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Abstract 

 

Beams resting on elastic foundations are widely used in engineering projects, so analyzing their displacement fields 

is very important. The present work presents solutions for the deflection of isotropic beams resting on elastic 

foundations of the Winkler-Pasternak type. The proposed formulation is based on the Euler-Bernoulli beam theory, 

and the governing equations and the boundary conditions are derived from the principle of virtual work. The direct 

integration method can decouple the deflections from axial displacement and twists. The system of deflection 

equations decouples into two principal directions and is transformed into a first-order system. The solution of this 

system of equations is obtained through the method of variation of parameters. When analyzing the results of the 

maximal deflections, it is observed that increasing values of the foundation stiffness provide decreasing deflections 

and that the influence of the Pasternak parameter is more significant on the results than that of the Winkler 

parameter. 
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Resumo 

 

Vigas apoiadas em fundações elásticas são amplamente utilizadas em projetos de engenharia, logo analisar os 

deslocamentos sofridos por elas é muito importante. Por isso, o presente trabalho apresenta soluções para a deflexão 

de vigas isotrópicas sobre fundações elásticas do tipo Winkler-Pasternak. A formulação proposta é baseada na teoria 

de vigas de Euler-Bernoulli e as equações que descrevem o problema e as condições de contorno são derivadas do 

princípio do trabalho virtual. O método de integração direta é utilizado para desacoplar as deflexões do 

deslocamento axial e da torção. O sistema de equações desacopladas de deflexão em duas direções principais é 

transformado em um sistema de primeira ordem. A solução deste sistema de equações é obtida através do método 

de variação de parâmetros. Ao analisar os resultados das deflexões máximas, observa-se que com o aumento dos 
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valores de rigidez de fundação, os deslocamentos de flexão diminuem e que o parâmetro de rigidez de Pasternak 

tem maior influência aos resultados que a rigidez de Winkler. 

 

Palavras-Chave 

 

Teoria de Euler-Bernoulli    Vigas Isotrópicas    Fundações Winkler-Pasternak  

 

1 Introduction 
 

As there is transmission of efforts from the infrastructure to the superstructure, it is important to analyze the effects 

of the soil in the structural analysis. For this, there are physical models that try to describe the behavior of the base 

when subjected to a load, such as the models proposed by Winkler and Pasternak in 1867 and 1954, respectively [1]. 

According to Doeva, Masjedi and Weaver [2], the structural analysis of beams supported on elastic foundations 

attracts a lot of attention, and therefore, there are several analytical and numerical solutions to the problem in the 

literature. However, the vast majority of them are based on complex series techniques and are limited to specific 

boundary types or loading conditions. 

In order to get around these problems, Doeva, Masjedi and Weaver [2] proposed a methodology for building 

analytical solutions for bending composite beams using the Euler-Bernoulli theory based on two-parameter elastic 

foundations. For this purpose, variational principles and fundamental matrices were used. To reduce the fourth-

order terms that appear in the equations describing bending to first order, a grouping is performed between the 

transverse displacement fields in the thickness and width direction, and a second grouping composed of axial 

displacement and rotation. Thus, it is possible to build the fundamental matrices to obtain the analytical solution 

of the method of variation of parameters. The results were validated using the Chebyshev collocation method. 

In [2], displacement results were presented for simply supported and clamped isotropic beams under uniformly 

distributed load on a Winkler-Pasternak elastic foundation, but the analytical solutions were not presented.  

Thus, this work seeks to present the analytical solutions for the structural behavior when considering or not the 

elastic foundation through the methodology proposed by Doeva, Masjedi and Weaver [2]. Furthermore, the 

displacements for a cantilevered Euler-Bernoulli beam under point load at the free end and on a Winkler-Pasternak 

elastic foundation from this methodology are presented for the first time. 

 

2 Mathematical Modeling 
 

Consider a beam on an elastic foundation characterized by two parameters, namely, Winkler stiffness modulus  𝑘  

and Pasternak shear modulus 𝑘 . The beam has length 𝑙, width 𝑏 and height ℎ, whose origin of the coordinate 

system is located on the axis of the beam, as shown in Fig. 1. Thus, (𝑥, 𝑦, 𝑧) ∈ [0, 𝑙] × − , × − , . 

