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Abstract

This paper presents a new iterative method for the simultaneous determination of simple polynomial zeros. The
proposed method is obtained from the combination of the third-order Ehrlich iteration with an iterative correction
derived from Li’s fourth-order method for solving nonlinear equations. The combined method developed has order
of convergence six. Some examples are presented to illustrate the convergence and efficiency of the proposedEhrlich-
type method with Li correction for the simultaneous approximation of polynomial zeros.
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Resumo

Este artigo apresenta um novo método iterativo para a determinação simultânea de zeros polinomiais simples.
O método proposto é obtido a partir da combinação da iteração de Ehrlich de terceira ordem com uma correção
iterativa derivada dométodo de Li de quarta ordem para a resolução de equações não lineares. Ométodo combinado
desenvolvido tem ordem de convergência seis. Alguns exemplos são apresentados para ilustrar a convergência e efi-
ciência do método tipo Ehrlich com correção de Li proposto para a aproximação simultânea de zeros polinomiais.
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1 Introduction
The problem of finding all zeros of a polynomial arises quite frequently in practice and is of great importance in
many branches of science and engineering (see, e.g., [1, 2]). However, the apparent mathematical simplicity of the
polynomials with real or complex coefficients is clearly belied by the difficulty of finding all their zeros.

Referring to the complexity involved innumerically approximating the zeros of complex polynomials, the renowned
Swiss numerical analyst Peter Henrici (1923–1987) wrote in 1970 [3, p. 1]: “The problem of determining the zeros
of a given polynomial with complex coefficients is a genuine nonlinear problem. At the same time, the problem is
simple. It is so simple, in fact, that there is some hope that some day we may be able to solve it perfectly.”

More than a half-century has passed since then, a period inwhich a large number of sequential and simultaneous
iterative methods for finding polynomial zeros have been developed and published. However, the truth and hope
that were hidden in those words are still as strong today as they were back then. This is especially true when the
very ill-conditioned nature of the problem of finding polynomial zeros is considered.
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A classic example of ill-conditioning is shown by the polynomial 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 2)(𝑥 − 3)⋯ (𝑥 − 20) =
𝑥20 − 210𝑥19 + 20615𝑥18 −…+ (20!), given by Wilkinson [4, 5], whose zeros are, evidently, 𝑥𝑗 = 𝑗, 𝑗 = 1, 2, 3,… , 20.
Although the zeros of 𝑃(𝑥) =

∏20
𝑗=1(𝑥−𝑗) are real, simple, andwell separated, a very small perturbation in one of the

coefficients of the polynomial 𝑃(𝑥) can cause a drastic change in them, affecting not only their values but also their
nature (see, e.g., [6, pp. 201–202], [7, pp. 266–268], and [8]). Referring to the strangeness caused by this unusual result
when discussing the sensitivity of the zeros of the polynomial 𝑃(𝑥) and the errors involved in polynomial deflation,
Wilkinson [8] described in the following way his experience at the beginning of the 1950s when implementing the
Newton–Raphson method on an electronic computer aiming to find the largest zero of the mentioned polynomial,
now known as Wilkinson’s polynomial: “Speaking for myself I consider it as the most traumatic experience in my
career as a numerical analyst.”

However, even with polynomials of relatively low degree, difficulties similar to those found in the previous ex-
ample may occur, especially in the case of polynomials with multiple zeros or clusters of zeros, which makes it clear
that the problem of determining the zeros of polynomials is not trivial.

In view of that, there is still a high interest in developing new andmore efficient numerical algorithms for approx-
imating polynomial zeros, in particular iterative methods that allow finding all zeros of polynomials simultaneously.
Although the simultaneous methods require appropriate starting approximations for all zeros in order to converge,
they are innately parallel and have the advantage of avoiding the need for repeated deflations that are necessary for
obtaining all zeros with sequential iterative methods, which can lead to very inaccurate results due to error accumu-
lation in floating-point operations.

Considering this advantage, this paper presents anddiscusses a sixth-order simultaneous polynomial zero-finding
method resulting from the combination of the well-known Ehrlich–Aberth iteration [9, 10] for the simultaneous ap-
proximation of polynomial zeros with the fourth-order Li’s [11] method for nonlinear equations.

