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Abstract

Many real-world problems can be mathematically modeled as Multiobjective Optimization Problems (MOPs), as
they involve multiple conflicting objective functions that must be minimized simultaneously. MOPs with more
than 3 objective functions are called Many-objective Optimization Problems (MaOPs). MOPs are typically solved
through Multiobjective Evolutionary Algorithms (MOEAs), which can obtain a set of non-dominated optimal so-
lutions, known as a Pareto front, in a single run. The MOEA Based on Decomposition (MOEA/D) is one of the
most efficient, dividing a MOP into several single-objective subproblems and optimizing them simultaneously. This
study evaluated the performance of MOEA/D and four variants representing the state of the art in the literature
(MOEA/DD, MOEA/D-DE, MOEA/D-DU, and MOEA/D-AWA) in MOPs and MaOPs. Computational experiments
were conducted using benchmark MOPs and MaOPs from the DTLZ suite considering 3 and 5 objective functions.
Additionally, a statistical analysis, including theWilcoxon test, was performed to evaluate the results obtained in the
IGD+ performance indicator. The Hypervolume performance indicator was also considered in the combined Pareto
front, formed by all solutions obtained by each MOEA. The experiments revealed that MOEA/DD performed best
in IGD+, andMOEA/D-AWA achieved the highest Hypervolume in the combined Pareto front, while MOEA/D-DE
registered the worst result in this set of problems.
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Resumo

Muitos problemas oriundos domundo real podem ser modeladosmatematicamente como Problemas de Otimização
Multiobjetivo (POMs), já que possuem diversas funções objetivo conflitantes entre si que devem ser minimizadas si-
multaneamente. POMs com mais de 3 funções objetivo recebem o nome de Problemas de Otimização com Muitos
Objetivos (MaOPs, do inglês Many-objective Optimization Problems). Os POMs geralmente são resolvidos através
de Algoritmos Evolutivos Multiobjetivos (MOEAs, do inglês Multiobjective Evolutionary Algorithms), os quais con-
seguem obter um conjunto de soluções ótimas não dominadas entre si, conhecidos como frente de Pareto, em uma
única execução. O MOEA baseado em decomposição (MOEA/D) é um dos mais eficientes, o qual divide um POM
emvários subproblemasmonobjetivos otimizando-os aomesmo tempo. Neste estudo foi realizada uma avaliação dos
desempenhos do MOEA/D e quatro de suas variantes que representam o estado da arte da literatura (MOEA/DD,

⭐This article is an extended version of the work presented at the Joint XXVI ENMCNational Meeting on Computational Modeling, XIV ECTM
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MOEA/D-DE, MOEA/D-DU e MOEA/D-AWA) em POMs e MaOPs. Foram conduzidos experimentos computa-
cionais utilizando POMs e MaOPs benchmark do suite DTLZ considerando 3 e 5 funções objetivo. Além disso, foi
realizada uma análise estatística que incluiu o teste de Wilcoxon para avaliar os resultados obtidos no indicador de
desempenho IGD+. Também foi considerado o indicador de desempenho Hypervolume na frente de Pareto combi-
nada, que é formada por todas as soluções obtidas por cada MOEA. Os experimentos revelaram que o MOEA/DD
apresentou a melhor performance no IGD+ e o MOEA/D-AWA obteve o maior Hypervolume na frente de Pareto
combinada, enquanto o MOEA/D-DE registrou o pior resultado nesse conjunto de problemas.

Palavras-chave
Algoritmo Evolutivo ∙ Decomposição ∙ Otimização Multiobjetivo

1 Introduction
Evolutionary Algorithms (EAs) are known for their ability to solve complex optimization problems, includingMulti-
Objective Optimization Problems (MOPs), which involve optimizing conflicting objective functions simultaneously.
Solving a MOP means finding solutions that achieve the best possible trade-offs among the objective functions,
known as the Pareto front. Multi-Objective Evolutionary Algorithms (MOEAs) are a popular method for solving
MOPs, as they can efficiently approximate the Pareto front in a single run [1].

