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Abstract

A Multiobjective Optimization Problem (MOP) requires the optimization of several objective functions simultane-
ously, usually in conflict with each other. One of the most efficient algorithms for solving MOPs is MOEA/D (Mul-
tiobjective Evolutionary Algorithm Based on Decomposition), which decomposes a MOP into single-objective opti-
mization subproblems and solves them using information from neighboring subproblems. MOEA/D variants with
other evolutionary operators have emerged over the years, improving their efficiency in various MOPs. Recently,
the IWOA (Improved Whale Optimization Algorithm) was proposed, an optimization algorithm bioinspired by the
whale hunting method hybridized with Differential Evolution, which presented excellent results in single-objective
optimization problems. This work proposes the MOEA/D-IWOA algorithm, which associates characteristics of the
evolutionary operators of the IWOA to MOEA/D. Computational experiments were accomplished to analyze the
performance of the MOEA/D-IWOA in benchmark MOPs suites. The results were compared with those obtained
by the MOEA/D, Non-dominated Sorting Genetic Algorithm II (NSGA-II), Third Evolution Step of Generalized Dif-
ferential Evolution (GDE3), Improving the Strength Pareto Evolutionary Algorithm (SPEA2), and Indicator-Based
Evolutionary Algorithm (IBEA) algorithms in the Hypervolume and Inverted Generational Distance Plus (IGD+)
indicators. The MOEA/D-IWOA proved to be competitive, with a good performance profile, in addition to present-
ing the best results in some POMs.
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Resumo

UmProblema de OtimizaçãoMultiobjetivo (POM) requer a otimização de várias funções objetivo simultaneamente,
geralmente conflitantes entre si. Um dos algoritmosmais eficientes para resolver POMs é oMOEA/D (Multiobjective
EvolutionaryAlgorithmBased onDecomposition), que decompõe umPOMem subproblemas de otimizaçãomonobje-
tivo, isto é, comumaúnica função objetivo a serminimizada, e os resolve usando informações de subproblemas vizin-
hos. Variantes doMOEA/D comoutros operadores evolutivos surgiramao longo dos anos,melhorando sua eficiência

⭐This article is an extended version of the work presented at the Joint XXV ENMCNational Meeting on Computational Modeling, XIII ECTM
Meeting on Science and Technology of Materials, 9th MCSul South Conference on Computational Modeling and IX SEMENGO Seminar and
Workshop on Ocean Engineering, held in webinar mode, from October 19th to 21th, 2022
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em diversos POMs. Recentemente foi proposto o IWOA (Improved Whale Optimization Algorithm), um algoritmo
de otimização bioinspirado no método de caça das baleias hibridizado com Evolução Diferencial que apresentou
ótimos resultados em problemas de otimização monobjetivo. Esse trabalho propõe o algoritmo MOEA/D-IWOA,
que extende o IWOA para resolver POMs associando características dos seus operadores evolutivos ao MOEA/D.
Experimentos computacionais para analisar o desempenho do MOEA/D-IWOA em POMs benchmark foram real-
izados e os resultados comparados aos obtidos pelos algoritmos bem conhecidos da literatura, a saber, MOEA/D,
Non-dominated Sorting Genetic Algorithm II (NSGA-II), Third Evolution Step of Generalized Differential Evolution
(GDE3), Improving the Strength Pareto Evolutionary Algorithm (SPEA2) e Indicator-Based Evolutionary Algorithm
(IBEA) nos indicadores Hypervolume e Inverted Generational Distance Plus (IGD+). OMOEA/D-IWOA se mostrou
competitivo, com bom perfil de desempenho, além de apresentar os melhores resultados em alguns POMs.

Palavras-chave
Otimização Multiobjetivo ∙ MOEA/D ∙ IWOA

1 Introduction
Many problems originating in real world can be modeled as a Multiobjective Optimization Problem (MOP), which
means a situation that requires minimization and/or maximization of several objective functions simultaneously,
usually conflicting with each other. This means that improving one objective can degrade another. Solving a MOP
means getting a set of solutions that present the best compromises between the objectives, known as Pareto optimal
solutions.

Multiobjective Evolutionary Algorithms (MOEAs) are among the most popular methods to solve a MOP since
a single execution can find a set of Pareto optimal solutions, and the decision maker chooses the one that attends
the preferences. Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D) [1] is one of the most
efficient MOEAs to solve a MOP. The algorithm decomposes the MOP into several single-objective subproblems
simultaneously solved using aggregation functions. Each individual from the population represents the current best
solution to one of the subproblems, and each subproblem is solved using information fromneighboring subproblems.

