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Abstract 

We report the results of an extended time-resolved study of DNA nucleobases in aqueous 

solutions conducted in the deep UV using broadband femtosecond transient absorption and 

electronic two-dimensional spectroscopies. We found that the photodeactivation in all DNA 

nucleobases occurs in two steps – fast relaxation (500-700 fs) from the excited state ππ* to a 

“dark” state, and its depopulation to the ground state within 1-2 ps. Our experimental 

observations and performed theoretical modeling allow us to conclude that this dark state can 

be associated with the nπ* electronic state, which is connected to the excited and ground 

states via conical intersections. 
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Unraveling of the photodeactivation mechanisms in nucleobases and nucleotides is a key 

factor for understanding DNA photostability in the UV. It is well established that 

photoexcitation of UV-induced population decays within a few ps or less in DNA nucleobases, 

whereas in DNA takes much longer time (from tens to hundreds of ps
1-3

). However, the 

underlying mechanism of this significant difference in deactivation time of the electronic 

population is still poorly understood and remains debated. Development of ultrafast 

spectroscopic techniques allowed direct resolution of fast photodeactivation in DNA 

nucleobases, nucleosides, nucleotides, and DNA oligo-polynucleotides. These have all been 

intensively studied using femtosecond transient absorption
1-2,4-13

 (TA), time-resolved 

fluorescence
7,13-16

 (FS) and photoelectron spectroscopies
3,17-20

 (PS). It was established that 

photodeactivation occurs very rapidly, i.e. within of 0.5-1.5 ps (shorter decay components of 

<70 fs were also reported in the PS studies). TA spectroscopy plays a major role, since it allows 

monitoring the dynamics of not only excited state(s), such as in the FS, but also in the ground 

state (not accessible by PS) and, more importantly, the dynamics of dark states via excited-state 

absorption (ESA). Due to technical challenges, all reported TA studies to date have been 

performed in the lowest absorption band (centered around 250-260 nm), either in a single- or 

two-color fashion (different excitation and monitoring wavelengths) except of a very recent 

study of thymine
24

. 

Although a multitude of scenarios, sometimes even controversial
25,26

, based on experimental 

findings and theoretical simulations has been proposed to explain the nature of such a fast 

photodeactivation in nucleobases (see recent review
23

), a commonly accepted picture is an 

ultrafast internal conversion in vicinity of conical intersection (CI) connecting potential surfaces 

of excited and ground states. 

To clarify and refine the mechanism of such fast photodeactivation, we performed TA and 

two-dimensional electronic spectroscopy (2DES) studies of all DNA bases in a large UV-window 

of 250 – 300 nm (~6000 cm
-1

), covering their lowest absorption band and excited-state emission 

band (Fig. 1, see also Fig. 1S in the Supporting Information). The benefits of a broad spectral 

window, together with extremely short pulse duration (6-7 fs FWHM) are resolution of the 

entire population dynamics and photodeactivation pathways, allowing establishment of an 

appropriate spectroscopic model. We found that all bases investigated exhibit similar 

population kinetics, which can be satisfactorily characterized by two fast decay components 

with large amplitudes (500-750 fs and 1-2 ps, depending on the compound), as well as one 

much slower component with a very small amplitude and a lifetime ranges in a 5-50 ps window. 

The lifetimes of all investigated compounds, retrieved from a global analysis of TA-data, are 

summarized in Table 1. 
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Table 1. Lifetimes (in ps) retrieved from the global fitting of TA-data of adenine (Ade), deoxyadenosine 

triphosphate (dATP), thymine (Thy), cytosine (Cyt), and guanosine (Guo). Uncertainties of fast and medium 

lifetimes are ~5%, and of slow ~10%. 

compound fast medium slow 

Ade 0.75 1.51 38.2 

dATP 0.7 1.31 8.6 

Thy 0.63 1.74 54 

Cyt 0.75 1.8 48.3 

Guo 0.5 0.9 5.2 

 

 

However, the most important observation in the TA-kinetics is the appearance of two 

distinct spectral bands of opposite sign. As an example, Figure 1 demonstrates the TA for Ade, 

and two cuts at 263 and 280 nm illustrate the remarkable difference in kinetics at different 

sides of the spectrum (the TA data for other compounds can be inspected in the Supporting 

Information Fig. 2S). While at shorter wavelengths close to the maximum of absorption 

spectrum, the population of ππ* excited state decays, on the red side of the TA-spectra, we 

initially observe fast population growth (differential transmission ΔT becomes negative), which 

then decays to zero.  
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Figure 1. Transient absorption spectra of Ade (A) together with two decay cuts (B) starting from a 50 fs probe delay 

at 263 and 280 nm. Solid red lines represent fitted transients. The left panel compares normalized absorption 

(blue) and laser (red) spectra. Panel C shows decay-associated spectra, retrieved from the TA.  The black line 

corresponds to the sum of all DAS, i.e. reflects an initial transient change directly after excitation. Negative 

shoulder at >280 nm indicates the ESA from the excited state. A phenomenological spectral model describing the 

TA kinetics is shown in panel D. 

