than those induced by sudden seabed motions (referred to as regular or classical tsunami),
followed by waves that matched the predicted arrival times for (regular) tsunami waves
generated at the eruption site (Carvajal et al. 2022; Kubo et al. 2022; Ramírez-Herrera,
Coca & Vargas-Espinosa 2022). The early arrival of oceanic waves, caused by interactions
between the travelling atmospheric pressure disturbances and the ocean surface, are
referred to as meteotsunamis (Monserrat, Vilibić & Rabinovich 2006). This phenomenon
was observed in different locations around the globe after the Tonga event (Tonegawa &
Fukao 2022; Hu et al. 2023). Figure 2 shows the ground pressure fluctuations reported in
mainland United States and Japan and runup values at coastal locations across the globe,
highlighting the global impact of the generated meteotunamis and the importance of a
reliable model for their prediction. Meteotsunamis have also been reported after similar
volcanic eruptions such as Krakatoa (Press & Harkrider 1966; Pelinovsky et al. 2005),
and during other large-scale atmospheric disturbances, e.g. storm-provoked atmospheric
pressure changes (Rabinovich & Monserrat 1996; Monserrat et al. 2006; Gusiakov 2020;
Vilibić, Rabinovich & Anderson 2021).

Proudman was the first to theorize that water waves forced by a given atmospheric
pressure distribution could be amplified under resonance (Proudman 1929). Since then,
similar meteotsunami models have been proposed for weather systems/storms interacting
with the ocean (see, e.g. Murty 1984; Levin & Nosov 2009). These models correspond to
the shallow-water equation (SWE) with a forcing that mimics the atmospheric pressure
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Figure 1. Equatorial views of the thermal atmospheric waves captured by five geostationary satellites on 15
January 2022. Time stamps are shown in coordinated universal time (UTC). Details about the measurements
and estimate of the fluctuating temperature field (T′) are given in Appendix A. The topography (colours)
emphasises the main mountain ranges (values in the colourbar are in kilometres). The thermal wave is shown
in grey scale clipped in the ±0.1 K range. Note that the T′ field was low-pass filtered with a cutoff length of
3 × 102 km (see details in Appendix A). The thermal wave is seen to maintain a remarkable coherence from
Tonga to its antipode despite travelling through weather systems, jet streams and mountain ranges. Whilst only
the 9.6 μm IR wavelength is shown here, similar patterns were found in all other IR spectral bands onboard
the geostationary satellites, suggesting that the wave is coherent across the entire thickness of the troposphere.
This thermal wave, triggered by the eruption, led to large-scale disturbances of the oceans’ surface and triggered
tsunamis all around the world. The satellite data show the wave travelling back to Tonga in about 36 hrs and
could capture at least three such cycles. The contours give the extracted wave position every hour from 05:00
to 19:00 UTC, and the blue dash line shows the wave position at the time shown in the snapshot.
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Figure 2. Pressure fluctuations (in hPa) measured from ground stations in mainland United States (NOAA
ASOS data) and Japan (Weathernews Inc. Soratena network). The times shown are UTC times on 15 January
2022. The white contours give the location of the atmospheric thermal wave (see figure 1). Solid lines are on
the hour, dash lines are 30 mins past the hour. The horizontal white bars provide an estimate for a distance
of 103 km (the map is shown on a longitude–latitude projection plane). The wavelength of the pressure wave
approximately fits a 30-minute gap on the map, in agreement with the reported thermal wavelength of about
5–9 × 102 km (Matoza 2022; Wright et al. 2022). The bottom panel gives a worldview of the significant waves
listed by NOAA shortly after the thermal wave swept through. These wave heights contain runup values on
the shores and should not be confused with sea-level displacements over oceanic basins for example (to be
discussed later). The grey-scale map is lighten up as a function of water depth (brighter means deeper) and
mountain ranges to give a general impression of the topography. The concentric lines give the extracted hourly
thermal-wave position from 05:00 to 19:00 UTC on 15 January 2022. The west coast of the American continent
and the East coast of Japan have experienced waves exceeding 1 m, despite being over 8000 km away from the
volcano (upward triangle on the map). Remarkably, waves up to 50 cm high are reported in the Mediterranean
sea, nearly on the antipode of the Tonga Islands (downward triangle on the map). These waves were observed
hours earlier than those of a regular tsunami travelling from Tonga around the continents, and on amplitudes at
least one order of magnitude higher than that expected for the energy released by the volcano near the Tonga
Islands. They result from the energy transfer between the travelling thermal wave and the ocean that are not
accounted for by regular tsunami warning systems.
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contributions, and are hereafter referred to as one-way coupled (OWC) as there is no
feedback from the ocean to the atmosphere. Empiric velocities and spatial distributions,
based on satellite data, ground pressure sensors and other observations, are used to
construct an atmospheric pressure forcing pa in the common OWC model,

D
Dt

[
H
U

]
= −

[
H∇⊥ · U

ρ−1
w ∇⊥pa + g∇⊥η1

]
, (1.1)

where D/Dt is the material derivative, H is the water depth, U is the depth-averaged
in-plane (orthogonal to the vertical axis) velocity vector, ∇⊥ is the in-plane gradient
operator, ρw is the water density, g is the gravitational acceleration and η1 is the ocean’s
surface.

One-way coupled models have been used to study Rissaga storms in the Balearic
sea (Monserrat, Ibbetson & Thorpe 1991; Renault et al. 2011; Romero, Vich & Ramis
2019), Abiki storms in Japan (Fukuzawa & Hibiya 2020; Kubota et al. 2021), storms
in the Adriatic sea (Denamiel et al. 2019), storm resonance with tides (Williams
et al. 2021), continental shelf resonance (Vennell 2007; Thiebaut & Vennell 2011) and
shore interactions (Chen & Niu 2018; Dogan et al. 2021). Following the Tonga event,
OWC models were used to simulate the generated meteotsunami along one-dimensional
great-circle lines starting from Tonga (Kakinuma 2022; Sekizawa & Kohyama 2022;
Tanioka, Yamanaka & Nakagaki 2022), two-dimensional (2-D) truncated regions of the
globe (Heidarzadeh et al. 2022; Liu & Higuera 2022; Lynett et al. 2022; Pakoksung,
Suppasri & Imamura 2022; Peida & Xiping 2022; Ren, Higuera & Liu 2022; Yamada et al.
2022) and 2-D global simulations (Kubota, Saito & Nishida 2022; Omira et al. 2022). In
each of these cases, the atmospheric wave is stripped of its thermodynamic properties and
acts as a rigid piston, assuming a sea-level forcing travelling at a set speed that is estimated
from available observation data. For specific water depths, the OWC oceanic gravity-wave
speed can match the imposed speed of the atmospheric pressure wave and produce a
resonance that amplifies the water-surface displacement. This resonance is responsible
for some of the wave heights reported in Kubota et al. (2022) and Omira et al. (2022),
and used as a key argument by these authors to explain the observed meteotsunamis in the
Tonga event. However, since the amplification factor is a function of the set pressure-wave
speed and the local water depth, the amplitude of induced water waves at a set depth can be
directly modified by the choice of pressure-wave speed. This opens the door to numerical
results that can be, to some extent, fitted to the observed data rather than reflect the ability
of OWC models to predict the observed tsunami waves in events such as the Tonga one.

The thermal wave seen in figure 1 accompanied with the pressure disturbance
observations seen in figure 2 are evidence of a thermodynamic process in the atmosphere.
Isothermal and isobaric processes are not suitable to model the event given the observed
in-phase thermal and pressure perturbations. The TEC perturbations in the ionosphere also
indicate that density changes in the atmosphere are relevant to the process, supposedly
ruling out an isochoric thermodynamic process. An isentropic process is then the
most plausible constraint that would fit the observations and, therefore, the proposed
coupled ocean-atmosphere dynamics consider that the perturbations in the atmosphere are
isentropic in nature. This work presents a novel two-way coupled (TWC) model to study
the propagation of long waves in the ocean-atmosphere system, where the atmosphere is
modelled as an isentropic fully compressible layer capable of emulating the observations
of the Tonga event. Other TWC models have been derived considering isothermal layers to
study the air–sea waves after the Krakatoa eruption (Harkrider & Press 1967), considering
steady atmospheric motion and heat exchange to model unstable air–sea interactions in
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the tropics (Philander, Yamagata & Pacanowski 1984), systems with multiple layers of
incompressible fluids (Stewart & Dellar 2010) and quasi-geostrophic ocean-atmosphere
systems (Vallis 2017). Previous TWC models that consider compressible layers have used
isothermal or steady motion to describe the atmosphere, these approaches are not suitable
for this application. In this work, starting from first principles, two shallow layers are
coupled through pressure and kinematic boundary conditions to model ocean-atmosphere
interactions. The resulting TWC model represents the incompressible shallow-water
ocean, the compressible shallow-layer atmosphere and the two-way coupling mechanisms
between them.

The paper is structured as follows. Section 2 presents a detailed derivation of the
governing equations for a general shallow layer of a compressible fluid. Section 3 describes
the ocean and atmosphere layers, and the boundary conditions between them to obtain
the TWC model. Section 4 shows the linear wave analysis and the resulting eigenmodes.
Section 5 details the numerical results of the integration of the acoustic eigenmode as well
as the direct simulation of the event, and their comparison with data from the Tonga event.
Section 6 presents the discussion of the results and conclusions.

2. Shallow compressible-fluid equations

2.1. Non-dimensional compressible-fluid equations
Atmospheric observations following the Tonga event demonstrate that the pressure
disturbances in the atmosphere can travel uninterrupted around the globe for several
days (Matoza 2022), suggesting that dissipative effects may be neglected. From this
observation the fluid is assumed to obey the non-dimensional compressible Euler
equations (i.e. friction and heat losses are neglected),

St
∂

∂t

⎡
⎣ ρ

ρv
ρeT

⎤
⎦+ ∇ ·

⎡
⎣ ρv

ρv ⊗ v + EupI3
ρveT + Eupv

⎤
⎦ =

⎡
⎣ 0

ρg/Fr2

ρv · g/Fr2

⎤
⎦ , (2.1)

where ρ, v, p, eT are, respectively, the density, velocity vector, thermodynamic pressure
and specific total energy of the fluid, with eT ≡ v · v/2 + e, where e is the specific
internal energy of the fluid. Here ∇ · () is the divergence operator, t is time and v ⊗ v is
the velocity dyadic product. Non-dimensional numbers St ≡ �o/(touo), Eu ≡ po/(ρou2

o),
Fr ≡ uo/

√
go�o are, respectively, the Strouhal, Euler and Froude numbers, where to, uo,

�o, po, ρo, are reference time, speed, length, pressure, density, scales, respectively, and go
is a reference gravitational acceleration. Term g is the constant magnitude and direction
gravitational acceleration vector non-dimensionalised by go (tidal effects are neglected).
Term In is the identity tensor in n dimensions. Without loss of generality, the reference
time, pressure and speed are set to to = �o/uo, po = ρou2

o and uo = √
go�o, resulting in

St = Eu = Fr = 1.

2.2. Depth averaging
Consider the geocentric spherical coordinate system with origin O at the centre of mass of
the Earth, unitary basis (O; (er, eθ , eϕ)), coordinates (r, θ, ϕ) and position vector r = rer ,
where the radius r is defined as the distance from the origin, the colatitude θ is defined
as the polar angle measured from the North Pole and the longitude ϕ is defined as the
angle in the equatorial plane measured from the prime meridian positive to the east.
Integrating (2.1) in the radial direction er between the two surfaces bounding a fluid
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layer results in the depth-averaged equations. Let ZT(t, r, θ, ϕ) = 0 and ZB(t, r, θ, ϕ) = 0
define, respectively, the top and bottom surfaces. Assuming these surfaces to be smooth
(i.e. neglecting breaking waves and imposing ∂Zi/∂r /= 0), the implicit function theorem
states that these can be redefined as

Zi(t, r, θ, ϕ) ≡ ηi(t, θ, ϕ) − r = 0, with i ∈ {B, T}. (2.2)

The evolution of these surfaces represents the kinematic boundary condition given by

DZi

Dt
= ∂ηi

∂t
+ v|ηi · ∇ηiZi = 0, (2.3)

where v = [vr, vθ , vϕ]T is the velocity vector, the in-plane gradient operator for an
arbitrary radius a is defined as

∇aφ ≡
[
∂φ

∂r
,

1
a

∂φ

∂θ
,

1
a sin θ

∂φ

∂ϕ

]T

. (2.4)

Throughout the text φ and f denote an arbitrary scalar and vector field, respectively.
Let 〈φ〉 and φ̄ denote, respectively, the linear and logarithmic depth averages,

〈φ〉 ≡

∫ ηT

ηB

φ dr

H
and φ̄ ≡

∫ zT

zB

φ dz

L
, (2.5a,b)

where H ≡ ηT − ηB is the non-dimensional layer thickness, L ≡ ln(ηT/ηB) and z =
ln(r), zB = ln(ηB), zT = ln(ηT).

Appendix B derives a general expression for the depth-averaged divergence of a vector
field in spherical coordinates and its approximation under the thin-layer assumption. Using
Leibniz integration rule and the results of Appendix B, the depth average of the time
derivative and divergence are written as∫ ηT

ηB

∂φ

∂t
dr = ∂

∂t
(H〈φ〉) −

[[
φ

∂η

∂t

]]
, (2.6)

∫ ηT

ηB

∇ · f dr = ∇R
⊥ · (LR f̄ ⊥) − [[ f · ∇ηZ ]] + 2Lf̄ · er, (2.7)

where R is an arbitrary constant radius, the subscript ⊥ denotes in-plane components of
the vector (orthogonal to er), defined as f ⊥ ≡ P⊥ f with f = [ fr, fθ , fϕ]T and projection
matrix P⊥ ≡ ( 0 1 0

0 0 1 ), and the double square brackets denote the difference between the
top and bottom values evaluated on the inner sides of the bounding surfaces,

[[φ]] ≡ φ|ηT− − φ|ηB+ , with φ|ηT− ≡ lim
r→ηT−

φ and φ|ηB+ ≡ lim
r→ηB+

φ, (2.8)

and the in-plane divergence operator is

∇R
⊥ · (φf ⊥) = 1

R sin θ

(
∂(φfθ sin θ)

∂θ
+ ∂(φfϕ)

∂ϕ

)
. (2.9)
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Using (2.3), (2.6) and (2.7), the depth average of the governing equations (2.1) is

∂

∂t

⎡
⎢⎣

H〈ρ〉
H〈ρvr〉
H〈ρv⊥〉
H〈ρeT〉

⎤
⎥⎦+ ∇R

⊥ ·

⎡
⎢⎣

LRρv⊥
LRρvr v⊥

LR(ρv⊥ ⊗ v⊥ + p̄I2)
LR(ρeTv⊥ + pv⊥)

⎤
⎥⎦

=

⎡
⎢⎣

0
−[[p]] − 〈ρ〉gH

[[p∇η
⊥Z ]]

[[pv · ∇ηZ ]] − 〈ρvr〉gH

⎤
⎥⎦− 2L

⎡
⎢⎣

ρvr
ρvrvr
ρvrv⊥

ρvreT + pvr

⎤
⎥⎦ , (2.10)

with g ≡ g · er (note that g · eθ = g · eϕ = 0 from the assumptions).