MOEA/D variants appeared in literature and improved their efficiency in several MOPs. A survey of the works
involvingMOEA/D presented a comprehensive view of themain components’ improvements [2]. One of the aspects
pointed out by the authors was the change in MOEA/D’s evolutionary operators.

Li and Zhang [3] proposes a newMOEA/D based on Differential Evolution (DE) [4] called MOEA/D-DE, which
outperforms the well-know Non-dominated Sorting Genetic Algorithm II (NSGA-II) [5] in MOPs with complicated
Pareto Fronts. Ke et al. [6] used Ant Colonies Optimization (ACO) and proposed the MOEA/D-ACO algorithm,
which presented better performance than MOEA/D with conventional genetics operators and local search in all
nine test instances of 0-1 multiobjective knapsack problem. Martínez and Coello [7] used Particle Swarm Optimiza-
tion (PSO) in the algorithm named multiobjective decomposition-based PSO algorithm (dMOPSO). This algorithm
outperformed the MOEA/D and another MOEA based on PSO in most of the test problems adopted by the authors.

Recently, Mirjalili and Lewis [8] proposed an optimization algorithm called WOA (Whale Optimization Algo-
rithm), inspired by the whale hunting method that generates a bubbles curtain around its prey, keeping them close
to the surface and making the final attack easier. WOA has proven to be competitive with other existing algorithms,
as can be seen in a literature review of WOA research [9]. In some cases, the WOA algorithm may show premature
convergence, whichmakes it get stuck in local optima. To overcome this limitation, Bozorgi and Yazda [10] proposes
IWOA (ImprovedWOA), where WOA is hybridized with DE, which has an excellent capacity to explore the search
space. The experimental results presented in [10] were performed on 25 single-objective optimization problems and
showed that IWOA could improve the performance of WOA in these problems.

This work proposes the MOEA/D-IWOA algorithm, which extends IWOA to MOPs using the MOEA/D struc-
ture. Numerical experiments with benchmark suites ZDT [11], DTLZ [12], andWFG [13] problems were performed.
The performance indicators Hypervolume [14] and Inverted Generational Distance Plus (IGD+) [15] were adopted
to evaluate the MOEA/D-IWOA’s performance. The obtained results were compared to the classic MOEAs from
the literature: NSGA-II, Third Evolution Step of Generalized Differential Evolution (GDE3) [16], Indicator-Based
Evolutionary Algorithm (IBEA) [17], and Improving the Strength Pareto Evolutionary Algorithm (SPEA2) [18], in
addition to the original MOEA/D itself.

The rest of the work is organized as follows: Section 2 describes the methods used in this work, while Section 3
shows the numerical experiments carried out. Discussions and an analysis of the obtained results are presented in
Section 4. Finally, Section 5 presents the conclusions.
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2 Methods

2.1 MOPs
The MOPs treated in this work with𝑚 objective functions can be written as:

min 𝐹(𝒙) = (𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑚(𝒙))
𝑠.𝑎. 𝑥𝑖 ∈ (𝑙𝑖 , 𝑢𝑖) ∀𝑖 = 1,… , 𝑛

𝒙 = (𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛
(1)

Given 𝒙,𝒚 ∈ ℝ𝑛, we say that 𝒙 ≺ 𝒚 (read as 𝒙 dominates 𝒚) if 𝑓𝑖(𝒙) ≤ 𝑓𝑖(𝒚), ∀𝑖 = 1,… , 𝑛, and there is some 𝑗
integer between 1 and 𝑛 such that 𝑓𝑗(𝒙) < 𝑓𝑗(𝒚). If 𝒙 ⊀ 𝒚 and 𝒚 ⊀ 𝒙, 𝒙 and 𝒚 are said to be non-dominated by each
other [19]. The set of Pareto optimal solutions is formed by non-dominated solutions that are not dominated by any
other.

2.2 MOEA/D
MOEA/D works by decomposing a MOP (Eq. (1)) into several single-objective optimization subproblems and op-
timizing them simultaneously. Consider 𝝀1,… ,𝝀𝑁 a set of weight vectors and 𝒛∗ = (𝑧𝑖 ,… , 𝑧𝑚) a reference point,
where 𝑧𝑖 is the best value found so far for the objective function 𝑓𝑖 . Using the Tchebycheff aggregate function, the
objective function of the 𝑗th problem can be defined as

𝑔(𝒙|𝝀𝑗 , 𝒛∗) = max{𝜆𝑗𝑖 |𝑓𝑖(𝒙) − 𝑧∗𝑖 |} (2)

in which 𝝀𝑗 = (𝜆𝑗1,… , 𝜆
𝑗
𝑚), where 𝜆𝑖 ≥ 0 with 𝑖 = 1,… , 𝑚 and

∑𝑚
𝑖=1 𝜆𝑖 = 1.