 

 
 

Figure 1: Beam on a two-parameter elastic base. 

 

2.1 Winkler-type and Pasternak-type foundation models 
 

Beams can be studied as structures that are in contact with a continuous medium. In order to simplify the analyses, 

this medium can be considered as an elastic base. Two of the models proposed for this are the Winkler-type 

foundation and the Pasternak-type foundation proposed in 1867 and 1954, respectively. Each model describes the 
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behavior of the soil when subjected to loading and deduces the mathematical formulation derived from the physical 

model [3]. 

According to Selvadurai [1], the Winkler-type foundation model assumes that the stress applied at a point of the 

foundation is proportional to the transverse displacement suffered by this point and that the particles that make up 

the base behave like linear springs disconnected from each other. In order to combat the discontinuity at the 

interface between the loaded and unloaded regions of the Winkler model, the Pasternak foundation model proposes 

the interaction of the loaded region and its surroundings through the shear effect on the elastic elements. 

 

2.2 Kinematic model for Euler-Bernoulli beam 
 

One of the theories that describe displacements in beams is the Euler-Bernoulli model, which is the simplest and 

most used. The Euler-Bernoulli theory, when adopting a displacement field, hypothesizes that a straight line normal 

to the neutral surface remains straight and normal to it after the part is deformed [4]. 

According to Luo [5], the displacement of any point in the cross-section consists of the displacement of the rigid 

body on the reference line and the rotation of the cross-section of the beam. Therefore, it is possible to describe the 

components of the displacement field as 

 

 𝑈 (𝑥, 𝑦, 𝑧) = 𝑢(𝑥) + 𝑧𝜃 (𝑥) − 𝑦𝜃 (𝑥) , (1) 

 𝑈 (𝑥, 𝑦, 𝑧) = 𝑣(𝑥) − 𝑧𝜑(𝑥) , (2) 

 𝑈 (𝑥, 𝑦, 𝑧) = 𝑤(𝑥) + 𝑦𝜑(𝑥) , (3) 

 

where 𝑈 (𝑥, 𝑦, 𝑧) , 𝑈 (𝑥, 𝑦, 𝑧)  and 𝑈 (𝑥, 𝑦, 𝑧)  are the components of the displacement vector; 𝑢(𝑥)  is the axial 

displacement of the beam in the 𝑥 direction; 𝑣(𝑥) and 𝑤(𝑥) are the transverse displacements of the beam in the 𝑦 

and 𝑧 directions, respectively; and 𝜑(𝑥), 𝜃 (𝑥) and 𝜃 (𝑥) are the rotations of the beam cross-section around 𝑥, 𝑦 and 

𝑧, respectively. The rotations and displacements are related according to 

 

 𝜃 = −𝑤′ , 𝜃 = 𝑣′ . (4) 

 

The number of lines superscribed to the displacements represents the order of the derivative with respect to 𝑥. 

According to Luo [5], it is possible to adopt the relation between deformation and displacement as linear when 

assuming that the deformations are small. Thus, the components of the beam strain field can be expressed as 

 

 𝜀 =
∂𝑈

∂𝑥
= 𝑢 + 𝑧𝜃 − 𝑦𝜃 , (5) 

 
𝛾 =

∂𝑈

∂𝑦
+

∂𝑈

∂𝑥
  =  (𝑣 − 𝜃 ) − 𝑧𝜑′ =  −𝑧𝜑′, 

(6) 

 
𝛾 =

∂𝑈

∂𝑧
+

∂𝑈

∂𝑥
 =  (𝑤 + 𝜃 ) + 𝑦𝜑  =  +𝑦𝜑 , (7) 

 

where 𝜀  is the strain in 𝑥 and 𝛾  and 𝛾  are strains in the 𝑥𝑦 and 𝑥𝑧 planes, respectively. 