2.3. Thin-layer assumption
Let d denote the characteristic length of the layer depth. Assuming the layer is thin
compared with its radius (d � R), with R ≡ R∗/�o, where R∗ is the characteristic
radius of the planet (for Earth R∗ = 6371 km). Defining δ ≡ d/R and using the results of
Appendix B.2 (φ̄ = 〈φ〉 + O(δ2)), (2.6) and (2.7) become

∫ ηT

ηB

∂φ

∂t
dr = ∂

∂t
(Hφ̄) −

[[
φ

∂η

∂t

]]
+ O(δ2), (2.11)

∫ ηT

ηB

∇ · f dr = ∇R
⊥ · (Hf̄ ⊥) + [[ f · n]] + 2

H

ηB
( f̄ · er + [[ f ⊥ · n⊥]]) + O(δ2), (2.12)

with the normal vector defined as ni ≡ −∇RZi and ni⊥ = P⊥ni (see Appendix B.2 for
details).

Applying the above and using the surface evolution equation (2.3) on (2.10) results in
the depth average thin-layer equations

∂

∂t

⎡
⎢⎣

Hρ̄

Hρvr
Hρv⊥
HρeT

⎤
⎥⎦+ ∇R

⊥ ·

⎡
⎢⎣

Hρv⊥
Hρvr v⊥

Hρv⊥ ⊗ v⊥ + Hp̄I2
HρeTv⊥ + Hpv⊥

⎤
⎥⎦

=

⎡
⎢⎣

0
−[[p]] − ρ̄gH

−[[pn⊥]]
−[[pv · n]] − ρvrgH

⎤
⎥⎦− 2

H

ηB

⎡
⎢⎣

ρvr
ρvrvr

ρvrv⊥ + [[pn⊥]]/2
ρvreT + pvr + [[pv⊥ · n⊥]]/2

⎤
⎥⎦+ O(δ2). (2.13)

2.4. Long-wave assumption
Considering a perturbation to the top surface ηT with a wavelength L and amplitude a, the
relative water depth is defined as ε ≡ d/L, where d is the characteristic vertical length and
a � d. Then, assuming long waves or shallow water (ε � 1) the vertical velocity and the
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gradient of the surface become v̄r = O(ε) and ∇R
⊥ η = O(a/L), and (2.13) becomes

∂

∂t

⎡
⎢⎣

Hρ̄

Hρvr
Hρv⊥
HρeT

⎤
⎥⎦+ ∇R

⊥ ·

⎡
⎢⎣

Hρv⊥
Hρvrv⊥

Hρv⊥ ⊗ v⊥ + Hp̄I2
HρeTv⊥ + Hpv⊥

⎤
⎥⎦

=

⎡
⎢⎣

0
−[[p]] − ρ̄gH

−[[pn⊥]]
−[[pv · n]] − ρvrgH

⎤
⎥⎦+ O(δε), (2.14)

and the surface evolution equation (2.3) becomes

∂ηi

∂t
− v|ηi · ni = O(δε). (2.15)

2.5. Density-weighted average decomposition
Similarly to common practice in compressible-turbulence studies, density-weighted
averages are recast following a Favre decomposition, φ = φ̃ + φ′′, where φ̃ = ρφ/ρ̄. Here,
the Reynolds decomposition uses the logarithmic depth average as φ = φ̄ + φ′. With these
decompositions, (2.14) becomes

∂

∂t

⎡
⎢⎣

Hρ̄

Hρ̄ṽr
Hρ̄ṽ⊥
Hρ̄ẽT

⎤
⎥⎦+∇R

⊥ ·

⎡
⎢⎣

Hρ̄ṽ⊥
Hρ̄ṽr ṽ⊥

Hρ̄ṽ⊥ ⊗ ṽ⊥+Hp̄I2
Hρ̄ẽT ṽ⊥ + Hp̄ṽ⊥

⎤
⎥⎦ =

⎡
⎢⎣

0
−[[p]] − ρ̄gH

−[[pn⊥]]
−[[pv · n]] − ρ̄ṽrgH

⎤
⎥⎦+ C + O(δε),

(2.16)

where the in-plane velocity is decomposed as v⊥ = ṽ⊥ + v′′
⊥. The closure vector C

corresponds to

C = −∂
[
0, 0, 0, Hρ̄ṽ

′′
⊥ · v

′′
⊥/2

]T
/∂t

− ∇R
⊥ ·

[
0, Hρ̄ṽ′′

r v
′′
⊥, Hρ̄ ˜v′′

⊥ ⊗ v′′
⊥, Hρ̄ẽ′′

Tv′′
⊥ + H(p′v′⊥ + p̄v′′

⊥)

]T
. (2.17)

Using Taylor series expansions, the closure vector C is proven to be O(δε) or, as shown in
(B23), higher (see Appendix B.3 for details) and (2.16) becomes

∂

∂t

⎡
⎢⎣

Hρ̄

Hρ̄ṽr
Hρ̄ṽ⊥
Hρ̄ẽT

⎤
⎥⎦+ ∇R

⊥ ·

⎡
⎢⎣

Hρ̄ṽ⊥
Hρ̄ṽr ṽ⊥

Hρ̄ṽ⊥ ⊗ ṽ⊥ + Hp̄I2
Hρ̄ẽT ṽ⊥ + Hp̄ṽ⊥

⎤
⎥⎦ =

⎡
⎢⎣

0
−[[p]] − ρ̄gH

−[[pn⊥]]
−[[pv · n]] − ρ̄ṽrgH

⎤
⎥⎦+ O(δε).

(2.18)
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2.6. Long-wave expansion
The independent variables are rescaled based on the relative water depth ε as

t = ε−1to, x⊥ = ε−1xo
⊥, r = ro, (2.19)

where the superscript o denotes the rescaled quantities, and x⊥ is a position vector on the
plane formed by the eθ and eϕ vectors. With this rescaling the variables become

H = Ho, ρ̄ = ρ̄o, p̄ = p̄o, ṽr = εṽo
r , ṽ⊥ = ṽo

⊥, ẽT = ẽo
T . (2.20)

Analogous to standard practices in the derivation of the SWE (see, e.g. Narayanan 2003),
the coefficients of the rescaled variables are based on a set of modelling choices over
the resulting equations. For the purposes of this work, these coefficients are derived
based on the following constraints over the resulting leading-order equations and rescaled
variables.

(i) The vertical momentum equation corresponds to the hydrostatic balance.
(ii) All the terms in the continuity equation are of the same order.

(iii) All the terms in the in-plane momentum equation are of the same order.
(iv) Pressure and density changes follow the same scaling (i.e. they are related via the

isentropic constraint).

Constraints (i)–(iii) are used to recover the SWE in the incompressible-flow case and
constraint (iv) is added for compatibility with the internal-energy equation in the
compressible-flow case. Note that the resulting leading-order equations will differ for
another set of considerations. Appendix B.4 describes the derivation of the coefficients
and the leading-order equations. From here on, the superscript o is omitted for readability,
and the resulting leading-order equations are

∂

∂t

⎡
⎢⎣

Hρ̄

0
Hρ̄ṽ⊥
Hρ̄ẽT

⎤
⎥⎦+ ∇R

⊥ ·

⎡
⎢⎣

Hρ̄ṽ⊥
0

Hρ̄ṽ⊥ ⊗ ṽ⊥ + Hp̄I2
Hρ̄ẽT ṽ⊥ + Hp̄ṽ⊥

⎤
⎥⎦ =

⎡
⎢⎣

0
−[[p]] − ρ̄gH

−[[pn⊥]]
−[[pv · n]] − ρ̄ṽrgH

⎤
⎥⎦+ O(δε),

(2.21)

and

∂ηi

∂t
− v|ηi · ni = O(δε). (2.22)

2.7. Isentropic-flow constraint
The kinetic energy equation is obtained by taking the dot product of the Favre
average velocity ṽ with the momentum-balance statement in (2.21), including the radial
components. Subtracting the result from the total energy equation in (2.21) yields
the governing equation for the Favre-averaged internal energy after application of the
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continuity equation ∇R
⊥ · ṽ⊥ = −(Hρ̄)−1D(Hρ̄)/Dt, i.e.

Hρ̄
Dẽ
Dt

− p̄
ρ̄

D(Hρ̄)

Dt
+ [[pv′′ · n]] = O(δε). (2.23)

Rearranging the material derivative of Hρ̄, introducing p = p̄ + p′, noting that [[p̄ f ]] =
p̄[[ f ]] and [[p′v′′ · n]] = O(δε) (see Appendix B.3 for details) gives

Hρ̄
Dẽ
Dt

= −Hρ̄ p̄
D
Dt

(
1
ρ̄

)
+ p̄

(
DH

Dt
− [[v′′ · n]]

)
+ O(δε). (2.24)

Applying (2.22) at ηT and ηB, introducing the Favre decomposition v⊥ = ṽ⊥ +
v′′

⊥ and vr = ṽr + v′′
r , and subtracting the results yields DH/Dt = [[v′′

r ]] + O(δε).
The internal-energy equation becomes

Hρ̄
Dẽ
Dt

= −Hρ̄ p̄
D
Dt

(
1
ρ̄

)
+ p̄[[v′′ · (er − n)]] + O(δε). (2.25)

The long-wave assumption implies that n = er + O(ε). The thin-layer assumption implies
that v′′ = O(δ). Hence, v′′ · (er − n) = O(δε), and the internal-energy equation reduces
to

Hρ̄

[
Dẽ
Dt

+ p̄
D
Dt

(
1
ρ̄

)]
= O(δε). (2.26)

Equation (2.26) implies that, to first order in δε, the entropy of a material element of a thin
layer is conserved along its trajectory in space–time. The flow is therefore isentropic.

Let V ≡ 1/ρ̄ be the specific volume of the layer (not necessarily the depth average value
of ρ−1). Let S be the specific entropy of the layer (not necessarily the Favre-averaged value
of the specific entropy). Considering that ẽ depends on the state variables V and S (having
previously ignored any chemical-potential dependency), the total differential of ẽ is

dẽ =
(

∂ ẽ
∂V

)
S

dV +
(

∂ ẽ
∂S

)
V

dS. (2.27)

Assuming that any material element of the layer evolves under the isentropic constraint
dS = 0, (2.26) and (2.27) give

p̄ = −
(

∂ ẽ
∂V

)
S

. (2.28)

Since the thermodynamic pressure p̄ depends on the state variables V and S, the isentropic
constraint imposes that

dp̄ =
(

∂ p̄
∂V

)
S

dV =
(

∂ p̄
∂ρ̄

)
S

dρ̄ = C 2 dρ̄, (2.29)

where C ≡ [(∂ p̄/∂ρ̄)S]1/2 is the isentropic sound speed of the layer.
The total energy equation in (2.21) can thus be replaced by

Dp̄
Dt

= C 2 Dρ̄

Dt
, (2.30)

where C is evaluated from the depth-averaged variables.
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Figure 3. Sketch of the ocean-atmosphere configuration and main notations used. The ocean is shown in blue
and the atmosphere in ivory. Note that the characteristic thickness of a layer, d, is used interchangeably between
the ocean and the atmosphere. The model assumes that both the thin-layer (R � d) and long-wave (L � d)
assumptions apply.

3. Two-way coupled ocean-atmosphere model

The compressible shallow-layer equation derived in the previous section is now applied to
form a coupled ocean-atmosphere system. Figure 3 illustrates the configuration along with
some key notations. For clarity, the following notation is used to describe each layer

Ocean : H ≡ η1 − η0, U ≡ ṽ⊥ ρ, w ≡ ρ̄, (3.1)

Atmosphere : h ≡ η2 − η1, u ≡ ṽ⊥ �, ≡ ρ̄, π ≡ p̄. (3.2)

The coupled system is bounded by the seabed, η0, at its bottom, and the ‘top’ of the
atmosphere, η2, on the outer-space side. The ocean-atmosphere interface is denoted by
η1. All variables correspond to the leading order terms of the long-wave and thin-layer
expansion. With these definitions, the material derivative for each layer is denoted by:

DU ()

Dt
≡ ∂()

∂t
+ U · ∇R

⊥ () and
Du()

Dt
≡ ∂()

∂t
+ u · ∇R

⊥ (). (3.3a,b)

3.1. Shallow ocean equations
The seawater density, ρw, is assumed constant and uniform. The continuity equation in
(2.21) simplifies to DU H/Dt = −H∇R

⊥ · U . The radial component of the momentum
equation in (2.21) becomes [[p]] = p|η1 − p|η0 = −ρwgH. This is the hydrostatic
balance (‘dp = −ρwg dr’), which, in the uniform-density case integrates to the linear
profile p(r) = p|η1 − ρwg(r − η1). Depth averaging gives p̄ = p|η1 + ρwgH/2 + O(δ2).
Substituting these in (2.21) yields

DU

Dt

[
H
U

]
= −

[
H∇R

⊥ · U
ρ−1

w ∇R
⊥ p|η1 + g∇R

⊥ η1

]
. (3.4)

Note that the internal-energy equation is removed from the ocean-layer dynamics
since ‘pressure’ in the uniform-density (and isothermal) framework purely assumes a
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kinematic role and not a thermodynamic one. Retaining the internal-energy equation
would over-constrain the dynamical system.

Equation (3.4) is strictly the same dynamical equation as that of the OWC models (see
(1.1)). However, note that the TWC model will let η1, U and p|η1 all be influenced by
the atmospheric layer, whereas OWC models prescribe assumed space–time dependencies
for p|η1 that do not depend on the evolution of the system. In the absence of a pressure
gradient on the ocean surface and a fixed seabed position, (3.4) is in a closed form and
is strictly equivalent to the classical SWE (see, e.g. Vallis 2017), referred here to as the
zero-way coupling (ZWC) model.

3.2. Shallow atmosphere equations
The continuity and in-plane momentum equations in (2.21) are rearranged in primitive
form and the total energy equation replaced by (2.30) to give

Du

Dt

⎡
⎣�

u
π

⎤
⎦ = −

⎡
⎣ �Ψ

(�h)−1(∇R
⊥ (hπ) − p|η1∇R

⊥ h) − g∇R
⊥ η2

�Ψ C 2

⎤
⎦ , (3.5)

where Ψ ≡ h−1[∇R
⊥ · (hu) + ∂h/∂t] and p|η1 = p|η2 + �gh.