2 Preliminaries and notation

2.1 The third-order Ehrlich method
Let 𝑃(𝑧) be a monic complex polynomial of degree 𝑛 with simple zeros 𝜁1,… , 𝜁𝑛, given by:

𝑃(𝑧) =
𝑛∏

𝑗=1
(𝑧 − 𝜁𝑗) = 𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 +⋯ + 𝑎1𝑧 + 𝑎0, 𝑎𝑖 ∈ ℂ, 𝑖 ∈ {0,… , 𝑛 − 1}. (1)

Let us consider now the correction term 𝑁(𝑧) = 𝑃(𝑧)∕𝑃′(𝑧) from the well-known 2nd order Newton’s method
�̂� = 𝑧 − 𝑁(𝑧), where, for simplicity of notation, �̂� is a new approximation to a zero 𝜁. By taking its logarithmic
derivative with respect to 𝑧, and given that, for 𝑖 ≠ 𝑗, the resulting sum can be separated into two parts, we obtain:

𝑁(𝑧) =
𝑃(𝑧)
𝑃′(𝑧)

= ( 𝑑
𝑑𝑧

log𝑃(𝑧))
−1

=
⎛
⎜
⎝

𝑛∑

𝑗=1

1
𝑧 − 𝜁𝑗

⎞
⎟
⎠

−1

=
⎛
⎜
⎜
⎝

1
𝑧 − 𝜁𝑖

+
𝑛∑

𝑗=1
𝑗≠𝑖

1
𝑧 − 𝜁𝑗

⎞
⎟
⎟
⎠

−1

, (2)

from where the following fixed-point relation can be easily derived:

𝜁𝑖 = 𝑧 −
⎛
⎜
⎜
⎝

1
𝑁(𝑧)

−
𝑛∑

𝑗=1
𝑗≠𝑖

1
𝑧 − 𝜁𝑗

⎞
⎟
⎟
⎠

−1

, 𝑖 = 1,… , 𝑛. (3)

Let 𝑧1,… , 𝑧𝑛 be distinct approximations to the zeros 𝜁1,… , 𝜁𝑛 of the polynomial 𝑃(𝑧).
The well-known Ehrlich–Aberth method [9, 10] for the simultaneous approximation of simple polynomial zeros

can be obtained directly from (3) by putting 𝜁𝑖 ≃ �̂�𝑖 (where �̂�𝑖 is a new approximation to the zero 𝜁𝑖), setting 𝑧 = 𝑧𝑖 ,
and using the approximations 𝑧𝑗 (𝑗 ≠ 𝑖) in place of the zeros 𝜁𝑗 on the above identity. The resulting iterative method,
also known simply as Ehrlich method, is as follows:

�̂�𝑖 = 𝑧𝑖 −
⎛
⎜
⎜
⎝

1
𝑁(𝑧𝑖)

−
𝑛∑

𝑗=1
𝑗≠𝑖

1
𝑧𝑖 − 𝑧𝑗

⎞
⎟
⎟
⎠

−1

, 𝑖 = 1,… , 𝑛. (4)

This iterative formula was first derived by Maehly [12], and later independently by Börsch-Supan [13], Dočev
and Byrnev [14], Ehrlich [10], Weißenhorn [15], Aberth [9], and Farmer and Loizou [16].

The convergence order of the Ehrlich method for simple zeros is three [17, 10].
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2.2 The fourth-order Li method
A new two-step iterative method for nonlinear equations was introduced a few years ago by Li [11]. This method for
finding a simple root of a nonlinear equation 𝑓(𝑥) = 0 is defined by

�̂�𝑖 = 𝑥𝑖 −
(𝑓(𝑥𝑖) − 𝑓(𝑦𝑖))𝑓(𝑥𝑖)
(𝑓(𝑥𝑖) − 2𝑓(𝑦𝑖))𝑓′(𝑥𝑖)

, 𝑖 = 0, 1,… , (5)

where
𝑦𝑖 = 𝑥𝑖 −

𝑓(𝑥𝑖)
𝑓′(𝑥𝑖)

, (6)

with 𝑓′(𝑥𝑖) ≠ 0.
The first step, given by (6), is Newton’s well-known second-ordermethod. The derivation of this iterativemethod

will be omitted here and can be found in Ref. [11]. The order of convergence of Li’s method is four, as demonstrated
in the same paper.

As can be seen above, this method involves only two function evaluations and one first derivative evaluation per
iteration, not requiring the calculation of higher-order derivatives. Thus, according to the Kung–Traub conjecture
[18], this iterative method is optimal because it requires a total of 𝑛 = 3 functional evaluations per iteration, and its
convergence order is equal to 2𝑛−1.

In this paper, an iterative correction derived from the optimal fourth-order Li’s method will be applied to the
Ehrlich–Aberth method (4) to increase its convergence rate, thus giving rise to a new high-order iterative method
for the simultaneous approximation of polynomial complex zeros.