TheMulti-Objective Evolutionary AlgorithmBased onDecomposition (MOEA/D) is one of themost popular and
efficient MOEAs in the literature. Proposed by Zhang and Li [2], MOEA/D decomposes theMOP into several single-
objective optimization subproblems and solves them simultaneously using aggregation functions. Each individual in
the population represents the current best solution for one of the subproblems, and each subproblem is solved using
information from subproblems in its neighborhood. MOEA/D has been widely employed for efficiently solving
complex MOPs in various domains.

Most current state-of-the-art MOEAs treat a MOP as a whole without involving decomposition. MOEA/D has
some features that can enhance its performance over non-decomposition MOEAs. For example, assigning fitness
and preserving diversity can be easilymanaged inMOEA/D, in addition to having a low computational complexity in
each generation. Also, MOEA/D allows easy integration of objective normalization techniques, an excellent option
for addressing objectives with disparate scales. Furthermore, scalar optimization methods can be easily employed
in MOEA/D as each solution is intrinsically associated with a scalar optimization problem, contrasting with non-
decomposition MOEAs, which face a challenge in effectively utilizing these methods.

Xu et al. [3] provide a comprehensive survey of publications related to MOEA/D and its variants, including
challenges and future research directions. Since its proposition, MOEA/D has had multiple improvements and ex-
tensions, resulting in variants with new methods for solving different problems in various fields. These variants
aim to overcome limitations in their original components and enhance their efficiency in several MOPs. Among the
MOEA/D variants mentioned in [3] are MOEA/DD, MOEA/D-DE, MOEA/D-DU, and MOEA/D-AWA, which will
be introduced below.

Li et al. [4] introduced the MOEA Based on Dominance and Decomposition (MOEA/DD), which combines
dominance-based and decomposition-based approaches to balance convergence and diversity in the evolutionary
process of Many-objective Optimization Problems (MaOPs, which are MOPs with more than three objective func-
tions). Eachweight vector inMOEA/DD defines a subproblem and designates a subregion that helps estimate a local
population density. [4] compared the MOEA/DD’s performance with four other state-of-the-art MOEAs on a set of
unconstrained benchmark problems with up to 15 objectives. Empirical results fully demonstrate the superiority of
MOEA/DD on all considered test instances.

Another variant is MOEA/D Based on Differential Evolution (MOEA/D-DE) [5], which uses differential evolu-
tion and a polynomial mutation operator to generate new solutions. Experimental results showed thatMOEA/D-DE
significantly outperformed the well-known Non-dominated Sorting Genetic Algorithm II (NSGA-II) [6], one of the
most popular MOEAs, in addressing MOPs with complicated Pareto set shapes.

Yuan et al. [7] proposed theMOEA/Dwith aDistance-basedUpdating Strategy (MOEA/D-DU),whichmaintains
the diversity of the population using the perpendicular distance of a solution to the weight vector in the objective
space. The experimental results show that MOEA/D-DU is generally more effective than other MOEAs in balancing
convergence and diversity, besides being very competitive for solving MaOPs.

Qi et al. [8] presented the MOEA/D with Adaptive Weight Adjustment (MOEA/D-AWA), which adopts a new
initialization method and an adaptive weight adjustment strategy. The weight vectors are periodically adjusted to
obtain better uniformity of solutions. An external population helps add new subproblems in sparse regions of the
Pareto front. Experimental results indicated that MOEA/D-AWA outperformed four other MOEAs on ten widely
used test MOPs, two complex MOPs, and two MaOPs regarding the Inverted Generational Distance (IGD) perfor-
mance indicator [9], particularly in MOPs with complex Pareto fronts.
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Although these MOEA/D variants stand out as representatives of the state of the art in decomposition-based
MOEAs [3] and some works have compared them to other MOEAs, to the best of our knowledge, there is a gap in
the literature that provides a comprehensive comparison among MOEA/D, MOEA/DD, MOEA/D-DE, MOEA/D-
DU, and MOEA/D-AWA. Therefore, this study aims to evaluate the performance of these algorithms on MOPs and
MaOPs through numerical experiments conducted on benchmark problems from the DTLZ suite [10]. The statisti-
cal analysis of the results was executed on the Inverted Generational Distance Plus (IGD+) performance indicator
[11] associated with the non-parametric Wilcoxon test to verify the existence of statistically significant differences
between the obtained results. The Hypervolume performance indicator was also considered in the combined Pareto
front, formed by all solutions obtained by each MOEA.