 

2.3 Internal work, external work and elastic work 
 

The principle of virtual work for a beam on an elastic foundation is composed of the internal work, the external 

work, and the work caused by the elastic foundation [2]. Therefore, in this case, the principle of virtual work is  

 

 𝛿𝑊 + 𝛿𝑊 − 𝛿𝑊 𝑑𝑥 = 0, (8) 

 

where 𝛿𝑊 , 𝛿𝑊  and 𝛿𝑊  are the variations of the internal, elastic foundation, and external works, 

respectively. 

The stress on the beam under study is caused by bending in two main directions (𝑦 and 𝑧), by axial displacement, 

and by torsion. Therefore, according to Doeva, Masjedi and Weaver [2], the internal forces and moments in the 

beam can be calculated as 
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 𝐹 = 𝜎 𝑑𝐴
 

, 
(9) 

 
𝑀 = (𝑦𝜎 − 𝑧𝜎 )𝑑𝐴

 

, 
(10) 

 
𝑀 = 𝑧𝜎 𝑑𝐴

 

, 
(11) 

 
𝑀 = − 𝑦𝜎 𝑑𝐴

 

. 
(12) 

 

Thus, the variation of the internal work can be obtained according to Eq. (13). Vectors and matrices are 

expressed in bold for a better visualization. 

 

 𝛿𝑊 𝑑𝑥 =  𝛿𝝐 𝑵 𝑑𝑥 =  𝛿𝝐 𝑺𝝐 𝑑𝑥, (13) 

 

where 𝝐 is the strain vector, 𝑵 is the vector of internal forces and moments, and 𝑺 is the stiffness matrix, such that 

 

 𝝐 =

⎣
⎢
⎢
⎢
⎡

𝜀

𝑘

𝑘

𝑘 ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡

𝑢

𝜑

−𝑤

𝑣 ⎦
⎥
⎥
⎤

, 𝑵 =

⎣
⎢
⎢
⎢
⎡

𝐹

𝑀

𝑀

𝑀 ⎦
⎥
⎥
⎥
⎤

, 𝑺 =

⎣
⎢
⎢
⎢
⎡

𝑆 𝑆

𝑆 𝑆

𝑆 𝑆

𝑆 𝑆

𝑆 𝑆

𝑆 𝑆

𝑆 𝑆

𝑆 𝑆 ⎦
⎥
⎥
⎥
⎤

, (14) 

 

where 𝑆  is the extensional stiffness, 𝑆  is the torsional stiffness, 𝑆  is the out-of-plane bending stiffness, 𝑆  

is the in-plane bending stiffness, 𝑆  is the coupling between axial displacement and torsion, 𝑆  is the coupling 

between out-of-plane bending and axial displacement, 𝑆  is the coupling between in-plane bending and axial 

displacement, 𝑆  is the coupling between out-of-plane bending and torsion, 𝑆  is the coupling between bending 

and in-plane torsion and 𝑆  is the coupling between out-of-plane and in-plane bending. 

The variation of the external work 𝛿𝑊  is calculated as 

 

 𝛿𝑊 𝑑𝑥 = 𝛿𝑼 𝑸
0

𝑑𝑥
0

, (15) 

 

where 𝑼  is the vector of generalized displacements (translations and rotations), and 𝑸 is the vector of distributed 

loads, given by 

 

 𝑼 =

⎣
⎢
⎢
⎢
⎡

𝑢(𝑥)

𝜑(𝑥)

𝑤(𝑥)

𝑣(𝑥)⎦
⎥
⎥
⎥
⎤

, 𝑸 =

⎣
⎢
⎢
⎢
⎡

𝑞 (𝑥)

𝑞 (𝑥)

𝑞 (𝑥)

𝑞 (𝑥)⎦
⎥
⎥
⎥
⎤

, (16) 

 

where 𝑞 (𝑥), 𝑞 (𝑥) and 𝑞 (𝑥) are the distributed loads and 𝑞 (𝑥) corresponds to the distributed torque. 

