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Large is different: Nonmonotonic behavior of elastic
range scaling in polymeric turbulence at large Reynolds
and Deborah numbers
Marco E. Rosti1*, Prasad Perlekar2, Dhrubaditya Mitra3

We use direct numerical simulations to study homogeneous and isotropic turbulent flows of dilute polymer
solutions at high Reynolds and Deborah numbers. We find that for small wave numbers k, the kinetic energy
spectrum shows Kolmogorov-like behavior that crosses over at a larger k to a novel, elastic scaling regime, E(k) ∼
k−ξ, with ξ ≈ 2.3. We study the contribution of the polymers to the flux of kinetic energy through scales and find
that it can be decomposed into two parts: one increase in effective viscous dissipation and a purely elastic con-
tribution that dominates over the nonlinear flux in the range of k over which the elastic scaling is observed. The
multiscale balance between the two fluxes determines the crossover wave number that depends nonmonoti-
cally on the Deborah number. Consistently, structure functions also show two scaling ranges, with intermittency
present in both of them in equal measure.
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INTRODUCTION
Since the discovery of turbulent drag reduction by Toms (1), turbu-
lent flows with small amount of long-chained polymers have re-
mained an exciting field of research. In addition to polymer
concentration, two dimensionless numbers, the Reynolds number
and the Deborah number, are necessary to describe such a turbulent
flow. The former estimates the importance of the inertial term in the
Navier-Stokes equation compared to the viscous term, and the latter
is the ratio of the characteristic time scale of the polymers over the
typical time scale of the large-scale eddies in the turbulent flow. The
turbulent drag reduction appears at both large Reynolds and
Deborah numbers. Evidently, it is not possible to study drag reduc-
tion in homogeneous and isotropic turbulent flows; nevertheless,
such flows are studied, since the pioneering work by Tabor and
De Gennes (2), in search of deeper insights.
The elementary effect of the addition of polymers to a fluid is an

increase in the effective viscosity of the solution (3, 4). Nevertheless,
there can be net reduction of the dissipation of kinetic energy (5–11)
because the presence of polymers changes the turbulent cascade
qualitatively. Past theoretical (2, 4, 12–14), numerical (8, 10, 11,
15–26), and experimental (5, 27–33) efforts have gone into elucidat-
ing the nature of the turbulent energy cascade in the presence of
polymers. It is now reasonably well established (8, 10) that for
large enough scale separation between the energy injection scale,
Linj, and the Kolmogorov scale, LK, there exists an intermediate
scale Lp such that for scales Lp < r < Linj the energy cascade is prac-
tically the same as that of a Newtonian flow, with the second-order
structure function S2(r) ∼ r2/3 and the shell-integrated energy spec-
trum being E(k) ∼ k−5/3. For scales r in the range LK < r < Lp, energy
is transferred from the fluid to the polymers, and the kinetic energy
spectrum is steeper than the Kolmogorov spectrum or in other

words the second-order structure function increases faster with r
than r2/3. Using the concept of scale-dependent Reynolds number
(34), we may identify the flow at scale r < Lp (also valid for r < LK)
with elastic turbulence—random viscoelastic smooth flows at very
small Reynolds number. The spectrum for elastic turbulence is ex-
pected to be E(k) ∼ k−ξ with ξ > 3 (14, 35, 36). Is there a previously
unidentified scaling range for r < Lp over which S2(r)∼ rζ2 with 2/3 <
ζ2 < 2? This question could not be probed with the low-Reynolds
and low-Deborah simulations quoted above. Recent experiments
(33) had tentatively suggested that a new scaling range indeed
appears, although the evidence is not yet unequivocal. Experiments
(33, 37) also showed that, contrary to Lumley’s arguments (38), the
scale Lp does depends on the concentration of polymers.
Here, we present evidence, from the highest-resolution three-di-

mensional simulations of polymeric fluids, that indeed there is a
range of scales r over which the structure function S2(r) seems to
show scaling consistent with recent experimental results (33). We
also show that the new scaling is a purely elastic effect and that
this elastic behavior is nonmonotonic in the Deborah number.