The remainder of the work is organized as follows: Section 2 describes the theoretical foundation of the problems
and algorithms, while Section 3 presents the numerical experiments. Discussions and an analysis of the obtained
results are provided in Section 4, and finally, Section 5 presents the conclusions and prospects for future research.

2 Methods

2.1 MOPs
The MOPs treated in this work with𝑚 objective functions can be written as:

min 𝐹(𝒙) = (𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑚(𝒙))
𝑠.𝑡. 𝑥𝑖 ∈ (𝑙𝑖 , 𝑢𝑖) ∀𝑖 = 1,… , 𝑛

𝒙 = (𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛
(1)

Given 𝒙,𝒚 ∈ ℝ𝑛, we say that 𝒙 ≺ 𝒚 (read as 𝒙 dominates 𝒚) if 𝑓𝑖(𝒙) ≤ 𝑓𝑖(𝒚), ∀𝑖 = 1,… , 𝑛, and there is some
𝑗 integer between 1 and 𝑛 such that 𝑓𝑗(𝒙) < 𝑓𝑗(𝒚). If 𝒙 ⊀ 𝒚 and 𝒚 ⊀ 𝒙, 𝒙 and 𝒚 are said to be non-dominated
by each other. The set of Pareto optimal solutions is formed by non-dominated solutions that are not dominated
by any other. The image of this set in the objective space is called the Pareto Front. When 𝑚 ≥ 4, MOPs are called
MaOPs due to their complexity, which increases as the number of objectives rises. As a result, these problems receive
special attention, including an emphasis on developingMOEAswith techniques specifically designed to address their
challenges. Further details on MOPs and MOEAs can be found in Ref. [1].

2.2 MOEA/D and Its Variants
MOEA/D works by decomposing a MOP (Eq. (1)) into several single-objective optimization subproblems and op-
timizing them simultaneously. Consider 𝝀1,… ,𝝀𝑁 a set of weight vectors and 𝒛∗ = (𝑧𝑖 ,… , 𝑧𝑚) a reference point,
where 𝑧𝑖 is the best value found so far for the objective function 𝑓𝑖 . Using the Tchebycheff aggregate function, the
objective function of the 𝑗th problem can be defined as

𝑔(𝒙|𝝀𝑗 , 𝒛∗) = 𝑚𝑎𝑥{𝜆𝑗𝑖 |𝑓𝑖(𝒙) − 𝑧∗𝑖 |} (2)

in which 𝝀𝑗 = (𝜆𝑗1,… , 𝜆
𝑗
𝑚), where 𝜆𝑖 ≥ 0 with 𝑖 = 1,… , 𝑚 and

∑𝑚
𝑖=1 𝜆𝑖 = 1.

For each 𝝀𝑗 , among the other weight vectors, those closest are considered its neighborhood. This way, the neigh-
borhood of the 𝑗th subproblemwill be defined by the subproblems that have their weight vector in the neighborhood
of 𝝀𝑗 . Thus, a population is formedwith the best solution found for each subproblem (Eq. (2)), which will be used for
the rest of the algorithm (reproduction and updating of solutions). Figure 1 illustrates an example of the distribution
of MOEA/D with 6 weight vectors. Algorithm 1 displays the pseudocode of MOEA/D and a complete description of
it can be found in Ref. [2].

MOEA/DD suggests a unified paradigm that combines dominance- and decomposition-based approaches to ex-
ploit the merits of balancing the convergence and diversity of the evolutionary process. MOEA/DD uses the method
proposed by [13] to generate a set of weight vectors sampled from a unit simplex. Each weight vector in MOEA/DD
defines a subproblem and simultaneously estimates a population’s local density.

MOEA/D-DE combines MOEA/D with Differential Evolution (DE) and polynomial mutation for the reproduc-
tion of new candidate solutions, which works as follows: for each 𝑟1 = 𝑖, two indices 𝑟2 and 𝑟3 are randomly selected
from the population. After this selection, a solution �̄� is generated from 𝑥𝑟1 , 𝑥𝑟2 , and 𝑥𝑟3 throughDE. Then, mutation
is applied to �̄� with probability 𝑝𝑚 to produce a new solution 𝑦. Mathematically, it is expressed as:

