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Abstract

Neurons in visual area V4 modulate their responses depending on the figure-ground (FG)

organization in natural images containing a variety of shapes and textures. To clarify

whether the responses depend on the extents of the figure and ground regions in and

around the classical receptive fields (CRFs) of the neurons, we estimated the spatial extent

of local figure and ground regions that evoked FG-dependent responses (RF-FGs) in natural

images and their variants. Specifically, we applied the framework of spike triggered averag-

ing (STA) to the combinations of neural responses and human-marked segmentation

images (FG labels) that represent the extents of the figure and ground regions in the corre-

sponding natural image stimuli. FG labels were weighted by the spike counts in response to

the corresponding stimuli and averaged over. The bias due to the nonuniformity of FG labels

was compensated by subtracting the ensemble average of FG labels from the weighted

average. Approximately 50% of the neurons showed effective RF-FGs, and a large number

exhibited structures that were similar to those observed in virtual neurons with ideal FG-

dependent responses. The structures of the RF-FGs exhibited a subregion responsive to a

preferred side (figure or ground) around the CRF center and a subregion responsive to a

non-preferred side in the surroundings. The extents of the subregions responsive to figure

were smaller than those responsive to ground in agreement with the Gestalt rule. We also

estimated RF-FG by an adaptive filtering (AF) method, which does not require spherical

symmetry (whiteness) in stimuli. RF-FGs estimated by AF and STA exhibited similar struc-

tures, supporting the veridicality of the proposed STA. To estimate the contribution of nonlin-

ear processing in addition to linear processing, we estimated nonlinear RF-FGs based on

the framework of spike triggered covariance (STC). The analyses of the models based on

STA and STC did not show inconsiderable contribution of nonlinearity, suggesting spatial

variance of FG regions. The results lead to an understanding of the neural responses that

underlie the segregation of figures and the construction of surfaces in intermediate-level

visual areas.
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Introduction

Segregation of a natural image into objects and background is a fundamental function in scene

understanding. A pixelwise retinal image is segmented and grouped to construct objects in the

cortex. Intermediate-level visual cortices play a crucial role in generating figure-ground (FG)-

dependent signals. Neurons in V2 have been reported to exhibit selectivity for border owner-

ship, which provides the direction of figure along a contour [1]. Recent studies on texture seg-

regation have suggested distinct processes for the enhancement of figures and suppression of

background in early- to intermediate-level visual cortices such as V1 and V4 [2, 3]. In the

detection of contours, V4 neurons were reported to exhibit enhanced and suppressed

responses to line segments that form global contour and background line segments, respec-

tively [4]. Investigations on curvature coding in V4 have reported that neurons were selectively

responded to the preferred curvature along a closed shape and a figural surface [5–7]. A long

history of studies has highlighted the variety and complexity of V4 responses including those

modulated by color [8, 9], texture [10], shape [11–13], and attention [14]. These various and

complex sensitivities are said to contribute to FG determination and the construction of per-

ceptual organization [15, 16]. However, the neural mechanisms underlying FG segregation

from natural scenes are not fully understood.

Natural images include rich local information, such as color, texture, and contour segments,

which play crucial roles in FG segregation. Human observers are typically able to segregate fig-

ures and grounds in local natural image patches that lack global information [17, 18]. Recent

investigations on FG organization in natural scenes have reported that local image features

such as contour shapes [17, 19, 20] and spectral anisotropy [21] are crucial factors for FG seg-

regation. Computational models based on surround modulation that pool only local informa-

tion in natural images have been found to exhibit the capability for determining the direction

of a figure along a border [22, 23]. A recent physiological study reported FG-dependent

responses to local natural images in V4 neurons [24]. Investigations on intermediate-level

visual areas with a focus on local information in natural scenes is a crucial step towards under-

standing the neural basis of FG segregation.

Our recent electrophysiological study reported that neurons in monkey V4 exhibit FG-

dependent responses to natural image patches and their silhouettes [24]. Approximately one-

fourth of the patch-responsive V4 neurons exhibited significant modulation of firing activity

that was dependent on the positional relation between the figure region of the stimulus and

the classical receptive field (CRF) of the neuron but not on luminance contrast. However, the

responses of individual neurons were not capable of consistent FG discrimination across a

variety of natural patches so that activities of a few tens of neurons were needed to accomplish

consistent discrimination. The neural responses depended on whether a figure was projected

onto the CRF center, and thus what FG organization in and around the CRF evokes strong

responses has not been clarified. Investigations of the spatial extents of figure and ground

regions that evoke FG-dependent neural responses are crucial for clarifying whether these neu-

rons indeed signal FG organization.

Spike triggered averaging (STA), often exchangeably called reverse correlation, has been

widely applied for the analyses of the receptive field structure of neurons in early visual areas

[25–27]. The spike triggered covariance (STC) method has also been applied to estimate non-

linear receptive fields [28, 29]. In traditional STA and STC, white noise stimuli, typically binary

random dot stimuli, were presented to exclude bias due to the finite number of stimuli and

their spatiotemporal correlation. Theoretically, this is based on the facts that autocorrelation of

white noise is an impulse and that input-output cross-correlation is proportional to the unit

impulse response [30]. More generally, STA and STC are constrained by spherical symmetry
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in stimulus structure and white noise is one example [31, 32]. Intuitively, white noise can be

considered to include all possible images and to exclude bias based on the image characteristics

of stimuli. Although the traditional STA and STC using white noise have been successfully

applied in early visual areas, it has not been applied to higher visual areas. A prominent reason

is that neurons in the intermediate- to high-level areas barely respond to whitened images

(random dots); they respond to higher-order image characteristics that were often invariant to

luminance contrast. For instance, V2 neurons exhibit border ownership-dependent responses

independent of luminance contrast [1], and V4 neurons exhibit FG-dependent responses inde-

pendent of surface texture and contrast [24].

Since neurons in sensory areas, including intermediate- to high-level visual areas,

responded vigorously to natural stimuli, which include much more diversity and complexity

than traditional and artificial stimuli, a number of studies have performed spike triggered anal-

yses using natural stimuli and reported incomplete but interpretable structures [33–36]. In

spike triggered analyses with natural images, compensation for nonwhiteness has been pro-

posed [34, 37–39]. However, this compensation is not applicable in estimating FG structures

that evoke the neural response. The essence of the compensation is to reduce autocorrelation,

which requires differentiation in space, diminishing the extent of the figure region and leaving

only the borders between the figure and ground or the high-frequency components of (small)

FG regions. This processing is fundamentally incompatible with the estimation of the extent of

figure and ground regions. Furthermore, the randomization (whitening) of a figure region is

not reasonable in terms of perception; the randomized regions no longer constitute figures in

perception. Therefore, neither whitening of figures nor compensation of autocorrelation is

reasonable, and thus the complete estimation of the receptive field structure with respect to FG

is not possible. However, since figure shapes in natural images are diverse and their spatial cor-

relation can be controlled, it is possible to evaluate what extent of figure and ground regions in

and around their CRFs evoked neural responses.

We estimated the spatial extent of local figure and ground regions in natural images that

evoked the FG-dependent responses in V4 neurons by applying the framework of STA.

Although our previous study reported that the modulation of firing activity was dependent on

the positional relation between the figure region of the stimulus and the CRF center of the neu-

ron, the spatial extent of figure and ground regions that evoked strong responses have not

been clarified. Our novel method combines neural responses and the organization of figure

and ground regions that evoked these responses. Figure and ground regions in the images

were assigned based on the human perception of the images (FG label) [17, 19, 24]. Weighted

by the spike counts in response to the stimuli, the corresponding FG labels were averaged so

that the regions responsive to FG (responsive field in response to figure and ground; RF-FG)

were estimated. The proposed method is not capable of estimating the complete receptive

fields in response to FG because our method relies on the complexity and diversity of natural

images and does not assure whiteness in the FG labels. Furthermore, this method is not capa-

ble of estimating nonlinear interactions such as surround modulation and spatial invariance.