For each 𝝀𝑗 , among the other weight vectors, those closest are considered its neighborhood. This way, the neigh-
borhood of the 𝑗th subproblemwill be defined by the subproblems that have their weight vector in the neighborhood
of 𝝀𝑗 . Thus, a population is formed with the best solution found for each subproblem (Eq. (2)), which will be used
for the rest of the algorithm (reproduction and updating of solutions). A complete description of MOEA/D can be
found in [1].

2.3 IWOA
Both WOA and IWOA were initially designed to solve single-objective optimization problems. In WOA, a randomly
created candidate solutions population behaves like whales looking for food that surround their prey using a bubble
net and move in a spiral until they concentrate their prey and attack. In this way, WOA is divided into three actions
to evolve each component 𝑥𝑖 of the solution 𝒙: search (Eq. (3)), surround (Eq. (4)), and attack (Eq. (5)):

𝐷 = ||||𝐶𝑥𝑟𝑎𝑛𝑑𝑖 − 𝑥𝑖
||||

𝑥𝑖 = 𝑥𝑟𝑎𝑛𝑑𝑖 − 𝐴𝐷, (3)

where 𝑥𝑟𝑎𝑛𝑑𝑖 is the ith component of 𝒙𝑟𝑎𝑛𝑑 (a randomly chosen solution), 𝐴 = 2𝑎𝑟 − 𝑎, 𝐶 = 2𝑟, 𝑎 decreases linearly
from 2 to 0 and 𝑟 is a random number in [0, 1];

𝐷 = ||||𝐶𝑥
∗
𝑖 − 𝑥𝑖

||||
𝑥𝑖 = 𝑥∗𝑖 − 𝐴𝐷, (4)

and

𝑥𝑖 = {𝑥
∗
𝑖 − 𝐴𝐷, if 𝑝 < 0.5
𝐷′𝑒𝑏𝑙 cos(2𝜋𝑙) + 𝑥∗𝑖 , if 𝑝 ≥ 0.5

𝐷′ = ||||𝑥
∗
𝑖 − 𝑥𝑖

|||| ,
(5)

where 𝑥∗𝑖 is the ith component of 𝒙
∗ (the best solution obtained so far), 𝑏 is a constant to define the shape of the

logarithmic spiral, 𝑙 is a random number in [−1, 1], and 𝑝 is a random number between [0,1].
In the search action, WOA updates the position of each whale according to a randomly chosen whale 𝒙𝑟𝑎𝑛𝑑

(Eq. (3)). In the surround action, WOA updates the position of each whale according to the best-positioned whale
𝒙∗ (Eq. (4)), that is, the one that represents the best objective function value obtained so far. Finally, the whales
swim in attacking, decreasing encirclement and spiraling simultaneously (Eq. (5)). There is a 50% probability that
the WOA will update each whale’s position by surround or attack actions, representing the refinement of the best
solution obtained so far, known as exploitation phase.
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In IWOA,WOA is hybridized with DE, which has good search space exploration capability. This way, it combines
this feature of DE with the exploitation phase of WOA, providing promising solutions. IWOA uses the following DE
mutation: for each 𝒙 ∈ ℝ𝑛 of the𝑁 candidate solutions, two solutions 𝒙𝑟1 and 𝒙𝑟2 ∈ ℝ𝑛 are randomly selected from
the population, different from each other and 𝒙. The following formula calculates 𝒗 ∈ ℝ𝑛 [4]:

𝒗 = 𝒙∗ + 𝐹(𝒙𝑟1 − 𝒙𝑟2), (6)

where 𝐹 ∈ ℝ is a perturbation rate. The vector 𝒖 is found mixing 𝒙 and 𝒗. For each component, a random number
𝑟𝑎𝑛𝑑𝑖 in [0, 1] is chosen. If 𝑟𝑎𝑛𝑑𝑖 ≤ 𝐶𝑅 (user-defined crossover rate), then 𝑢𝑖 = 𝑣𝑖 , otherwise 𝑢𝑖 = 𝑥𝑖 . More details
about the IWOA can be found at [10].