�̄�𝑘 = {
𝑥𝑟1𝑘 + 𝐹 ×

(
𝑥𝑟2𝑘 − 𝑥𝑟3𝑘

)
with probability 𝐶𝑅,

𝑥𝑟1𝑘 , with probability 1 − 𝐶𝑅
(3)
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Figure 1: In MOEA/D, the aim is to minimize the distance from each point in the population to the ideal reference
point 𝑧∗. Adapted from [12].

where 𝐶𝑅 and 𝐹 are user-defined control parameters. Subsequently, polynomial mutation generates 𝑦 = (𝑦1,… , 𝑦𝑛)
from �̄� according to the following equation:

𝑦𝑘 = {
�̄�𝑘 + 𝜎𝑘 × (𝑏𝑘 − 𝑎𝑘) with probability 𝑝𝑚,
�̄�𝑘 with probability 1 − 𝑝𝑚

(4)

with

𝜎𝑘 =
⎧

⎨
⎩

(2 × 𝑟4)
1

𝜂+1 − 1 if 𝑟4 < 0.5

1 − (2 − 2 × 𝑟4 )
1

𝜂+1 otherwise
(5)

where 𝑟4 is a random number between 0 and 1. The distribution index 𝜂 and the mutation rate 𝑝𝑚 are user-defined
control parameters. The values of 𝑎𝑘 and 𝑏𝑘 are the lower and upper bounds of the decision variable 𝑘, respectively.

While MOEA/D generally uses the Tchebycheff function as an aggregation function, MOEA/D-DU has as one
of its main features a modified version of it. Let �̇�𝑗 =

(
𝜆𝑗,1, 𝜆𝑗,2,… , 𝜆𝑗,𝑚

)T
, 𝑗 = 1, 2,… , 𝑁, be a set of uniformly

distributed weight vectors, and 𝐳∗ be the ideal point, then the function for the 𝑗-th subproblem can be defined as:

ℱ𝑗(𝐱) =
𝑚

max
𝑘=1

{
1
𝜆𝑗,𝑘

||||𝑓𝑘(𝐱) − 𝑧∗𝑘
||||} (6)

where 𝜆𝑗,𝑘 ≥ 0 for every 𝑘 ∈ {1, 2,… , 𝑚} and
∑𝑚

𝑘=1 𝜆𝑗,𝑘 = 1.
This new aggregation function has two advantages over the original function. The first is that with uniformly

distributed weight, vectors lead to directions of search evenly distributed in the objective space. Second, each weight
vector corresponds to a unique solution located on the Pareto front. Due to these two advantages, the difficulty in
preserving diversity is reduced.

Finally, MOEA/D-AWA aims to obtain an optimally uniformly distributed solution on the Pareto front of MOPs
using MOEA/D and assigning appropriate weight vectors to scalar subproblems. To achieve this, MOEA/D-AWA
uses a weight vector initialization method to generate a set of these vectors by applying the𝑊𝑆 transformation to
the original weight used in MOEA/D, defined as follows:

𝜆′ =𝑊𝑆(𝜆) =
⎛
⎜
⎜
⎝

1
𝜆1

∑𝑚
𝑖=1

1
𝜆𝑖

,

1
𝜆2

∑𝑚
𝑖=1

1
𝜆𝑖

,⋯ ,

1
𝜆𝑚

∑𝑚
𝑖=1

1
𝜆𝑖

⎞
⎟
⎟
⎠

. (7)

The weight vectors generated by this initialization strategy will lead to a set of solution mapping vectors that are
evenly distributed.
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Input:
𝑁: population size
𝜆1,… , 𝜆𝑁 : weight vectors uniformly distributed
𝑇: neighborhood size
𝐺: maximum number of iterations
Output:
𝑃𝐸: external population
𝑃𝐸 = ∅
for 𝑖 ≠ 𝑗 ≤ 𝑁 do