However, our method is capable of estimating the best possible FG structure that evokes a

strong response of the neuron for the set of presented stimuli. To evaluate the estimated struc-

ture, we compared it with the structure predicted for an ideal neuron that exhibits complete

FG-dependent responses for the presented stimuli (ideal RF-FG). Since both RF-FGs were esti-

mated based on FG labels with the same autocorrelation, this comparison cancels out the auto-

correlation and excludes the bias due to nonwhiteness. To estimate the veridicality of the

RF-FG estimated by our STA method (RF-FGSTA), we also estimated the RF-FG with adaptive

filtering (RF-FGAF) and compared the two. Adaptive filtering (AF) is a standard machine

learning technique for estimating a best-fit linear filter without constraints on image structures
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such as spherical symmetry [40]. AF has been used to estimate the receptive fields of neurons

in early visual areas and has successfully revealed the spatial structure of the receptive fields in

agreement with those estimated by STA [35]. Furthermore, we estimated RF-FG based on STC

(RF-FGSTC) to evaluate the contribution of nonlinearity. Approximately 50% of the examined

neurons showed a significant RF-FGSTA, and most of them exhibited good similarities with the

ideal RF-FGSTA and the RF-FGAF, indicating that the neuronal responses indeed depended on

the FG configuration in and around their CRFs. The model responses based on the RF-FGSTC

did not show a significant difference from those based on the RF-FGSTA, suggesting a negligi-

ble contribution of nonlinearities such as spatial invariance of figure regions. The result

appears meaningful for understanding the responses that underlie the segregation of figures

and the construction of surfaces in natural scenes.

Materials and methods

We analyzed the previously recorded and published neural activities [24] of three hemispheres

of two female macaque monkeys (Macaca fuscata). The recorded data were available at [41].

All animal experiments were performed in accordance with the guidelines of the National

Institute of Health (1996) and the Japan Neuroscience Society and were approved by the

Osaka University Animal Experiment Committee (certification no: FBS-13-003). In short, ani-

mal surgeries were performed under full anesthesia (1–3% isoflurane, 70% N2O, 30% O2)

through an intratracheal cannula. Vitals were monitored during surgery. An antibiotic and an

anti-inflammatory and analgesic agent were administrated immediately after the surgery until

a week later. As a preparation for neural recordings, the animals were anesthetized by the inha-

lation of 1–3% isoflurane in nitrous oxide through an intra-tracheal cannula. Yamane et al.
[24] included human psychophysical experiments where all experiments were performed in

accordance with the guidelines of the Japanese Psychological Association and the Code of Eth-

ics of the World Medical Association (Declaration of Helsinki), and they were approved by the

Research Ethics Committee of the Faculty of Engineering, Information, and Systems at the

University of Tsukuba (certification number: 2014R52-2). Written informed consent was

obtained from all participants prior to the psychophysical experiment. The details of the ani-

mal welfare and preparation, recording, visual stimuli, experimental design, and other aspects

of procedures were previously described by Yamane et al. [24]; essential information of the

experiments was summarized in this section.

Visual stimuli

All stimuli used in the present study were identical to those used in the previous study [24].

This section summarizes the essential information of the stimuli. Refer to Yamane et al. [24]

for details.

Natural image patches. Natural image contours were drawn from the Human Marked

Contours (HMC) available in the Berkeley Segmentation Dataset (https://www2.eecs.berkeley.

edu/Research/Projects/CS/vision/grouping/fg/) [19]. A total of 105 subregions (69 × 69 pixels)

were selected from the HMC that included the contours passing through the center of the

patches. As the distribution of contour curvatures is highly nonuniform in natural scenes, the

distributions of the degree of convexity, closure, and symmetry of contours were controlled

such that the subregions were uniformly selected from each range of these characteristics [17].

Several examples are shown in Fig 1, and all the patches are shown in the Supplement, S1 Fig.

The mirror image with respect to the tangent of the border passing through the patch center

was prepared. The color of the mirror images was inverted so that the polarity of the color con-

trast remained constant with respect to the central border. The total number of patches of this
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set was 210. Although the patches are a small part of a full image, a few patches contained con-

textual information, such as half of a human face or a tail of a cat (refer to S1 Fig). These

patches were not excluded from the stimulus set because no objective criterion for context was

established and the number of them was a few (8). Since the extent of the patches that corre-

sponded to the visual angle was approximately one tenth of the original full images, the proba-

bility of the appearance of context was much smaller in the patches than in the full images. The

standard deviation of the spatial distribution of luminance over all natural-patches was 7% of

the mean luminance, indicating that the average patch was close to a uniform mid-gray. The

contrast towards the periphery was attenuated with a Gaussian function to obscure the bound-

ary between the patch and the gray background. The veridical FG labels were previously deter-

mined by human psychophysical experiments [17, 24, 42]. Perceptual evaluations of figures

and grounds in these natural patches were not substantially consistent across participants and

trials, as reported in previous studies [19]. The mean perceptual consistency across all natural

patches was 0.69, with a standard deviation of 0.11 (refer to [24] for details). The results indi-

cate a fairly wide variety of perceptual consistency in FG evaluation across natural patches.

Filled patches. The natural image patches described above were filled with black on one

side and white on the other side. Examples are shown in Fig 1, and all the patches are shown in

the Supplement, S1 Fig. Including variations in contrast (2) and mirror image (2), the total

number of stimuli in this set was 420. These four variations were pooled for analyses. The stan-

dard deviation of the spatial distribution of luminance over all filled patches was 5% of the

mean luminance, indicating that the average patch over the filled patches was close to a uni-

form mid-gray. The veridical FG labels were determined by human psychophysical experi-

ments [17, 24, 42]. The mean perceptual consistency across all filled patches was 0.77 with a

standard deviation of 0.14 (refer to [24] for details), indicating fairly solid evaluations in FG

determination to a similar but slightly higher degree than that across the natural patches.

Although the STA requires whiteness in the stimuli, our patch stimuli were not whitened;

rather, our method relied on the variety of FG organization in natural images. The validity of

the patch stimuli was computationally evaluated by comparing the RF-FGs computed from

the filled stimuli and the dot stimuli that approximate white noise. The details of the model are

given in Supplement, S2 Fig. The figure- and ground-preferring subregions in the model were

predetermined by the RF-FG measured by the STA from the recorded data (refer to Fig 2(A)).

Fig 1. Examples of the natural and filled stimuli.

https://doi.org/10.1371/journal.pone.0268650.g001
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We examined whether the predetermined RF-FGs were correctly estimated from the filled sti-

muli and the corresponding FG labels by the proposed STA method through the simulations

of the model. Stimuli were either the filled stimuli that were used in our experiments or ran-

domly placed single dots (1×1 pixel) with either -1 or +1 (representing figure and ground,

respectively). We carried out STA and compared the RF-FGs computed from the filled and

dot stimuli (RF-FG�s). Note that this model simulation aimed to examine the validity of

pseudo-whiteness in the stimuli but not to propose neural mechanism underlying FG

Fig 2. Estimated RF-FGSTAs computed from the filled stimuli. (A) Estimated RF-FGSTAs of the neurons that showed the significance in magnitude

and a high convergence ratio (>0.9). The crosses and ellipsoids indicate the center and extent (1SD) of the CRF. The reddish and blueish colors indicate

the regions that respond to figure (+) and ground (–), respectively, with the deeper colors representing the greater magnitudes. The magnitudes were

normalized by the maximum. (B) Convergence of RF-FGSTA magnitude. The light and dark lines indicate the convergence of individual neurons and

their mean, respectively, which were fitted by Eq (2). The ordinate is normalized so that the unity indicates the magnitude of RF-FGSTA with 210

stimuli. (C) Comparison between the estimated and ideal RF-FGs for six example neurons with preference to figure. The two left-most columns show

the estimated and ideal RF-FGSTAs, and the third column shows the product of the two. The fourth and fifth columns show the trimmed RF-FGSTAs

that were located on the figure and ground subregions of the ideal RF-FGSTA, respectively. The magnitudes were normalized for each neuron, and the

colors were normalized for each panel. The extent of panels was identical to that of stimulus patches. The right-most column indicates the cosine

similarity between the estimated and ideal RF-FGSTAs. The cosine similarity was given by the Euclidean dot product with two RF-FGs treated as vectors.

(D) Distribution of the cosine similarity. (E) Distribution of the ratios between the extent of the estimated preferred-region and that of the ideal

preferred-region. (F) Distribution of the overlap ratios between the extents of the CRFs and preferred regions.

https://doi.org/10.1371/journal.pone.0268650.g002
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processing. The results of simulations showed that the median of cosine similarities between

the RF-FG�s computed from the filled and dot stimuli was 0.87 (mean = 0.83, SD = 0.11)

across the examined neurons, indicating good validity of the patch stimuli. Intuitively, a prom-

inent difference between the patch and dot stimuli was the spatial extent that affected the spa-

tial resolution in STA. For instance, RF-FG�s computed from the filled stimuli appear to be

blurred in periphery compared to those computed from the dot stimuli. The cosine similarity

for a small subregion whose extent was half of the typical CRF extent was 0.83, indicating the

overall validity of the patch stimuli. The results of example model cells and the distribution of

the similarities are shown in Supplement, S3 Fig.