3 Ehrlich-type simultaneous method with Li correction
When examining the fixed-point relation (3), it becomes evident that more accurate approximations �̂�𝑖 for the zeros
𝜁𝑖 of the polynomial 𝑃(𝑧) can be obtained by utilizing improved estimates 𝑧𝑗 .

In order to improve the accuracy of estimates, the authors propose here the use of an iterative correction based
on Li’s optimal fourth-order two-step method (5), which is given by

𝑥𝑗 = 𝑧𝑗 −
𝑃(𝑧𝑗)
𝑃′(𝑧𝑗)

, (7)

𝐾𝐿(𝑧𝑗) =
(𝑃(𝑧𝑗) − 𝑃(𝑥𝑗))𝑃(𝑧𝑗)
(𝑃(𝑧𝑗) − 2𝑃(𝑥𝑗))𝑃′(𝑧𝑗)

, 𝑗 = 1,… , 𝑛. (8)

By substituting the Li approximation 𝑧𝑗−𝐾𝐿(𝑧𝑗) in Eq. (4) instead of 𝑧𝑗 , a newEhrlich-type simultaneousmethod
with Li correction is obtained, which is defined as follows:

�̂�𝑖 = 𝑧𝑖 −
⎛
⎜
⎜
⎝

1
𝑁(𝑧𝑖)

−
𝑛∑

𝑗=1
𝑗≠𝑖

1
𝑧𝑖 − 𝑧𝑗 + 𝐾𝐿(𝑧𝑗)

⎞
⎟
⎟
⎠

−1

, 𝑖 = 1,… , 𝑛. (9)

The determination of the convergence order of the proposed iterative method will be addressed in the following
section.

4 Convergence analysis
The following theorem establishes the order of convergence of the iterative scheme (9).

Theorem 4.1. Consider a degree-𝑛 complex polynomial 𝑃(𝑧)with distinct simple zeros 𝜁1,… , 𝜁𝑛 and let 𝑧
(0)
1 ,… , 𝑧(0)𝑛 be

initial guesses close enough to the zeros of 𝑃(𝑧). Then, the combined simultaneous method (9) has a convergence order
of six.

Proof. Substituting the right side of (2) into (9), we obtain

�̂�𝑖 = 𝑧𝑖 −
⎛
⎜
⎜
⎝

1
𝑧𝑖 − 𝜁𝑖

+
𝑛∑

𝑗=1
𝑗≠𝑖

1
𝑧𝑖 − 𝜁𝑗

−
𝑛∑

𝑗=1
𝑗≠𝑖

1
𝑧𝑖 − 𝑧𝑗 + 𝐾𝐿(𝑧𝑗)

⎞
⎟
⎟
⎠

−1

. (10)

Vetor, Rio Grande, vol. 33, no. 2, pp. 52–59, 2023 54



Simultaneous Method for Polynomial Complex Zeros Lopes and Machado

Now, let us consider the numerical approximation errors

𝜖𝑖 = 𝑧𝑖 − 𝜁𝑖 , (11)

�̂�𝑖 = �̂�𝑖 − 𝜁𝑖 , (12)

and, for the sake of convenience, the abbreviations

𝛾𝑖,𝑗 = 𝑧𝑖 − 𝑧𝑗 + 𝐾𝐿(𝑧𝑗), (13)

𝜆𝑖 =
𝑛∑

𝑗=1
𝑗≠𝑖

𝑧𝑗 − 𝜁𝑗 − 𝐾𝐿(𝑧𝑗)
(𝑧𝑖 − 𝜁𝑗) 𝛾𝑖,𝑗

. (14)

Taking into account (13) and the approximation errors defined above, we have

�̂�𝑖 = 𝜖𝑖 −
⎛
⎜
⎜
⎝

1
𝜖𝑖
+

𝑛∑

𝑗=1
𝑗≠𝑖

1
𝑧𝑖 − 𝜁𝑗

−
𝑛∑

𝑗=1
𝑗≠𝑖

1
𝛾𝑖,𝑗

⎞
⎟
⎟
⎠

−1

. (15)

By combining the two sums and considering (13) again, we obtain

�̂�𝑖 = 𝜖𝑖 −
⎛
⎜
⎜
⎝

1
𝜖𝑖
+

𝑛∑

𝑗=1
𝑗≠𝑖

𝐾𝐿(𝑧𝑗) − 𝑧𝑗 + 𝜁𝑗
(𝑧𝑖 − 𝜁𝑗) 𝛾𝑖,𝑗

⎞
⎟
⎟
⎠

−1

. (16)