RESULTS
Governing equations
We use direct numerical simulations to study three-dimensional
homogeneous isotropic turbulence with polymers (3, 39–43).
These are represented by a second-rank tensor, C with components
Cαβ, which emerges as the thermal average of the tensor product of
the polymer end-to-end distance with itself. The polymer molecules
are assumed to have a single relaxation time τp. The dynamical
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equations are
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Here u is the velocity, ρf = 1 and μf are the density and dynamic
viscosity of the fluid, p is the pressure, μp is the polymer viscosity,
and S is the rate-of-strain tensor with components Sαβ defined as
Sαβ = (∂uα/∂xβ + ∂uβ/∂xα)/2. The function f is equal to unity ( f =
1) in the purely elastic Oldroyd-B model and to f = (ℒ2 − 3)/(ℒ2

− Cγγ) in the Finitely Extensible Nonlinear Elastic - Peterlin (FENE-
P) model (whereℒ is the maximum allowed extension of the poly-
mers) exhibiting both shear thinning and elasticity. The polymer
time scale is the relaxation time τp and its concentration is related
to the value of 1 + μp/μf; the value chosen in this work corresponds,
roughly, to 100 ppm for polyethylene oxide (44). Note that we work
in the dilute limit where polymer concentration is assumed to be
homogeneous. Turbulence is sustained by the external force in
the momentum equation, F; we use the spectral scheme from (45)
to randomly inject energy to the low–wave number shells with kinj =
(1 ≤ k ≤ 2). Note that the scaling behavior in wave numbers much
larger than kinj is independent of the choice of kinj. In the statistically
stationary state of turbulence, the injected energy is dissipated by
both the fluid (εf ) and the polymers (εp), thus εinj = εf + εp, where

ɛf ¼
2μf
ρf
hSαβSαβi; ɛp ¼

μp
2ρfτ2p

hf ðfCμμ � 3Þi ð2Þ

To compare, we also solve for the Navier-Stokes equations
without any polymer additive—we call this the Newtonian
simulation.

Theoretical background
Let us briefly recall essential features of fluid turbulence without
polymeric additives (46). The flow is determined by one

dimensionless number, Re = urms/(kinjνf ), where urms is the root
mean square velocity and νf = μf/ρf is the kinematic viscosity of
the fluid. Turbulent flows have a range of length scales and corre-
sponding time scales. The statistical properties of such flows are
characterized by the scaling exponents, ζq of the qth order longitu-
dinal structure functions, Sq, defined by

Sqð‘Þ ¼ hδuð‘Þq ≏ ‘ζqi where ð3AÞ

δuð‘Þ ; ½uðxþ ‘Þ � uðxÞ� �
‘

‘

� �

ð3BÞ

Here, ⟨·⟩ denotes averaging over the statistically stationary state
of turbulence. The qth order structure function is the qth order
moment of the probability distribution function (PDF) of velocity
difference across a length scale ℓ. The scaling behavior of the struc-
ture function, Eq. 3A, holds for η≪ ℓ ≪ Lwhere η ; ðν3f =ɛinjÞ

1=4 is
called the viscous scale and L is called the integral scale. In practice,
L = 2π/kL is of the same order of Linj = 2π/kinj, and we will use them
interchangeably.
The shell-integrated energy spectrum in Fourier space

EðkÞ ;

ð

jmj¼k
d3mhûðmÞûð� mÞi ð4Þ

where ûðmÞ is the Fourier transform of the velocity field u(x) and is
itself the Fourier transform of the second-order structure function
S2(ℓ). The theory of Kolmogorov gives ζq = q/3 and consequently
E(k) ∼ k−5/3, when k lies within the inertial range, kinj ≪ k ≪ kη,
with kη ∼ 1/η. The turbulent velocity fluctuations are non-Gaussian
in two ways. First, the odd-order structure functions are nonzero,
particularly the third-order structure function satisfies the most cel-
ebrated exact relation in turbulence, i.e., the four-fifth law,
S3(ℓ) = −(4/5)εinjℓ—this result is the cornerstone of Kolmogorv’s
theory of turbulence. Second, the scaling exponents ζq are a nonlin-
ear convex function of q, a phenomena called intermittency.
In the presence of polymers, we, in addition, consider

EpðkÞ ;
μp
ρfτp

� �ð

jmj¼k
d3mhB̂γβðmÞB̂βγð� mÞi ð5Þ

where the matrix ℬ with components, Bαγ, is the (unique) positive
symmetric square root of the matrix C, i.e., Cαβ = BαγBγβ (24, 47).
For the Oldroyd-B model, the total energy in the polymeric mode is