Air is assumed to be thermally (p∗ = ρ∗RairT∗) and calorically (de∗ = cv dT∗) perfect
(humidity and phase changes are not taken into account), where the gas constant Rair and
the specific heat at constant volume cv are true dimensional constants. Further assuming
e∗(T∗ = 0) = 0 results in e∗ = cvT∗. Using the reference pressure po = ρou2

o and defining
the non-dimensional temperature as T ≡ RairT∗/u2

o, the thermal equation of state (EoS)
becomes p = ρT and the caloric EoS becomes e = (cv/Rair)T . Depth-averaging both
gives p̄ = ρ̄T̃ and ẽ = (cv/Rair)T̃ , and injecting these in (2.27) using (2.28) yields

dp̄ = γ
p̄
ρ̄

dρ̄ + ρ̄
Rair

cv

(
∂ ẽ
∂S

)
V

dS, (3.6)

where γ ≡ cp/cv , cp is the specific heat at constant pressure, and Rair = cp − cv (Mayer’s
relation). Thus, using (2.29), the isentropic sound speed of the layer is

C =
√

γ
p̄
ρ̄

=
√

γ
π

�
, (3.7)

where π and � are, respectively, the (logarithmic) depth-averaged pressure and density.
Section 5 will show that in standard atmospheric conditions this speed, evaluated on the
entire thickness of the troposphere (and beyond), matches that of the so-called Lamb wave
invoked in OWC models.

3.3. Boundary conditions

3.3.1. Edge boundary conditions
The seabed (η0) is non-uniform but stationary. The outer-space boundary (η2) is assumed
uniform and stationary. The steady edge boundary conditions therefore impose that
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H + h = η2 − η0 remains constant with time,

∂H
∂t

+ ∂h
∂t

= 0. (3.8)

The rather strict constraints on η2 can be relaxed in future studies by adding further
atmospheric layer(s) to better account for the high-atmosphere physics (Aa et al. 2022),
which is beyond the scope of this study, where η2 is placed at the interface with the
ionosphere, which is modelled as a uniform semi-infinite vacuum (i.e. Earth is placed
in a vacuum from the ionosphere outwards).

3.3.2. Interface conditions
The surface evolution equation (2.22) is evaluated on the upper (+) and lower (−) sides of
the ith layer,

∂η±
i

∂t
= v|η±

i
· n±

i + O(δε). (3.9)

It follows that two neighbouring layers remain in contact if η+
i = η−

i at all times,
i.e. if v|η+

i
· n+

i = v|η−
i

· n−
i . Since v (the local velocity field) is continuous, the surface

evolution equation enforces that no layer detaches from its neighbour. The ocean and
atmosphere are thus in contact at all times by simply requiring that they initially satisfy
η+

1 (t = 0) = η−
1 (t = 0) = η1(t = 0). Note, however, that depth-averaged velocities are not

required (nor expected) to be continuous across the interface (e.g. the depth-averaged
velocity of the atmosphere will generally not be equal to that of the ocean).

3.3.3. Pressure boundary conditions
Pressure is considered continuous across the ocean-atmosphere interface (e.g. surface
tension is negligible on long waves). On the outer-space side, pressure is assumed to
be zero given the vacuum assumption i.e. p|η2 = 0. The jump condition (from the radial
component of the governing equation) across the atmospheric layer simplifies to

p|η1 = �gh. (3.10)

3.4. Two-way coupled equations
Combining (3.8) with the water-layer continuity equation (3.4) yields

∂h
∂t

= ∇R
⊥ · (HU). (3.11)

Moreover, boundary conditions p|η2 = 0 and ∇R
⊥ η2 = 0 reduce the atmosphere-layer

equation to

Du

Dt

⎡
⎣�

u
π

⎤
⎦ = −

⎡
⎣ �Ψ

(�h)−1∇R
⊥ (hπ) + g∇R

⊥ η1
�Ψ C 2

⎤
⎦ , (3.12)

with Ψ = h−1∇R
⊥ · (hu + HU).
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Equations (3.4) and (3.12) can be solved simultaneously to form the TWC model

∂

∂t

⎡
⎢⎢⎢⎣

η1
U
�

u
π

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

U · ∇R
⊥ H

(U · ∇R
⊥ )U

u · ∇R
⊥ �

(u · ∇R
⊥ )u

u · ∇R
⊥ π

⎤
⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎣

H∇R
⊥ · U

ρ−1
w ∇R

⊥ (�gh) + g∇R
⊥ η1

�Ψ

(�h)−1∇R
⊥ (hπ) + g∇R

⊥ η1

�Ψ C 2

⎤
⎥⎥⎥⎥⎥⎦ , (3.13)

with h = η2 − η1, H = η1 − η0, Ψ = h−1∇R
⊥ · (hu + HU), C 2 = γπ/�, where γ is a

constant (set to 1.4). Note that η0 and η2 are set initially and do not change, hence, the
choice to integrate η1 rather than H and h that can be evaluated directly from η1 and the
initial η0 and η2 profiles.

4. Eigenmodes

4.1. Quasi-linear one-dimensional form
The one-dimensional quasi-linear form is found by projecting (3.13) along a great circle
with coordinate s along which es is the unit vector tangent to the sphere of radius R.
Letting µ ≡ [η1, U, �, u, π]T denote the vector of primitive variables, with U = U · es
and u = u · es, the projected equation is

∂µ

∂t
+ A

∂µ

∂s
= 0, with A ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U H 0 0 0

g(1 − β) U
gh
ρw

0 0

0 �χ u � 0

g − π

�h
00 u

1
�

0 �χC 2 0 �C 2 u

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (4.1)

where β ≡ �/ρw and χ ≡ H/h are, respectively, the air–water density ratio and
ocean-atmosphere depth ratio.

4.2. Linear waves
Let µ0 ≡ [(η1)0, U0, �0, u0, π0]T denote a stationary solution to the quasi-linear equation
(4.1), and µ1 ≡ [(η1)1, U1, �1, u1, π1]T be a perturbation around the stationary solution,
such that µ = µ0 + µ′, where µ′ ≡ ζµ1 denotes the scaled perturbations and ζ is a
smallness parameter (ζ � 1). Replacing µ = µ0 + ζµ1 in (4.1) and collecting terms
based on their ζ order results in

ζ 0 : A0
∂µ0

∂s
= 0, (4.2)

ζ 1 :
∂µ1

∂t
+ A1

∂µ0

∂s
+ A0

∂µ1

∂s
= 0, (4.3)

where A0 and A1 indicate that A is evaluated using µ0 and µ1, respectively. Assuming a
uniform base flow, i.e. ∂µ0/∂s = 0, (4.2) is satisfied and (4.3) simplifies to

∂µ1

∂t
+ A0

∂µ1

∂s
= 0. (4.4)
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Plane-wave solutions to (4.4) are sought in the form µ1 = µ̂ exp[i(ωt − ks)], where
k ∈ R>0 is the wavenumber, ω ∈ R>0 is the angular frequency, i2 = −1, and µ̂ =
[η̂1, Û, �̂, û, π̂]T is a vector of eigenfunctions for the primitive variables. Substituting µ1
using the eigenfunctions in (4.4) yields

(A0 − λI5)µ̂ = 0, (4.5)

with λ ≡ ω/k. Non-trivial solutions to (4.5) exist if

det (A0 − λI5) = λ(−λ4 + (Cw + C 2
0 )λ2 + Cw[C 2

0 (β0 − 1) + β0Ca − CT ]) = 0, (4.6)

where quiescent base flows for air (U0 = 0) and water (u0 = 0) have been assumed, Cw ≡√
gH0 and Ca ≡ √

gh0 are the base flow gravity-wave speeds in the ocean and atmosphere
layers, respectively, and C0 ≡ √

γπ0/�0 and CT ≡ √
π0/�0 are the base flow sound speed

and Newton’s sound speed in the atmospheric layer and β0 = �0/ρw. The roots of (4.6)
are

λ = 0 and λ2 = 1
2

(
C 2

w + C 2
0 ±

√
(C 2

w − C 2
0 )2 + 4β0C 2

w(C 2
0 − C 2

T + C 2
a )

)
, (4.7)

giving rise to five eigenvectors. Each eigenvalue–eigenvector pair forms an eigenmode,
namely,

T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(λ, µ̂) ∈ R × R5 : λ = 0, µ̂ = α

⎡
⎢⎢⎢⎢⎣

h0
0

ρw(β0 − 1)

0
π0 − �0gh0

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

A ± =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ, µ̂) ∈ R × R5 : λ = ±
√

1
2
(X + √

Y2 + Z), µ̂ = α

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕH0

ϕλ

�0

(
λ2

C 2
0

+ C 2
w

C 2
0

(β0 − 1)

)

λ

(
λ2

C 2
0

− C 2
w

C 2
0

)

�0C 2
0

(
λ2

C 2
0

+ C 2
w

C 2
0

(β0 − 1)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

G ± =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ, µ̂) ∈ R × R5 : λ = ±
√

1
2
(X − √

Y2 + Z), µ̂ = α

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕH0

ϕλ

�0

(
λ2

C 2
0

+ C 2
w

C 2
0

(β0 − 1)

)

λ

(
λ2

C 2
0

− C 2
w

C 2
0

)

�0C 2
0

(
λ2

C 2
0

+ C 2
w

C 2
0

(β0 − 1)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

where X ≡ C 2
w + C 2

0 , Y ≡ C 2
w − C 2

0 , Z ≡ 4β0C 2
w(C 2

0 − C 2
T + C 2

a ), α is any non-zero real
number and ϕ ≡ β0C 2

a /C 2
0 .

Mode T is a stationary mode (relative to the air flow) reflecting the transport of
thermal waves by the wind, characterised by the depth-averaged pressure (π̂) and density
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(�̂) fluctuations at constant Favre-averaged temperature (T̃). In the ocean, this mode
induces a perturbation of the water column in phase opposition with the atmospheric
pressure fluctuation in the standard atmosphere. Modes A ± are two acoustic-like modes
propagating in opposite directions. In the limit of a zero-depth ocean, they converge
to true acoustic modes in the atmosphere, evaluated using the layer-averaged density
and pressure, i.e. limH0→0(λ, µ̂) = (±C0, α[0, ±ϕC0, �0, ±C0, �0C 2

0 ]T) (and the gravity
modes, discussed next, vanish). Modes G ± are two gravity-like modes propagating in
opposite directions. In the limit of a zero-thickness atmosphere, they converge to the
classical gravity waves in the ocean, i.e. limh0→0(λ, µ̂) = (±Cw, α[H0, ±Cw, 0, 0, 0]T)

(and the acoustic modes vanish). These ‘gravito-acoustic’ modes (in the spirit of
magneto-acoustic modes in plasmas), not to be confused with vertically dependent
‘acoustic-gravity waves’ discussed in, e.g. Vallis (2017), are commented upon further in
the following section in the context of planet Earth.

For comparison, the eigenmodes of the OWC model are derived here. The system in
(1.1), augmented with the wave propagation equation for the ground/sea-level pressure
signal, can be recast in a one-dimensional curvilinear system (with curvilinear coordinate
s) and linearised around a base flow at rest with a uniform sea floor yielding

∂q1

∂t
+ Aowc

∂q1

∂s
= 0, with: q1 ≡

⎡
⎢⎣

(η1)1
U1
v1
p1

⎤
⎥⎦ , Aowc ≡

⎡
⎢⎣

0 H0 0 0
g 0 0 1/ρw
0 0 0 1/ρa
0 0 ρac2

a 0

⎤
⎥⎦ ,

(4.9)

where, respectively, U1 and v1 are the velocity perturbations in the ocean and at ground
level in the atmosphere, p1 and ca are the ground level atmospheric pressure perturbation
and its fixed propagation speed, ρa and ρw are the ground level air and water density,
and (η1)1 is the sea-surface perturbation around the constant water depth H0. Seeking
plane-wave solutions q1 = q̂ exp[i(ωt − ks)] to (4.9), where (ω, k) ∈ R2 are, respectively,
the angular frequency and wavenumber, reveals that the OWC system propagates two pairs
of eigenmodes, defined as

A ±
owc =

⎧⎪⎨
⎪⎩(λ, q̂) ∈ R × R4 : λ = ±ca, q̂ = α

⎡
⎢⎣

ξH0
±ξca
±ca
ρac2

a

⎤
⎥⎦
⎫⎪⎬
⎪⎭ , (4.10)

G ±
owc =

⎧⎪⎨
⎪⎩(λ, q̂) ∈ R × R4 : λ = ±Cw, q̂ = β

⎡
⎢⎣

H0
±Cw

0
0

⎤
⎥⎦
⎫⎪⎬
⎪⎭ , (4.11)

where λ ≡ ω/k, (α, β) ∈ R2
/= 0, Cw ≡ √

gH0 (retaining its definition as in the TWC case)
and ξ ≡ (ρa/ρw)c2

a/(c
2
a − C 2

w). The pair A ±
owc corresponds to left- (−) and right- (+)

going fluctuations in both the atmosphere and ocean at the set speed ca, whilst the pair
G ±

owc corresponds to the classical (tsunami) left-/right-going gravity modes in the ocean,
with no associated atmospheric fluctuations.
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Figure 4. (a) Vertical profiles of pressure (p∗: –, π∗
0 : – ) and density (ρ∗: - (red), �∗

0: – (red)). (b) Vertical
profiles of temperature (–), Favre-averaged temperature (–), local speed of sound (- (red)) and C ∗

0 (– (red)). All
values are computed using the international standard atmosphere.

5. Application to Tonga event

5.1. Eigenmodes in a standard atmosphere
The standard density, pressure and temperature profiles of Earth’s atmosphere are
shown in figure 4, together with the depth-averaged density �∗

0, pressure π∗
0 and the

Favre-averaged temperature (T̃∗
0 ) for h∗

0 ranging from ground level to 80 km. Here, the
superscript ∗ denotes dimensional quantities. Materials from the Tonga eruption are
reported to have reached heights in excess of 50 km (Carr et al. 2022) and signatures
from higher layers (e.g. GNSS measurements of ionospheric disturbances Wright et al.
2022) suggested that a layer at least 80 km thick was perturbed. Remarkably, the
Favre-averaged temperature is found to remain nearly constant for heights beyond 20 km
(see figure 4), which means that C ∗

0 becomes nearly constant for h∗
0 > 20 km. This

value is ∼317 m · s−1, in good agreement with the observed Lamb-wave propagation
speed of 318 ± 6 m · s−1 (Wright et al. 2022). Thus, considering the atmosphere to be
h∗

0 ∼ 80 km thick seems appropriate for sub-ionospheric considerations for the Tonga
event. Note that this choice is compatible with the choice in (3.10) as p∗|η2 � �∗

0goh∗
0.