Design of the electrophysiological experiment

The color of the filled patches was chosen so that the maximum neural responses were obtained,

whereas the color of the natural patches was not changed. Stimuli were also scaled to cover the

CRFs of the recording units, more than three times larger than the rough estimate of the CRF

diameter, yielding a stimulus size between 2.5 and 21 degrees. This scale was selected to ascer-

tain the recordings from multiple neurons with their CRFs covering different regions of a stim-

ulus with reasonable overlap. Stimuli were shown against a plain gray background on a 27-inch

LCD monitor (CG275W Eizo; refresh rate, 60 Hz; white luminance, 125 cd/m2; black lumi-

nance: 1.3 cd/m2) placed at a distance of 57 cm from the monkey’s eye. All stimulus presenta-

tions were repeated 10 times within a session in a pseudorandom order and shown for 200 ms

with a blank 200-ms interstimulus interval. The square-wave grating patches were included to

determine the CRF center and the extent of individual neurons. The grating patches were pre-

sented at one of 25 positions in a 5x5 grid across the stimulus extent, without fine tuning for the

recorded neurons. Thirty-two-channel silicon probes arranged linearly (A1X32-10 mm 50–413,

A1X32-10 mm 100–413) or probes with eight shafts (A8X1 tetrode-2 mm 200–312) (Neuro-

nexus Technologies, Ann Arbor, MI, USA) were used for recordings of the neural activity of V4

neurons. Collected neural signals were amplified (1000×), filtered (0.5–8 kHz), and sampled at

20 kHz. For the main analyses, single-unit spiking activities were sorted offline for each session.

Refer to Yamane et al. [24] for details of the physiological experiment.

Data analysis

For the examination of responsiveness to stimuli, we compared the firing rates of isolated single

units during the prestimulus period (100–0 ms before stimulus onset) with those of the stimulus

period (40–200 ms after stimulus onset) for all stimuli with t-tests or Welch’s t-test if equal vari-

ance was violated. A value of p< 0.05 was used as the criterion for responsiveness. To estimate

the retinotopic location and extent of CRFs, we counted the number of spiking events in iso-

lated single units during the presentations of the grating patches shown at different retinal posi-

tions. The center and extent of the CRFs were estimated from the mean spike count maps fitted

by a two-dimensional Gaussian function. Based on the positional relation between the CRF cen-

ter and the content of the image patch, we classified the patches for each neuron into two cate-

gories: the CRF center on the figure or on the ground (FG; “figure” or “ground”).

Estimation of subregions responsive to figure and ground (RF-FG) by STA

Applying the framework of STA, we estimated the spatial structures of local figure-ground

organization in the stimuli that evoked FG-dependent responses. We proposed combining the

neural responses and the figure and ground regions within the presented stimuli. Figure and

ground regions in the stimuli were assigned based on the human perception of the stimuli [17,

19, 24] and were tagged with +1 and -1, respectively (FG label). Weighted by the spike counts
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observed in response to the stimuli, the corresponding FG labels were averaged so that the

regions responsive to FG (responsive field in response to figure and ground; RF-FG) were esti-

mated. Hereafter, the terms RF-FG and kernel are used interchangeably. The RF-FG by STA is

given by

RF‐FGSTA ¼

XN

i
FGlabeli � spikei
XN

i
spikei

�

XN

i
FGlabeli
N

; ð1Þ

where spike and FGlabel indicate the number of spikes in response to stimulus i and the corre-

sponding FG label, respectively. N indicates the total number of FG labels (N = 210). For filled

stimuli, the contrast polarity of the figure (black or white) was disregarded, and the same FG

label was used for the pair of filled stimuli with opposite contrasts, adding the responses of the

pair so that N = 210 for the filled patches. RF-FGs were expected to show the independence to

image features including contrast and orientation since the responses to both contrast polari-

ties and a wide variety of contours across stimuli were added into the computation. This pro-

cessing was expected to extract the responses to FG and cancel out the responsiveness to other

image features. The average across all FG labels was subtracted from the weighted average.

This compensation for the nonuniformity of the FG labels was necessary since the present

method used a limited number of structured FG labels without whitening. The mean FG label

was equivalent to the RF-FG wherein the neural responses were equal across all FG structures,

and thus, the subtraction of the mean FG label represents the cancellation of bias evoked by

the nonuniformity of FG organization. The estimated STA ranged between –1 and +1, with

positive and negative values indicating the preference to figure and ground regions, respec-

tively; the greater values indicate the generation of the greater responses if a figure is projected

onto the location. Intuitively, the RF-FG represents the best possible FG organization that

evokes a strong response to the neuron but not any interaction such as surround suppression

[43]. The significance of the kernel was estimated by the permutation wherein the spike counts

for each stimulus were randomized. RF-FGSTA was considered significant if the magnitude

(squared sum of all elements) of RF-FGSTA was significantly greater (p< 0.05) than the magni-

tudes of kernels with randomization (RF-FG�STA). The randomization was repeated 1000

times to obtain a set of RF-FG�STAs.

Since the number of stimuli was finite, it could be expected that the estimated RF-FGSTA

did not reach convergence. We computed the magnitudes of RF-FGSTAs with a limited num-

ber of FG labels in multiples of 20 and estimated the convergence ratio with respect to an infi-

nite number of stimuli. The stimuli were randomly chosen every time, and the computation

was repeated 100 times. To evaluate the convergence at N = 210, we fitted the data with a func-

tion [44]:

y ¼ a 1 �
b

exp xc
d

� �
� 1þ b

 !e" #f

; ð2Þ

where a ~ f are free parameters and optimized by the fmincon function in MATLAB [45]. The

value of a was considered the convergent point at infinity. The ratio of convergence is given by

the value of y at N = 210 divided by a. The RF-FGs with the ratio of 0.9 or greater were consid-

ered effective and subject to analysis. The relatively high ratio was chosen because cross-valida-

tion was not performed since the number of stimuli was limited. The mean number of spikes

for estimating a single effective RF-FG was 876.

We defined a neuron as an ideal FG cell if it fired a single spike for all stimuli whose preferred

region fell onto its CRF-center but did not fire for other stimuli. The RF-FGSTA of an ideal FG
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cell (the ideal RF-FGSTA) is given by the mean of the FG labels whose preferred region fell onto

its CRF-center. Since the border between figure and ground passes through the center of the

patches in our stimulus set, the ideal RF-FGSTA shows an antagonistic structure with a preferred

region on the CRF side and a non-preferred region on the other side with respect to the patch

center. On the other hand, the RF-FGSTA of a non-FG cell that does not evoke FG-dependent

responses is given by the mean of all FG labels, which is flat at zero, as seen from Eq 1. Actual

RF-FGSTAs tend to fall between these two extremes, and the similarity between the ideal and esti-

mated RF-FGSTAs is expected to indicate the degree of FG dependence in the responses. Note

that the spatial autocorrelation of the FG labels provides the distribution of the FG extents.

Estimation of linear RF-FGs by AF

AF is a standard machine learning technique for estimating a best-fit linear filter without con-

straints on image structures such as spherical symmetry [40]. In short, AF gradually searches

for the best-fit receptive field as the number of trials increases, whereas STA deterministically

estimates receptive fields directly from the stimuli and corresponding spike counts. In contrast

to kernels estimated by STA using white noise, kernels estimated by AF can be dissociated

from the veridical receptive field structure. It is expected to perform both methods in the eval-

uation of the receptive field structure if spherical symmetry is not assured; a similarity between

the STA and AF kernels likely indicates veridicality. Conventional AF also depends on the

stimulus luminance, similar to traditional STA; therefore, conventional AF is not directly

applicable in estimating higher-order properties other than luminance, such as border owner-

ship- and FG-dependent responses.

Recent studies have proposed AF based on the recursive least-square (RLS) algorithm for

the estimation of RF structures [35]. We used the RLS algorithm to obtain the optimal linear

kernels with respect to FG (RF-FGAF). An outline of the algorithm is provided in the Supple-

ment (S4 Fig). The algorithm sequentially takes a pair of FG labels and the corresponding

spike rate. The pixelwise product (Hadamard product) between the FG label and kernel, which

represents the simulated response, is then taken. The algorithm sequentially modifies the ker-

nel to minimize the difference between the Hadamard product and neural response. The num-

ber of input pairs was 4200 (210 stimuli × 2 contrasts × 10 trials) for the filled patches. Since

the number of pairs was 2100 (210 stimuli × 10 trials) for the natural patches, we duplicated

the pairs to obtain 4200 pairs. The presentation order of input pairs was randomized such that

every consecutive stimulus was different.