Fig. 1. Instantaneous snapshots of the turbulent flows. (A) Newtonian and viscoelastic fluid with (B) De≈ 1 and (C) De≈ 25, at a nominal microscale Reynolds number
Reλ ≈ 400 for the Newtonian case (A, Reλ = 390; B, Reλ ≈ 740; C, Reλ ≈ 447). The color contour shows the magnitude of the vorticity field, with the color scale going from 0
(blue) to the maximum (white). The figures are two-dimensional cuts of the three-dimensional periodic cube passing through the middle of the domain.
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given by

Ep ;
1
2

ð

dkEpðkÞ ¼
μp
2ρfτp

hCμμi ð6Þ

The presence of polymers introduces also an additional dimen-
sionless number which is the ratio of the polymeric time scale τp
over a characteristic time scale of the flow. As the turbulent flow
has many time scales, it is common to define the Deborah
number De ≡ τp/τL, where τL = L/urms is the large-eddy turnover
time, and theWeissenberg numberWi≡ τp/τη, where τη = η2/ν (48).
In Fig. 1, we show typical pseudocolor plots of vorticity from

Newtonian and viscoelastic simulations. The flow is qualitatively
strongly affected by the presence of polymers, and small-scale vor-
ticity structures are smoothened by the presence of the polymers, as
can be seen by comparing Fig. 1 (A and B) [see also (8, 10, 17)].
Unexpectedly, as the Deborah number is increased beyond unity,
this qualitative trend is reversed, compare Fig. 1 (B and C). In
Fig. 1C, small-scale structures in vorticity reappears, but at the
same time, we still find elongated structures although their length
scales are smaller than their counterparts in Fig. 1B.

Kinetic and polymer energy spectra
In Fig. 2, we plot the turbulent kinetic energy E(k) for several values
of Deborah number De. For the small Deborah numbers, e.g., De
≈ 0.18, we observe, practically, the same behavior as Kolmogorov
turbulence, with E(k) ∼ k−5/3 for the inertial range. As the
Deborah number increases the range over which the Kolmogorov
scaling is valid shrinks to smaller k, and at intermediate k, a new
range over which E(k) ∼ k−ξ with ξ ≈ 2.3 emerges. We call this
new scaling range the elastic range. The spectra, in general, has
three characteristic length scales (or equivalently wave numbers).
The largest is the one where energy is injected by stirring, the inte-
gral scale, L ≈ Linj. Next is the scale at which the Kolmogorov scaling
crosses over to elastic scaling, Lp (corresponding wave number
kp = 2π/Lp). Last is the scale at which elastic scaling crosses over to
the dissipative range, which we call the dissipative scale η (corre-
sponding wave number kη = 1/η). The Kolmogorov scaling is ob-
served over the range kinj < k < kp and the elastic range over the
wave number range kp < k < kη. The elastic range spans over the
maximum range of wave number for De ≈ 1; as De is increased
further, the elastic range begins to shrink and the Kolmogorov
range begins to grow again. Eventually, the elastic range practically
disappears at De ≈ 5, the classical Kolmogorov range is restored.
This remarkable behavior is better elucidated by plotting the two
compensated spectra k5/3E(k) and kξE(k) in Fig. 2 (G and H),

Fig. 2. Kinetic and polymer energy spectra. (A to F) Energy spectra for different Deborah numbers showing how the elastic range changes with De. (G and H) Com-
pensated kinetic energy spectra showing the emergence of two scaling regions, Kolmogorov (−5/3) and elastic (−2.3) scaling, respectively. In all the previous panels, the
dashed and solid lines represent the −5/3 and −2.3 scalings. (I) Compensated polymer energy spectra for different Deborah numbers. The solid line represent the scaling
k−ψwith ψ≈ 1.35. The scaling laws in (G) to (I) extend over the scales found from the crossovers extracted from Fig. 3. The abscissa are normalized with the integral length
scale wave number kL.
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respectively. In other words, our results clearly show that the wave
number kp depends nonmonotonically on the Deborah number,
being maximum for De ≈ 1. The nonmonotonic behavior of the
polymeric flow for De ≈ 1 can be also qualitatively appreciated by
observing Fig. 1.
Although the steepening of the spectra beyond a certain wave

number k = kp have been observed before in both direct numerical
simulations (8, 10, 17, 18, 26) and experiments (32), this was mostly
confined to the dissipation range due to the small separation of
scales related to the Reynolds number considered; only recent ex-
periments (33) demonstrated for the first time the emergence of
this elastic scaling. Zhang et al. (33) also found that Lp increases
with the polymer concentration, but they did not investigate how
it behaves as a function of the Deborah number. Also, we find
both Kolmogorov and elastic scaling simultaneously valid for differ-
ent ranges of wave numbers by virtue of running the largest simu-
lation of polymeric turbulence so far (see fig. S1), and we also
uncover the nonmonotonic behavior of Lp as a function of the
Deborah number. We have also confirmed that these results are
robust with respect to change in spatial and temporal resolutions
(see fig. S2).
The previous results have been obtained for the purely elastic