Finally, according to Robinson and Adali [6], the variation of the work due to the Winkler-Pasternak elastic 

foundation is given by 

 

 𝛿𝑊 𝑑𝑥 =  (𝛿𝑤 𝑘  𝑤 +  𝛿𝑤′ 𝑘  𝑤′) 𝑑𝑥. (17) 

 

2.4 System of equations that describe the problem 
 

The system of ordinary differential equations that represents the problem can be built using the variational 

principles to obtain Euler's Equation [7]. Then, from the fundamental lemma of the variational calculus to obtain 

the governing equations, that is, substituting Eqs. (13), (15), and (17) into Eq. (8), integrating by parts and collecting 

the coefficients of 𝛿𝑢, 𝛿𝜑, 𝛿𝑤, 𝛿𝑣, 𝛿𝑤′ and 𝛿𝑣′, the system of governing equations can be obtained as  
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 −𝑆 𝑢 − 𝑆 𝜑 + 𝑆 𝑤 − 𝑆 𝑣 − 𝑞 = 0, (18) 

 −𝑆 𝑢 − 𝑆 𝜑 + 𝑆 𝑤 − 𝑆 𝑣 − 𝑞 = 0, (19) 

 −𝑆 𝑢 − 𝑆 𝜑 + 𝑆  𝑤( ) − 𝑆 𝑣( ) + 𝑘 𝑤 − 𝑘 𝑤 − 𝑞 = 0, (20) 

 𝑆 𝑢 + 𝑆 𝜑 − 𝑆 𝑤( ) + 𝑆  𝑣( ) − 𝑞 = 0, (21) 

  

with the boundary conditions 

 

 𝑢 = 0      or 𝑆  𝑢 + 𝑆  𝜑 − 𝑆  𝑤 + 𝑆  𝑣 = 𝑓  , (22) 

 𝜑 = 0     or 𝑆  𝑢 + 𝑆  𝜑 − 𝑆  𝑤 + 𝑆  𝑣 = 𝑚  , (23) 

 𝑤′ = 0    or −𝑆  𝑢 − 𝑆  𝜑 + 𝑆  𝑤 − 𝑆  𝑣 = −𝑚  (24) 

 𝑣′ = 0     or 𝑆  𝑢 + 𝑆  𝜑 − 𝑆  𝑤 + 𝑆  𝑣 = 𝑚  , (25) 

 w = 0     or 𝑆  𝑢′ + 𝑆  𝜑 − 𝑆  𝑤 + 𝑆  𝑣 + 𝑘 𝑤 = 𝑓  , (26) 

 v = 0      or −𝑆  𝑢 − 𝑆  𝜑 + 𝑆  𝑤 − 𝑆   𝑣 = 𝑓  , (27) 

 

where 𝑓 , 𝑓  and 𝑓  are concentrated boundary loads in the 𝑥, 𝑦 and 𝑧 directions, respectively. Also, 𝑚  is the torque 

and 𝑚  and 𝑚  are the boundary moments about the 𝑦 and 𝑧 axes, respectively. An algebraic manipulation allows 

rewriting Eqs. (18)-(27) as 

 

 −𝑨𝑼 + 𝑩𝑾 = 𝑸𝒙, (28) 

 −𝑩 𝑼 + 𝑫𝑾 ( ) + 𝑲𝒘𝑾 − 𝑲𝒑𝑾 = 𝑸𝒛, (29) 

 𝑨𝑼 − 𝑩𝑾 = 𝑭𝒙, (30) 

 −𝑩 𝑼 + 𝑫𝑾 = 𝑴𝒚, (31) 

 𝑩 𝑼 − 𝑫𝑾 + 𝑲𝒑𝑾 = 𝑭𝒛, (32) 

 

where 

 𝑼 =
𝑢

𝜑 , 𝑾 =
𝑤

𝑣
, (33) 

 
𝑸𝒙 =

𝑞

𝑞 , 𝑸𝒛 =
𝑞

𝑞 , 𝑭𝒙 =
𝑓

𝑚
, 𝑭𝒛 =

𝑓

𝑓
, 𝑴𝒚 =

−𝑚

𝑚
, 

(34) 