Considering (14), the previous sum is equal to −𝜆𝑖 , which, after simple algebraic manipulations, leads to

�̂�𝑖 =
−𝜖𝑖2𝜆𝑖
1 − 𝜖𝑖𝜆𝑖

. (17)

According to the theorem’s assumption, the starting guesses are in close proximity to the zeros, resulting in small
errors 𝜖𝑖 and �̂�𝑖 in terms of magnitude. Based on the given information, it can be inferred that 𝜖𝑖 is of the same order
as 𝜖𝑗 and, similarly, �̂�𝑖 is also of the same order as �̂�𝑗 , i.e., 𝜖𝑖 = 𝒪𝑚(𝜖𝑗) and �̂�𝑖 = 𝒪𝑚(�̂�𝑗), for 𝑖, 𝑗 ∈ {1,… , 𝑛}. In other
words, the absolute values of 𝜖𝑖 and �̂�𝑖 are of the same order as the absolute values of 𝜖𝑗 and �̂�𝑗 , respectively, i.e., the
equalities |𝜖𝑖| = 𝒪(|𝜖𝑗|) and |�̂�𝑖| = 𝒪(|�̂�𝑗|) hold for 𝑖, 𝑗 ∈ {1,… , 𝑛}.

Upon analyzing equations (13) and (14), it is evident that the denominator in Eq. (14) is limited and converges
to (𝜁𝑖 − 𝜁𝑗)2 for 𝑖 ≠ 𝑗 when it involves estimates that are sufficiently close to the zeros. In turn, Li’s method exhibits
a fourth-order convergence, i.e., �̂�𝑖 − 𝜁 = 𝒪𝑚((𝑧𝑖 − 𝜁)4).

By considering the aforementioned two results, it can be deduced that the value of 𝜆𝑖 has an order of magnitude
𝒪𝑚(𝜖4). By applying the obtained result to (17), it can be concluded that the error term �̂� is of the order𝒪𝑚(𝜖6). This
result serves as proof that the convergence order of the proposed simultaneousmethod, incorporating Li’s correction
as shown in (9), is six.

5 Numerical examples
In order to illustrate the convergence and effectiveness of the proposed simultaneous iterative method, some real
and complex polynomials with degrees between 5 and 20 are presented below. Table 1 presents the test polynomials
and the references fromwhich they were extracted. 𝑃5(𝑧) is aMignotte polynomial of the form 𝑃(𝑧) = 𝑧𝑛−(𝑎𝑧−1)2,
with 𝑛 = 18 and 𝑎 = 9, whereas 𝑃6(𝑧) is referred to as the scaled Wilkinson polynomial.

The proposed combined algorithm (9) was tested and compared with the well-known Ehrlich method using
initial approximations to the zeros generated through the Aberth initialization scheme [9], with inclusion radii for
the zeros given by the Guggenheimer bound [19].

Although such an initialization procedure is not themost suitable for the Ehrlichmethod and Ehrlich-typemeth-
ods as it can lead to the non-convergence of these iterative methods, it was adopted here for illustrative purposes due
to its simplicity. The initialization scheme proposed by Bini [20], which relies on a proper application of Rouché’s
theorem, is considered to be more adequate for this class of simultaneous iterative methods.

All the results presented in this section were obtained using double-precision floating-point arithmetic, with a
numerical tolerance tol = 1×10−12 and a maximum ofmaxiter = 50 iterations.
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Table 1: Test polynomials.

Polynomial Ref.

𝑃1(𝑧) = 𝑧5 − (4 − 𝑖)𝑧4 + (6 − 4𝑖)𝑧3 − (4 − 6𝑖)𝑧2 − (15 + 4𝑖)𝑧 − 15𝑖 [21]

𝑃2(𝑧) = 𝑧5 − (4 + 5𝑖)𝑧4 + (6 + 20𝑖)𝑧3 − (4 + 30𝑖)𝑧2 − (15 − 20𝑖)𝑧 + 75𝑖 [22]

𝑃2(𝑧) = 𝑧5 − (4 + 5𝑖)𝑧4 + (6 + 20𝑖)𝑧3 − (4 + 30𝑖)𝑧2 − (15 − 20𝑖)𝑧 + 75𝑖 [22]

𝑃3(𝑧) = 𝑧10 − 5𝑖𝑧9 − 6𝑧8 − 𝑧2 + 5𝑖𝑧 + 6 [23]

𝑃4(𝑧) = 𝑧15 + 𝑧14 + 1 [24]

𝑃5(𝑧) = 𝑧18 − 81𝑧2 + 18𝑧 − 1 [25]