Oldroyd-B model. Before we explore further the elastic scaling, it

is worth mentioning that we performed the simulation for De ≈
0.95 with two additional models of polymeric fluids—the inelastic,
shear thinning Carreau-Yasuda model and the FENE-P model,
which models both the elastic and shear thinning behavior of poly-
meric fluids. We find that the new scaling at intermediate scales is a
purely elastic effect, which completely disappear in the absence of
elasticity, while it is reduced when shear thinning is present together
with elasticity (see fig. S3). We have also observed that if the param-
eter ℒ (the maximum possible extension of the polymers) of the
FENE-P model is varied within a reasonable range, the elastic
scaling remains practically unchanged. For too small a value of ℒ
the elastic scaling range can disappear (see fig. S3B).

Scale-by-scale energy budget
In turbulence, to understand the energy spectra, we have to study
the flux of energy through scales (46, 49, 50). For polymeric turbu-
lence, the flux in Fourier space have been studied before in (25, 26)
and their real space analog in (17).
To obtain the flux of kinetic energy in Fourier space, transform

Eq. 1A to Fourier space, multiply by ûð� kÞ, integrate over the solid
angle dΩ and over k from 0 to K, and average over the statistically

Fig. 3. Scale-by-scale energy budget. (A) The polymer contribution to the spectral energy balance, P, (dash-dotted line) is decomposed into a (×) pure polymer dis-
sipation term, Dp, and a (+) pure polymer energy flux, Πp, see Eq. 8A. (B) The sum of the (solid line) nonlinear energy flux Πf and of the (+) polymer flux Πp provides a
(dotted line) total fluxΠ =Πf +Πp extending over a range comparable to the Newtonian case (black line). (C toH) The panels show the nonlinear energy fluxΠf (solid line),
fluid dissipationDf (dashed line), polymer flux,Πp (+), and polymer dissipationDp (×) for different Deborah numbers. The filled circles represent kp, and the filled squares
represent kη, used in Fig. 2 (G to I) as the extension of the scaling laws. As De approaches unity, the polymer flux and dissipation grow, while they decrease for larger
values. The abscissa are normalized with the integral length scale wave number kL. The color scheme is the same used in Fig. 2.
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stationary state of turbulence to obtain

εinj ¼ εf þ εp ¼ ΠfðKÞ þDfðKÞ þ PðKÞ þ F injðKÞ ð7Þ

where Πf, Df, P, and ℱinj are the contributions from the nonlinear
term, the viscous term, the polymeric stress, and the external force
in Eq. 1A (see the Supplementary Materials for a full derivation).
The first equality of Eq. 7 follows from statistical stationarity. For
K ≫ kinj, the external force is zero. In the absence of polymers, P
= 0, and, since in the inertial range the dissipative contributionDf is
negligible, Πf(K ≫ kinj) = εinj is a constant. The Kolmogorov four-
fifth law follows from this statement (46). In addition, if we assume
that scaling, we obtain E(k) ∼ k−5/3.
The novel physics of this problem is elucidated by studying the

contribution from the polymers, P. In Fig. 3A, we show a represen-
tative plot ofP(K) as a function ofK, plotted as a dashed dotted line.
It is well established (3, 4, 42) that one of the effects of addition of
polymers to flows is the increase of dissipation, but P(K) is not a
purely dissipative term, as shown by its nonmonotonicty with K.
This feature has beenmodeled before by a wave number–dependent
effective viscosity (8). Here, we try a different approach.We separate
the part of P(K) that is purely dissipative, Dp(K), such that at large
K such a term should have the same asymptotic dependence on K as
Df(K). We further demand that as K → ∞, Dp(K) → εp. Hence we
obtain