2.4 The Proposed MOEA/D-IWOA
TheMOEA/D-IWOAalgorithm, which extends IWOA toMOPs using theMOEA/D structure, adopted the swarm in-
telligencemechanism of IWOA as evolutionary operators forMOEA/D. They drive the algorithm to generate promis-
ing offspring once it is an effective way to create new solutions for a MOP. Algorithm 1 shows the pseudo-code for
MOEA/D-IWOA.

generate 𝝀1,… ,𝝀𝑁 ∶ weight vectors distributed uniformly
for 𝑖 ≠ 𝑗 ≤ 𝑁 do ⊳ 𝑁 : population size

calculate Euclidean distance between 𝝀𝑖 and 𝝀𝑗;
end for
for 𝑖 ≤ 𝑁 do

set neighborhood of 𝑖 as 𝐵(𝑖) = {𝑖1,… , 𝑖𝑇}, where 𝝀
𝑖1 ,… ,𝝀𝑖𝑇 are the 𝑇 closest weight vectors to 𝝀𝑖

end for
generate initial population {𝒙1,… ,𝒙𝑁} randomly;
calculate objective function 𝐹 (𝒙𝑖) = (𝑓1 (𝒙𝑖) ,… , 𝑓𝑚 (𝒙𝑖))

𝑇 of each individual 𝒙𝑖 in the initial population;
initialize 𝒛 = (𝑧1,… , 𝑧𝑚)

𝑇 , where 𝑧𝑖 = min {𝑓𝑖 (𝒙1) ,… , 𝑓𝑖 (𝒙𝑁)}
for 1 ≤ 𝑔 ≤ 𝐺 do ⊳ 𝑔: current generation and 𝐺: maximum generation

for 𝑖 ≤ 𝑁 do
select two index 𝑘 and 𝑙 from 𝐵(𝑖) and calculate 𝒗 using Eq. (6).
for 1 ≤ 𝑗 ≤ 𝑛 do ⊳ 𝑛 : dimention of 𝒙𝑖

if 𝑟𝑎𝑛𝑑 ≤ 1 − 𝑔∕𝐺 then ⊳ 𝑟𝑎𝑛𝑑: a random number in [0, 1]
if 𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅 then

𝑶𝒇𝒇𝒔𝒑𝒓𝒊𝒏𝒈(𝑗) = 𝒗(𝑗)
else

𝑶𝒇𝒇𝒔𝒑𝒓𝒊𝒏𝒈(𝑗) = 𝒙𝑖(𝑗), where 𝒙𝑖 is the whale position after using Eq. (3).
end if

else
if 𝑟𝑎𝑛𝑑 ≤ 0.5 then

𝑶𝒇𝒇𝒔𝒑𝒓𝒊𝒏𝒈(𝑗) = 𝒙𝑖(𝑗), where 𝒙𝑖 is the whale position after using Eq. (4).
else

𝑶𝒇𝒇𝒔𝒑𝒓𝒊𝒏𝒈(𝑗) = 𝒙𝑖(𝑗), where 𝒙𝑖 is the whale position after using Eq. (5).
end if

end if
end for
update 𝒛
calculates Tchebycheff aggregate function (Eq. (2)) for 𝑶𝒇𝒇𝒔𝒑𝒓𝒊𝒏𝒈 and call it by 𝑔1
for 𝑘 ∈ 𝐵(𝑖) do

calculates Tchebycheff aggregate function for 𝒙𝑘 and call it by 𝑔2
if 𝑔1 < 𝑔2 then

𝒙𝑘 = 𝑶𝒇𝒇𝒔𝒑𝒓𝒊𝒏𝒈
end if

end for
end for

end for

Algorithm 1: MOEA/D-IWOA.
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3 Numerical Experiments

3.1 Performance Indicators
The performance indicators Hypervolume and Inverted Generational Distance Plus (IGD+) are adopted here as
mappings that assign scores to Pareto front approximations.

Given a point set 𝑋 ⊂ ℝ𝑑 and a reference point 𝒓 ∈ ℝ𝑑, the Hypervolume indicator is

𝐻(𝑋) = 𝜆
⎛
⎜
⎝

⋃

𝒑∈𝑋
[𝒑, 𝒓]

⎞
⎟
⎠

(7)

where [𝒑, 𝒓] =
{
𝒒 ∈ ℝ𝑑 ∣ 𝒑 ≺ 𝒒 ∧ 𝒒 ≺ 𝒓

}
and 𝜆(⋅) denotes the Lebesgue measure. Hypervolume was introduced as

a tool for analyzing multiobjective optimization algorithms by [14]. It assesses the optimization process results by
taking into account multiple aspects, such as the proximity of the solutions to the Pareto front, diversity, and spread
(Fig. 1).