Estimation of nonlinear RF-FGs by STC

The STC is capable of estimating nonlinear RFs [28, 29, 32, 46]. The STC estimates RFs based

on the spike-weighted covariance of stimuli, although the computational methods varied

across the previous studies. An illustration of the concept around STA and STC is shown in

the Supplement, S8 Fig. RF-FG by STC is given by [32]

RF‐FGSTC ¼ Cspike � Cbase

¼
1

N � 1

XN

i¼1

FGlabeli � spikei � RF‐FGSTAð Þ FGlabeli � spikei � RF‐FGSTAð Þ
t

�
1

N � 1

XN

i¼1

FGlabeli � RF‐FGSTAð Þ FGlabeli � RF‐FGSTAð Þ
t

; ð3Þ

where FGlabel and RF-FGSTA are row vectors with a length of 625 (25 × 25), and N indicates

the total number of FG labels (N = 210). Spikei represents the normalized number of spikes for
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stimulus i. RF-FGSTA was subtracted because the distribution of the stimuli that evoked

responses was biased from the distribution of the original stimuli. Although conventional STC

assumes spherical covariance in stimuli similar to traditional STA, our method does not

include whitening since it does not meet the aim of estimating RF-FG as discussed above;

therefore, the estimated kernel does not provide complete subregions. We performed a com-

pensation of subtracting the baseline that is covariance among FG labels, similar to the estima-

tion of FG-RFSTA. The filled stimuli had contrast-reversed pairs with identical FG labels. The

responses to both contrasts were summed for the computation so that RF-FGSTCs were con-

trast invariant.

Since the resolution was 25×25, we obtained 625 eigenvectors (RF-FGSTCs), many of which

do not represent meaningful kernels. As reported previously, the determination of significance

is important but not straightforward [34, 46]. In the present study, effective RF-FGSTCs were

selected based on the significance of their magnitudes. The effectiveness of a kernel was

defined based on the eigenvalues obtained from the randomized spike trains (RF-FG�STC). An

eigenvalue represents the contribution of the eigenvector (such as RF-FGSTC and RF-FG�STC);

therefore, the eigenvalues of RF-FGSTCs that exceeded those of RF-FG�STC were considered

significant [34]. Specifically, RF-FGSTC was considered significant if two conditions were met:

(1) its eigenvalue exceeded ±1 SD from the mean of the differences of the eigenvalues between

the consecutive RF-FG�STCs along the rank of their eigenvalues, and (2) if the RF-FGSTC at the

nearest neighbor along the rank in the ascendent (descendent) direction was also significant

when its eigenvalue was positive (negative) (refer to Fig 7). These criteria were selected accord-

ing to the STC analysis of V1 complex cells [34].

STA and STA+STC model

We constructed computational models of individual neurons based on RF-FGSTA and

RF-FGSTC and evaluated the effectiveness of RF-FGSTC. In the STA model, the FG label corre-

sponding to the presented stimulus was multiplied pixelwise with the RF-FGSTA and passed

through rectification. The response of the STA model is given by

rSTA;i ¼ wSTA � FGlabeli � RF‐FGSTAð Þ;

rþSTA;i ¼
rSTA;i; rSTC > 0

0; rSTC � 0
;

(

where wSTA indicates the weight to be optimized to minimize the root-mean-square (RMS)

error between the model responses and the corresponding neural responses. The architec-

ture of the STA+STC model is illustrated in Fig 9(A). The FG label corresponding to the pre-

sented stimulus was multiplied pixelwise with the RF-FGSTA and RF-FGSTCs, and then the

products were added/subtracted and passed through rectification. The STA+STC model is

given by

rSTAþSTC;i ¼ rSTA;i þ
X

j

wSTCþ ;j � jFGlabeli � RF‐FGSTCþ ;jj �
X

k

wSTC� ;k � jFGlabeli � RF‐FGSTC� ;kj

rþSTAþSTC;i ¼
rSTAþSTC;i; if > 0

0; if � 0
;

(

where RF‐FGSTCþ ;j ðRF‐FGSTC� ;kÞ indicates the j-th (k-th) effective STC kernel with positive
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(negative) eigenvalues and where wSTCþ ;j indicates the weight for the corresponding kernel.

RF-FGSTCs modulate the response of RF-FGSTA. Specifically, the products with RF-FGSTC+s

were added to the product with RF-FGSTA because RF-FGSTC+s, which have positive eigenval-

ues, represent the variance in the direction where the variance is great. In contrast, the prod-

ucts with RF-FGSTC–s, which have negative eigenvalues, were subtracted from the product

with RF-FGSTA [46]. The weights were optimized to minimize the RMS error between the

model responses and the corresponding neural responses. The initial value of wSTA was set to

the optimal value obtained by the STA model, and those for wSTCs were set to zero; therefore,

the model was updated only if its root mean square error (RMSE) was lower than that of the

STA model. During the optimization, the wSTA and wSTC were updated simultaneously.

The overlap ratio between the extents of CRF and RF-FG

To quantify the overlap of the spatial extents of the CRF and the preferred region in RF-FG,

we defined the overlap ratio as:

Overlap ratio ¼
CRF ^ RF � FGpref ‐region

CRF _ RF � FGpref ‐region
:

CRF and RF-FGpref-region represent the spatial extents of the CRF and the preferred subre-

gion of a neuron, respectively. The extent of the CRF was given by the standard deviation of

the Gaussian that approximated the CRF extent. The extents of the figure and ground subre-

gions were given by the regions with positive and negative values, respectively. The regions

with zero values in RF-FG were excluded from the computation. The symbols ^ and _ repre-

sent the logical AND and OR, respectively (the overlap between the two and the subtraction of

the overlap from the summation of the two, respectively). This ratio takes one if the two

extents are identical and completely overlapped to each other and zero if the two are not over-

lapped at all.

Results

Subregions responsive to FG estimated by STA

We estimated the spatial extent of local figure and ground regions in natural images and their

silhouette images that evoked FG-dependent responses in V4 neurons. The stimulus set was

designed to include a wide variety of contour shapes. The contours (boundaries between figure

and ground) passed through the center of stimuli to include both figure and ground regions

facing each other with respect to the center. We analyzed the spiking activities of neurons that

were visually responsive and their CRF centers were located within the presented stimuli, with

spikes observed 40–200 ms after stimulus onset. The RF-FGSTAs were estimated based on STA;

the FG labels corresponding to the stimuli were averaged with weights based on the spike rate

generated by the stimulus. For filled stimuli, the contrast polarity of the figure (black or white)

was disregarded, and the same FG label was used for the pair of filled stimuli with the opposite

contrasts; therefore, the estimated RF-FGSTAs were contrast independent. The independence

to other image features was also expected since the stimuli included a wide variety of contours

in the stimuli. For natural stimuli, the independence to color and texture was also expected.

We selected effective RF-FGSTAs based on the significance of magnitude and good conver-

gence. The effective RF-FGSTAs for the filled stimuli are shown in Fig 2(A). The RF-FGSTAs for

all examined neurons are provided in the Supplement (S5 Fig). Sixty-five percent (156/239) of

neurons showed a significant magnitude in RF-FGSTA with respect to the kernels computed

with randomization (p<0.05). The convergence of RF-FGSTA is shown in Fig 2(B), wherein
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68% (162/239) of neurons showed good convergence (>0.9 at N = 210 with respect to an infi-

nite number) for the filled stimuli. Among the neurons with good convergence, 57% (92/162)

of neurons showed a significant magnitude of RF-FGSTA. The proposed method determined

effective (significant magnitude and good convergence) RF-FGSTA with the filled stimuli for

38% (92/239) of the examined neurons. With natural stimuli, 21% (55/265) of neurons showed

effective kernels (Fig 3). When combining RF-FGSTAs for filled and natural stimuli, approxi-

mately 50% (134/265) of neurons showed effective kernels. This result suggests that the neu-

rons were capable of coding FG regions in natural stimuli, in agreement with the FG-

dependent response reported previously [24]. In the following sections, we focus on the effec-

tive RF-FGSTAs that showed significant magnitude and good convergence.