PðKÞ ¼ ΠpðKÞ þDpðKÞ; where ð8AÞ

DpðKÞ ;
εp
εf
DfðKÞ: ð8BÞ

We plot Πp andDp individually in Fig. 3A. Πp has the same qual-
itative behavior as Πf, the nonlinear flux. In Fig. 3B, we plot both Πp
and Πf denoted by the symbol + and a continuous line, respectively.
We find that for small K, Πf is dominant and Πp is negligible. At a
certain scale k*, the two fluxes cross each other. Beyond k*, Πp is the
dominant partner and Πf is negligible. At very large K, well within
the dissipation range, both Πf and Πp go to zero. The sum of these
two fluxes Π≡Πp + Πf is practically a constant for all K ≪ kη. In the
same figure, Fig. 3B, we also plot, as a black line the contribution to
the flux from the nonlinear term for a simulation with no polymers.
The flux that is carried by the nonlinear term in the absence of

polymers is carried by both Πf and Πp in the presence of polymers:
At small K, the flux is carried mainly by Πf and at large K the flux is
carried mainly by Πp. The crossover between these two fluxes
happens at k*, which we identify with kp. The fluxes clearly illustrate
and substantiate what we already observed in the energy spectra: For
k < kp, the turbulence is Kolmogorov-like, whereas for kp < k < kη,
the polymeric flux Πp dominates and is approximately a constant.
We define the range of Fourier modes, kp < k < kη as the elastic range
with kp precisely defined as Πf(kp) = Πp(kp).
We emphasize that the decomposition in Eqs. 8A and 8B is jus-

tified on the following grounds: First, by construction, Dp(K ) is
always positive and monotonically increasing with K; second, it
has the same asymptotic dependence onK asDf. While a direct con-
sequence of this decomposition is that Πp → 0 as K → ∞, this does
not automatically guarantee that net flux Π(K) = Πp(K) + Πf(K) is
almost a constant over a large range of scales at all De. Our numer-
ical results thus provide an additional post-facto justification of the
decomposition of P. Also, we have checked that other reasonable
choices for Dp do not change the results qualitatively.
For a moment, consider again turbulence without polymers.

Assume that within the inertial range, in real space, the velocity
shows scaling behavior with an exponent h such that, if we scale
length by a factor of b, x → bx, then velocity scales as u → bhu. In
the inertial range, the flux equation, Eq. 7, implies that the contri-
bution to the flux from the nonlinear term is constant. Applying
simple power counting to the contribution to the flux from the non-
linear term, we obtain 3h − 1 = 0, which implies the standard result
from Kolmogorov theory h = 1/3. Let us now apply the same scaling
argument to the elastic range (17). As we scale x → bx, we expect u
→ bhu and C → bgC with two distinct exponents h and g, respective-
ly. As the flux Πp is approximately constant in the elastic range, we
obtain h − 1 + g = 0. By Fourier transform, it is straightforward to
show that, if the velocity in real space scales with an exponent h,
then the scaling exponent for the energy, E(k) ∼ k−ξ, with ξ = 2h
+ 1. Together, the two relations imply that the scaling exponent
for the shell-integrated polymer energy is Ep(k) ∼ k−ψ, with ψ = g
+ 1 = 2 − (ξ− 1)/2 ≈ 1.35. In Fig. 2I, we plot the compensated shell-
integrated polymer spectra from our simulations; a scaling expo-
nent of ψ≈ 1.35 is indeed consistent with our results, independently
corroborating the view of a polymer flux.
Next, we show how the flux balance depends on the Deborah

number in Fig. 3 (C to H). We mark two Fourier modes in these
plots, one is kp, marked by a black circle, the wave number at
which Πf stops being the dominant contribution, and the other is
the wave number at which the dissipation (Df or Dp) becomes the
dominant term of the balance, which is a reasonable estimate of kη,
marked by a black square. For small De (Fig. 3C), kp > kη; in other
words, the elastic range is nonexistent, masked by the viscous range.
As De increases (Fig. 3, D and E), kp < kη and the elastic range is
clearly visible, with kp reducing with De. As De increases beyond
unity, kp starts increasing again (Fig. 3F) and becomes almost
equal to kη in Fig. 3G. For even larger De, the elastic range disap-
pears again. The values of kp and kη obtained from Fig. 3 are used in
Fig. 2 (G to I) as the extension of the scaling laws; the agreement
between the two is an independent verification of the validity of
Eqs. 8A and 8B.
Last, this nonmonotonic behavior of the scale kp is also reflected

in the PDF of the squared extension of the polymers, Tr(C), shown
in Fig. 4 for the Oldroyd-B model. For small Deborah numbers, the