Considering h∗
0 = 80 km and γ = 1.4, the logarithmic average values of the standard

atmosphere are �∗
0 = 0.129 kg · m−3, π∗

0 = 9.30 × 103 Pa and C ∗
0 = 317 m·s−1. Together

with ρo = 103 kg·m−3, go = 9.81 m·s−2 and �o = 3668 m (the average water depth on
Earth), the eigenvalues for modes A ± and G ± are evaluated in figure 5.

Two distinct regimes emerge. Below a critical water depth, H∗
c , the wave speed of

the acoustic mode is nearly independent of the water depth, whereas the wave speed of
the gravity mode increases with the water depth (proportionally to

√
goH∗). Conversely,

above the critical depth, the acoustic mode speeds up (proportionally to
√

goH∗) whereas
the gravity mode saturates at a speed that never exceeds the lowest speed of the acoustic
mode. This implies that at no point the gravity mode can be in resonance with the acoustic
mode (this differs from the resonance that can be achieved with the considerations in
Proudman (1929), and subsequent OWC models, where the pressure-wave speed can match
the gravity-wave speed exactly). The absence of a resonance is guaranteed by the fact that
Z is always positive.

The critical depth, Hc, corresponds to the H0 value for which the wave-speed of
A ± comes the closest to that of G ±. By inspection of the acoustic- and gravity-mode
eigenvalues, they approach each other if the inner square root is minimised, that is,
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Figure 5. Propagation speeds of modes A + and G + for the OWC (a) and TWC (b) models applied to the
standard atmosphere as a function of the local water depth. The probability of observing the water depth on
Earth is shown by the filled blue curve (labelled ‘pdf’, normalised by its highest value), where ‘CD’ is the
Challenger Deep point (Mariana Trench). The wave speed for mode A + in the OWC is arbitrarily set. Results
for 280 m s−1, 300 m s−1 and 320 m s−1 are shown, following the work of Kubota et al. (2022) (KSN). The
bottom figures give some of the normalised eigenfunctions for the OWC (a,c) and TWC (b,d) models: (i) is
any of �̂/�0, û/C0π̂/(�0C 2

0 ), T̂/((γ − 1)T0), (ii) is η̂/(ϕHm) for both the A + and G + modes, (iii) is η̂/Hm
for the OWC G + mode, where Hm = 20 km (the range of water depths shown here). Finally, the water-surface
displacement |η′| (in blue) associated with a ground pressure fluctuation of 2.5 hPa from the A + mode is
shown for the OWC, TWC and hydrostatic (STA) models (see equations in § 5.2). The thin blue line labelled
(*) in the bottom right panel is the OWC result with a wave speed set to C0. See comments in the text.

when f (H0) = (gH0 − C 2
0 )2 + 4β0gH0(C 2

0 − C 2
T + C 2

a ) reaches a minimum. This occurs
if H0 = C 2

0 (1 − 2β0)/g + 2β0(C 2
T − C 2

a )/g ≡ Hc, which in dimensional form gives

H∗
c = C ∗

0
2

go

(
1 − 2

�̄∗
0

ρ∗
w

)
+ 2

�̄∗
0

ρ∗
wgo

(C ∗
a

2 − C ∗
T

2
) ≈ 10 km. (5.1)
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Remarkably, this critical-depth value coincides with the deepest water bodies on Earth.
This means that the vast majority of oceans on Earth will only experience the subcritical
regime, where the acoustic mode propagates at a nearly constant speed C ∗

0 ≈ 317 m·s−1

(as observed, e.g. Wright et al. 2022).
Moving to the eigenvector components, the subcritical regime is dominated by the

acoustic mode in the atmosphere, whereas the ocean’s surface exhibits the footprint of the
acoustic mode on the water-height disturbance in addition to the two (classical) gravity
waves. If oceans were deep enough to be in the supercritical regime, the atmosphere
would instead be dominated by fluctuations from the gravity modes (from the ocean) at
a near-constant speed

√
goH∗

c ≈ 313 m·s−1, and oceans would experience surface waves
from these gravity waves in addition to faster acoustic modes with almost no associated
fluctuations in the atmosphere. The only places where this could be observed are above
the deepest oceanic trenches.

5.2. A -mode associated water-height fluctuations
The amplitude of the water-wave height, |η′| = |ζ η̂|, relative to the depth-averaged
pressure-fluctuation amplitude, |π′| = |ζ π̂|, is of particular interest since it quantifies the
relative importance of the potential energy in the ocean with that of the internal energy in
the atmosphere. However, given that ground pressure fluctuations p′(η1) are more readily
measurable (and it is the term identified as performing the work on the sea surface in
OWC models), for ease of interpretation, it is useful to relate it to depth-averaged pressure
fluctuations. Linearising the pressure boundary condition (3.10) and using the relation
between the A -mode-related pressure and density fluctuations yields

|p′(η1)| = ζ |�̂gh0 − �0gη̂| = |π′|
|π̂| |�̂gh0 − �0gη̂|. (5.2)

Although the ratio of |p′(η1)| over |π′| depends on the local water depth H0 (since the
eigenfunctions depend on H0), the dependency is found to be weak when evaluated
over Earth’s bathymetry. The ratio for the standard atmosphere can be estimated as
|p′(η1)|/|π′| ∼ 7.8 for any depth up to the critical depth.

Let δp∗ represent the ground/sea-level pressure fluctuation following the eruption and
δH∗ be the associated sea-surface displacement. If using a purely hydrostatic argument,
δp∗ ∼ ρogo δH∗, leading to the widespread result δH∗/δp∗ ∼ 1 cm·hPa−1 (Röbke & Vött
2017), whereas the eigenmode analysis gives

δH∗

δp∗ = ζ |η̂|
|p′(η1)|

�o

ρogo�o
= 1

ρogo

|η̂|
|�̂gh0 − �0gη̂| . (5.3)

This ratio is used to plot the resulting water-height fluctuation for a sea-level pressure
perturbation of 2.5 hPa over the range of depths on Earth in figure 5 (bottom right panel).
Remarkably, the resonance observed in the OWC does not appear in the TWC as the
δH∗/δp∗ ratio transitions continuously from the subcritical to the supercritical regime.
At the critical depth, the eigenmodes are almost collinear and, therefore, assume similar
properties, i.e. the distinction between acoustic and gravitational origin is more difficult.
This translates to perturbations mostly on the water surface. This is interpreted as a
directional energy transfer towards potential energy in the ocean. For Earth, δH∗/δp∗ ∼
3 × 101 cm·hPa−1 is observed at the critical height, i.e. one order of magnitude greater
than the usual hydrostatic argument. In shallow oceans, δH∗/δp∗ decreases substantially
and the atmospheric pressure wave is not associated with large water-height perturbation.
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This leads to very local air to water energy transfers. Whilst a ∼2.5 hPa pressure wave from
the eruption hardly disturbs the ocean over continental shelves, it is found to travel with a
70 cm high wave over the deepest oceanic trenches. Such wave heights are comparable
with the more common tsunami generated by a sudden seafloor motion (Ward 2002)
and explain the significant impact of the eruption compared with what is predicted by
hydrostatic considerations.

5.3. One-dimensional atmospheric wave propagation
Given the discussion above for an idealised atmosphere, its applicability to atmospheric
wave propagation around the globe following the Tonga event is investigated. As illustrated
in figure 1, the atmospheric wave initially presents a remarkably circular propagation away
from the source. To better visualise this, the IR data of figure 1 is mapped to a cylindrical
map projection whose poles lie at the Hunga Tonga-Hunga Ha’apai (HTHH) volcano and
its antipode; thus, each point is identified by its forward azimuth and its distance from
HTHH. The signal is then averaged at an iso-distance over azimuth segments to increase
the signal-to-noise ratio and allow the wave position to be more clearly identified and
manually extracted (see Appendix C for details). The result is shown at various times
on 15 January 2022 in figure 6 (in this projection, a rectilinear wave corresponds to
a circular wave on a globe). Within the first approximately 4 hrs after the explosion,
the wave propagation is highly symmetric (a maximum difference of ∼2 × 102 km is
observed when comparing the extracted wave position to a perfectly circular wave at
8:00UTC). However, at later times, the wavefront exhibits significant departure from a
circular propagation as its starts to kink (by 19:00UTC, the maximum deviation from
circular propagation reaches ∼103 km). Two first-order effects a priori responsible for
the wave deformation are identified here: wave propagation speed modification due to
underlying thermodynamic/topographic variations and that due to underlying atmospheric
flows.

To evaluate the impact of each effect, realistic data from the day (ERA5 data that is
a fusion of observation and simulation data, see, e.g. Hersbach et al. 2018) is used to
integrate the equation governing wave position in time along one-dimensional lines from
HTHH to its antipode (see Appendix D for details). The predicted wave positions are
shown in figure 7 where, for reference, the result using uniform atmospheric conditions
(using international standard atmosphere values) with a quiescent flow is also shown.
Taking into account solely thermodynamic and topographic variations highlights faster
wave propagation closer to the equator (where the Favre-averaged temperature is higher)
and a slower propagation near the poles (where the Favre-averaged temperature is lower)
as well as more subtle effects due to the highest mountain ranges (e.g. Himalayas and
Andes). However, these effects alone are not enough to account for much of the wave
deformation. Taking into account the underlying atmospheric flows highlights the impact
of the main features of atmospheric planetary circulation: circulation around each of
the poles is predominantly co (counter) current with the atmospheric wave propagation
as along positive (negative) azimuth lines resulting in locally advanced portions of the
waves (centred around azimuths ∼50◦ and ∼150◦) as well as locally retarded portions
(centred around azimuths ∼ − 40◦ and ∼ − 160◦). The result of the combined effect of
both contributions is illustrated in the last panel of figure 7. The start time is set at 4:30
UTC that was obtained by computing the time shift necessary to minimise the L2 norm
between the extracted wave position and the integrated solution at 10:00 UTC. This value
is in agreement with the estimated initial time of the main explosion (Wright et al. 2022).
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Figure 6. Projection of the sector-averaged global IR data (9.6 μm band) onto a cylindrical map with poles
at HTHH and its antipode, respectively, at times 7:00, 11:30 and 15:30 (panels (b)–(d), ordered from top to
bottom). The extracted wave position is shown in cyan. For clarity, the IR data are faded away from the extracted
wave position. Topography is shown in black with the main mountain ranges in colour. Panel (b) contains
region indications (AU: Australia, SA: South America, EU: Europe, AF: Africa, AS: Western Asia). A 10◦
silver patch is added around the North (denoted by ‘N’) and South poles. A quiver plot of velocity projected on
the isoazimuth lines (see Appendix D for magnitudes) is shown in white in the panel (a).
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Figure 7. Integration of (D1) with a uniform atmosphere and stationary flow (a), a non-uniform atmosphere
and stationary flow (b), a uniform atmosphere and non-uniform velocity field (c) and non-uniform atmosphere
and velocity field (d) shown in grey lines. Atmospheric values and velocity fields are set using ERA5 values
from 15 January 2022. The extracted wave position is shown in black (with portions of medium and low
confidence in the extraction shown in orange and red dashed lines, respectively). Note that as time goes on, due
to the loss of circular coherence, the signal-to-noise ratio decreases and the wave is harder to extract, thus, larger
portions of the curve have a lower confidence rating. The comparison is shown at every hour from 05:00UTC
to 19:00UTC.
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Remaining deviations (e.g. the excessive wave lag around azimuth ∼ − 140◦) are
attributed to multiple factors not taken into account in the current integration, e.g. humidity
and atmospheric composition (modifying the local speed of sound), lack of precision of
the global data for the 15 January 2022 and multi-dimensional effects. For the latter, see
the results of 2-D simulations in § 5.4.

5.4. Two-dimensional numerical simulations of the event
With the aim of illustrating how 2-D effects, spherical geometry and realistic bathymetry
affect the one-dimensional considerations presented above, global 2-D simulations taking
into account the non-uniform atmosphere and sea floor are presented in the following
subsections.

5.4.1. Numerical methods
The numerical integrations presented in this section are carried out using dNami (Alferez
et al. 2022). Explicit spatial (five point, fourth-order centred finite difference scheme)
and temporal (third-order Runge–Kutta) schemes are used to discretise the governing
equations. Message passing interface communication operations are used to enforce the
spherical boundary conditions. All the simulations presented below are run at a grid
size of 6144 × 3072 that corresponds to a ∼3 km × 3 km grid resolution at the equator
following a grid convergence study of the results. All the source files required to run the
TWC simulations presented below as well as documentation detailing how to reproduce
the cases are available on the dNami GitHub repository (https://github.com/dNamiLab/
dNami).

5.4.2. Base flow and source condition
Given the importance of the underlying thermodynamic quantities and velocity fields
observed when integrating the eigenmode propagation, the same 2-D base flows are
taken into account in the simulation. In addition, realistic high-resolution bathymetry
and topography from the general bathymetric chart of the oceans (GEBCO) are used
to represent the ocean floor and terrain height. With the intention of preventing
unrealistic wave generation and propagation over the North Pole, the bathymetry data are
supplemented with ice coverage for both poles for January 2022 that was obtained from
the National Snow and Ice Data Center. The governing equations advanced in time are of
the form

∂µ

∂t
= RHS(µ). (5.4)

However, the underlying initial fields of µ(t = t−i ), where t−i is the initial time prior to
adding the explosion source, are not a steady-state solution to the governing equations.
Thus, the right-hand side (RHS) resulting from these quantities, RHS(µ(t = t−i )), prior
to the addition of the perturbation modelling the explosion, is computed at the start
of the simulation and then subtracted from the right-hand side for the rest of the time
integration to ‘freeze’ the base flow. Such a strategy is employed in, e.g. linear stability
analysis to study the response of systems where an imposed time-averaged field (which
is not a steady-state solution to the governing equations) is disturbed by small-amplitude
fluctuations (see, e.g. Touber & Sandham 2009).
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The aim of these simulations is not to reproduce the short-time nonlinear shock-wave
dynamics associated with the initial explosion. Attention is focused on the time when
the atmospheric wave has reached a quasi-linear behaviour and established its vertical
profile. To reflect this, the volcano source is given a spatial and temporal support: the
spatial scale Λ is chosen to provide one scale separation from when the wave is still a
shock wave and the temporal scale τ is obtained from numerous ground-based pressure
measurements. The shape of the spatial support is given by a 2-D Gaussian of standard
deviation Λ. This is compatible with the initially symmetric nature of the atmospheric
wave observed in figure 1. The shape of the temporal support is guided by the observed
ground pressure signal (e.g. those of figure 12) and the following criteria are retained: the
slope and value of the function at t = 0 and t = τ must be zero and the function must reach
an amplitude p+ at t = τ/4 and p− at t = 3τ/4. A fifth-order polynomial is constructed
to satisfy these constraints. Shock propagation distance estimates (e.g. Lynett et al. 2022)
lead to the choice of Λ = 50 km and ground pressure measurement processing (e.g. those
used in figure 2) lead to the choice of τ = 34 min, p+ = 5.2 hPa and p− = −0.1p+.