Most of the estimated RF-FGSTAs exhibit a subregion responding to figures and another to

the ground. These RF-FGSTAs represent the best possible FG structure that evokes a strong

response of the neuron for the set of presented stimuli. Our stimulus set was designed such

that each stimulus included both figure and ground regions, with the boundaries between the

two passing through the stimulus center, and were controlled to include a wide variety of

Fig 3. Estimated RF-FGSTAs computed from the natural stimuli. The same conventions were used as in Fig 2. (A) Estimated RF-FGSTAs. (B)

Convergence of RF-FGSTA magnitude. (C) Comparison between the estimated and ideal RF-FGs for six example neurons with preference to figure. (D)

Distribution of the cosine similarity. (E) Distribution of the ratio between the extents of the estimated preferred-region and that of the ideal preferred-

region. (F) Distribution of the overlap ratios between the extents of the CRFs and preferred regions. The RF-FGSTAs computed from the natural stimuli

exhibited similar characteristics to the RF-FGSTAs computed from the filled stimuli.

https://doi.org/10.1371/journal.pone.0268650.g003
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shapes. Since these stimulus characteristics provide strong constraints on the estimation of FG

structures, the computed structures need to be carefully evaluated. The present result was pre-

dicted if the neuron in fact responded vigorously to figure or ground but not to the other. Intu-

itively, a figure subregion matches the mean of figure regions if a neuron equally responded to

all figures but not to grounds (an ideal F cell). In contrast, if a neuron responded to both figure

and ground, no subregion emerges. Since the FG boundaries passed through the center of sti-

muli, a preferred subregion appears on the CRF side and a non-preferred subregion on the

other side with respect to the center. The RF-FG of an ideal cell (ideal RF-FG) depends on its

FG preference and the spatial location of the CRF center (refer to the Materials and methods

for details). An agreement between the estimated and ideal RF-FGs indicates that the neurons

indeed code the FG organization in stimuli. A comparison between the estimated and ideal

RF-FGs is shown in Figs 2(C) and 3(C) for example neurons (refer to S6 Fig). The similarities

between the estimated and ideal RF-FGs were widely distributed across the neurons with

medians of 0.59 and 0.46 for filled and natural stimuli, respectively (Figs 2(D) and 3(D)). The

inclusion of neurons with ineffective RF-FGs but with significant FG modulation determined

by mean spike count (ANOVA, p<0.05) slightly increased the medians of similarities to 0.66

and 0.74 for filled and natural stimuli, respectively, suggesting that the criteria for effectiveness

might have been stricter than necessary. Within ideal preferred regions, the extents of the esti-

mated preferred regions were dominant over the non-preferred regions with medians of 0.73

and 0.70 across the neurons for filled and natural stimuli, respectively (Figs 2(E) and 3(E)).

These results indicate that the neural responses depended on the FG organization in the pre-

sented stimuli.

The spatial extents of the subregions appear larger than those of the CRF (Figs 2(A) and

3(A)). The medians of the overlap ratios between the CRFs and preferred subregion were 0.11

and 0.20 for filled and natural stimuli, respectively (Figs 2(F) and 3(F)). The overlap ratio was

defined such that it took one if the extents of the two were identical and completely over-

lapped, and zero if they were not overlapped at all (refer to Materials and methods). This result

could indicate that surround modulation greatly contributed to the FG-dependent responses.

However, the extents of CRFs were determined by grating stimuli that could be different from

the optimal stimulus of the neuron. The veridical extents of the CRFs could be different if

other visual attributes such as curvature, texture, and color were used for the determination of

the CRF [16]. Further examinations are necessary to clarify the exact roles of the CRF and sur-

rounding modulation.

The mean RF-FGSTAs across neurons with aligned CRF centers are shown in Fig 4(A)

together with the mean ideal RF-FGSTAs. The neurons with figure preference show a figure

subregion around the CRF center and a ground subregion in the periphery of the figure subre-

gion. In contrast, the neurons with ground preference show a ground subregion around the

CRF center and a figure subregion in the periphery. These subregions match those in the

mean ideal RF-FGSTAs, indicating that these neurons were indeed responsive to FG organiza-

tion. The extents of preferred subregions for estimated RF-FGSTAs appear smaller and larger

for figure- and ground-preferred neurons, respectively, than for ideal RF-FGSTAs. Since FG

boundaries always passed through the patch center, subregions are expected to have the oppo-

site preferences to figure and ground with respect to the patch center (an antagonistic struc-

ture). To clarify the characteristics of the subregions including their antagonism, we rotated

the RF-FGSTAs of figure preferred neurons with respect to the patch center so that the center

of gravity of a figure subregion came to the left (Fig 4(A)). Similarly, we rotated the RF-FGSTAs

of ground preferred neurons so that a ground subregion came to the right. We observed a

clear antagonistic structure of figure and ground subregions with respect to the patch center.

The ratios of the extents for preferred subregions with respect to that for non-zero regions (PR
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ratio) were 0.41 and 0.64 for figure- and ground-preferred neurons, respectively, for natural

stimuli (0.42 and 0.57 for filled stimuli), while the PR ratio for ideal RF-FGSTAs was 0.50. The

extent of figure subregion for figure-preferred neurons was significantly smaller than that for

ideal neurons (t-test, p<0.05; refer to Fig 4(B)). This tendency agrees with the Gestalt principle

for a smaller figure. It also appears that the figure subregion tends to show convexity in the

direction of ground, suggesting a preference for a convex figure.

To clarify the extent of subregions with respect to the CRFs, we also computed the mean

RF-FGSTAs across neurons scaled by the extent of their CRFs (Fig 4(C)). The normalized mean

Fig 4. The mean RF-FGSTAs across neurons. (A) The mean RF-FGSTAs with aligned CRFs estimated from filled and

natural stimuli (the left and right two columns, respectively). The top row shows the mean RF-FGSTAs across the

neurons. The left and right columns show the RF-FGSTAs of the neurons that preferred figure and ground, respectively.

The reddish and blueish colors indicate the regions that respond to figure (+) and ground (–), respectively, with the

deeper colors representing the greater magnitudes. The preferred regions appear around the CRF center as indicated

by the black cross at the panel center. The middle row shows the mean RF-FGSTAs with rotation; individual RF-FGSTAs

were rotated with respect to the patch center to align the center of gravity of the figure and ground regions to the left

and right, respectively. The magnitudes were normalized by the maximum value, and the colors were normalized for

each panel. The extent of panels was identical to that of the stimulus patches. The dotted lines indicate the extent of the

preferred region in the ideal RF-FGSTAs. The bottom row shows the mean ideal RF-FGSTAs with rotation. (B) The

distribution of the extent of the preferred subregions in PR ratio. The red and blue colors indicate the ratios for figure-

and ground-preferred neurons, respectively. (C) The mean RF-FGSTAs with normalization (scaling) by the CRF extent.

The dotted lines indicate a circle with the area equal to the mean area of the scaled CRFs. The same conventions were

used as in panel (A).

https://doi.org/10.1371/journal.pone.0268650.g004
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RF-FGSTAs show that the tendency of a smaller figure-subregion continues to the outside of

the CRF. Within an extent twice as large as the CRF, the PR ratios were 0.43 and 0.61 for fig-

ure- and ground-preferred neurons, respectively, with natural stimuli (0.45 and 0.56 with filled

stimuli). The convexity of the figure subregion appears clearer than in RF-FGSTAs without nor-

malization. These results indicate that the FG-dependent responses in V4 neurons are in fact

dependent on the FG configuration in and around their CRFs.

The estimated RF-FGs were contrast independent since filled stimuli consisted of pairs of

opposite contrast polarities (a pair of black and white figures with identical contours) and nat-

ural stimuli consisted of a variety of contrasts. To further examine the cue independence of the

RF-FGs, we computed the similarity between those estimated from filled and natural stimuli.

We examined twelve FG-effective neurons that were responsive to both natural and filled sti-

muli. Nine neurons showed positive correlations, and the median across all twelve neurons

was 0.30 (Fig 5), suggesting substantial cue invariance between filled and natural stimuli.

Fig 5. Similarity between RF-FGs estimated from filled and natural stimuli. The estimated RF-FGSTAs of twelve neurons that responded to both

natural and filled stimuli (in odd and even numbered rows, respectively). The same conventions were used as Fig 2. The values between the panels

indicate the cosine similarity between the RF-FGSTAs estimated from filled and natural stimuli. The magnitudes were normalized for each neuron.

The reddish and blueish colors indicate figure- and ground-subregions, respectively, with the deeper colors representing the greater magnitudes. The

right panel shows the distribution of the similarity.

https://doi.org/10.1371/journal.pone.0268650.g005
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RF-FGs estimated by AF

Recent studies have proposed AF based on the RLS [35] that does not require any strong

assumption, such as whiteness in stimuli. We estimated RF-FG based on AF (RF-FGAF) with

the aim of evaluating the structure of RF-FGSTA. The similarity between RF-FGAF and

RF-FGSTA supports the validity of the structure of estimated subregions. The estimated

RF-FGAFs of the neurons with effective RF-FGSTAs are shown in Fig 6(A) for the filled stimuli.