Fig. 4. Polymer extension. PDF of the squared extension of the polymer for
different Deborah numbers, measured in terms of Tr(C). The yellow, orange, red,
magenta, purple, and brown colors are used for increasing values of Deborah
numbers, and the color scheme is the same used in Fig. 2. The mean polymer ex-
tension (marked with a cross) is a nonmonotonic function of the Deborah number,
as shown in the inset of the figure.
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PDF has a peak somewhat higher than 3, i.e., some polymers are
already not in a coiled state. This is expected because the stretching
of polymers is determined by the small-scale strain rate (51–53) that
is best captured by the Weissenberg number, which is about 16 for
the smallest Deborah number we used. As De is increased, the peak
of the PDF moves to higher and higher values, which is also what is
expected. Unexpectedly, for De > 1, the peak moves back to smaller
values. This is an effect that cannot be captured from a passive
polymer theory (48)—the feedback from the polymer to the flow
changes the strain rate such that, in turn, the stretching of the poly-
mers is reversed at Deborah number greater than unity. Note that
here we show results from the Oldroyd-B model where there is no
constraint on the maximum stretching of polymers; however, this
nonmonotonic behavior is not unique to the Oldroyd-B model,
and we observe it also with the FENE-P model (see fig. S4B). Fur-
thermore, since the polymer extension does not continuously in-
crease with the Deborah number, the solution remains effectively
dilute also at these high values of Weissenberg numbers, without
invalidating the dilute hypothesis of the models used.
To summarize, we have, so far, presented evidence from the

largest-resolution direct numerical simulations of polymeric turbu-
lence that if the Deborah number lies in the right range, kp < k < kη,
an elastic range with constant polymeric flux Πp emerges in which
E(k)∼ k−ξ, with ξ≈ 2.3 and Ep(k)∼ k−ψ with ψ≈ 1.35. Crucially, the
scale kp behaves nonmonotonically as a function of De and can be
precisely determined as the crossover scale between Πf and Πp.

Structure function and intermittency
In the absence of polymers, the scaling exponents of the structure
function ζq are a nonlinear function of q—a phenomena known as
intermittency (46), which can be parametrized by corrections to the
Kolmogorov scaling

ζq ¼ q=3þ δq ð9Þ

The best estimates (54) of δq are δ2 ≈ 0.04, δ4 ≈ − 0.05, and δ6 ≈
− 0.23, whereas δ3 = 0 is due to Kolmogorov’s four-fifth law. We
now explore what happens to intermittency on the addition of poly-
mers. In Fig. 5A, we plot the structure function for q = 2,4, and 6 for
De ≈ 0.9—the case for which we have the largest elastic range. The
second-order structure function (Eq. 3A) with q = 2 is the Fourier
transform of the energy spectrum E(k). Hence, if E(k) ∼ k−ξ, then
S2(ℓ) ∼ ℓζ2, with ζ2 = ξ − 1 ≈ 1.3, which is what we obtain. On the
other hand, the scalings for q = 4 and q = 6 are different from 2ζ2 and
3ζ2; this becomes obvious when we plot in Fig. 5B S4 and S6 as a
function of S2 (55). In these plots, the elastic range and the inertial
range seem to merge into one scaling range, suggesting that the in-
termittency correction for q = 4 and q = 6 is the same in both the
elastic and the inertial ranges. Our results on intermittency dis-
cussed so far agree with the experimental results obtained in (33).
Thus, we must conclude that the effect of the polymers is to change
the dominant exponent q/3 but not the intermittency correction δq.
The dominant exponent is determined by the scaling of the mean
value of the energy flux, Πf, whereas the intermittency exponents
are determined by the fluctuations of the energy flux (46). The poly-
mers change the mean substantially, but the fluctuations are still
dominated by the fluctuations of viscous energy dissipation which
remains unchanged on the addition of polymers.