Calculate the Euclidean distance between 𝜆𝑖 and 𝜆𝑗
end for
for 𝑖 ≤ 𝑁 do

Neighborhood of 𝑖, 𝐵(𝑖) = {𝑖1,… , 𝑖𝑇} where 𝜆𝑖1 ,… , 𝜆𝑖𝑇 are the 𝑇 weight vectors closest to 𝜆𝑖
end for
Generate initial population {𝑥1,… , 𝑥𝑁} randomly
Calculate the objective function 𝐹(𝑥𝑖) = (𝑓1(𝑥𝑖),… , 𝑓𝑚(𝑥𝑖))𝑇 for each 𝑥𝑖 in the initial population
Initialize 𝑧 = (𝑧1,… , 𝑧𝑚)𝑇 , where 𝑧𝑖 = min{𝑓𝑖(𝑥1),… , 𝑓𝑖(𝑥𝑁)}
while (number of iterations < 𝐺) do

for 𝑖 ≤ 𝑁 do
Select two indices 𝑘 and 𝑙 from 𝐵(𝑖)
Obtain a solution 𝑦 from 𝑥𝑘 and 𝑥𝑙 using reproduction operators
Apply a repair algorithm to 𝑦 to produce 𝑦′
for 𝑗 = 1,… , 𝑚 do

if 𝑓𝑗(𝑦′) < 𝑧𝑗 then
𝑓𝑗(𝑦′) = 𝑧𝑗

end if
end for
for 𝑗 ∈ 𝐵(𝑖) do

if 𝑔𝑑𝑒𝑐(𝑦′|𝜆𝑗 , 𝑧) ≤ 𝑔𝑑𝑒𝑐(𝑥𝑗|𝜆𝑗 , 𝑧) then
𝑥𝑗 = 𝑦′
𝐹(𝑥𝑗) = 𝐹(𝑦′)

end if
end for
Delete all vectors dominated by 𝐹(𝑦′) from 𝑃𝐸
if no vector in 𝑃𝐸 dominates 𝐹(𝑦′) then

Add 𝐹(𝑦′) to 𝑃𝐸
end if

end for
end while
Return 𝑃𝐸

Algorithm 1: MOEA/D.

The idea of MOEA/D-AWA is to apply a two-stage strategy to handle weight vector generation. In the first stage,
a set of predetermined weight vectors is used until the population converges at a certain point. Then, a portion of
weight vectors is adjusted according to the current Pareto optimal solutions based on geometric analysis. Specifically,
some subproblems will be removed from the whole parts of the Pareto front, and some new subproblems will be
created in other parts of it. Thus, the main differences between MOEA/D and MOEA/D-AWA are the weight vector
initialization method and the update of weight vectors during the search procedure.

3 Numerical Experiments

3.1 DTLZ Suite Problems
Deb et al. [10] introduced the benchmark problem suite DTLZ, scalable to any number of decision variables and
objectives. Among its features is the knowledge of the exact shape and location of the resulting Pareto optimal front.
This makes it suitable for testing the MOEA’s ability to control challenges in converging to the true Pareto optimal
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front, maintaining a widely distributed set of solutions. Detailed information about the DTLZ suite can be found in
[10], and problems DTLZ (1-4) employed in this study are shown below:

3.1.1 DTLZ-1

Minimize 𝑓1(𝐱) =
1
2
𝑥1𝑥2⋯𝑥𝑀−1(1 + 𝑔(𝐱𝑀)),

Minimize 𝑓2(𝐱) =
1
2
𝑥1𝑥2⋯ (1 − 𝑥𝑀−1)(1 + 𝑔(𝐱𝑀)),

⋮ ⋮
Minimize 𝑓𝑀−1(𝐱) =

1
2
𝑥1(1 − 𝑥2)(1 + 𝑔(𝐱𝑀)),

Minimize 𝑓𝑀(𝐱) =
1
2
(1 − 𝑥1)(1 + 𝑔(𝐱𝑀)),

subject to 0 ≤ 𝑥𝑖 ≤ 1, for 𝑖 = 1, 2,… , 𝑛(1 + 𝑔(𝐱𝑀)),

with 𝑔(𝐱𝑀) = 100
[
|𝐱𝑀| +

∑
𝑥𝑖∈𝐱𝑀

(𝑥𝑖 − 0.5)2 − cos(20𝜋(𝑥𝑖 − 0.5))
]

(8)

3.1.2 DTLZ-2

Min. 𝑓1(𝐱) = (1 + 𝑔(𝐱𝑀)) cos(𝑥1𝜋∕2)⋯ cos(𝑥𝑀−2𝜋∕2) cos(𝑥𝑀−1𝜋∕2),
Min. 𝑓2(𝐱) = (1 + 𝑔(𝐱𝑀)) cos(𝑥1𝜋∕2)⋯ cos(𝑥𝑀−2𝜋∕2) sin(𝑥𝑀−1𝜋∕2),
Min. 𝑓3(𝐱) = (1 + 𝑔(𝐱𝑀)) cos(𝑥1𝜋∕2)⋯ sin(𝑥𝑀−2𝜋∕2),
⋮ ⋮