A number of RF-FGAFs show similar structures to RF-FGSTAs, with subregions responding to

the figure and ground. For close visual inspection between the RF-FGAF and RF-FGSTA, the

kernels of three example neurons are shown in Fig 6(B). To quantitatively clarify the similarity

between RF-FGAF and RF-FGSTA, we computed the cosine similarity between the two. The

mean similarity across the effective neurons was 0.85, and the SD was 0.05, indicating good

similarity between the two (Fig 6(C)). The RF-FGAF for the natural stimuli exhibited similar

characteristics (mean = 0.85, SD = 0.03; refer to Supplement, S7 Fig). The similarity between

the RF-FGAF and RF-FGSTA suggests the validity of the estimated subregions responsive to fig-

ures and grounds.

Fig 6. Estimated RF-FGAFs computed from the filled stimuli. (A) Estimated RF-FGAFs of the neurons that were shown in Fig 2. The same

conventions were used as in Fig 2. (B) RF-FGSTAs (top) and RF-FGAFs (bottom) of three example neurons with the cosine similarity between the

two. Reddish and blueish colors indicate the regions that respond to figure and ground, respectively. Note that the magnitudes of RF-FGSTA and

RF-FGAF cannot be compared directly since RF-FGSTA corresponds to the normalized bias towards figure and ground regions (positive and

negative, respectively) while RF-FGAF corresponds to the spike rate (Hz) when multiplied with a stimulus and rectified. (C) Distribution of the

cosine similarity between the normalized RF-FGSTA and RF-FGAF. The RF-FGSTA and RF-FGAF show characteristics similar to each other.

https://doi.org/10.1371/journal.pone.0268650.g006
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Nonlinear RF-FG based on STC

To examine the sufficiency of the linear kernels estimated by STA and AF, we estimated non-

linear RFs in response to FG regions based on STC (RF-FGSTC). STA and AF estimate linear

RFs based on the spike-weighted mean of stimuli. Alternatively, STC estimates RFs based on

the spike-weighted covariance of stimuli. If multiple functional subregions coexisted and their

mean was close to zero, STA might show no structure, but STC might reveal the subregions.

An illustration of the concept of STA and STC is shown in the supplement, S8 Fig. We selected

effective RF-FGSTCs based on the significance of the magnitude [34]. Specifically, we evaluated

the difference in eigenvalues along the rank order of eigenvalues and compared the magnitude

of the difference with that evaluated from randomized spike trains (refer to the Materials and

methods for details). The distribution of the difference in eigenvalues of an example neuron is

shown in Fig 7(A) wherein the kernels of rank 1+, 1−, and 2− were effective (1+ and 1− repre-

sent the rank with the maximum (positive) and minimum (negative) eigenvalues, respec-

tively). The estimated RF-FGSTCs of the example neuron is shown in Fig 7(B) together with

RF-FGSTA. The effective RF-FGSTC s (1+, 1−, and 2−) exhibit two subregions in response to the

figure and ground. In contrast, ineffective kernels exhibit multiple subregions or mosaic-like

structures. Approximately 85% of neurons had a small number (1~6) of effective RF-FGSTCs,

as shown in Fig 7(C).

The RF-FGSTAs are expected to exhibit linearity, while the RF-FGSTC s are not. We con-

firmed whether the RF-FGSTAs and RF-FGSTC s, in fact, exhibit linearity and nonlinearity,

Fig 7. Computation of RF-FGSTCs. (A) Difference of eigenvalue in the rank order of eigenvalues for an example neuron. Rank of +1

and –1 represent those with the largest (positive) and smallest (negative) eigenvalues, respectively. The largest 10 and smallest 9

eigenvalues were shown here. Blue error shade indicates ±1 SD of the difference in eigenvalues estimated from randomization. Red

dots indicate significance. Three RF-FGSTCs were considered significant (1+, 1−, and 2−). (B) RF-FGSTA and RF-FGSTCs estimated for

an example neuron. The top row indicates RF-FGSTCs with the numbers corresponding to the rank in ascending order from the

positive (1+, 2+, 3+, and 4+). The bottom row indicates RF-FGSTCs with the numbers in descending order from the negative (1−, 2−, 3−,

and 4−). Reddish and blueish colors indicate the polarity of the RF-FGSTC. The same conventions were used as in Fig 2. The significant

RF-FGSTCs (1+, 1−, and 2−) show a clear dichotomy between figure and ground while nonsignificant RF-FGSTCs show multiple regions

(3− and 4−) and mosaic-like distributions (2+, 3+, and 4+). (C) Distribution of the number of significant RF-FGSTCs for single neurons.

Red and blue bars indicate the RF-FGSTC counted from the largest (positive) and smallest (negative) eigenvalues, respectively. A

number of neurons had a few significant RF-FGSTCs with the median of three.

https://doi.org/10.1371/journal.pone.0268650.g007
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respectively, based on Bayesian theorem. In essence, the probability of spike rate when a stimu-

lus is presented (P(spike|stimulus)) was proportional to P(stimulus|spike)/P(stimulus) [28].

These probability distributions of an example cell and the mean distributions across the

RF-FGSTAs and RF-FGSTCs are shown in Fig 8. The probabilities are in the rank order of the

pixelwise product between the kernel and stimulus; therefore, the abscissa represents the sti-

muli in the order of the predicted response magnitude evoked by the stimulus. The predicted

spike rate for the RF-FGSTAs shows linearity (R2 = 0.764 for the mean), while that for the

RF-FGSTCs does not (Fig 8 bottom). As expected, the RF-FGSTAs appear to show linearity,

while the RF-FGSTCs do not. In the next section, we examine the contribution of the nonline-

arity based on the estimated RF-FGSTCs.

Models based on STA and STC

To estimate the contribution of nonlinear processing (RF-FGSTC) to FG-dependent responses,

we constructed computational models of individual neurons based on RF-FGSTA and

RF-FGSTC and evaluated the effectiveness of RF-FGSTC. The architecture of the model is illus-

trated in Fig 9(A). The FG label corresponding to the presented stimulus was multiplied pixel-

wise with the RF-FGSTA and RF-FGSTCs, and then the products were added/subtracted and

passed through rectification. Within the characteristic space of stimuli, RF-FGSTA represents

the distance and direction to the center of gravity among the stimuli to which the neuron

responded. RF-FGSTCs represent the bases (variance) for the distribution of the stimuli to

which the neuron responded (refer to S8 Fig). Although the spike rate could be estimated by

RF-FGSTA alone, the addition of RF-FGSTC would yield a better representation, as RF-FGSTC

introduces the variance of the distribution. To modulate the RF-FGSTA response, the products

with positive RF-FGSTCs (those with positive eigenvalues) were added to the product with

RF-FGSTA, and the products with negative RF-FGSTCs were subtracted [46]. The positive and

negative RF-FGSTCs have greater and smaller variance, respectively, in the stimulus space.

Fig 8. Estimated spike rates and the linearity of RF-FGSTA and RF-FGSTCs. The top row shows the estimated RF-FGSTA and RF-FGSTCs for an

example neuron. The same conventions were used as in Fig 2. The middle row shows the distributions of P(stimulus) and P(stimulus|spike) in gray and

red bars, respectively. The classes indicate the stimuli in the rank order of the responses they evoked (the normalized inner-product between the RF-FG

and stimulus). P(stimulus|spike)/P(stimulus) is proportional to P(spike|stimulus) that corresponds to the predicted spike rates which are shown in the

bottom rows. The linearity of the spike rates indicates the linearity of the operation of the kernel. The right-most column and the second column from

the right show the mean across the RF-FGSTCs and RF-FGSTAs of all examined neurons, respectively. The mean RF-FGSTA shows fair linearity with R2 =

0.764 (the regression line in red; p<0.001), while the RF-FGSTC does not.

https://doi.org/10.1371/journal.pone.0268650.g008
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Intuitively, a greater number of stimuli evoke responses with positive RF-FGSTCs, and a

smaller number of stimuli evoke responses with negative RF-FGSTCs. Therefore, positive and

negative RF-FGSTCs can be considered to facilitate and suppress neural responses, respectively.

The weights for RF-FGs were optimized to minimize the RMS error between model responses

and the corresponding neural responses.

