
This is a repository copy of Synchronous Task Control and Synchronous Barriers.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/107062/

Version: Accepted Version

Article:

Burns, A. orcid.org/0000-0001-5621-8816 and Wellings, A.J. orcid.org/0000-0002-3338-
0623 (2016) Synchronous Task Control and Synchronous Barriers. ACM Ada Letters. pp. 
35-38. ISSN 1094-3641 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Synchronous Task Control and Synchronous Barriers

A. Burns and A.J. Wellings

Department of Computer Science,

University of York, York, UK.

email: {alan.burns, andy.wellings}@york.ac.uk

Abstract

This paper looks at two features of Ada that support synchronisation between tasks. First, an ambi-

guity with Synchronous Task Control is outlined. Second, the question of whether Synchronous Barriers

should be allowed in the Ravenscar profile is addressed.

1 Introduction

The ARG has asked the IRTAW community to consider two issues that have arisen recently as part of their

maintenance of the Ada language. First we consider the extent to which Synchronous Task Control should

be used by concurrent tasks. And then the issue of whether, or not, Synchronous Barriers are a natural part

of the Ravenscar profile is considered.

2 Synchronous Task Control

The definition of this library routine is as follows.

package Ada.Synchronous_Task_Control is

pragma Preelaborate(Synchronous_Task_Control);

type Suspension_Object is limited private;

procedure Set_True(S : in out Suspension_Object);

procedure Set_False(S : in out Suspension_Object);

function Current_State(S : Suspension_Object) return Boolean;

procedure Suspend_Until_True(S : in out Suspension_Object);

private

... -- not specified by the language

end Ada.Synchronous_Task_Control;

The semantics for this primitive are mainly straightforward. A Suspension Object (SO) is either true

or false; it is initialised to false. A call of Suspend Until True suspends the task if the SO is

false. When another task calls Set True then the suspended task is released for execution and the SO

becomes false. Neither Set True or Set False cause blocking to the calling task, although a call of

Set True may cause a released task to preempt.

A simple use of a suspension object is to give condition synchronisation – task A must not proceed

beyond some point until task B has completed some action. The first task suspends on a SO; the second

task releases it. Suspension objects are included in Ravenscar as they allow for efficient suspend and resume

actions, for example in controlling the release of an event-triggered task and in the implementation of a

bounded buffer shared between two tasks [1]. They can also be used to program patterns that would naturally

use multiple entries and entry queues in full Ada (such use is illustrated by the example given in Section 3).



There are a number of constraints defined on SOs: The operations Set True and Set False are

atomic with respect to each other and with respect to Suspend Until True. Also, significantly, Pro

gram Error is raised upon calling Suspend Until True if another task is already waiting on that

suspension object. Hence, there cannot be a queue of suspended tasks.

This final constraint rules out the use of SOs as general binary semaphores. If three or more tasks wish

to enter a critical section then the following will fail (where Sem is a SO initialised to true):

Suspend_Until_True(Sem);

-- critical section

Set_True(Sem);

The first task to execute this code will succeed and enter the critical section, the second will block as Sem is

now false, but the third will have exception Program Error raised.

The question arises: is this use of SOs acceptable when there are only two tasks involved? With the

current definition it would not because concurrent calls to Suspend Until True are not defined to be

atomic with respect to each other. To clarify this potential ambiguity with respect to the expected behaviour

of suspension objects three possible modifications could be made:

1. Disallow concurrent calls.

2. Allow concurrent calls, and define them to be atomic.

3. Allow concurrent calls, define them to be atomic and remove the restriction as to there being at most

one suspended task (per SO).

The first approach is in keeping with the original motivation for SOs, namely that they are not to be

shared between tasks. Each SO is really private to just one task (the one that can be suspended upon it)

although, of course, other tasks will call Set True. If this approach is taken then the language definition

would need to say what would happen if there were concurrent calls. Presumable it could be defined as a

bounded error. But care must be taken not to introduce a distributed overhead; perhaps allow an implemen-

tation to not signal the fault.

The second approach represents the smallest change to the language. It would allow two task critical

sections to be programmed. But it would perhaps be misleading as the pattern cannot be generalised to more

than two tasks.

The third approach is more radical, and arguably changes the basic abstraction. Now a SO is like a

binary semaphore and can be used to program general mutual exclusion.

The IRTAW may wish to formulate an opinion on which of these approaches it supports.

3 Synchronous Barriers

Synchronous barriers are a relatively new feature of Ada, they allow a set of tasks to all wait at a barrier

until the final member of the set arrives. They are then all are made runnable again and proceed (with one

of then having a flag set). When synchronous barriers were introduced into the language it was decided not

to include them in the Ravenscar profile.

It has been observed that engineers found the new restriction in Ravenscar against Synchronous Barriers

painful, so it is reasonable to ask if it really should be prohibited.