𝑃6(𝑧) =
∏20

𝑘=1 (𝑧 −
𝑘
20) [26]

The stopping criterion adopted is defined as

𝐸(𝑘) = max
1≤𝑖≤𝑛

|𝑃(𝑧(𝑘)𝑖 )| < tol = 10−12. (18)

The number of iterations required for both methods to achieve convergence is shown in Table 2. The obtained
results show that the proposed combinedmethod consistently requires fewer iterations tomeet the adopted stopping
criterion, indicating an advantage in terms of convergence speed when compared to the Ehrlich method that served
as the basis for it, which is in agreement with the theoretical result obtained in Section 4.

Table 2: Number of iterations for convergence.

Method Eq. 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6
Ehrlich (4) 7 12 14 9 23 45
Ehrlich–Li (9) 5 8 9 6 15 29

The observed differences were tested for statistical significance using the Wilcoxon signed-rank test [27]. This
nonparametric test was designed for paired data and two related groups, making it the ideal option for comparing
two algorithms on the same test problems. A significance level of 𝛼 = 0.05was utilized. The results of the Wilcoxon
signed-rank test (W = 21, 𝑝-value = 0.03125, which is less than 𝛼) indicated that, at the 𝛼-level of 0.05, there is a
significant difference in performance between the two iterative methods on the test problems considered.

Figures 1 through 6 show the trajectories of approximations in the complex plane produced by the proposed
iterative method (9) for the six test polynomials. The convergence trajectories for each of the polynomial zeros offer
a visual representation of the behavior of the iterative method and are indicated with different colors.

The accuracy of the numerical approximations obtained is given by the maximal error between the numerical
estimates and the exact values of the polynomial zeros,

𝜖(𝑘) = max
1≤𝑖≤𝑛

|𝑧(𝑘)𝑖 − 𝜁𝑖|, (19)

where 𝑘 = 0, 1,… is the iteration index.
Tables 3 and 4 show, by way of illustration, the maximal errors for the first five and first eight iterations of the

Ehrlichmethod and the combinedEhrlich-Limethod for the polynomials𝑃1(𝑧) (whose zeros are−1,−𝑖, 1±2𝑖, and 3)
and 𝑃2(𝑧) (with zeros at−1, 1±2𝑖, 3, and 5𝑖), respectively. These results highlight the accuracy of the approximations
generated by the proposed combined method.

6 Conclusion
The use of a correction term obtained from Li’s optimal fourth-order method for nonlinear equations allows to in-
crease the convergence order of the basic simultaneous method from three to six.

The provided examples illustrate the convergence and effectiveness of the proposed Ehrlich-like iterativemethod
with Li’s correction for approximating simple polynomial zeros simultaneously.
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Figure 1: Approximation trajectories for polynom 𝑃1.
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Figure 2: Approximation trajectories for polynom 𝑃2.
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Figure 3: Approximation trajectories for polynom 𝑃3.
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Figure 4: Approximation trajectories for polynom 𝑃4.
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Figure 5: Approximation trajectories for polynom 𝑃5.
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Figure 6: Approximation trajectories for polynom 𝑃6.
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Table 3: Maximal errors for the first five iterations of both methods for the polynomial 𝑃1(𝑧).

𝑘 𝜖(𝑘)Ehrlich 𝜖(𝑘)Ehrlich–Li

1 4.397 401 184 163 037 3.231 324 252 158 995
2 2.566 760 784 910 320 1.137 845 149 029 677
3 1.323 879 254 852 072 1.063 928 273 501 572 × 10−1

4 4.598 911 197 631 101 × 10−1 2.003 374 465 431 683 × 10−8

5 4.349 057 266 580 498 × 10−2 2.220 446 049 250 313 × 10−16

Table 4: Maximal errors for the first eight iterations of both methods for the polynomial 𝑃2(𝑧).

𝑘 𝜖(𝑘)Ehrlich 𝜖(𝑘)Ehrlich–Li

1 9.956 808 368 086 701 7.631 311 833 129 192
2 7.180 073 625 458 132 4.523 528 324 103 269
3 5.302 872 723 887 493 3.455 363 738 770 611
4 3.747 212 660 831 036 6.382 886 484 617 312
5 1.167 619 561 971 287 × 101 1.572 922 295 722 127
6 4.749 679 952 242 196 4.740 868 916 357 079 × 10−2

7 2.187 307 532 257 996 3.495 706 720 081 935 × 10−10

8 2.568 938 041 932 459 2.482 534 153 247 273 × 10−16
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