5.4.3. One-way coupled model
In addition to the TWC results presented below, numerical simulations from a study using
a OWC model that was used to provide some of the early explanations in the wake of
the Tonga event were reproduced for comparison and discussion. The study in question is
that of Kubota et al. (2022), who integrate a version of (1.1) in time, which, in this work,
was solved using the numerical parameters given in § 5.4.1. This same OWC model yields
the eigenmode amplitudes illustrated in figure 5. As in their study, the SWEs are forced
by a pressure fluctuation travelling at a constant speed ca, however, the ca value is set to
317 m·s−1 (not 300 m · s−1 as in their study) to match the observed value. The energy
injection of the volcanic explosion is modelled as a point source pressure perturbation
with a Gaussian temporal support with standard deviation τ .

5.4.4. Results
5.4.4.1. Atmospheric wave propagation As illustrated in figure 1, despite its

remarkably circular initial shape, IR satellite data clearly shows the wave deforming as
it travels to Tonga’s antipode. Integration of the eigenmodes with realistic conditions on
the day, i.e. with underlying thermodynamic and velocity fields (see figure 7), motivated
the investigation of 2-D effects. Figure 8 presents a comparison between the brightness
temperature fluctuations (observed by geostationary satellites) and the π′ field obtained
from the numerical simulation at 1 hr intervals from 15:30 to 18:30 UTC. As the wave
propagates around the world, its interactions with the topography and the base flow cause
the initially circular front to distort. These distortions are remarkably well captured by
the simulation. For example, as observed in one dimension, the passage near the South
Pole locally advances/retards portions of the wave such that, in two dimensions, a wave
superposition is observed by the time the wave reaches the west coast of Namibia and
Angola leading to a local maximum of the fluctuation amplitudes. A similar behaviour is
observed for the portion of the wave off the northwest coast of Africa. This can explain
why the wave is more clearly visible at the corresponding locations in the IR data as
there will be an associated local extremum of T̃ ′. In addition, the interaction of the wave
with the topography is apparent in the simulation data where reflected waves from the
passage of the main wave on the Andes mountain range can be seen propagating to the west
(second pressure level fluctuations in figure 8). This was also captured by a geostationary
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Figure 8. Brightness temperature (from the 9.6 μm centred spectral band) fluctuations (T′) (a,c,e,g) from
geostationary satellites (see Appendix A for details), low-pass filtered with a 75 km cutoff and saturated
at ±0.01 K for the purpose of highlighting the thermal-wave position on the world map. Colours give the
topography with the same scale as in figure 1. Time is given in UTC on 15 January 2022. Depth-averaged
pressure-fluctuation fields (π′) from the numerical simulation of the TWC model at the same instants as the
thermal wave are provided (b,d,f,h). Two levels are shown: ±0.2 hPa in light/dark and ±0.01 hPa in blue/yellow.
For the latter, the field is clipped to 10 500 km from Tonga so as to not obscure the first field. The location of
selected ground pressure measurements in figure 12 are illustrated by the coloured dots. The colour indicates
which group of sensors the measurement belongs to (green: Sensor Com. Archive, red: Weather News Inc,
blue: NOAA/ASOS). The snapshots correspond to times when the main wave is focusing towards HTHH’s
antipode in the Sahara (yellow marker). The TWC model correctly predicts the wave location, including the
pinches along its front. The trailing waves in the satellite data correspond to subsequent eruptions following
the most energetic one, see, e.g. Wright et al. (2022).
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satellite and illustrated in, e.g. Wright et al. (2022) who processed GOES-16 data to make
the reflected wave visible. This reflected wave goes on to interact with the sea surface
that was already disturbed by the passage of the primary wave. As evidenced by the
plot, many other smaller amplitude reflected waves were generated by interactions with
other topographic features (e.g. peaks in Hawaii, New Zealand) and propagate throughout
the Pacific. Supplementary movies 1–4 (available at https://doi.org/10.1017/jfm.2023.131)
provide dynamical views of the simulation results.

5.4.4.2. Historical maximum of absolute water displacement During the numerical
simulations, the historical maximum of the atmosphere–water surface interface
perturbation, |η′

1|, is updated at regular intervals in time (every 30 physical seconds) over
the whole domain. Figures 9 and 10 propose a comparison of this historical maximum
18 hrs after the explosion between three different scenarios: a case where only the water
layer is advanced in time (ZWC model) with a source contribution due only to the η1
contribution of the A ± mode over the temporal support; a case where the OWC model
is integrated in time according to the source conditions of § 5.4.3, and a case where the
TWC model is integrated in time according to the source conditions of 5.4.2. Comparing
the ZWC scenario to the other two highlights the role of the interaction of the atmospheric
wave with the non-uniform water depth. Indeed, the energy injected into the water layer
at the source during the perturbation time scale τ by the A ± modes cannot account
alone for the observed wave heights or propagation times (note that this is not equivalent
to a comment on any G -mode contributions, see discussion below regarding energy
injected per layer considerations). When the atmospheric forcing is present, significant
|η1| fluctuations (i.e. > 4 cm) can be broken down into three categories.

(i) As an A mode travels over a deep basin with a uniform depth, it propagates with it an
η1 fluctuation proportional to its associated pressure-fluctuation amplitude according
to the relation graphed in figure 5 (this signal is observed in sensor data, discussed
next).

(ii) The A mode transfers part of its energy to G modes as it interacts with steep changes
in bathymetry. This is particularly clear near the volcano as the atmospheric wave
travels over the Tonga and Kermadec trenches: they are the loci of generation of
large G -mode associated η1 fluctuations that, once seeded, then propagate to the
southwest towards South America’s eastern coast and Antarctica. The refraction
problem, i.e. the theory governing the mode-to-mode energy transfer at step changes
in water depth, is derived below.

(iii) The local constructive superposition of multiple G -mode associated η1 fluctuations.

Figure 9 proposes a comparison between the A -mode associated |η′
1| for a uniform

global ground pressure perturbation of 2.5 hPa and simulation results over the same
region 18 hrs after the explosion to better discern which of the aforementioned effects
is responsible for local maxima in the historical maximum maps. Note that due to the
spherical shell geometry and deformation of the wave over time, the local pressure
perturbation evolves in space, thus, an equal depth region close and far from Tonga will
not see the same |η′

1| (unlike what is assumed in the top panel of figure 9). The map at
18 hrs is the superposition of all the effects above; figure 11 and supplementary movies
1–4 are provided to show how the map is formed in time over selected areas around the
globe. Nevertheless, regions where one effect dominates over the others can be identified
(numbered B notation refers to those used in figure 9) as follows.
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Figure 9. (a) A associated η′
1 for a 2.5 hPa sea-level pressure perturbation at every submerged point on

the globe (various deep basins are numbered with ‘BX’ notation and referred to in the text). (b) Historical
maximum of the absolute water-height fluctuation over the 18 hrs following the explosion for the TWC model.
The cyan dots represent the locations of the DART sensors used in figure 13.

(a) Prominent examples of (i) can be seen after the atmospheric wave crosses the South
Pole and begins to pinch, locally inducing a higher π′; this leads to the streak of
local maxima between Antarctica and South Africa over B7 (see figure 11 row 4).
A similar phenomenon can be observed as the atmospheric wave travels between
the west coast of Brasil and Senegal. In addition, the deep basin B4 (northwest
pacific basin), off the west coast of Japan, registers large A -mode associated |η′

1|
(see figure 11 row 2).

(b) The most prominent example of (ii) is at the Tonga–Kermadec trench (descent into
B5), however, other notable examples can be found, e.g. at the step down from the
coast of Argentina (into B6, see figure 11 row 4), the step down off the coast of
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Figure 10. Historical maximum of the absolute water-height fluctuation over the 18 hrs following the explosion
for (a) the ZWC model and (b) the OWC model. Note the different scales between the two plots. The cyan dots
represent the locations of the DART sensors used in figure 13.

Florida to the Atlantic Ocean (into B9, see figure 11 row 4), step down from the
coast of Southern Australia towards Antarctica (into B2, see figure 11 row 2).

(c) Prominent examples of (iii) can be observed, e.g. in the region between Southern
Australia and Antarctica as two G modes are generated at an angle by the passage
of the A mode and interact to form a local maximum as they travel to the west (see
figure 11 row 2). Other such interactions create the ray-like features in the historical
maximum water-height disturbance map as G modes interact with Hawaii and the
islands between it and the west coast of North America (see figure 11 row 3).

The effects in (i) and (ii) are idealised as they both consider a water depth that is
piecewise uniform, but they can be used to comment on the more pronounced features
of the historical maximum water-height disturbance maps. In practice, any variation of the
water depth will be responsible for some amount of energy transferred between the layers.
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Figure 11. Time lapses of the simulation results for the TWC model, extracted from supplementary movies
1–4. Blue–red colours (see colourbar) show the maximum absolute sea-surface displacement measured from
the initial (at rest) condition up to the time displayed on the top-left corner (given in UTC for 15 January 2022).
The yellow/orange bands show the depth-averaged pressure fluctuation in the atmosphere where it exceeds
+5 Pa (yellow) or is below −5 Pa (orange). The greyscale highlights the background topography, where both
high mountain ranges and deep basins appear brighter. Shading effect is also applied to the topography and the
instantaneous ocean waves to give depth effects. Each row comes from different camera paths along a constant
azimuth from Tonga. See the movies for the full path from Tonga to its antipode. These views are used to
illustrate the physical mechanisms at play discussed in the main text.
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This is observed in the simulation data (figure 11 and supplementary movies 1–4) as the
atmospheric wave generates many local sub-centimetre |η1| fluctuations as it propagates
over the water away from large gradients of depth. Constructive interference between the
various propagating waves can result in local maxima that will be highly sensitive to the
source condition (e.g. when attempting to include a ‘more realistic’ frequency content in
the source condition).

When comparing the OWC and TWC coupled results, qualitative similarities exist
in the region near the initial perturbation where large η1 fluctuations are generated at
the Tonga–Kermadec trench and various ray structures are sent toward the northeast.
Quantitatively, the models diverge as the OWC model shows greater |η′

1| over larger
regions than the TWC model. This is due, in part, to the form of the source condition
that imposes a pure pressure perturbation to model the explosion that is not equivalent
to imposing an Aowc-type perturbation. Indeed, decomposing a pure pressure fluctuation
into its eigenmode contributions shows that it is equivalent to imposing both A ±

owc and
G ±

owc modes,

[
0, 0, 0, 2αf ρac2

a
]T =

(
q̂A +

owc
+ q̂A −

owc
− ξαf

β
(q̂G +

owc
+ q̂G −

owc
)

)
, (5.5)

where the eigenvector notations of § 4.2 have been used and αf is a constant set based on
the desired amplitude of the pressure perturbation.

The models further diverge as the atmospheric wave propagates away from the Pacific:
unlike the uniform-amplitude circular wave imposed by the OWC model, the variations
in the shape and amplitude of the atmospheric wave (in the TWC model) modify the
location and intensity of large |η1| fluctuations. This is particularly noticeable in figure 9
in the southern Atlantic Ocean. As shown in figure 8, the amplitude of the atmospheric
wave is weaker off the east coast of Brazil than it is closer to Africa, which leads
to the overestimated (underestimated) |η1| fluctuations close (further) to Brazil and
underestimated fluctuations along the southern and east coasts of Africa. Note also that
a modification of the atmospheric wave shape will modify the angle of incidence when
approaching step changes ni water depth and, thus, modify the refraction properties. These
aspects highlight the importance of accounting for atmospheric non-uniformities when
attempting to provide approximately 24 hr time-scale predictions.

5.4.4.3. Sensor comparison Two sets of ‘ground truth’ sensor comparisons are
presented here. First, selected signals from an array of ground pressure sensors are shown
in figure 12. For comparison, the ground pressure is extracted from dNami by computing
the fluctuations of p(η1) according to (3.10). The signals illustrate how the proposed
model is able to capture some of the subtle changes in the amplitude and shape of the
atmospheric wave, e.g. as the wave approaches and passes over the United States, it
is affected by a rapidly spatially varying U on the west United States coast and the
Rocky mountain range resulting in a lower amplitude along the central latitude of the
contiguous United States. Note how the simulated propagation speed of the wave, a
consequence of the prescribed thermodynamic base flow and velocity fields, is ni line with
the observed propagation speed from the ground pressure signals. Secondly, signals from
ocean bottom pressure sensors from the deep-ocean assessment and reporting fo tsunamis
(DART) network are gathered and presented in figure 13. These sensors are located in deep
water (between 1.8 to 5.9 km) where a quantitative comparison between the data and the
long-wave theory can be made (i.e. away from any coast-related wave steepening effects).
For most of the signals, three regimes/arrival times have been identified (Lynett et al. 2022;
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Figure 12. Select ground pressure signals from sensors around the world (black) and signal extracted from
dNami (red) within the first 18 hrs since the explosion. For each signal, a coloured dot indicates which group of
sensors the measurement belongs to (green: Sensor Com. Archive, red: Weather News Inc, blue: NOAA/ASOS)
with their locations displayed in figure 8 using the same colour coding. The azimuth from the sensor to the
volcano is given in the bottom right-hand corner of each panel. The panels are sorted by increasing distance
from the volcano from top left to bottom right.
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Figure 13. Ocean bottom pressure from DART (black), dNami TWC (red), dNami OWC (blue). The DART
code and sensor depth are given at the bottom left and right of each panel, respectively. The DART data are
band-pass filtered with lower and upper cutoff periods of 4 mins and 4 hrs. The panels are sorted by increasing
distance from top left to bottom right.