 
𝑨 =

𝐸𝐴 𝑆

𝑆 𝑆
, 𝑩 =

𝑆 −𝑆

𝑆 −𝑆
, 𝑫 =

𝑆 −𝑆

−𝑆 𝑆
, 

(35) 

 𝑲𝒘 =
𝑘 0

0 0
, 𝑲𝒑 =

𝑘 0

0 0
. (36) 

 

3 Solution procedure 
 

From the methodology proposed by Doeva, Masjedi and Weaver [2], it is possible to derive Eq. (28) to obtain 𝑼  

and substitute it into Eq. (29). With this, it is obtained that 

 

 𝑾 ( ) = 𝑩𝟏𝑾 − 𝑩𝟐𝑾 + 𝑩𝟑, (37) 

 

where 

 

 𝑩𝟏 = (𝑫 − 𝑩 𝑨 𝑩) 𝑲𝒑, (38) 

 𝑩𝟐 = (𝑫 − 𝑩 𝑨 𝑩) 𝑲𝒘, (39) 

 𝑩𝟑 = (𝑫 − 𝑩 𝑨 𝑩) 𝑸𝒛−(𝑫 − 𝑩 𝑨 𝑩) 𝑩 𝑨 𝑸𝒙. (40) 

 

A change of variable can be performed as 

 

 𝒙𝟏 = 𝑾, 𝒙𝟐 = 𝑾 , 𝒙𝟑 = 𝑾 , 𝒙𝟒 = 𝑾 , (41) 

 

so that it can be stated that 

 

 𝒙𝟏 = 𝑾 = 𝒙𝟐, 𝒙𝟐 = 𝑾 = 𝒙𝟑, 𝒙𝟑 = 𝑾 = 𝒙𝟒, 𝒙𝟒 = 𝑾 𝑰𝑽 = 𝑩𝟏𝒙𝟑 − 𝑩𝟐𝒙𝟏 + 𝑩𝟑. (42) 
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Therefore, the system of linear differential equations defined by Eq. (37) is rewritten as [8]: 

 

 𝑿 = 𝑴𝑿 + 𝒇, (43) 

 

where 

 

 

𝑿 =

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

, 𝑴 =

⎣
⎢
⎢
⎢
⎡

𝟎𝟐𝒙𝟐  𝑰    𝟎𝟐𝒙𝟐 𝟎𝟐𝒙𝟐

𝟎𝟐𝒙𝟐  𝟎𝟐𝒙𝟐  𝑰  𝟎𝟐𝒙𝟐

𝟎𝟐𝒙𝟐 𝟎𝟐𝒙𝟐 𝟎𝟐𝒙𝟐   𝑰

−𝑩𝟐 𝟎𝟐𝒙𝟐 𝑩𝟏 𝟎𝟐𝒙𝟐 ⎦
⎥
⎥
⎥
⎤

, 𝒇 =

⎣
⎢
⎢
⎡

𝟎𝟐𝒙𝟏

𝟎𝟐𝒙𝟏

𝟎𝟐𝒙𝟏

𝑩𝟑 ⎦
⎥
⎥
⎤

, (44) 

 

where 𝑰 is the 2x2 identity matrix and 𝑴 is called a complementary matrix. 

 

3.1 Parameter variation method 
 

According to Zill and Cullen [9], the solution of the non-homogeneous first-order linear system in Eq. (43) is  

 

 
𝑿 = 𝝓(𝑥)𝑪 + 𝝓(𝑥) 𝝓 (𝑥)𝒇𝑑𝑥, (45) 

 

where 𝝓(𝑥)  is the fundamental matrix constituted in its columns by the solution vectors of the equivalent 

homogeneous system [9], and 𝑪 is a vector formed by constants to be determined by the boundary conditions. 