 

This observation indicates rapid excited-state deactivation due to intramolecular population 

transfer between at least two states. Moreover, since the differential transmission finally 

decays to zero at all wavelengths, the ground state population is fully recovered and all 

involved excited states become unpopulated. A negative ΔT on the red side of the spectrum 

further indicates that the origin of this signal is the ESA from a state to which the excited state 

population is transferred. These processes are well resolved in the decay-associated spectra 

(DAS) retrieved from a global analysis of TA data shown in Fig. 1c for Ade. The DAS of major 

components display the opposite signs at the red- and blue spectral edges and a “butterfly”-like 

shape typical of transfer processes. In our TA-experiments a broadband excitation pulse (same 

as a probe pulse) significantly overlaps the absorption band located at 260 nm; therefore, it 

simultaneously excites all states having allowed transitions. Taking this into account, we can 

conclude that the TA-signal, growing at the red part of the spectrum (trace @280 nm in Fig. 1b), 

can only be associated with growing of the dark state population, which is not directly 

accessible from the ground state but monitored via the ESA. The observed population kinetics 

can be summarized in a framework of phenomenological spectroscopic model schematically 

represented in Fig. 1d in terms of a Jablonski diagram, where a key feature is the ESA channel 

from the dark state. Moreover, without including ESA from the bright ππ* state, it is not 

possible to explain the “butterfly-like” shapes of DAS. This simple spectroscopic model 

satisfactory reproduces measured TA-kinetics and DAS shapes (see Fig. 3S in the Supporting 

Information). The slow-decaying channel is not included in this model due to its insignificant 

contribution to the population kinetics as indicated by corresponding DAS in Fig. 1c.  It is not 

clear to which process this long-lived transient can be attributed. One can speculate that it can 

be originated from the tautomers present in the solution, due to decay of a weakly-populated 

underlying electronic state not connected to the dark state (e.g., Lb or La states, depending on 

their spectral location), or due to a weak population of a triplet state as proposed for 

pyrimidines
9,27

. On the other hand, this slow transient, common to all the compounds 

investigated, can be associated with the cooling of the ground state, which would have 

undergone heating due to the release of the excess energy after relaxation of the population 

from the dark state
28

. It should be pointed out that this cooling of the hot ground electronic 

state was previously attributed by Kohler et al.
4
 to the medium component in TA-kinetics (0.9-

1.8 ps, Table 1). However, cooling of a solute has non-trivial temporal behavior which cannot be 
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reduced to a simple exponential function (see eq. 10 in Ref. 29). In addition, since the electronic 

oscillator strength is temperature-independent and thus the area of the absorption spectrum is 

conserved, a cooling of a solute should lead to a much larger magnitude in the corresponding 

DAS at the absorption peak position as compared to the red side. This effect has been 

demonstrated
28

 for the TIN chromophore using femtosecond TA spectroscopy. In our 

experimental DAS, associated with the medium relaxation times, the situation is either the 

opposite (Fig. 1 c) or the DAS magnitudes at these wavelengths are similar except for Guo, 

which has two well-resolved electronic transitions, covered by the laser spectrum. However, we 

cannot exclude some cooling contribution to these dynamics but rather refer to the dominant 

processes involved in the excited state relaxation. 

Another benefit of extremely short pulses is direct resolution of the fine oscillatory structure 

visible “by eye” in the TA in Fig. 1. However, it is much better resolved in the heterodyne 

transient grating measurements due to higher SNR. We detect two long-lasting oscillations with 

close frequencies for all nucleobases in a whole spectral range of the probe pulse used (Table 

1S and Fig. 4S in the Supporting Information). For Ade these frequencies of ~1340 and ~1494 

cm
-1

 can be associated with Raman modes corresponding to the stretching modes of a six-

member ring (b2u) and (e1u), respectively
30

. 

The experimental results of 2DES, performed in the same spectral window, fully support our 

findings derived from the TA experiments. Since a projection of a 2D spectrum onto an 

“observation” axis νt results in a pump-probe spectrum, one can expect the appearance of two 

lobes in the 2D spectra with opposite signs along νt. Indeed, all experimental 2D spectra of all 

investigated nucleobases display this remarkable feature (Fig. 2) which can be considered a 

unique “marker” of a dark electronic state.  
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Figure 2. 2DES spectra (real part) of investigated DNA nucleobases for selected waiting times as indicated. The 

contours steps are in 10% magnitudes; each spectrum is normalized to its maximum.  White square indicates a 

spectral bandwidth realized in
21

. 

It should be noted that in recently reported 2DES studies of Ade
21-22

 the realized spectral 

bandwidth was approximately 6-12 times smaller (a few nm) which significantly restricts 

observation capabilities of photodeactivation dynamics. Therefore, these two peaks were not 

resolved. The mentioned above oscillations are also well resolved in a series of 2D spectra 

taken with small waiting-time step. Figure 3 shows as an example the oscillations with 

remarkable magnitudes for Ade monitored at νt = 37410 cm
-1

 and ντ = 36010 cm
-1

. Although a 

detailed analysis is beyond the scope of present paper, we have to note that the phase 

relations between the oscillations are very different across the 2D spectrum. 