Matoza 2022): (i) the arrival of the A mode, (ii) the arrival of the ‘principal’ G mode and
(iii) secondary fluctuations generated by A - and G -mode interactions with the bathymetry.
Note that the passage of the A mode does not always trigger the high-resolution recording
mode of the DART sensors, therefore, some signals are less temporally resolved than
others. For comparison, the ocean bottom pressure is extracted from dNami, for both
OWC and TWC models, by computing the fluctuations of p(η0) according to p(η0) =
p(η1) + ρwg(η1 − η0). In both cases, the A -mode-related pressure fluctuations are well
predicted. As expected from the eigenmode analysis of figure 5, when running the OWC
with the appropriate wave propagation speed, energy injection from the atmospheric layer
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Figure 14. Illustration of the refraction problem formulated at a forward-facing step in quiescent flow. In this
scenario where no downstream propagating G +

L and no upstream propagating A −
R are imposed, an A +

L mode
interaction with a step change in depth is associated with two upstream-propagating modes (A −

L and G −
L ), one

stationary TR mode and two downstream-propagating modes (A +
R and G +

R ). The black arrows indicate the
direction of propagation. Subscripts L and R correspond to left and right conditions, respectively.

into the water layer is similar to that of the TWC model. Note however that after the
passage of the A mode, the OWC yields slightly greater p(η0) fluctuations than the TWC.
This is due, in part, to the choice of source forcing in the OWC case discussed above. The
inclusion of a correctly modelled source G -mode contribution is discussed next.

5.4.4.4. Additional source contributions It is apparent from the DART signal
comparison that not all of the significant peaks in the signal are predicted by either
the OWC or TWC model forced by an atmospheric wave. Indeed, the pressure signal
associated to the largest waves in, e.g. DART sensors 46403, 32413 32402 or 32403
are underestimated by the current modelling parameters. However, it is noted that the
arrival times of these larger waves are in line with classical tsunami travel time predictions
(see, e.g. Gusman & Roger 2022). This suggests that an initial G -mode contribution at
the volcano (which would represent, e.g. mass ejection or terrain collapse following the
explosion, Matoza 2022) is required to achieve a quantitative prediction of the observed
late-arriving signals in the DART data. Simulations carried out by injecting varying energy
levels into an initial G mode with a Gaussian spatial support (not shown here) suggest that
some of the main extrema can be recovered; this is also supported by numerical exploration
by, e.g. Lynett et al. (2022) although in the context of a OWC model. However, modelling
the complex mechanisms governing the initial G -mode generation exceeds the scope of
this paper and will be explored in future work.

5.4.4.5. Refraction problem As observed in the numerical simulation results,
transitions from shallow to deep water (in particular at the Tonga–Kermadec trench) are
zones of energy transfer from A modes to G modes. This transfer can be understood
by formulating the refraction problem using the derived eigenmodes of the TWC system.
First, the interaction of an A mode with a sharp change in bathymetry is considered. This
situation arises, for example, when the sea floor rises from the deep sea to a continental
shelf over a spatial scale that is small compared with the A -mode wavelength (e.g. given a
wavelength of about 103 km, bathymetry changes occurring over a few tens of kilometres
are considered ‘sharp’). As a first approximation, the sharp depth change is considered as
a discontinuity in the water depth separating two uniform, quiescent regions to the left and
right of the discontinuity, respectively, with depths HL and HR (see figure 14 for scenario
notations and illustration). Here HL > 0 and HR > 0 is enforced such that the step change
is always submerged. To the left, a lone downstream-propagating A + mode is imposed
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(i.e. the amplitude of the upstream T mode and G + mode are set to zero). The interaction
of the incident A mode with the discontinuity can generate an upstream-propagating
G − mode, a reflected upstream-propagating A − mode, a downstream T mode, a
downstream-propagating G + mode and a transmitted downstream-propagating A + mode.
Thus, accounting for each of the contributions, the fluctuations to the left of the
discontinuity can be expressed as

µ̂L = αA +
L

µ̂A +
L

+ αG −
L

µ̂G −
L

+ αA −
L

µ̂A −
L

, (5.6)

and the fluctuations to the right of the discontinuity can be expressed as

µ̂R = αA +
R

µ̂A +
R

+ αG +
R

µ̂G +
R

+ αTRµ̂TR, (5.7)

The amplitude αA +
L

is prescribed, i.e. it is a known quantity. At the location of
the discontinuity of water depth, continuity of the µ̂ field is imposed, i.e. µ̂L = µ̂R.
Thus, together, (5.6) and (5.7) form a linear system of five equations with five unknowns
that are the amplitude of the reflected, transmitted and generated modes,

[
µ̂G −

L
, µ̂A −

L
, −µ̂A +

R
, −µ̂G +

R
, −µ̂TR

]
⎡
⎢⎢⎢⎢⎢⎣

αG −
L

αA −
L

αA +
R

αG +
R

αTR

⎤
⎥⎥⎥⎥⎥⎦ = −αA +

L
µ̂A +

L
. (5.8)

By analogy with the derivation of (5.8), the system governing the case of a G +
L mode

interacting with a step results in an almost identical system where the right-hand side is
replaced by −αG +

L
µ̂G +

L
. Once the systems are inverted (which is done here numerically

with the standard atmosphere values from § 5.1 for steps ranging up to H = 12 km in
depth), two quantities of particular interest in understanding the historical maximum
heights obtained by the simulations can be derived. The first is the G -mode-associated
water-height fluctuation generated as an A mode crosses a step, where the incident
A is characterised by its pressure fluctuation at sea level. The second is the generated
G -mode-associated water-height fluctuation (relative to the local depth) as a result of
an incident G mode interacting with a step, where the incident G is characterised by
its water-height fluctuation (relative to local depth). To this end, two ratios are formed,
respectively characterising each of the aforementioned scenarios, i.e.

α∗
1 ≡

αG +
R

η̂G +
R

αA +
L

p̂A +
L

π′

p′(η1)
, α∗

2 ≡
αG +

R
η̂G +

R

αG +
L

η̂G +
L

HL

HR
=

αG +
R

αG +
L

. (5.9a,b)

The value of α∗
1 and α∗

2 are illustrated in figure 15 over a range of forward-facing and
backward-facing steps (this orientation is decided by the direction of propagation of the
incident wave). Qualitatively, the α∗

1 map highlights a non-symmetric behaviour when an
A mode crosses a step: a backward-facing step generates a water-height trough whereas a
forward-facing step generates a water-surface peak. Furthermore, unlike the equivalent
problem for the OWC system (which contains a singularity when the set A ±

owc speed
matches the water-layer gravitational speed; see, e.g. Vennell 2007), the crossing of the
critical height in both step configurations happens continuously. For the incident G -mode
scenario, the α∗

2 map shows that the transmitted G is attenuated by a backward-facing step
and amplified by forward-facing step.

959 A22-35

https://doi.org/10.1017/jfm.2023.131


S.D. Winn, A.F. Sarmiento, N. Alferez and E. Touber

(b)

–5.0

(cm hPa–1)

5.0–2.5 0 2.5

12

10

8

6

H
R 

(k
m

)

HL (km)

4
1

2
5

4

3–1

1

–5

–10
1
0

5

2

5 10

(c)

0

(cm cm–1)

1 2 3 4

12

10

8

6

HL (km)

4 0
.5

2.0

0

4.0
2

5 10

60°N

(a)
60°N

30°N

30°S
3

4

2

1 5

60°S 60°S

120°W 60°W 60° 120E °E 180°0°180°

0°

Figure 15. (a) Qualitative world bathymetry map (cream to dark blue for shallow to deep water) with
numbered location of sharp changes in sea floor depth. (b,c) Refraction maps for coefficients α∗

1 (b) and α∗
2

(c) over a range of depth ranges. The numbered values are the features identified in the top panel with the step
orientation (i.e. forward- or backward-facing step) as seen when travelling along an isoazimuth line departing
from the HTHH volcano to its antipode. The critical height Hc is indicated for both axes by the dashed grey
lines. For reference, the 5 km water-depth line is indicated by dashed white lines.

To illustrate how these maps can be used to understand the aftermath of the Tonga
event, bathymetry features that fit the approximations of this one-dimensional approach are
identified. To do so, sharp changes along great circles (from the volcano to its antipode)
that correspond to ridges that are locally approximately normal to the wave front along
its direction of propagation are manually selected. To assign a ‘left’ and ‘right’ depth,
the water depth either side of the manually selected features is averaged along the great
circle over a distance of up to 5 × 102 km (less if land is reached first). The retained
features are numbered on the map in figure 15. A prominent feature of the maximum
historical water-height map in figure 9 is the significant G -mode generation as the A
crosses the Tonga and Kermadec trenches to the southeast of the volcano. As predicted
by the map in figure 15, a large amplitude depression of the sea surface is generated (due
to the atmospheric fluctuations being the largest in magnitude close to the source) and
propagates away to the south and east, as shown in figure 11 (row 1 and row 3). When
the wave reaches locations such as the southern tip of South America and the step down

959 A22-36

https://doi.org/10.1017/jfm.2023.131


Two-way coupled long-wave ocean-atmosphere dynamics

off the coast of Argentina (row 4), the ground pressure fluctuation p′(η1) ∼ 1.5 hPa will,
according to the refraction map, generate G -mode associated η′

1 ∼ −1 cm. The generated
G modes interact with each other, as seen in figure 11 (row 4) and in supplementary movie
4, to generate a local streak of maximum water-height disturbance.

5.4.4.6. Energy injection considerations Estimates of the amount of either the total
energy released or the energy released by the volcano into a subset of layers from empirical
correlations and extrapolation from observations have yielded a wide range of values
spanning multiple orders of magnitude from 1016 J to 1019 J (see, e.g. Astafyeva et al. 2022;
Díaz & Rigby 2022; NASA 2022; Wright et al. 2022; Yuen et al. 2022). The complexity
of the volcanic explosion process (which included multiple smaller explosions before and
after the main one, which is the focus of this study) prevents a detailed account of energy
injection per layer; however, numerical studies allow for testing of a range of energy
injection per layer and per mode. Unlike in the OWC case where the forcing is applied
at the surface (i.e. without taking into account the thickness of the perturbed atmospheric
layer), the TWC model allows for an energy balance to be performed over the volume of
each layer to determine the amount of energy injected by the volcano source condition
into the ocean and the atmosphere, respectively. As the source imposes a superposition of
equal amplitude A + and A − modes, neither layer is forced with a velocity fluctuation.
An accounting of the energy injection per layer is proposed as follows.

(a) Atmospheric-layer energy injection: the energy injected into the atmospheric layer,
Eatm, can be computed by integrating the absolute mass-specific Favre-averaged
internal-energy fluctuation over its spatial and temporal support. The EoS of
the atmospheric layer, π = (γ − 1)�ẽ, and the relation between A -mode-induced
average-pressure and average-density fluctuations can be used to express the injected
energy as

Eatm ≈ 1
τ

∫ τ

0

∫
S

h0�0|ẽ′| dS dt ≈ 1
τ

∫ τ

0

∫
S

h0

(γ − 1)�0

(
1 − π0

�0C 2
0

)
|π′| dS dt.

(5.10)

Evaluating this integral with dimensional quantities for the conditions of the TWC
simulation, detailed in § 5.4.2, yields

E∗
atm = 1.7 × 1016 J. (5.11)

(b) Water-layer energy injection: the energy injected into the water layer can be
computed by considering the potential energy contribution of the A -mode-induced
η1 fluctuations. The integral over the source’s spatial and temporal support can be
expressed as

Ewater = 1
τ

∫ τ

0

∫
S
ρwgH|η′

1| dS dt. (5.12)

Evaluating this integral with dimensional quantities for the conditions of the TWC
simulation, detailed in § 5.4.2, yields

E∗
water = 4.0 × 1014 J. (5.13)
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(c) Total energy injection: the total energy injected into the coupled system, E∗
tot ≡

E∗
atm + E∗

water via A -mode contributions is in line with the lower end of the volcanic
energy release estimates. Note that this does not include any G -mode contributions
discussed above nor any seismic energy. Future work will include a study of the
required G -mode energy contribution to recover the missing peaks observed in the
DART signal data.

5.5. A posteriori assumption verification
In this section a posteriori checks of the validity of the assumption made while deriving
the model and linear theory are proposed.

5.5.1. Applicability of the thin-layer and long-wave assumptions
The assumptions made on the length scale ratios δ and ε are checked as follows. The
thickness of the water layer and atmospheric layers are of the order of magnitude of
H0 ∼ 103 m and h0 ∼ 104 m, respectively, which when compared with the radius of the
Earth, R ∼ 106 m, yields at least two orders of magnitude separation, thus, the thin-layer
assumption is justified with δ ∼ 10−2. When comparing these layer thicknesses to the
wavelength of the atmospheric wave that is L ∼ 105 m, two orders of magnitude scale
separation is ensured for the water layer (i.e. ε ∼ 10−2) but only one for the atmospheric
layer (i.e. ε ∼ 10−1). Despite the small scale separation for the atmospheric layer, the
excellent agreement between the numerical results and the observations suggests that
the assumption holds. This is due to the fact that governing equations are derived on
the assumptions that δ2 � 1 and δε � 1. This is indeed verified for both layers.

5.5.2. Applicability of the lineary theory
dNami solves the full nonlinear governing equations; the resulting fluctuation values
obtained from the simulation data are of the following orders of magnitude: |η′

1| ∼
10−2 m, |π′| ∼ 101 Pa and |�′| ∼ 10−4 kg · m−3. Therefore, at least three orders of
magnitude separate each of the fluctuations from their respective base flow value. The
fluctuations of the depth-average water and air layer velocity fields are |U′| ∼ 10−2 m·s−1

and |u′| ∼ 100 m·s−1, respectively, which, when compared with the characteristic
gravitational wave speed

√
go�o ∼ 102 m·s−1 and the atmospheric wave propagation speed

C ∗
0 ∼ 102 m · s−1, both have at least two orders of magnitude of scale separation. Thus,

the smallness parameter used to derive the linear theory ζ is at most 10−2, therefore, the
relevance and predictive ability of the linear theory are ensured.

5.5.3. Neglecting Coriolis effects and tidal effects
From the eigenmode analysis and application to the standard atmosphere, the propagation
speed of the atmospheric wave is λA ∼ 102 m·s−1 with a wavelength of L ∼ 105 m and,
thus, a time scale of τ ∼ 103 s. Coriolis effects depend on the angular speed of the Earth’s
rotation with a time scale of ∼104 s, thus, a one order of magnitude scale separation exists.
It is worth noting that some rotational effects on the base flow are indirectly taken into
account via the underlying velocity fields, i.e. the principal modes of the velocity fields
shown in figure 18 are a direct result of the Earth’s rotation. As illustrated in figure 7, they
play a dominant role in the atmospheric wave front deformation on a sub-day time scale.
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Similarly, the time scale of the generated G modes are comparable to those of the A
modes. Tidal cycles have a time scale of ∼104 s and, thus, have one order of magnitude
scale separation with that of the G modes.

5.5.4. Curvature effects and spherical geometry
When considering the eigenmode propagation problem, the wave position is integrated
in time along a curvilinear coordinate representing the position along a great circle on
Earth. No attempt to compute the evolution of the magnitude of the perturbation along
these lines is made that would need to account for the distance from the source. However,
the 2-D numerical simulations are solved in spherical coordinates, thus, the decay of the
perturbation magnitude with the distance from the source is accounted for and is apparent
in the results.