To check this hypothesis, we now use an alternative way to
explore intermittency: through the statistics of the viscous dissipa-
tion. We find that the qth moment of the viscous dissipation aver-
aged over a ball of radius ℓ shows scaling, viz.

hεq
‘i ≏ ‘

λq ; where ð10AÞ

ε‘ ;
2μf
ρf
hSαβSαβi‘ ð10BÞ

Here, the symbol ⟨·⟩ℓ denotes averaging over a ball of radius ℓ
and the symbol ⟨·⟩ averaging over the statistically stationary state of
turbulence. For ℓ = L, ⟨ϵL⟩ = εf the viscous dissipation in Eq. 2. The
Legendre transform of the function λq gives the multifractal spec-
trum of turbulence F(α) which we plot in Fig. 5C. Our results, for
the Newtonian case, agrees with the experiments in the Newtonian
turbulence (56). We find that the multifractal spectrum is the same
with or without polymers, thereby confirming our hypothesis.
Together, these evidences point toward the following scenario.

For small enough viscosity and for small enough k (kinj < k < kd),
the energy flux has two contributions—the advective flux and the
polymeric flux. In the inertial range, the advective flux dominates.
In the elastic range, the polymeric flux dominates. However, the in-
termittency exponents are determined not by the mean value of the
flux but by its fluctuations. The fluctuations are determined by the
fluctuations of the viscous dissipation, which remains the same in
both polymeric and Newtonian turbulence.

DISCUSSION
Our simulations reach the highest Re and De numbers reached so
far in numerical simulations of homegeneous and isotropic turbu-
lence of polymer solutions. Hence, by modern nomenclature, we
may call this elasto-inertial turbulence (26, 57), which is merely a
renaming of the traditional field of polymeric turbulence. We find
that the central role of the polymers is that the cascade of energy,
which, in the absence of polymers, is determined by the advective
nonlinearity, is now carried by both the advective nonlinearity and
the polymer stress but at different scales. At large scales, the energy
flux through scales is dominated by the advective nonlinearity,
while the polymer stress plays a subdominant role—this is reversed
at smaller scales. This gives rise to two scaling ranges, the classical
Kolmogorov one and the new elastic one. We emphasize that the
new scaling we find is a purely elastic effect; the advective nonline-
arity plays a subdominant role in the range of scales where the
elastic scaling is observed. A comparison of different models of
polymeric fluids confirms that elasticity and not shear thinning is
crucial to observe the elastic scaling range in the energy spectrum.
Thus, elasto-inertial turbulence appears to be inertial turbulence at
large scale and a new elastic behavior—different from elastic turbu-
lence—at smaller scales that are still larger than viscous scales. The
viscous effects may dominate over the elastic effects for small Re,
thereby making the elastic range disappear. Furthermore, we estab-
lish that this elastic behavior is nonmonotonic in Deborah number.
A simple qualitative explanation for this effect is that when De≫ 1,
polymers are not able to properly stretch due to their time scale
being much larger than the largest time scale of the fluid, thus
acting as a filter of the velocity fluctuations. However, our
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simulations with passive polymers show that this scenario is not
true (polymer extension increases monotonically with De ). Thus
the nonmonotonic behavior observed by us cannot be captured
by a theory that treats polymers as passive objects.
At present, there are no theories that help us understand the

elastic scaling. The theory by Bhattacharjee and Thirumalai (12,
13) predicted a new power-law scaling in elastic range, with an ex-
ponent of ξ = 3; by contrast, we observe ξ ≈ 2.3, consistent with
recent experiments (33). Bhattacharjee and Thirumalai also
assumed that most of the polymers have not undergone coil-
stretch transition. In our simulations, this may be true at small
De , where the elastic range is nonexistent, but this is definitely
not the case at high De where we do observe the elastic scaling.
The theory by Fouxon and Lebedev (14) also predicts a power-
law scaling (ξ > 3) and the existence of an elastic range, but we
agree with Zhang et al. (33) that “the assumptions and quantitative
prediction of the theory are not supported by” our numerics. We
believe that the elastic range we observe is distinct from elastic tur-
bulence in two ways. One, the scale-dependent Reynolds number in
the elastic range is not necessarily very small. Two, we find ξ ≈ 2.3,
whereas almost all studies of elastic turbulence find ξ > 3 (18, 23, 35,
36, 58, 59), consistent with the theory of Fouxon and Lebedev (14).
Note that at least one other simulation of elastic turbulence (60) has
found ξ < 3 in two dimensional polymeric flows.