 

3.2 Fundamental matrices and displacement fields 𝒘(𝒙) and 𝒗(𝒙) 
 

Three combinations of the foundation parameters are studied here, namely, 𝑘 = 0 and 𝑘 = 0 (no foundation), 

𝑘 = 0  and 𝑘 ≠ 0, and 𝑘 ≠ 0  and 𝑘 ≠ 0, which generate different fundamental matrices and, consequently, 

different solutions because the corresponding complementary matrix 𝑴 is different in each case. 

In the more general case ( 𝑘 ≠ 0  and 𝑘 ≠ 0 ) the complementary matrix 𝑴  has four different nonzero 

eigenvalues 𝜆  ≠  0 , 𝑖 =  1,2,3,4 , and one null eigenvalue 𝜆 = 0  of multiplicity 4, so there are four linearly 

independent eigenvectors 𝑲𝒊, 𝑖 =  1, … ,4, complemented by the following basis vectors: 

 

 𝑲𝟓 = [0    1    0    0    0    0    0    0] , 

𝑲𝟔 = [0    0    0    1    0    0    0    0] , 

𝑲𝟕 = [0    0    0    0    0    1    0    0] , 

𝑲𝟖 = [0    0    0    0    0    0    0    1] . 

(46) 

 

Thus, the fundamental matrix 𝝓(𝑥) for this case is given by 

 

𝝓(𝑥) = 𝑲𝟏e  𝑲𝟐e  𝑲𝟑e  𝑲𝟒e  𝑲𝟓 (𝑲𝟓𝑥 + 𝑲𝟔) 
𝑲𝟓 𝑥 + 𝑲𝟔𝑥 + 𝑲𝟕  

𝑲𝟓 𝑥 +
𝑲𝟔 𝑥 + 𝑲𝟕𝑥 + 𝑲𝟖 . (47) 

 

Then, it is possible to obtain 𝒙𝟏  = 𝑾 = [𝑤(𝑥) 𝑣(𝑥)]  from Eq. (45), which provides 

 

 

𝑤(𝑥) =
4 𝑎 − √𝑎 − 4𝑏 e  (𝐶 − 𝐶 e  )

2√2 𝑎 𝑎 − √𝑎 − 4𝑏 − 4√2𝑏
+

4 𝑎 + √𝑎 − 4𝑏 e  (𝐶 − 𝐶 e  )

2√2𝑎 𝑎 + √𝑎 − 4𝑏 − 4√2𝑏
+

𝐹𝐹1(𝑥)

2√2
,

𝑣(𝑥) =
1

6
6 𝐶 + 6 𝐶 𝑥 + 3 𝐶 𝑥 + 𝐶 𝑥 + 𝐹𝐹2(𝑥)  ,

 (48) 

 

where  
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𝑎 =
𝑘

𝑆  
, 𝑏 =

𝑘

𝑆
, 𝑚(𝑥) =

𝑞 (𝑥)

𝑆
, 𝑛(𝑥) =

𝑞 (𝑥)

𝑆
, 𝜆 =

𝑎 − √𝑎 − 4𝑏

−√2
, 𝜆 =

𝑎 + √𝑎 − 4𝑏

−√2
,

𝐹𝐹1(𝑥) =
𝑎 − √𝑎 − 4𝑏 e ∫ e 𝑚(𝑥)𝑑𝑥 − e ∫ e 𝑚(𝑥)𝑑𝑥

√𝑎 − 4𝑏 −𝑎 + 𝑎√𝑎 − 4𝑏 + 2𝑏

+
𝑎 + √𝑎 − 4𝑏 e ∫ e 𝑚(𝑥)𝑑𝑥  − e ∫ e  𝑚(𝑥)𝑑𝑥

√𝑎 − 4𝑏 𝑎 + 𝑎√𝑎 − 4𝑏 − 2𝑏

𝐹𝐹2(𝑥) = 𝑥 𝑛(𝑥)𝑑𝑥 − 3𝑥 𝑥𝑛(𝑥)𝑑𝑥 + 3𝑥 𝑥 𝑛(𝑥)𝑑𝑥 − 𝑥 𝑛(𝑥)𝑑𝑥

. (49) 