Min. 𝑓𝑀(𝐱) = (1 + 𝑔(𝐱𝑀)) sin(𝑥1𝜋∕2),

with 𝑔(𝐱𝑀) =
∑

𝑥𝑖∈𝐱𝑀
(𝑥𝑖 − 0.5)2,

0 ≤ 𝑥𝑖 ≤ 1, for 𝑖 = 1, 2,… , 𝑛.

(9)

3.1.3 DTLZ-3

Min. 𝑓1(𝐱) = (1 + 𝑔(𝐱𝑀)) cos(𝑥1𝜋∕2)⋯ cos(𝑥𝑀−2𝜋∕2) cos(𝑥𝑀−1𝜋∕2),
Min. 𝑓2(𝐱) = (1 + 𝑔(𝐱𝑀)) cos(𝑥1𝜋∕2)⋯ cos(𝑥𝑀−2𝜋∕2) sin(𝑥𝑀−1𝜋∕2),
Min. 𝑓3(𝐱) = (1 + 𝑔(𝐱𝑀)) cos(𝑥1𝜋∕2)⋯ sin(𝑥𝑀−2𝜋∕2),
⋮ ⋮

Min. 𝑓𝑀(𝐱) = (1 + 𝑔(𝐱𝑀)) sin(𝑥1𝜋∕2),
with 𝑔(𝐱𝑀) = 100

[
|𝐱𝑀| +

∑
𝑥𝑖∈𝐱𝑀

(𝑥𝑖 − 0.5)2 − cos(20𝜋(𝑥𝑖 − 0.5))
]
,

0 ≤ 𝑥𝑖 ≤ 1, for 𝑖 = 1, 2,… , 𝑛.

(10)

3.1.4 DTLZ-4

Min. 𝑓1(𝐱) = (1 + 𝑔(𝐱𝑀)) cos(𝑥𝛼1𝜋∕2)⋯ cos(𝑥𝛼𝑀−2𝜋∕2) cos(𝑥
𝛼
𝑀−1𝜋∕2),

Min. 𝑓2(𝐱) = (1 + 𝑔(𝐱𝑀)) cos(𝑥𝛼1𝜋∕2)⋯ cos(𝑥𝛼𝑀−2𝜋∕2) sin(𝑥
𝛼
𝑀−1𝜋∕2),

Min. 𝑓3(𝐱) = (1 + 𝑔(𝐱𝑀)) cos(𝑥𝛼1𝜋∕2)⋯ sin(𝑥𝛼𝑀−2𝜋∕2),
⋮ ⋮

Min. 𝑓𝑀(𝐱) = (1 + 𝑔(𝐱𝑀)) sin(𝑥𝛼1𝜋∕2),
with 𝑔(𝐱𝑀) =

∑
𝑥𝑖∈𝐱𝑀

(𝑥𝑖 − 0.5)2,

0 ≤ 𝑥𝑖 ≤ 1, for 𝑖 = 1, 2,… , 𝑛.

(11)

3.2 Performance Indicators
The performance indicators Hypervolume and Inverted Generational Distance Plus (IGD+) are adopted here as
mappings that assign scores to Pareto front approximations.

Given a point set 𝑋 ⊂ ℝ𝑑 and a reference point 𝒓 ∈ ℝ𝑑, the Hypervolume indicator is

𝐻(𝑋) = 𝜆
⎛
⎜
⎝

⋃

𝒑∈𝑋
[𝒑, 𝒓]

⎞
⎟
⎠

(12)

where [𝒑, 𝒓] =
{
𝒒 ∈ ℝ𝑑 ∣ 𝒑 ≺ 𝒒 ∧ 𝒒 ≺ 𝒓

}
and 𝜆(⋅) denotes the Lebesgue measure. Hypervolume was introduced as

a tool for analyzing multiobjective optimization algorithms by Zitzler and Thiele [14]. It assesses the optimization
process results by taking into account multiple aspects, such as the proximity of the solutions to the Pareto front,
diversity, and spread.
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Denoting the cardinality of a set 𝑍 by |𝑍|, the Inverted Generational Distance (IGD) indicator is defined as