At one level a synchronous barrier is just a protected object with many entries. As such a PO is not part

of Ravenscar then it can be argued that it follows that synchronous barriers are similarly excluded.

To show that this is really an issue of ease-of-use and efficiency, rather than expressive power the fol-

lowing (based on an email from Tucker Taff) shows that the required behaviour for a synchronous barrier

can be obtained from existing Ravenscar features (protected objects and suspension objects).



with Ada.Synchronous_Task_Control;

use Ada.Synchronous_Task_Control;

package Raven_Sync_Barriers is

pragma Preelaborate(Raven);

subtype Barrier_Limit is Positive range 1 .. 1000;

type Synchronous_Barrier (Release_Threshold : Barrier_Limit) is limited private;

procedure Wait_For_Release(The_Barrier : in out

Synchronous_Barrier; Notified : out Boolean);

private

type Susp_Obj_Array is array(Positive range <>) of Suspension_Object;

protected type Protected_Barrier (Release_Threshold : Barrier_Limit) is

procedure Arrive(Sleep : out Boolean; BL : out Barrier_Limit; SOA : in out Susp_Obj_Array);

-- Keep track of the arrival index for each task

private

Num_Arrived : Natural range 0 .. Barrier_Limit’Last :=0;

-- Number of tasks that have arrived at barrier

end Protected_Barrier;

type Synchronous_Barrier(Release_Threshold :Barrier_Limit) is limited record

Suspended_Tasks:Susp_Obj_Array (2 .. Release_Threshold);

Barrier : Protected_Barrier (Release_Threshold);

end record;

end Raven_Sync_Barriers;

package body Raven_Sync_Barriers is

protected body Protected_Barrier is

procedure Arrive(Sleep : out Boolean; BL : out Barrier_Limit; SOA : in out Susp_Obj_Array) is

begin

Num_Arrived := Num_Arrived + 1;

if Num_Arrived < Release_Threshold then

Sleep := True;

else

-- last task in, so wake all the others up

for I in SOA’Range loop

Set_True(SOA(I));

end loop;

-- Reset the barrier

Num_Arrived := 0;

Sleep := False;

end if;

-- set index for task to suspend on, only needed if Sleep is True

BL := Num_Arrived + 1;

end Arrive;

end Protected_Barrier;

procedure Wait_For_Release (The_Barrier : in out Synchronous_Barrier;

Notified : out Boolean) is

Go_To_Sleep : Boolean;

Arrival_Index : Barrier_Limit;

begin

The_Barrier.Barrier.Arrive(Go_To_Sleep, Arrival_Index, The_Barrier.Suspended_Tasks);

if Go_To_Sleep then

Suspend_Until_True(The_Barrier.Suspended_Tasks (Arrival_Index));

Notified := False;

else

Notified := True; -- This is the lucky task

end if;

end Wait_For_Release;

end Raven_Sync_Barriers;

An example of the use of this code would be:

with Raven_Sync_Barriers; use Raven_Sync_Barriers;

package bar_test is



Z : Synchronous_Barrier(3);

task type TT(Me : Positive);

T1 : TT(1);

T2 : TT(2);

T3 : TT(3);

end bar_test;

with Ada.Text_IO; use Ada.Text_IO;

package body bar_test is

task body TT is

Notified : Boolean := False;

begin

Put_Line ("Number" & Positive’Image(Me) &

" is about to wait for barrier");

Wait_For_Release(Z, Notified);

Put_Line ("Number" & Positive’Image(Me) &

" returned from wait, Notified = " & Boolean’Image(Notified));

end TT;

end bar_test;

which produces:

Number 1 is about to wait for barrier

Number 3 is about to wait for barrier

Number 2 is about to wait for barrier

Number 2 returned from wait, Notified = TRUE

Number 1 returned from wait, Notified = FALSE

Number 3 returned from wait, Notified = FALSE

Interestingly a second execution of the program produces a different ordering:

Number 2 is about to wait for barrier

Number 1 is about to wait for barrier

Number 3 is about to wait for barrier

Number 2 returned from wait, Notified = FALSE

Number 1 returned from wait, Notified = FALSE

Number 3 returned from wait, Notified = TRUE

The above demonstrates that the required behaviour for a synchronous barrier can be programmed with

existing Ravenscar features. But if the underlying platform directly supports a barrier primitive then clearly

more efficient code can be generated if such barriers are directly supported by the language. The question

for IRTAW is whether this potential efficiency gain is sufficient to warrant the inclusion of synchronous

barriers in Ravenscar.

4 Conclusions

This paper has provided the background for two questions that IRTAW has been asked to address: How

should the ambiguity surrounding the definition of Synchronous Task Control be removed, and should Syn-

chronous Barriers be included in Ravenscar.

References

[1] ISO/IEC. Information technology - programming languages - guide for the use of the Ada Ravenscar

Profile in high integrity systems. Technical Report TR 24718, ISO/IEC, 2005.