 

Figure 3. The oscillations observed in 2D spectra of Ade at νt = 37410 cm
-1

 and ντ = 36010 cm
-1

. 
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The information retrieved from 2DES is richer compared to that from TA spectroscopy. In 

particular, these two lobes in the 2D-spectra of Ade are noticeably tilted with respect to the 

diagonal, whereas for Cyt and Thy they are arranged in parallel. Moreover, although Ade and 

Guo are both purines, their 2D-spectra exhibit notable shape differences. The 2D-spectra of 

Guo manifest two clearly resolved diagonal peaks along with a cross-peak located at around ντ 

= 36000 cm
-1

, νt = 38000 cm
-1

. This reflects the presence of two electronic transitions 

(distinguishable also in the absorption spectrum of Guo) sharing the same ground state which 

leads to a cross-peak
31

. This low-lying diagonal positive peak “shields” a contribution of the 

negative peak to the pump-probe spectrum and thus decreases the negative amplitudes in TA 

of Guo at the red side (cf. Fig. 2S in the Supporting Information). Moreover, we can see from 

these 2D spectra that population transfer to the dark state in Guo occurs from the above-

located bright electronic state. We are not detecting any pronounced inhomogeneous 

broadening in the 2D spectra; they do not exhibit any perceptible elongation along the 

diagonals. The off-diagonal width of 2D spectra directly relates to the magnitude of 

homogeneous broadening, which is large (~3000 cm
-1

) in all nucleobases, so that the associated 

electronic dephasing time is very short (6-8 fs depending of nucleobase); thus, the system-bath 

interaction in these compounds is also very strong.  

Summarizing our experimental observations and findings, we can conclude that there has to 

be a universal mechanism of photodeactivation that is equally valid for all DNA bases, 

independent of their structural peculiarities (purines vs. pyrimidines). Plenty of scenarios have 

been already proposed and considered
23

; however, all of them assume different pathways 

involving different electronic states for different nucleobases. A universal mechanism of such a 

two-step photodeactivation for all nucleobases and investigated nucleotides may be offered: 

the population passes from an initially excited bright state ππ*
 through an nπ*

 (dark) state to 

the ground state via two conical intersections as schematically depicted in Fig. 4a. It should be 

noted that a similar scenario has been proposed and discussed for Cyt
32

 and Ade
33

. However, 

we believe that this scenario should be valid for all DNA nucleobases since the only dark state 

common to all nucleobases is the nπ* 
state. To support this mechanism, we performed 

theoretical modeling of 2D spectra in vicinity of two CI’s and ESA’s (see details in the Supporting 

Information). Despite some model restrictions, the calculated 2D spectra match the observed 

spectra very well. Figure 4b shows the calculated 2D spectrum at T = 330 fs (more can be found 

in the Supporting Information in Fig. 5S). The main feature of the 2DES experimental spectra – 

two peaks with the opposite signs – is clearly reproduced, along with the overall spectral shape. 

We should point out that both heating and cooling of the ground state are automatically 

included in these simulations as time-dependent displacement of the tuning coordinate. 

However, if we restrict the spectroscopic model to only one CI (i.e. direct crossing of the ππ* 
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and ground states), we don't find reasonable agreement between the simulated and measured 

2D spectra. 

 

Figure 4. (A) Quantum-mechanical spectroscopic model for DNA nucleobases: population from initially excited 

bright state ππ*
 flows within 500-750 fs through a conical intersection CI1 to dark state nπ*

 and then, within 1.5-2 

ps, is transferred back to ground state S0 via second conical intersection CI2. (B) The 2DES spectrum, calculated in 

framework of this model, clearly displays two peaks with the opposite signs observed in the experimental 2D 

spectra. 

The possible origins of CI’s in nucleobases were extensively investigated in numerous quantum-

chemistry theoretical studies. Yet we would like to stress that these calculations were 

performed starting from perfectly optimized molecular structures. In a “living” molecule, 

immersed in a fluctuating environment (water at RT), a large number of CI’s can be realized so 

that the population transfer between the excited ππ*
 state and the dark nπ*

 state is actually 

unavoidable. 

In summary, we experimentally demonstrated that all DNA nucleobases have identical 

photodeactivation mechanism characterized by two-step relaxation of induced electronic 

population through the dark state which, on the basis of our modeling and experimental 

findings, we can associate with the nπ* state. This state connects the excited state ππ* and 

ground state via two conical intersections. The established spectroscopic model for single DNA 

bases can help to develop the spectroscopic models for DNAs and thus in unraveling of their 

photodeactivation mechanism and understanding the DNA photostability. 
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Experimental Methods 

Supporting Information is available that provides detailed information regarding the samples, 

the experimental setup and the data treatment. 

Notes 
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