To evaluate the effectiveness of the RF-FGSTC, we computed Pearson’s product correlation

between the neural and model responses. Specifically, we computed the neural correlations of

the model with both RF-FGSTA and RF-FGSTC (STA+STC model) and that of the model with

RF-FGSTA alone (STA model) and compared the correlations between the two models. The

free parameters of the model were optimized for each model (refer to the Materials and meth-

ods). Without RF-FGSTC, the mean correlation across the effective neurons between the model

responses and recorded spike rates was 0.24 with the noise-corrected explained variance [47]

Fig 9. The model combining RF-FGSTA and RF-FGSTCs. (A) Illustration of the model combining RF-FGSTA and

RF-FGSTCs. (B) Distribution of the correlation between the neural spike rate and the responses of the model with

RF-FGSTA but without RF-FGSTC (STA model) in response to the corresponding filled stimuli. The gray and red bars

indicate all examined neurons and the neurons with the good convergence and significant magnitude, respectively. (C)

Distribution of the difference in the neural correlation between the STA model and STA+STC model. Red and green

bars indicate those estimated for the filled and natural stimuli, respectively. The distribution of the difference between

the STA and STA+STC models was centered around zero, indicating weak or no contribution of the RF-FGSTCs.

https://doi.org/10.1371/journal.pone.0268650.g009
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of 0.19 (Fig 9(B)). A relatively low correlation was expected since the modulation of the indi-

vidual neurons was very weak [24]. The distribution of the difference in the correlation

between the two models was centered around zero (Fig 9(C)), indicating the ineffectiveness of

the RF-FGSTCs in response to the figure and ground. This result suggests spatial variance of the

FG structure, which seems meaningful for the segregation of figures from the ground.

Discussion

To clarify the nature of FG-dependent responses in V4, we estimated the spatial structure of

FG in natural image patches and their silhouettes that evoked the responses. Although Yamane

et al. [24] reported FG-dependent responses, they focused on the FG at the CRF center,

whether the figure or ground of an image was projected onto the CRF center. Therefore, the

spatial structure of FG that evoked the neural responses has not yet been clarified. To elucidate

the FG structure, we proposed combining the neural responses to natural and silhouette

patches with the local FG structure based on spike triggered analyses. Weighted by the spike

count observed in response to natural image stimuli, the corresponding FG labels were aver-

aged to estimate the regions responsive to FG (RF-FGSTAs). Approximately 50% of the exam-

ined neurons showed significant RF-FGSTAs, and most of them exhibited antagonistic

structures: a subregion responsive to a preferred side around the CRF center and a subregion

responsive to a non-preferred side in the surroundings. The RF-FGSTAs showed good agree-

ment with those for the ideal FG responses, indicating that these neural responses were indeed

dependent on the FG configuration projected on and around the CRF. The extents of figure-

responsive subregions were smaller than those of ground-responsive subregions, indicating an

agreement with the Gestalt law in figure perception. The results also suggested the preference

for convexity in figure-responsive subregions.

The RF-FGSTAs estimated from the filled patches would be straightforward since the pre-

sented stimuli and the FG labels were identical or contrast-reversed images. Notably, the

RF-FGSTAs estimated from the natural and filled-image patches shared the same structure.

Since the natural image stimuli were distinct from the FG labels, this result supports that the

neurons were, in fact, capable of determining FG from natural images. Although the natural

image stimuli have very different textures and colors among each other, the estimated struc-

tures were similar to those estimated from the filled images, suggesting the invariance to tex-

tures and colors in the FG determination. The RF-FGs estimated by AF shared the same

structure as the RF-FGSTAs, supporting the veridicality of the STA. We estimated RF-FG based

on STC and constructed computational models of individual neurons based on RF-FGSTA and

RF-FGSTC. The responses of the models based on both STA and STC did not show significant

differences from those based solely on STA, suggesting the insubstantial contribution of non-

linearity and the spatial variance of the FG structure. These results indicate that the spatial

organizations of figures and grounds in natural patches modulate the responses of V4

neurons.

In essence, the structures of the estimated kernels reflect the nature of the presented natural

image patches but were limited by the presented stimuli since the number of stimuli was finite.

We selected stimuli so that their degrees of convexity, closedness, and symmetry were widely

distributed as evenly as possible. This selection is considered advantageous in spike triggered

analyses, compared with not only to conventional artificial stimuli but also to ordinary natural

movies. Because FG labels were not uniform, the mean FG label was subtracted from the esti-

mated RF-FGs. The mean label was equivalent to an RF-FG in which the neural responses are

equal across all stimulus images, and thus the subtraction represents the cancelation of bias

evoked by the nonuniformity of FG organization. Another prominent characteristic of the
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stimuli was that the boundary between the figure and ground regions passed through the

patch center. Although this constrain is crucial in assuring an appropriate distribution of fig-

ure and ground regions, it confines the structure of RF-FGs. If the neural responses were FG

dependent and indicated a preference to figure, a subregion responsive to figure would appear

in and around the CRF. This figure subregion may extend up to the patch center but not

exceed the center because of this boundary constraint. To evaluate this RF-FG, a comparison

with the ideal RF-FG is advantageous. If the neuron responded to any figure but not to the

ground, the ideal RF-FG presents a clear antagonistic structure with respect to the patch center

(Fig 4). In contrast, if the neuron responded to any stimuli without FG dependence, a uni-

formly zero RF-FG appears. A comparison with the ideal RF-FG provides the degree of FG

dependence and the extent of subregions with respect to the ideal ones.

Although compensation for nonwhite stimuli has been proposed for estimating the RF

structure of V1 neurons in response to natural movies, such compensation is applicable only

to luminance. It could be theoretically possible to apply compensation to the direction and

shape of the figure. However, the diminishment of autocorrelation results in the destruction of

the FG structure. Intuitively, a figure region would be separated into many pieces and distrib-

uted randomly, or a contour around the figure would remain; thus, it no longer represents a

figure in perception. The bias originated from non-zero correlation is inevitable in the present

kernels; therefore, discussions on detailed structures of the kernels need to be cautious; how-

ever, our computational analysis indicated a good degree of validity in terms of whiteness by

comparing the RF-FGs computed from the filled stimuli and the dot stimuli with whiteness

(similarity = 0.87). A prominent difference between the patch and dot stimuli was the spatial

resolution in RF-FGs. The computational analysis showed that an RF-FG whose extent was

half of the mean extent of the CRF yielded a fair similarity (0.83) between the RF-FGs com-

puted from the filled and dot stimuli. A visible difference may be found in the sharpness

around peripheral boundary where the RF-FGs computed from the FG labels appear blur.

Although the limited spatial resolution of FG labels appears to be an origin of the difference,

other biases in the spatial structure of FG labels might also cause the difference. For instance, a

set of FG labels with translations produced less blur in periphery (refer to S9 Fig). Because the

frequency spectra of the original and translated labels were identical, other structural features

seem to influence the estimation. Compared with the estimated extents of the individual CRFs

and surrounding regions in V1 simple cells, which appeared rather noisy without intensive

averaging [26, 43, 48], the inaccuracy originating from the nonwhiteness of our stimuli would

not be substantial. Specifically, the structures including antagonism and relative extent, which

were derived from the comparison with the ideal RF-FGs, were expected to be reliable. We

also examined the veridicality of RF-FGSTA by comparison with RF-FGAF, which did not

require whiteness. In contrast, a similar examination of the veridicality of RF-FGSTCs has not

been performed. It could be possible to compare the nonlinear RF-FGs derived from other

methods, such as those using information theory [32]. However, it is not straightforward to

compare two sets of multiple subunits that could represent the structure in different combina-

tions. Therefore, we used RF-FGSTCs in the context of estimating the degree of nonlinearity

and did not take into account their spatial structures.

The estimated RF-FGs provide some clues about the neural mechanisms underlying FG

determination. The mean STA across neurons (Fig 4) showed a slight bias of the figure region

in the right and upper-right side. The bias of the CRF centers of recorded neurons relative to

the fovea might explain this bias. The recorded cortical area corresponds to the lower visual

field, and more than a half of the neurons were recorded from the right cortical hemisphere,

meaning that the RF positions of neurons are biased to be lower left relative to the fovea. There

is a possibility that more neurons code the figure in the upper right because the figures
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(objects) are placed on to the fovea in natural conditions. When we included neurons with sig-

nificant FG-modulation as determined based on ANOVA with spike counts [24] but without

effective RF-FG as determined based on the convergence and magnitude, the mean correla-

tions between the estimated and ideal RF-FGs (Figs 2(D) and 3(D)) were increased. This result

suggests that the present criteria for an effective RF-FG were somewhat stricter than expected.