Our simulations extend the recent experiments by Zhang et al.
(33), who did not probe the Deborah number dependence, by mea-
suring quantities that are not easily accessible in the experiments,
e.g., the contribution from the polymeric stress and the PDF of
polymer extension, thereby providing constraints and clues to a
future theory. We show that the polymer contribution can be de-
composed into a purely dissipative term and into a purely energy
flux, with the latter transporting the majority of energy in the
elastic range. Its validity has been confirmed in several ways: (i)
its span is consistent with the range of the elastic scale in the
energy spectra; (ii) the polymer energy spectra exhibit a scaling con-
sistent in range and slope with it. Last, we show that the intermit-
tency corrections are the same in the elastic and the Newtonian
cases. This indicates that the statistical nature of the fluctuations
of the energy flux remains unchanged on addition of polymers—
the fluctuations are determined by the statistics of the viscous
energy dissipation, which remains the same in both polymeric
and Newtonian turbulence.

Fig. 5. Intermittency. (A) Structure function Sq for q = 2, 4, and 6 from top to bottom for the viscoelastic case at De ≈ 0.9. The solid and dashed lines represent the
expected scalings in the polymer and inertial range of scales, corrected by the intermittency correction. (B) Same structure functions of (A), plotted in their extended self-
similarity form (55). The black and gray lines represent the expected scaling with and without intermittency corrections. The polymer and inertial range of scales follow
the same line, indicating that the intermittency in the two ranges is the same. (C) Multifractal spectrum of the fluid dissipation. The cyan symbols represent experimental
data taken from (56). The inset shows typical signals for the fluid dissipation, normalized by its mean value. In the two figures, the Newtonian and viscoelastic cases are
shown in black and red, respectively.
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MATERIALS AND METHODS
The viscoelastic fluid is governed by the conservation of momen-
tum and the incompressibility constraint

ρf
∂uα
∂t
þ

∂uαuβ
∂xβ

� �

¼ �
∂p
∂xα
þ

∂
∂xβ

2μfSαβ þ
μp
τp

fCαβ
� �

ð11AÞ

∂uα
∂xα
¼ 0 ð11BÞ

In the previous set of equations, ρf and μf are the density and
dynamic viscosity of the fluid, p is the pressure, and S is the rate-
of-strain tensor with components Sαβ defined as Sαβ = (∂uα/∂xβ +
∂uβ/∂xα)/2. The last term in the momentum equation is the non-
Newtonian contribution, with μp being the polymer viscosity, τp
the polymer relaxation time, f a scalar function, and C the confor-
mation tensor with components Cαβ found by solving the following
transport equation

∂Cαβ
∂t
þ uγ

∂Cαβ
∂xγ
¼ Cαγ

∂uβ
∂xγ
þ Cγβ

∂uγ
∂xα
�

fCαβ � δαβ
τp

ð12Þ

The function f is equal to f = 1 in the purely elastic Oldroyd-B
model and to f = (ℒ2 − 3)/(ℒ2 − Cγγ) in the FENE-P model (ℒ is
the maximum polymer extensibility) exhibiting both shear thinning
and elasticity. Turbulence is sustained by an additional forcing in
the momentum equation; in particular, we use the spectral
scheme by Eswaran and Pope (45) to randomly injecting energy
within a low–wave number shell with 1 ≤ k ≤ 2.
The equations of motion are solved numerically within a period-

ic cubic domain box of length 2π, discretized with N = 1024 grid
points per side with a uniform spacing in all directions, resulting
in a total number of around 1 billion grid points. The grid resolu-
tion kmax used in the present work is the largest used for viscoelastic
fluids and is sufficient to represent all the relevant quantities of in-
terest till the Kolmogorov length-scale η (kmaxη≈ 1.7) (49). Further-
more, the smallest temporal scale of the flow, i.e., the Kolmogorv
time scale τη, is overly resolved (by two orders of magnitude τη/
Δt ≈ 600), due to stability constraint arising from the non-Newto-
nian features of the flow, strongly increasing the computational cost.
We have confirmed that these results are robust with respect to
change in spatial and temporal resolutions, as reported in fig. S2
where the energy spectra obtained by different time and space res-
olutions are compared, finding the robustness of the reported
results. To solve the problem, we use the flow solver Fujin, an in-
house code, extensively validated and used in a variety of problems
(61–67), based on the (second-order) finite difference method for
the spatial discretization and the (second-order) Adams-Bashforth
scheme for time marching. See also https://groups.oist.jp/cffu/code
for a list of validations. The non-Newtonian stress equation is solved
following the (exact) log-conformation approach (68) to ensure the
positive definiteness of the tensor even at high De , without the ad-
dition of any artificial stabilising terms.

Supplementary Materials
This PDF file includes:
Figs. S1 to S4
Table S1
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