Figure 1: Illustration of a two objective example with Hypervolume indicator (area shown in grey), where 𝒑(1),𝒑(2),
and 𝒑(3) form the set 𝑋 of obtained Pareto optimal solutions and 𝒓 a reference point - Extract from [20].

Denoting the cardinality of a set 𝑍 by |𝑍|, the Inverted Generational Distance (IGD) indicator is defined as

IGD(𝐴) = 1
|𝑍|

⎛
⎜
⎝

|𝑍|∑

𝑗=1
𝑑𝑝𝑗
⎞
⎟
⎠

1∕𝑝

(8)

where 𝑑𝑗 is the Euclidean distance from 𝒛𝑗 to its nearest objective vector in 𝐴. The IGD Plus (IGD+) is the IGD
indicator with the follow modified distance calculation:

𝑑+(𝒛,𝒂) =
√
𝑑+21 +⋯ + 𝑑+2𝑚 =

√
(max {𝑎1 − 𝑧𝑖 , 0})

2 +⋯ + (max {𝑎𝑚 − 𝑧𝑚, 0})
2. (9)

Note that the higher theHypervolume value, better theMOEAperformance. In IGD+, the lower the value, better
the performance of the MOEA.

Performance profiles [21] serve as a way to visualize and comprehend the outcomes of experiments. Let 𝑡𝑝,𝑠 be
the performance indicator obtained by the algorithm 𝑠 in problem 𝑝. The performance ratio can be defined as

𝑟𝑝,𝑠 =
𝑡𝑝,𝑠

min
{
𝑡𝑝,𝑠 ∶ 𝑠 ∈ 𝑆

} . (10)

The performance profile 𝜌𝑠(𝜏) of and algorithm 𝑠 can be defined as

𝜌𝑠(𝜏) =
1
𝑛𝑝

||||
{
𝑝 ∈ 𝑃 ∶ 𝑟𝑝,𝑠 ≤ 𝜏

}|||| . (11)

That is, 𝜌𝑠(𝜏) is the probability that the performance ratio 𝑟𝑝,𝑠 of algorithm 𝑠 ∈ 𝑆 is within a factor 𝜏 ≥ 1 of the
best possible ratio. The area under the performance profile curve serves as a overall performance indicator for 𝑠 in
the set of problems 𝑃. The greater the area, the more efficient the algorithm is.
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3.2 Results
The benchmark problem suites adopted in the numerical experiments of this work were ZDT, DTLZ, and WFG,
which Pareto fronts obtained were evaluated according to performance indicators Hypervolume and IGD+. In ad-
dition to ZDT problems, which have two objective functions, the DTLZ and WFG problems considered were set
with the usual configurations, considering three objective functions. The results obtained by the MOEA/D-IWOA
were compared to those of the classic MOEAs from the literature: NSGA-II, GDE3, IBEA, SPEA2, and the original
MOEA/D itself. All MOEAs were run 20 times with a population of 100 candidate solutions and 20000 evaluations
of each objective function. In addition, the Wilcoxon rank sum non-parametric statistical hypothesis test was per-
formed to verify significant differences between the samples. The true Pareto front of each problem for calculating
the performance indicator is determined by selecting all non-dominated solutions from all algorithms’ combined
sets of results.

To improve the distribution of solutions obtained on the MOP’s Pareto Front, the MOEA/D-IWOA considered
the neighborhood size of each subproblem as 2, up to half of the objective function evaluations. From then on, it
considered ten until the end of the algorithm execution. The MOEA/D-IWOA employed the DE and WOA param-
eters of 𝐹 = 0.5, 𝐶𝑅 = 0.9, and 𝑏 = 1 (Eq. 5) in its computational experiments. On the other hand, the remaining
MOEAs utilized the parameters as specified in their respective original papers. Tables 1, 2, and 3 show the means
and standard deviations of the results obtained by the analyzed algorithms. The best results are in bold. Figures 3
and 2 show the performance profile curves, and Table 4 presents the areas under them.

Table 1: Results obtained considering different strategies for the ZDT functions. STD is standard deviation.