In contrast, some neurons that exhibited effective RF-FGs did not show significant FG-modu-

lations. Although interpretation of these results is not straightforward, they might indicate that

the neurons are responsive to a particular FG organization rather than a dichotomy of figure

or ground at the CRF. The correlation between the responses of the STA-models and neurons

was relatively low (0.24 across neurons). This result is consistent with the relatively low cor-

rect-rate of individual neurons in FG determination [24]. Our previous study reported that the

integration of responses from a few tens of neurons achieved up to 85% correct. It is expected

that the integration of multiple RF-FG models yields relatively high consistency with neural

responses, which would support the distributed representation or population coding of figure

and “proto object”. With STC analyses, we examined the contribution of nonlinearity. The

nonlinearity assumed here is the invariance to spatial position and FG contrast, similar to a V1

complex cell responding to a grating pattern with different spatial phases and contrast polari-

ties. However, these are not only the nonlinearities that we should consider. For example, the

sudden increase in the predicted spike rate (Fig 8) is another signature of nonlinearity. In this

case, the neurons respond only to a particular FG configuration but not to others. It may be

possible to describe the response of each neuron by a linear-nonlinear (LNL) model that com-

bines linearity and nonlinearity [49].

Understanding the interaction within or across subregions is crucial for modeling the neu-

ral mechanisms. The present RF-FGs were estimated by the presentation of local FG patterns

that included single figure-regions except for few patches, and thus the RF-FGs can be consid-

ered as the first-order approximation of the responsive fields and cannot directly estimate the

interaction. Physiological studies have reported a variety of interactions including surround

suppression [43] and colinear facilitation [25]. FG-responsive neurons are also expected to

exhibit some kind of interactions such as inter-figure suppression. A possible mechanism to

realize the inter-figure suppression is based on the assumption of independent pathways for

figure and ground. Intuitively, this mechanism allows the model to suppress the response to

the FG pattern by a part of the F region in the stimulus. Though the model would be highly

hypothetical without physiological and psychophysical evidence, yet suggestive for the investi-

gation of suppression.

Further investigations to identify what contour shapes and textures tend to evoke the neural

responses that signal figures and grounds are expected. For instance, contour shapes and high-

contrast textures are good candidates to examine the relevance to neural responses. The inte-

gration and interaction of contour shapes and surface textures are also crucial in the examina-

tion [50]. It is also important to investigate the interactions with depth cues. The distinction of

the contributions of the CRF and the surrounding surround modulation also provide useful

information. Although the determination of CRF is challenging since the optimal stimuli for

individual V4 neurons vary substantially, the distinction is expected to provide useful informa-

tion on neural modeling. These studies would reveal the neural mechanisms underlying FG

segregation. Moreover, the anatomical configuration of these neurons, such as the interaction

among them and the clusters based on similarity in RF-FG, is certainly interesting. These ques-

tions are listed as important future works. The present study focused on local natural patches

and attempted to exclude the influence of global and high-level information such as closed-

ness, familiarity, and knowledge. The present data were recorded under weak anesthesia,

which might have contributed to reducing feedback from higher-level cortical areas. A recent
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study reported that the curvature selectivity observed in monkey V4 was not affected by anes-

thesia [51]. Since curvature is a crucial local-cue for the determination of FG in filled stimuli,

weak anesthesia might not alter local FG processing. Recordings with awake animals are

expected to further clarify perceptual organization. Combining data under anesthesia and

arousal would provide hints on top-down influences. Investigations of the neural responses to

global natural scenes are also expected to clarify the neural mechanisms underlying perceptual

organization. The combination of the responses to local patches and global scenes is expected

to provide clues on the modulation of local information by global information. Further investi-

gations would elucidate how the visual system gradually constructs the complex world in corti-

cal areas [52].

Supporting information

S1 Fig. Stimulus set. The natural- and filled-image patches are shown next to each other. The

mean filled-patches (FG-labels) are shown in the right-bottom. Positive and negative values

(reddish and bluish colors) indicate the bias towards figure and ground regions, respectively.

We observed a maximum bias of 16% in peripheral.

(TIF)

S2 Fig. The model for the evaluation of stimulus set. The validity of the patch stimuli was

computationally evaluated by comparing the RF-FG�s computed from the filled stimuli with-

out whiteness and the dot stimuli with it. The model consisted of two stages: RF-FG and recti-

fication. Illustrations of the model for the filled and dot stimuli are shown in (A) and (B),

respectively. The RF-FGs in the models were given by the RF-FGSTAs that were estimated from

the neural data (Fig 2(A)). Note that the aim of the model was to examine the validity of the sti-

muli, whether the stimuli could be considered as pseudo-white, but not to propose neural

mechanisms underlying FG processing. An input stimulus was multiplied pixelwise with the

RF-FGSTA, and then the sum of the products passed through a half-wave rectification. Stimuli

were either the filled stimuli that were used in our experiments or randomly placed single dots

(1×1 pixel). Both types of stimuli consisted of regions (dos) with +1 and -1 which corre-

sponded to figure and ground, respectively. The filled stimuli included the mirror patches but

not contrast-reversed patches for the sake of simplicity. The dot stimuli were unrealistic in nat-

ural scenes but satisfied whiteness; and thus, they were ideal for examining of the validity of

the patch stimuli for STA. We computed the RF-FG�s from the filled and dot stimuli by the

proposed STA method and compared the RF-FG�s to evaluate the validity of the patch stimuli.

(TIF)

S3 Fig. Similarity between the simulated FG-RF�s computed from the filled and dot sti-

muli. We examined whether the predetermined RF-FGSTAs in the models were correctly

reproduced from the filled stimuli by the proposed STA method through the simulations of

the model given in S2 Fig. The simulated RF-FG�s of three example model cells with distinct

predetermined RF-FGSTAs are shown in (A). The left column shows the predetermined

RF-FGSTAs. The yellow and blue colors indicate figure- and ground-preferring regions, respec-

tively, with darker colors indicating greater magnitudes. The magnitudes were normalized by

the maximum. The middle and the right columns show the RF-FG�s computed from the dot

and patch stimuli, respectively. The mean cosine similarity across the examined cells between

the predetermined RF-FGSTAs and the simulated RF-FG�s computed from the dot stimuli was

0.99. This almost perfect similarity was expected since the set of the dot stimuli was an approx-

imation of white noise. The right column shows the RF-FG�s computed from the filled stimuli,

with the cosine similarity to that computed from the dot stimuli. We compared the RF-FG�s
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computed from the filled and dot stimuli. The distribution of the cosine similarities between

the RF-FG�s is shown in (B). The median of the cosine similarities was 0.88 (mean = 0.87,

SD = 0.062) across the examined cells, indicating a good validity of the patch stimuli. The

models with predetermined RF-FGs whose profiles were given by the odd-symmetric differ-

ence-of-Gaussians yielded similar cosine similarities to those computed from the models with

RF-FGSTAs estimated from the neural data.

(TIF)

S4 Fig. RLS algorithm for computing the adaptive filters. Adopted and modified from [35].

The final output is given by w(N+1). Free parameters were determined from experience: δ-1 =

0.00001, μ = 0, β = 0.99, and Q = 100.

(TIF)

S5 Fig. RF-FGSTA from filled stimuli. Estimated RF-FGSTA computed from the filled stimuli

for all neurons examined. The same conventions as Fig 2.

(TIF)

S6 Fig. Comparison between the estimated and ideal RF-FGs for example neurons. The

estimated and ideal RF-FGs for ground-preferred neurons for filled (A) and natural stimuli

(B), and neurons with insignificant FG-modulation for filled (C) and natural stimuli (D). The

same conventions are used as in Fig 2(C).

(TIF)

S7 Fig. Estimated RF-FGAFs computed from the natural stimuli. The same conventions are

used as in Fig 3(A) Estimated RF-FGAFs of the examined neurons. (B) RF-FGSTAs (top) and

RF-FGAFs (bottom) of three example neurons with the cosine similarity between the two. (C)

Distribution of the cosine similarity between the RF-FGSTA and RF-FGAF. The RF-FGSTA and

RF-FGAF computed from the natural stimuli exhibit characteristics similar to each other, as

observed with filled stimuli in Fig 5.

(TIF)

S8 Fig. Illustration of RF-FGSTA and RF-FGSTCs within a virtual two-dimensional space.

Black and red dots represent stimuli, with a blue dot representing their mean. Red dots show a

set of stimuli that evoked responses to a neuron. A blue arrow points to the mean of the

responded stimuli (STA), and reddish arrows represent the variances across the responded sti-

muli in different orientations (STC).

(TIF)

S9 Fig. FG-RF�s estimated from the filled stimuli with translations. The RF-FG�s computed

from a set of filled patches including translations. The details of the stimulus configurations

were described elsewhere [24]. The numbers in the right column show the cosine similarity

between the RF-FG�s estimated from the filled stimuli with translations and the dot stimuli

(refer to S3 Fig). The same conventions are used as in S3 Fig.

(TIF)
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