5.5.5. Neglecting friction effects
To justify neglecting friction effects in this study, the viscous time scale in each layer
is compared with the time scale of the perturbation. The kinematic viscosity for the
atmosphere and water under standard conditions are estimated as νa ∼ 10−5 m2 · s−1 and
νw = 10−6 m2 · s−1, respectively. The characteristic length scale of particle displacement
in the water and air layers as a result of the velocity fluctuations are |U′|τ and |u′|τ ,
respectively. Thus, the viscous time scale for water and air are (|U′|τ)2/νw ∼ 107 s
and (|u′|τ)2/νa ∼ 1011 s, respectively. Both effects can reasonably be neglected when
compared with the τ ∼ 103 s time scale of the A and G modes. Furthermore, despite
not including any atmospheric dissipative effects, the amplitude of the ground pressure
perturbation is well captured by the simulation. It is concluded that over the 18 hr time
scale investigated herein, interactions with the base flow/topography and spherical shell
geometry effects (i.e. amplitude dependency on the distance to the source) dominate the
changes of the ground pressure amplitude.

6. Conclusions

Starting from first principles, a TWC ocean-atmosphere dynamical system governing
the behaviour of long waves was derived. The proposed model carries two pairs of
gravito-acoustic waves, analogous to magneto-acoustic modes in ideal plasmas, as well
as a stationary isothermal mode. A critical water depth, H∗

c , is identified. At subcritical
depths, the atmosphere is dominated by acoustic modes propagating at a near-constant
speed (C0), deforming the sea surface as they sweep through. At supercritical depths, the
atmosphere is dominated by gravity modes from the ocean propagating at a near-constant
speed (Cw < C0). In the transition region, the energy of the atmospheric perturbations is
almost entirely carried in the form of potential energy in the ocean. No Proudman-type
resonance is seen to occur as the eigenmode components are continuous across the
transition region, i.e. there is no water depth such that the phase speeds of the A and
G coincide. On planet Earth, the transition occurs for water bodies 10 km deep (giving
C ∗

w = √
goH∗

c ∼ 313 m · s−1) where A -mode-associated sea-level pressure fluctuations
are accompanied by η1 fluctuations at a rate of 3 × 101 cm·hPa−1, which is one order
of magnitude higher than expected from hydrostatic arguments. Time integration of the
atmospheric wave propagation using the derived one-dimensional eigenvalues along with
realistic values for the day show that they can be a low cost and powerful tool to estimate
wave speed and front deformation over time. It is noted that, in this model, the propagation
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speed is a direct consequence of the local depth-averaged thermodynamic values, the
atmospheric thickness and the water depth, and not an arbitrarily fixed quantity.

Two-dimensional simulations of the developed model are presented to explore its
predictive capabilities with realistic input data. An excellent agreement is found between
the obtained atmospheric wave structure and amplitude in time when compared with
geostationary satellite measurements and ground level pressure sensors. A map of the
historical absolute maximum water-height difference around the globe was created to
identify the locations most affected by energy transfers from the atmospheric layer to the
water layer. Two of the three most prominent features of this map can be anticipated from
elements of the accompanying linear theory which are (i) areas that experience large η1
fluctuations associated with the A mode, (ii) locations of large energy transfer from A to
G via the refraction process. The third feature (iii) relates to wave superposition (both in
the water and the atmosphere) that can only be correctly predicted with detailed knowledge
of the bathymetry, topography and atmospheric conditions (velocity and thermodynamic
fields). When comparing the obtained results to OWC predictions, (iii) is responsible
for increasing divergences in the predicted maximum water-height fluctuation as the
atmospheric wave moves away from its source (and starts to lose its circular coherence).
This final aspect is crucial to any approximately 24 rh time scale predictions.

The theory proposed here can therefore provide immediate identification of ‘dangerous’
regions around the globe (via the linear theory) and then provide quantitative predictions
of wave heights around the globe with time integration (via the numerical model). It is
noted that the TWC simulations in this study can be run in real time on ∼3 × 103 cores
(using x86 architectures); thus, the additional complexity of the TWC model does not
come at a prohibitive computational cost. Ultimately though, to provide a better prediction
of the water-height disturbances observed in this event requires a finer exploration of the
initial energy distribution between the layers, notably that injected into G modes at the
start of the event, as well as incorporating a more complex source condition for the initial
A mode (i.e. taking into account additional frequency content generated by the explosion
that is visible in the IR satellite data presented in this work). This will be demonstrated in
an upcoming communication.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.131.
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Appendix A. Brightness temperature from geostationary satellites

Geostationary satellites provide scaled radiance measurements around different
wavelengths for the full disk (i.e. the direct Earth-facing view they have from their
respective geostationary position on the equatorial plane) with nominal nadir ground
resolutions of about 1 km × 1 km per pixel (Schmit et al. 2017). The present work uses the
spectral wavelength of 9.6 μm that is common to the five satellites exploited here, namely,
Himawari-8 (Japan), GOES 16 and 17 (USA) and EUMETSAT 0 and 41 degrees (EU).
The EU-operated satellites provide full-disk images every 15 mins, whilst the others are
taken every 10 mins. Consequently, a nearly simultaneous view of scaled radiance around
the globe (except near the poles) is captured every 30 mins (see figure 16 for an example).
The five satellites used here employ three heterogeneous file formats and layouts. The satpy
(Raspaud et al. 2022) python package is used to unify the formats, whilst the cartopy (Elson
et al. 2022) python package is used to project the data on a uniform longitude–latitude grid
(10 001 points in longitude from −180◦ to +180◦, 5000 points in latitude from −85◦ to
+85◦). Scaled radiance measurements are converted to brightness temperatures, T, using
the dedicated satpy function. At the time of writing, the conversion is based on nonlinear
regression from lookup tables produced by the satellite operator using coefficients in the
metadata of the native binary files (see the details of the call to _ir_calibrate() for each
platform (ABI, AHI, SEVIRI) in the satpy source code). The code to convert the binary
files distributed by the satellite operators to the reconstructed brightness temperature fields
is provided in Winn et al. (2022).

The (equivalence) brightness temperature field should not be confused with a
measurement of thermal molecular agitation across the thickness of the atmosphere
(ultimately the thermophysical quantity of interest). It is defined as the temperature of
a black body that emits the same amount of radiation as the observed one (after correcting
for varying incidence angles, the Sun’s position etc). The 9.6 μm-wavelength channel
highlights both the upper troposphere (e.g. sit water-vapour content) and clear-sky ground
level conditions as illustrated in figure 16 (top left) where weather systems are made visible

959 A22-41

https://archive.sensor.community/
https://www.ngdc.noaa.gov/hazel/view/hazards/tsunami/related-runups/5824
https://www.ngdc.noaa.gov/hazel/view/hazards/tsunami/related-runups/5824
https://nsidc.org/data
https://github.com/dNamiLab/dNami
https://github.com/dNamiLab/dNami
https://orcid.org/0000-0001-5972-4271
https://orcid.org/0000-0001-5972-4271
https://orcid.org/0000-0003-0668-2084
https://orcid.org/0000-0003-0668-2084
https://orcid.org/0000-0003-3482-4529
https://orcid.org/0000-0003-3482-4529
https://orcid.org/0000-0002-7553-0351
https://orcid.org/0000-0002-7553-0351
https://doi.org/10.1017/jfm.2023.131


S.D. Winn, A.F. Sarmiento, N. Alferez and E. Touber

08:00(a) (b)

(c) (d )

H08

E41

E00

G16

G17

9.6 μm
08:00
9.6 μm

08:00
6.2 μm

08:00

280
(K)

250
220

0.1
(K)

0
–0.1

7.3 μm

0.1
(K)

0
–0.1

0.1
(K)

0
–0.1

Figure 16. Worldwide brightness temperature (T) field (a) and temperature fluctuation (T′) field (b) obtained
from the 9.6 μm spectral band of geostationary satellites at 08:00 UTC on 15 January 2022. The worldwide
fields are obtained by blending data from Himawari-8 (H08), GOES-17 (G17), GOES-16 (G16), EUMETSAT
0-degree (E00) and EUMETSAT 41-degree (E41) geostationary satellites, the geographic limits of which are
shown by the orange boundaries on the above orthographic views. The thermal waves rippling away from
Tonga are made visible in the T′ field. See text for details on how the fields are computed. Source codes can be
downloaded from Winn, Touber & Sarmiento (2022). Note that polar regions are blind spots for geostationary
satellites, which are placed in the equatorial plane. For this reason, data above 73◦N and below 73◦S are not
available in the reconstructed field. The (c) and (d) figures give the T′ fields obtained from the 6.2 μm and
7.3 μm spectral bands, respectively. The three spectral bands shown highlight distinct layers in the troposphere,
see Schmit et al. (2017) for details, thereby illustrating the coherent nature of the thermal wave across the
atmosphere.

as well as landmasses such as Australia. This channel is used here to detect local changes
in radiated thermal energy in the troposphere and visualise the thermal wave produced by
the eruption, as illustrated in figure 16.

The second-order brightness temperature variation, δ2T, is evaluated as follows. First,
the second time derivative of T is evaluated using a second-order accurate centred
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finite-difference scheme,

∂2T

∂t2
≈ T(t + Δt) − 2T(t) + T(t − Δt)

Δt2
, (A1)

where Δt is 15 mins for the EU satellites, 10 mins for the others. Then

δ2T ≡ ∂2T

∂t2
δt2, (A2)

where δt is the characteristic time of the thermal wave, estimated using the Lamb-wave
characteristics, i.e. a wavelength of about 550 km and propagation speed of about
317 m·s−1, giving δt ≈ 29 mins (Matoza 2022; Wright et al. 2022).

The second-order temperature variation for the plane-wave solution is

δ2T = (iωδt)2T ′, (A3)

where T ′ is the fluctuating temperature field obtained from applying the depth-averaged
thermal EoS for the atmosphere to the π1 and �1 eigenfunctions for the A mode (see
§ 4), i.e. T ′/T0 = ζ(π1/π0)(γ − 1)/γ using the ideal-gas law. Noting that for the A mode
ω ≈ 2π/δt, the second-order brightness temperature variation is projected to its equivalent
A -mode temperature fluctuation using

T′ ≈ −δ2T

4π2 . (A4)

Finally, the T′ field is filtered using a second-order forward-backward low-pass digital
Butterworth filter, which is applied in both the longitudinal and meridian directions with
a cutoff length of 3 × 102 km.

Whilst not exactly comparable for the reasons given above, data from the
9.6 μm-wavelength channel (top-right corner of figure 16) give |T′| ≈ 0.4 K inside the
thermal wave where |T ′| ≈ 0.4 K in theory for a 4 hPa ground pressure fluctuations
associated with the A mode, as observed from ground stations in the vicinity of the
wave around the same time. Given the limitations of the measurement, the agreement
is remarkable.

Appendix B. Derivation details for the shallow layer

B.1. Depth average in spherical coordinates
The linear depth average of the divergence of an arbitrary vector field f (t, r, θ, ϕ) ≡
[ fr, fθ , fϕ]T between two arbitrary surfaces ηB ≡ ηB(t, θ, ϕ) and ηT ≡ ηT(t, θ, ϕ) is∫ ηT

ηB

∇ · f dr=
∫ ηT

ηB

(
1
r2

∂

∂r
(r2fr)+ 1

sin θ

∂

∂θ

(
1
r

fθ sin θ

)
+ ∂

∂ϕ

(
1

r sin θ
fϕ

))
dr. (B1)

Using the Leibniz integration rule H〈∂φ/∂γ 〉 = ∂(H〈φ〉)/∂γ − [[φ∂η/∂γ ]] results in∫ ηT

ηB

∇ · f dr = [[ fr]] + 1
sin θ

(
∂

∂θ

(∫ ηT

ηB

r−1fθ sin θ dr
)

+ ∂

∂ϕ

(∫ ηT

ηB

r−1fϕ dr
))

− 1
sin θ

([[
r−1fϕ

∂η

∂ϕ

]]
+ sin θ

[[
r−1fθ

∂η

∂θ

]])
+
∫ ηT

ηB

2r−1fr dr, (B2)
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where the jump terms can be written as

[[ fr]] − 1
sin θ

([[
r−1fϕ

∂η

∂ϕ

]]
+ sin θ

[[
r−1fθ

∂η

∂θ

]])
= −[[ f · ∇ηZ ]], (B3)

and where the gradient operator is defined for an arbitrary radius a as

∇aφ ≡
[
∂φ

∂r
,

1
a

∂φ

∂θ
,

1
a sin θ

∂φ

∂ϕ

]T

. (B4)

Letting z = ln(r), the integral terms on the right-hand side of (B2) can be written using
the logarithmic depth average definition φ̄ ≡ ∫ zT

zB
φ dz/L with L ≡ ln(ηT/ηB) as

∫ ηT

ηB

∇ · f dr = 1
R sin θ

(
∂

∂θ
(LR f̄θ sin θ) + ∂

∂ϕ
(LR f̄ϕ)

)
− [[ f · ∇ηZ ]] + 2Lf̄r,

(B5)

where the arbitrary constant radius R has been introduced for dimensional consistency.
Defining ∇R

⊥ · (φ f ⊥) ≡ (∂(φfθ sin θ)/∂θ + ∂(φfϕ)/∂ϕ)/(R sin θ), (B5) becomes∫ ηT

ηB

∇ · f dr = ∇R
⊥ · (LR f̄ ⊥) − [[ f · ∇ηZ ]] + 2Lf̄ · er. (B6)

B.2. Thin-layer assumption
Letting d denote the characteristic length of the layer thickness H, R denote the
characteristic radius of the surface ηB and δ ≡ d/R the ratio between them, the thin-layer
assumption corresponds to δ � 1. Expanding L = ln(1 + H/ηB) for H � ηB gives

L = H

ηB
+ O(δ2) = H

R
+ O(δ2), (B7)

noting that O(H/ηB) = O((H/d)(R/ηB)(d/R)) = O(δ) since O(H/d) = O(R/ηB) =
O(1). Replacing this expansion in (B6) results in∫ ηT

ηB

∇ · f dr = ∇R
⊥ · (Hf̄ ⊥) − [[ f · ∇ηZ ]] + 2

H

ηB
f̄ · er + O(δ2). (B8)

Expanding the gradient of the surface Zi to be consistent with ∇R
⊥ as

∇ηiZi = −ni + H

ηB

[
0,

1
R

∂ηi

∂θ
,

1
R sin θ

∂ηi

∂ϕ

]T

+ O(δ2), (B9)

and defining the normal vector as ni ≡ −∇RZi, (B8) becomes∫ ηT

ηB

∇ · f dr = ∇R
⊥ · (Hf̄ ⊥) + [[ f · n]] + 2

H

ηB
(f̄ · er + [[ f ⊥ · n⊥]]) + O(δ2), (B10)

where ni⊥ = P⊥ni.
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Let f (x) be a real-valued infinitely differentiable function. Its Taylor series around x = a
gives, for L � a,

1
L

∫ a+L

a
f (x) dx = f |a + L

2

(
∂f
∂x

)∣∣∣∣
a
+ O(L2). (B11)

Applying this result to the linear and logarithmic depth averages over a thin layer yields

〈φ〉 =

∫ ηT

ηB

φ dr

H
= φ|ηB + H

2

(
∂φ

∂r

)∣∣∣∣
ηB

+ O

((
H

ηB

)2
)

, (B12)

φ̄ =

∫ zT

zB

ϕ dz

L
= ϕ|zB + L

2

(
∂ϕ

∂z

)∣∣∣∣
zB

+ O

((
L

zB

)2
)

. (B13)

For φ(r) = ϕ(z) with z = ln(r), zB = ln(ηB), zT = ln(ηT) and dz = dr/r, the logarithmic
depth average becomes

φ̄ = φ|ηB + L

2

(
∂φ

∂r
r

)∣∣∣∣
ηB

+ O

((
L

zB

)2
)

= φ|ηB + LηB

2

(
∂φ

∂r

)∣∣∣∣
ηB

+ O

((
L

zB

)2
)

.