MOEA/D-IWOA MOEA/D NSGA-II GDE3 IBEA SPEA2
ZDT-1

Hypervolume Mean 0.7201 0.7161 0.7183 0.6077 0.7200 0.7186
STD 0.0001 0.0047 0.0004 0.0241 0.0001 0.0004

IGD+ Mean 0.0025 0.0048 0.0039 0.0834 0.0027 0.0037
STD 0.0000 0.0027 0.0003 0.0182 0.0000 0.0003

ZDT-2
Hypervolume Mean 0.4444 0.4077 0.4426 0.2533 0.4439 0.4429

STD 0.0002 0.1084 0.0004 0.0373 0.0001 0.0005
IGD+ Mean 0.0026 0.0360 0.0038 0.1455 0.0032 0.0035

STD 0.0001 0.1017 0.0002 0.0329 0.0001 0.0003
ZDT-3

Hypervolume Mean 0.5992 0.6296 0.6034 0.5569 0.5970 0.5989
STD 0.0002 0.0456 0.0198 0.0201 0.0051 0.0002

IGD+ Mean 0.0021 0.0113 0.0034 0.0815 0.0028 0.0024
STD 0.0000 0.0111 0.0049 0.0215 0.0031 0.0002

ZDT-4
Hypervolume Mean 0.3352 0.6919 0.7127 0.0000 0.6373 0.7123

STD 0.2035 0.0118 0.0039 0.0000 0.0501 0.0042
IGD+ Mean 0.3558 0.0216 0.0074 2.2579 0.0725 0.0080

STD 0.2117 0.0088 0.0025 0.7277 0.0495 0.0031
ZDT-6

Hypervolume Mean 0.3889 0.3856 0.3853 0.3874 0.3873 0.3842
STD 0.0000 0.0083 0.0014 0.0014 0.0004 0.0029

IGD+ Mean 0.0020 0.0039 0.0045 0.0032 0.0031 0.0052
STD 0.0000 0.0050 0.0010 0.0010 0.0002 0.0021
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Table 2: Results obtained considering different strategies for the DTLZ functions. STD is standard deviation.

MOEA/D-IWOA MOEA/D NSGA-II GDE3 IBEA SPEA2
DTLZ-1

Hypervolume Mean 0.8050 0.8017 0.7428 0.3722 0.4888 0.8128
STD 0.0124 0.0045 0.2039 0.3464 0.0666 0.0958

IGD+ Mean 0.0254 0.0224 0.0522 0.3595 0.1175 0.0242
STD 0.0053 0.0012 0.0859 0.4680 0.0251 0.0282

DTLZ-2
Hypervolume Mean 0.5354 0.5271 0.5311 0.5331 0.5575 0.5550

STD 0.0017 0.0010 0.0028 0.0048 0.0012 0.0011
IGD+ Mean 0.0335 0.0363 0.0346 0.0331 0.0262 0.0260

STD 0.0006 0.0004 0.0012 0.0017 0.0008 0.0006
DTLZ-3

Hypervolume Mean 0.1298 0.1371 0.0462 0.0000 0.0371 0.0550
STD 0.2121 0.2058 0.1223 0.0000 0.0597 0.1374

IGD+ Mean 1.1503 0.9938 1.7103 11.3662 0.7559 1.4272
STD 1.0069 0.8114 1.1401 4.2699 0.4988 0.8496

DTLZ-4
Hypervolume Mean 0.4559 0.2130 0.5327 0.5295 0.5578 0.4917

STD 0.1249 0.1442 0.0043 0.0108 0.0010 0.0971
IGD+ Mean 0.1152 0.3783 0.0341 0.0350 0.0260 0.0867

STD 0.1312 0.1655 0.0015 0.0045 0.0007 0.0935
DTLZ-5

Hypervolume Mean 0.1955 0.1948 0.1990 0.1997 0.1985 0.1994
STD 0.0002 0.0000 0.0002 0.0001 0.0004 0.0002

IGD+ Mean 0.0053 0.0057 0.0029 0.0023 0.0031 0.0023
STD 0.0001 0.0000 0.0002 0.0001 0.0002 0.0001

DTLZ-6
Hypervolume Mean 0.1958 0.1948 0.1994 0.2003 0.1962 0.2001

STD 0.0004 0.0000 0.0002 0.0000 0.0011 0.0000
IGD+ Mean 0.0052 0.0057 0.0024 0.0018 0.0050 0.0018

STD 0.0003 0.0000 0.0001 0.0000 0.0007 0.0000
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Table 3: Results obtained considering different strategies for the WFG functions. STD is standard deviation.