IGD(𝐴) = 1
|𝑍|

⎛
⎜
⎝

|𝑍|∑

𝑗=1
𝑑𝑝𝑗
⎞
⎟
⎠

1∕𝑝

(13)

where 𝑑𝑗 is the Euclidean distance from 𝒛𝑗 to its nearest objective vector in 𝐴. The IGD Plus (IGD+) is the IGD
indicator with the follow modified distance calculation:

𝑑+(𝒛,𝒂) =
√
𝑑+21 +⋯ + 𝑑+2𝑚 =

√
(max {𝑎1 − 𝑧𝑖 , 0})

2 +⋯ + (max {𝑎𝑚 − 𝑧𝑚, 0})
2. (14)

Note that the higher theHypervolume value, better theMOEAperformance. In IGD+, the lower the value, better
the performance of the MOEA.

3.3 Results
In the computational experiments, it was considered DTLZ (1-4) (Equations 811). MOEA/D,MOEA/DD,MOEA/D-
DE,MOEA/D-DU, andMOEA/D-AWAwere executed 20 times each onMOPsDTLZ (1-4) with 3 objective functions,
as well as on MaOPs DTLZ (1-4) with 5 objective functions. The experiments were conducted using PlatEMO, a
Matlab framework containing optimization codes presented in [15]. Table 1 defines the populations, while Table
2 defines the generations. The means and standard deviations of the results obtained by the analyzed algorithms
concerning IGD+, as well as the results of the non-parametric Wilcoxon test (with 𝑝-values ≤ 0.05), are shown in
Table 3 to verify the existence of statistically significant differences between the results.

For a givenMOP, the combined Pareto front of aMOEA is defined as the non-dominated solutions resulting from
the union of Pareto sets obtained in each independent run. Figures 2 and 3 show the combined Pareto front of all
MOEAs over the 20 independent runs and the corresponding Hypervolume percentages in relation to the biggest.

As MaOPs require effective methods for visualizing high-dimensional solution sets, 3 presents the combined
Pareto front of MaOPs using a parallel coordinates plot. In this representation, N-dimensional data is illustrated
through N equally spaced, parallel axes, symbolizing all objective functions. Each data point in this N-dimensional
space, representing one of the Pareto optimal solutions, is delineated by a polyline intersecting each axis according to
its corresponding value for that specific objective function. In Figure 3, the parallel coordinates have beennormalized
between 0 and 1 based on the minimum andmaximum values of the objective function. Further information can be
found in reference [16] for additional details on parallel coordinates.

Table 1: Population Size.

𝑚 Population Size
3 91
5 210

Table 2: Number of Generations.

Problem 𝑚 = 3 𝑚 = 5
DTLZ-1 400 600
DTLZ-2 250 350
DTLZ-3 1,000 1,000
DTLZ-4 600 1,000

4 Results Analysis and Discussion
The MOEA/DD algorithm outperforms others in the IGD+ indicator among MaOPs. It has achieved the lowest val-
ues and shown statistically significant differences from other algorithms in almost all problems. The only exception
occurred in DTLZ-2, where no statistically significant differences existed between the MOEA/DD and MOEA/D.
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Table 3: Mean and Standard Deviation of IGD+ Values for DTLZ Problems. Values in bold are the best, while the symbol (+)
indicates 𝑝-value ≤ 0.05 in the Wilcoxon test.

MOEA/D MOEA/DD MOEA/D-DE MOEA/D-DU MOEA/D-AWA
MOPs (3 Objective Functions)

DTLZ-1
M 0.0031(+) 0.0022 0.0737(+) 0.0023(+) 0.0048(+)
SD 0.0010 0.0007 0.1396 0.0005 0.0018

DTLZ-2
M 0.0050(+) 0.0051(+) 0.0307(+) 0.0046 0.0049
SD 0.0000 0.0001 0.0011 0.0002 0.0010

DTLZ-3
M 0.0070(+) 0.0056 0.5176(+) 0.0056 0.0055
SD 0.0019 0.0006 2.1497 0.0009 0.0010

DTLZ-4
M 0.0832(+) 0.0148(+) 0.0359(+) 0.0037 0.0148(+)
SD 0.1376 0.0491 0.0103 0.0001 0.0480

MaOPs (5 Objective Functions)