 

3.3 Displacement 𝒖(𝒙) and rotation 𝝋(𝒙) fields 
 

Vector 𝑼 = [𝑢(𝑥) 𝜑(𝑥)]  is obtained by integrating twice Eq. (28) as 

 

 
𝑼 = 𝑨 𝑩𝑾 − 𝑨 𝑸𝒙𝑑𝑥 𝑑𝑥 + 𝑪𝟗𝑥 + 𝑪𝟏𝟎, (50) 

 

where 𝒙𝟐 = 𝑾′ is obtained via Eq. (45) and vectors 𝑪𝟗 and 𝑪𝟏𝟎 are obtained from the boundary conditions. 

 

4 Numerical results 
 
4.1 Isotropic beam under uniformly distributed load 𝒒𝒛 
 

Consider a dimensionless form for transverse deflection 𝑤(𝑥) and foundation parameters 𝑘  and 𝑘  as 

  

𝑤(𝑥) =
𝑤(𝑥)𝑆

𝑞 𝑙
, 𝑘 =

𝑘 𝑙

𝑆
, 𝑘 =

𝑘 𝑙

𝑆
. 

(51) 

 

In this case, displacements 𝑣(𝑥), 𝑢(𝑥) and 𝜑(𝑥) are null. In turn, for nonzero 𝑘𝑤 and 𝑘𝑝, deflections 𝑤(𝑥) for the 

simply supported beam and the doubly clamped beam are given, respectively, by 

 

 

𝑤𝑆𝑆(𝑥) =
4

𝑝2𝑞2

⎣
⎢
⎢
⎢
⎡

1 +
e

𝑝 (𝑙−𝑥)

√2 𝑙 𝑞2 + e

𝑝 𝑥

√2 𝑙𝑞2 − e

𝑞 (𝑙−𝑥)

√2 𝑙 𝑝2 − e

𝑞 𝑥

√2 𝑙𝑝2

(𝑝2 − 𝑞2) 1 + e

𝑝

√2

⎦
⎥
⎥
⎥
⎤

, (52) 

 

and 
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𝑤 (𝑥) =
𝑝 − 𝑞 𝑝𝑞

2
1 − cosh

𝑞

√2
cosh

𝑝

√2
+ 2 cosh

𝑝

2√2
cosh

𝑝(𝑙 − 2𝑥)

2𝑙√2
sinh

𝑞

2√2

−
𝑝 − 𝑞

4
cosh

𝑝(𝑙 − 2𝑥)

2𝑙√2
sinh

𝑞

√2
sinh

𝑝

2√2
+

𝑝 − 𝑞

4
cosh

𝑝(𝑙 − 2𝑥)

2𝑙√2
sinh

𝑞

√2
sinh

𝑝

√2

+ 𝑝 − 𝑞 𝑝𝑞 cosh
𝑞

2√2
cosh

𝑞(𝑙 − 2𝑥)

2𝑙√2
sinh

𝑝

2√2

−
𝑝 − 𝑞

4
cosh

𝑞(𝑙 − 2𝑥)

2𝑙√2
sinh

𝑞

2√2
sinh

𝑝

√2
−

𝑝 − 𝑞

4
cosh

𝑞(𝑙 − 2𝑥)

2𝑙√2
sinh

𝑞

2√2
sinh

𝑝

√2

+
𝑝 − 𝑞

4
sinh

𝑞

√2
sinh

𝑝

√2

∕
𝑝 − 𝑞 𝑝 𝑞

8
1 − cosh

𝑞

√2
cosh

𝑝

√2
+

𝑝 − 𝑞 𝑝 𝑞

16
sinh

𝑞

√2
sinh

𝑝

√2
, 

(53) 

 

where 

  

𝑝 = 𝑘 + 𝑘 − 4𝑘 , 𝑞 = 𝑘 − 𝑘 − 4𝑘 . 
(54) 

 

Maximal deflections for different combinations of 𝑘  and 𝑘  are compared with those from [2] in Table 1 for the 

simply supported beam 𝑤𝑆𝑆(𝑙 2⁄ )  and the doubly clamped beam 𝑤𝐷𝐶(𝑙 2⁄ )  under uniform load. The number of 

decimal places adopted for the analysis is the same used by the authors from [2]. 