MOEA/D-IWOA MOEA/D NSGA-II GDE3 IBEA SPEA2
WFG-1

Hypervolume Mean 0.7656 0.8960 0.8839 0.2017 0.9305 0.8754
STD 0.0277 0.0343 0.0243 0.0602 0.0064 0.0286

IGD+ Mean 0.3729 0.1195 0.1917 1.4498 0.0700 0.1898
STD 0.0541 0.0502 0.0403 0.1574 0.0134 0.0493

WFG-2
Hypervolume Mean 0.9061 0.8947 0.9149 0.8928 0.9284 0.9248

STD 0.0042 0.0062 0.0033 0.0090 0.0015 0.0027
IGD+ Mean 0.0658 0.0787 0.1149 0.1387 0.0342 0.0790

STD 0.0029 0.0034 0.0128 0.0187 0.0013 0.0062
WFG-3

Hypervolume Mean 0.3953 0.4020 0.3918 0.3473 0.4084 0.3776
STD 0.0022 0.0030 0.0046 0.0116 0.0031 0.0061

IGD+ Mean 0.0602 0.0449 0.0810 0.1817 0.0269 0.0986
STD 0.0055 0.0071 0.0158 0.0294 0.0046 0.0131

WFG-4
Hypervolume Mean 0.5283 0.5247 0.5141 0.5082 0.5533 0.5334

STD 0.0017 0.0045 0.0059 0.0060 0.0017 0.0049
IGD+ Mean 0.1187 0.1227 0.1424 0.1475 0.0947 0.1170

STD 0.0025 0.0036 0.0079 0.0071 0.0025 0.0068
WFG-5

Hypervolume Mean 0.4822 0.4752 0.4873 0.4884 0.5139 0.5074
STD 0.0029 0.0031 0.0044 0.0026 0.0035 0.0051

IGD+ Mean 0.1701 0.1795 0.1699 0.1657 0.1450 0.1488
STD 0.0023 0.0020 0.0033 0.0035 0.0021 0.0039

WFG-6
Hypervolume Mean 0.4900 0.4596 0.4646 0.4728 0.4996 0.4878

STD 0.0131 0.0164 0.0124 0.0140 0.0169 0.0154
IGD+ Mean 0.1763 0.2110 0.2155 0.2053 0.1695 0.1837

STD 0.0194 0.0239 0.0192 0.0219 0.0244 0.0234
WFG-7

Hypervolume Mean 0.5266 0.5246 0.5181 0.4701 0.5561 0.5403
STD 0.0027 0.0030 0.0044 0.0138 0.0009 0.0026

IGD+ Mean 0.1258 0.1232 0.1370 0.2144 0.0912 0.1083
STD 0.0037 0.0019 0.0062 0.0231 0.0015 0.0037

WFG-8
Hypervolume Mean 0.4443 0.4469 0.4360 0.4286 0.4788 0.4523

STD 0.0024 0.0023 0.0043 0.0057 0.0017 0.0028
IGD+ Mean 0.2474 0.2378 0.2717 0.2830 0.2088 0.2468

STD 0.0032 0.0027 0.0080 0.0085 0.0025 0.0046
WFG-9

Hypervolume Mean 0.4781 0.4777 0.4930 0.4389 0.5326 0.5024
STD 0.0347 0.0340 0.0074 0.0429 0.0028 0.0250

IGD+ Mean 0.1781 0.1801 0.1609 0.2488 0.1103 0.1470
STD 0.0554 0.0540 0.0107 0.0703 0.0026 0.0408
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(a) (b)

(c) (d)

Figure 2: Performance profile curves of ZDT suite problems: (a) and (b) refer to all the ZDT problems, and (c) and
(d) exclude the ZDT-4 problem.

Table 4: Areas under Performance Profiles Curves.

MOEA/D-IWOA MOEA/D NSGA-II GDE3 IBEA SPEA2
ZDT

Hypervolume 0.9634 0.9976 1.0000 0.7664 0.9961 0.9997
IGD+ 0.9707 0.9879 0.9998 0.7186 0.9952 1.0000

ZDT without ZDT-4 problem

Hypervolume 1.0000 0.9820 0.9971 0.6552 0.9969 0.9939
IGD+ 1.0000 0.9131 0.9869 0.4281 0.9946 0.9883

DTLZ
Hypervolume 1.0000 0.9820 0.9764 0.8205 0.9603 0.9834

IGD+ 0.9510 0.8321 0.9939 0.6965 0.9646 1.0000
WFG

Hypervolume 0.9799 0.9827 0.9825 0.8604 1.0000 0.9886
IGD+ 0.9541 0.9742 0.9531 0.8174 1.0000 0.9620

Total of ones
3 0 1 0 2 2
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(a) (b)

(c) (d)

Figure 3: Performance profile curves: (a) and (b) refer to DTLZ problems, and (c) and (d) refer to WFG problems.