DTLZ-1
M 0.0012(+) 0.0007 0.2210(+) 0.0008(+) 0.0021(+)
SD 0.0007 0.0001 0.1950 0.0002 0.0005

DTLZ-2
M 0.0076 0.0075 0.0884(+) 0.0084(+) 0.0326(+)
SD 0.0001 0.0000 0.0017 0.0002 0.0036

DTLZ-3
M 0.0056(+) 0.0050 1.4687(+) 0.0055(+) 0.0294(+)
SD 0.0011 0.0004 2.1182 0.0005 0.0064

DTLZ-4
M 0.0704(+) 0.0077 0.1063(+) 0.0079(+) 0.0444(+)
SD 0.0777 0.0000 0.0071 0.0001 0.0702

InMOPs with 3 objective functions, the performance of different MOEAs depends on the problem. For instance,
in DTLZ-1, the MOEA/DD algorithm showed the best result with statistically significant differences compared to
other MOEAs. In DTLZ (2 and 4), the MOEA/D-DU algorithm demonstrated superior performance with statisti-
cally significant differences compared to other MOEAs, except for MOEA/D-AWA in the DTLZ-2. In DTLZ-3, the
MOEA/D-AWA algorithm emerged as the best performer, showing statistically significant differences only when
compared to MOEA/D and MOEA/D-DE.

Regarding IGD+,MOEA/DD stands out as the top-performing among the considered problems. It demonstrated
superior performance in MaOPs and DTLZ-1 with 3 objective functions. Moreover, it was competitive with the best-
performing MOEA in DTLZ-3 with 3 objective functions, with no statistically significant difference.

On the other hand, MOEA/D-AWA obtained the highest Hypervolume in all evaluated problems for combined
Pareto fronts, showing its effectiveness as the best MOEA when combining the solutions obtained in all 20 indepen-
dent runs.

Conversely, MOEA/D-DEwas identified as the least effective algorithm. It showcases the lowest IGD+ on almost
all problems (except for DTLZ-4 with 3 objective functions, where MOEA/D obtains the worst value) and Hypervol-
ume values (except for MaOP DTLZ-3, where all MOEAs achieve the same Hypervolume) and exhibits statistically
significant differences from the best-performing algorithm in all MOPs and MaOPs.

5 Conclusion
This study analyzed the performance ofMOEA/Dand someof its variants (MOEA/DD,MOEA/D-DE,MOEA/D-DU,
and MOEA/D-AWA) in MOPs and MaOPs. Computational experiments were conducted on benchmark problems
from the DTLZ family with 3 and 5 objective functions. Statistical analysis was carried out using the Wilcoxon
test on the results obtained in the IGD+ performance indicator, and the Hypervolume performance indicator was
considered in the combined Pareto front.

The experiments revealed that MOEA/DD performed best in IGD+, and MOEA/D-AWA achieved the highest
Hypervolume in the combined Pareto front, while MOEA/D-DE registered the worst result in this set of problems.

In future research, exploring hybridizations that involve MOEA/DD and MOEA/D-AWA with other algorithms,
as exemplified in Ref. [17], can be worthy of investigation. That study proposed an algorithm named MOEA/D-
IWOA, a hybridization ofMOEA/Dwith the IWOA algorithm. Another potential option for hybridization is the Sine
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(a) 0.9891; 1; 0.9903; 0.9626; 0.9966 (b) 0.9615; 1; 0.9650; 0.9353; 0.9821

(c) 0.9598; 1; 0.9614; 0.9325; 0.9676 (d) 0.9813; 1; 0.9604; 0.9572; 0.9654

Figure 2: Combined Pareto front of all MOEAs concerning each MOP (DTLZ 1-4 with 3 objective functions). The
corresponding Hypervolume percentages in comparison to the largest are provided in the caption, listed in the order
of MOEA/D, MOEA/D-AWA, MOEA/DD, MOEA/D-DE, and MOEA/D-DU.

Cosine Algorithm (SCA), proposed in Ref. [18]. Gabis et al. [19] indicates SCA for tackling MaOPs and utilizing a
decomposition-based MOEA may be a promising option.
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