 

Table 1: Maximal deflections of the simply supported beam and the doubly clamped beam under uniform load. 

 

𝑘  𝑘𝑝 
Simply supported beam 𝑤𝑆𝑆(𝑙 2⁄ )  Doubly clamped beam 𝑤𝐷𝐶(𝑙 2⁄ )  

Present work From [2] Present work From [2] 

0 

0 0.013021 0.013021 0.002604 0.002604 

10 0.006448 0.006448 0.002085 0.002085 

25 0.003661 0.003661 0.001607 0.001607 

10 

0 0.011804 0.011804 0.002553 0.002553 

10 0.006133 0.006133 0.002051 0.002051 

25 0.003556 0.003556 0.001587 0.001587 

100 

0 0.006400 0.006400 0.002165 0.002165 

10 0.004256 0.004256 0.001792 0.001792 

25 0.002828 0.002828 0.001426 0.001426 
 

In both cases, the three sets of results obtained for the different values of foundation parameters are in agreement 

with the results presented by Doeva, Masjedi and Weaver [2]. Therefore, the equations presented in Eqs. (52) and 

(53) are, in fact, the solutions. 

 

4.2 Cantilevered isotropic beam with a point load at the free end 
 

One of the numerical examples presented by Eisenberger [10] is the maximum deflection suffered by a cantilevered 

Euler-Bernoulli beam with a point load at the free edge and without an elastic foundation. In this example, units 

are all compatible and will be omitted. The beam material properties are 𝐸 = 2.9 ⋅ 10  and 𝑣 = 0.3. The deflections 

were analyzed for a beam with unit dimension for thickness, height fixed at 12, with lengths of 12, 40, 80, and 160 

for a load of 𝑓 = 100. 

It is possible to find the maximum deflection results of this beam for each length 𝑙. The results obtained agree 

with those of Eisenberger [10], as shown in Table 2. The number of decimal places adopted for the analysis is the 

same used by the cited author. 
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Table 2: Maximal deflection for cantilever beam with a point load at free end. 

 

Length (𝑙) 
Maximal deflection (𝑤 ) 

Present Work Eisenberger [10] 

12 0.013793 0.013793 

40 0.510856 0.510855 

80 4.086800 4.086800 

160 32.694800 32.694800 

 

In order to analyze the effect of an elastic foundation, Table 3 presents the maximal deflections of the beam with 

𝑙 = 160  and ℎ = 12 for different combinations of 𝑘𝑤  and 𝑘 . To the best of our knowledge, there are no other 

published works on this case. It is observed that the Pasternak parameter 𝑘  causes larger reductions in the maximal 

deflection than the Winkler parameter 𝑘 . 

 

Table 3: Maximal deflection for cantilever beam with elastic foundation with a point load at the free end. 

 

𝑘  𝑘  Maximal deflection (𝑤𝑚𝑎𝑥) 

0 

0 32.694800 

10 6.717827 

25 3.138769 

10 

0 18.486274 

10 5.720577 

25 2.886946 

100 

0 4.309194 

10 2.642665 

25 1.748078 

 

5 Conclusions 

 

This work proposed to develop analytical solutions for the structure of isotropic beams, when supported or not on 

a Winkler-Pasternak elastic foundation. The equations describing the problem and the boundary conditions were 

derived from the principle of virtual work under the assumptions of Euler-Bernoulli beam theory. The solution of 

the system of equations was obtained using the method of variation of parameters. 

Analyzing numerically the results of the maximal deflections obtained, it was verified that with the increase of 

the foundation stiffness values, the flexural displacements decrease. Furthermore, it was found that the effect of the 

Pasternak stiffness parameter (𝑘 ) on displacement is greater than the Winkler stiffness parameter (𝑘 ). 
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