(B14)
Introducing the expansion of L from (B7) yields

φ̄ = φ|ηB + H

2

(
∂φ

∂r

)∣∣∣∣
ηB

+ O

((
H

ηB

)2
)

, (B15)

= 〈φ〉 + O(δ2). (B16)

B.3. Expansion of closure terms
Consider the Taylor series expansion of an arbitrary non-dimensional function φ around
the bottom boundary ηB for H � ηB,

φ = ϕ|zB + z
(

∂ϕ

∂z

)∣∣∣∣
zB

+ O(δ2), (B17)

for φ(r) = ϕ(z) with z = ln(r), dz = dr/r and δ ≡ d/R, then its logarithmic depth average
from (B13) is

φ̄ = ϕ|zB + L

2

(
∂ϕ

∂z

)∣∣∣∣
zB

+ O(δ2) = O(1). (B18)

Subtracting the logarithmic depth average φ̄ from the Taylor series expansion (B17) results
in φ′ = φ − φ̄,

φ′ = (z − L)

2

(
∂ϕ

∂z

)∣∣∣∣
zB

+ O(δ2) = O(δ). (B19)
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Similar to (B18), the logarithmic Favre average is expressed expanding the product ρφ,
having ρ̄ = O(1) it becomes

φ̃ = ρφ

ρ̄
= 1

ρ̄

(
(ρϕ)|zB + L

2

(
∂(ρϕ)

∂z

)∣∣∣∣
zB

+ O(δ2)

)
= O(1). (B20)

Using the Taylor series of ρ̄ in the term 1/ρ̄ and subtracting (B20) from (B17) results in
φ′′ = φ − φ̃, with ρ|zB = O(1) it becomes

φ′′ = z
(

∂ϕ

∂z

)∣∣∣∣
zB

+ Lϕ|zB

2ρ|zB

(
∂ρ

∂z

)∣∣∣∣
zB

− L

2ρ̄

(
∂(ρϕ)

∂z

)∣∣∣∣
zB

+ O(δ2) = O(δ). (B21)

Then logarithmic φ̄ and Favre φ̃ averages are O(1) and their corresponding variations φ′
and φ′′ are O(δ). Moreover, for an arbitrary order function f = O(δn) with n a real number,
the averages f̄ and f̃ are O(δn) and their perturbations f ′ and f ′′ are O(δn+1). With these
results the closure terms are

ρ̄ṽ′′
⊥ · v′′

⊥/2 = O(δ2), ρ̄ṽ′′
r v

′′
⊥ = O(δ2),

ρ̄ ˜v′′
⊥ ⊗ v′′

⊥ = O(δ2), ρ̄ẽ′′
Tv′′

⊥ = O(δ2),

p′v′
⊥ = O(δ2), p̄v′′

⊥ = O(δ).

⎫⎪⎪⎬
⎪⎪⎭ (B22)

For long waves ∇R
⊥ · (H f ⊥) = O(ε) for f ⊥ = O(1), then the closure vector C in (2.17)

becomes

C = − ∂

∂t

[
0, 0, 0, Hρ̄ṽ′′

⊥ · v′′
⊥/2

]T

− ∇R
⊥ ·

[
0, Hρ̄ṽ′′

r v
′′
⊥, Hρ̄ ˜v′′

⊥ ⊗ v′′
⊥, Hρ̄ẽ′′

Tv′′
⊥ + H(p′v′⊥ + p̄v′′

⊥)

]T
,

= [
0, O(δ2ε), O(δ2ε), O(δε)

]T
. (B23)

Additionally, in the internal energy (2.23) the order of the jump term is

[[p′v′′ · n]] = O(δ2). (B24)

B.4. Long-wave expansion
Independent variables are rescaled based on the relative water depth ε ≡ d/L as

t = εαt to, x⊥ = εα⊥xo
⊥, r = εαr ro, (B25)

where α coefficients are arbitrary. All variables are rescaled accordingly,

H = εαrHo, ρ̄ = εαρ−r ρ̄o, p̄ = εαp−r p̄o, ṽr = εαr−t ṽo
r ,

ṽ⊥ = εα⊥−t ṽo
⊥, ẽT = εαe ẽo

T , (B26)
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with αi+j = αi + αj to simplify notation. Introducing the rescaled variables into (2.18)
results in

εα−t
∂

∂to

⎡
⎢⎢⎢⎢⎣

(εαρ )Hoρ̄o

(εαρ+r−t )Hoρ̄oṽo
r

(εαρ+⊥−t )Hoρ̄oṽo
⊥

(εαρ+e)Hoρ̄oẽo
T

⎤
⎥⎥⎥⎥⎦+ εα−⊥∇Ro

⊥ ·

⎡
⎢⎢⎢⎢⎣

(εαρ+⊥−t )Hoρ̄oṽo
⊥

(εαρ+r+⊥−2t )Hoρ̄oṽo
r ṽ

o
⊥

(εαρ+2⊥−2t )Hoρ̄oṽo
⊥ ⊗ ṽo

⊥ + (εαp)Hop̄oI2

(εαρ+e+⊥−t )Hoρ̄oẽo
T ṽo

⊥ + (εαp+⊥−t )Hop̄oṽo
⊥

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0
−(εαp)[[po]] + (εαρ )Hoρ̄og

(εαp+r−⊥)[[po∇Ro

⊥ ηo]]

−(εαp+r−t )[[povo · no]] + (εαρ+r−t )Hoρ̄oṽo
r g

⎤
⎥⎥⎥⎦+ O(δε). (B27)

Here, to recover the hydrostatic balance from the vertical momentum equation

αp = αρ and αρ+r−2t > αp, then α2t < αr. (B28)

Note that the constraint αp = αρ also satisfies the isentropic constraint of (iv) in § 2.6.
Terms in the in-plane momentum equation are all of the same order if

αρ+⊥−2t = αp−⊥ = αp+r−⊥, then αr = 0 and α⊥ = αt. (B29)

The following are the set of conditions that satisfy constraints (i)–(iv) of § 2.6:

αp = αρ, αr = 0, αt < 0 and α⊥ = αt. (B30)

Choosing αt = −1, αp = 0 and αe = 0, (B27) becomes:

∂

∂to

⎡
⎢⎢⎢⎣

εHoρ̄o

ε2Hoρ̄oṽo
r

εHoρ̄oṽo
⊥

εHoρ̄oẽo
T

⎤
⎥⎥⎥⎦+ ∇Ro

⊥ ·

⎡
⎢⎢⎢⎣

εHoρ̄oṽo
⊥

ε2Hoρ̄oṽo
r ṽ

o
⊥

εHoρ̄oṽo
⊥ ⊗ ṽo

⊥ + εHop̄oI2

εHoρ̄oẽo
T ṽo

⊥ + εHop̄oṽo
⊥

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0
−[[po]] + Hoρ̄og

ε[[po∇Ro

⊥ ηo]]
−ε[[povo · no]] + εHoρ̄oṽo

r g

⎤
⎥⎥⎥⎦+ O(δε), (B31)

and the surface evolution equation becomes

ε

(
∂ηo

i
∂t

− vo
r |ηo

i
+ vo

⊥|ηo
i
· ∇Ro

⊥ ηo
i + O(δε)

)
= 0. (B32)

All variables are expanded in a power series based on ε as φo = φo
0 + εφo

1 , then the
leading-order equations are found replacing these expansions into (B31) and collecting
terms based on the corresponding ε order as
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ε0 :

[[po
0]] = Ho

0 ρ̄o
0g + O(δε). (B33)

ε1 :

∂

∂to

⎡
⎢⎢⎢⎣

Ho
0 ρ̄o

0

0
Ho

0 ρ̄o
0 ṽo

⊥0

Ho
0 ρ̄o

0 ẽo
T0

⎤
⎥⎥⎥⎦+ ∇Ro

⊥ ·

⎡
⎢⎢⎢⎣

Ho
0 ρ̄o

0 ṽo
⊥0

0
Ho

0 ρ̄o
0 ṽo

⊥0 ⊗ ṽo
⊥0 + Ho

0 p̄o
0I2

Ho
0 ρ̄o

0 ẽo
T0

ṽo
⊥0 + Ho

0 p̄o
0ṽ

o
⊥0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0
−[[po

1]] + (Ho
0 ρ̄o

1 + Ho
1 ρ̄o

0)g

[[po
0∇Ro

⊥ ηo
0]]

−[[po
0v

o
0 · no

0]] + Ho
0 ρ̄o

0 ṽo
r0g

⎤
⎥⎥⎥⎦+ O(δε). (B34)

∂ηo
i0

∂to
− vo

r0|ηo
i0

+ vo
⊥0|ηo

i0
· ∇Ro

⊥ ηo
i0 + O(δε) = 0. (B35)

Collecting the leading-order equations (ε0 for the vertical momentum equation and ε1 for
all other equations) results in (2.21) and (2.22).

Appendix C. Extraction of atmospheric wave position

The extraction of the instantaneous wave position from the IR band data is carried out as
follows.

(i) The quasi-global field of δ2T observed by geostationary satellite data, each covering
a different portion of the globe, is combined and projected onto a uniform
longitude–latitude grid spanning [−180◦, 180◦] × [−85◦, 85◦] as per Appendix A

(ii) A mapping from (longitude–latitude) coordinates to (distance from Tonga–azimuth)
coordinates is generated and the δ2T field is projected into the later space by linear
interpolation. For reference, lines of iso-azimuth are shown in figure 17 (top). The
projected δ2T field is averaged, at constant distance from Tonga, over sectors of Δσ .
For reference, sectors of Δσ = 20◦ centred around σ = [−150◦, −50◦, 50◦, 150◦]
are shown in both coordinate systems in figure 17. In practice, sectors of 1◦ are used.

(iii) For each available instant, i.e. every 30 mins, the position of the wave is identified by
manual discretisation and each point is assigned a confidence index, i.e. a rating of
how confidently the discrete points are placed due to, e.g. noise in the processed δ2T
field or missing data at the poles. The confidence rating ranges from 1 to 3 (1: low
confidence, 2: medium confidence, 3: high confidence). A manual approach, rather
than advanced signal processing, is justified due to the low number of frames (30 are
retained here) and the significant noise in some regions (e.g. due to cloud cover).

(iv) The obtained temporal field of wave position in (distance from Tonga–azimuth)
coordinates is interpolated to a uniform σ grid by cubic-spline interpolation that
yields the curves plotted in figure 7.

(v) For representation, such as that of figure 1, the interpolated wave position is
remapped to (longitude–latitude) coordinates.
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Figure 17. (a) Unfiltered instantaneous snapshot of the combined 9.6 μm RI band geostationary satellite data
at 7:30UTC. Red lines show equally spaced azimuth σ lines at 10◦ intervals (dashed lines) and 20◦ intervals
(filled lines) starting from 0◦ along the vertical and increasing in the clockwise direction. (b) Sector-averaged
IR data projected into distance-azimuth coordinates. For illustration purposes, the darker bands centred around
σ = [−150◦, −50◦, 50◦, 150◦] are shown in both figures. Note how the sec rto averaging locally increases the
signal-to-noise ratio making the wave position more readily identifiable.

Appendix D. Eigenmode integration

Equation (D1) is defined as governing the position of the atmospheric wave in time along
a given curvilinear coordinate sσ (along a great circle around the Earth given a starting
azimuth σ ),

dsσ

dt
= λA (sσ ) + uE(sσ ) · t(sσ ), (D1)

where λA is the eigenvalue of the A mode, from § 4.2, which is computed using
local depth-averaged atmospheric pressure and density and local atmospheric thickness,
t = [sin(σl), cos(σl)]T is the vector locally tangent to the path around the globe (where
σl is the local azimuth) and uE is the Favred-averaged velocity field on Earth. Local
values of t and the projected velocity (derived from the north and east velocity components
shown in figure 18) are illustrated in figure 19. The Favre-averaged velocity components
and depth-averaged pressure and density are obtained from ERA5 hourly data (Hersbach
et al. 2018) that are distributed on 37 pressure levels (between 1000hPa and 1hPa).
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Figure 18. Day-averaged and Favre-averaged ERA5 North and East velocity components and temperature data
for 15 January 2022. Lines of equally spaced starting azimuth σ are shown at 10◦ intervals (dashed black lines)
and 20◦ intervals (filled black lines) starting from 0◦ along the vertical and increasing in the clockwise direction.
The map is horizontally centred on HTHH’s longitude.
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Figure 19. Illustration of the Favre-averaged velocity field projected onto the integration path. Two example
paths are shown in black emanating from Tonga at azimuths 60◦ and −60◦. Along each path, the local tangent
to the path (red arrow) and the north-south vectors (grey) are shown at three locations. Along the rest of the
lines, the colour indicates the value of the velocity projected onto the path.

This data was gathered and post-processed for 15 January 2022 and time averaged
over the day to obtain the base flow quantities in (D1). The geopotential field was
converted to height (as per ECMWF documentation https://confluence.ecmwf.int/display/
CKB/ERA5%3A+data+documentation) that is used for vertical averaging operations.
The obtained velocity and temperature fields are shown in figure 18. Equation (D1) is
numerically integrated in time using a third-order Runge–Kutta scheme.
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