4 Results Analysis and Discussion
In problems ZDT-1, ZDT-2 and ZDT-6, the MOEA/D-IWOA showed better performance compared to other MOEAs
both in Hypervolume and in IGD+, all with statistically significant differences according toWilcoxon’s non-parame-
tric test (𝑝-value ≤ 0.05). It also obtained the best performance in the ZDT-3 problem considering only the IGD+
results. Still in ZDT-3, despite presenting a lower Hypervolume mean than MOEA/D and NSGA-II, there were no
statistically significant differences according to Wilcoxon’s non-parametric test (𝑝-value > 0.05). In the ZDT-4 prob-
lem, the MOEA/D-IWOA failed to perform well in both indicators, presenting a better result only when compared
to GDE3. Due to this, the area under the performance profile curves was not the highest (Fig. 2(a-b) and Tab. 4).
However, excluding ZDT-4 problem, MOEA/D-IWOA shows the largest area under the performance profile curves,
indicating that it gets the best overall performance in the ZDT suite (Fig. 2(c-d) and Tab. 4). The ZDT4 problem
involves many local optimal Pareto frontiers. This means that MOEA/D-IWOA did not perform well in this kind of
problem. However, it outperforms the other algorithms in the rest of the suite.

In DTLZ problems, MOEA/D-IWOA stood out mainly in DTLZ-1 and DTLZ-3, in which it obtained the second
best Hypervolume. In addition, in none of the DTLZ problems, there statistically significant differences according
to Wilcoxon’s non-parametric test concerning the best MOEA in the Hypervolume and IGD+. Even though it was
not the best Hypervolume in any DTLZ problem, MOEA/D-IWOA had the best Hypervolume overall performance
(Tab. 4), as it was close to the best in all problems (Tab. 2).

In WFG problems, the main highlight of MOEA/D-IWOA was in problemWFG-6, where it obtained the second
best Hypervolume and IGD+. Although MOEA/D-IWOA did not have an overall outstanding performance in WFG
suite, none of the WGF problems there were statistically significant differences according to the Wilcoxon’s non-
parametric test in relation to the best MOEA in the Hypervolume and IGD+.

Table 4 shows that theMOEA/D-IWOA algorithm demonstrated competitiveness in general, as it had the largest
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area under the curve in three of the analyzed groups. IBEA and SPEA2 followed close behind, with the biggest area
under the curve in two groups, while NSGA-II held the top spot in only one group. The original MOEA/D did not
perform better in any of the evaluated groups. This way, using IWOA in evolutionary operators within MOEA/D
proved to be a promising variant capable of improving its performance in several MOPs.

Due to its mathematical formulation, the Tchebycheff aggregate function is widely used in MOEA/D and can
result in evenly distributed weight vectors across the Pareto front, leading to positive outcomes in various problem
scenarios. Nevertheless, it’s important to consider other aggregation functions to achieve even better results [22].

5 Conclusions
In this work, the MOEA/D-IWOA algorithm, an IWOA extension for MOPs using the MOEA/D framework, is pro-
posed. The proposedMOEA/D-IWOA algorithmwas used to solve benchmarkMOPs from the ZDT, DTLZ andWFG
suites. The performance of the MOEA/D-IWOA was compared with that of the MOEAs NSGA-II, GDE3, SPEA2,
MOEA/D and IBEA in the indicators Hypervolume and IGD+. In general, the results showed that the MOEA/D-
IWOA had the best performance in some problems, many with statistically significant differences. Even when it
didn’t get the best result, it was competitive with the best, often without statistically significant differences between
its results. Furthermore, MOEA/D-IWOA was superior to the original MOEA/D algorithm, showing that using
IWOA in evolutionary operators within MOEA/D is a promising variant capable of improving its performance. Fu-
ture works may include MOEA/D-IWOA analysis in MOPs with more than three objective functions, called Many-
objective optimization problems, in addition to coupled IWOA in other MOEAs, IBEA for example, to evaluate if its
performance inWFGproblems can be improved. In addition, to evaluate engineering systemdesignwith constraints.
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