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Abstract

The study ofmaterials with complex structure, like the functionally graded, is a field of increasing interest, what hap-
pensmostly because the importance of thesematerials in the industry. In this work, theAsymptoticHomogenization
Method andFractional Calculus are both applied in a problemwhichmodels the behaviour of amicro-heterogeneous
material, like the functionally graded. The goal of this work is the study of the association possibilities between these
two tools, sincewhich one are providing important results in themathematicalmodelling of complex structures. The
results show that each methodology reproduce a different aspect of the phenomenon: the Homogenization stays in
the microstructure details and the fractional derivative takes care of a macroscopic behaviour, which nature is pos-
sibly dissipative. Here are important information, but a deeper and more diverse approach is necessary to provide
strong e more general statements about this theme.

Keywords
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Resumo

O estudo de materiais com estrutura complexa, como os funcionalmente graduados, tem cada vez mais chamado
a atenção, seja pela dificuldade em obter os resultados ou pela importância de tais materiais em diversos ramos
da indústria. Neste trabalho, o Método de Homogeneização Assintótica e ferramentas do Cálculo Fracionário são
aplicados para modelar o comportamento um material micro-heterogêneo, como os funcionalmente graduados. O
interesse principal desse trabalho é encontrar uma forma de associar ambas metodologias, que têm fornecido bons
resultados quando aplicadas em problemas envolvendo estruturas complexas, mas de forma separada. Os resultados

⭐This article is an extended version of the work presented at the Joint XXIV ENMC National Meeting on Computational Modelling and XII
ECTMMeeting on Science and Technology of Materials, held in webinar mode, from October 13th to 15th, 2021.
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obtidos mostram que cada metodologia reproduz diferentes aspectos do fenômeno: a Homogenização está nos de-
talhes da microestrutura, enquanto que a derivada fracionária se ocupa de um comportamento macroscópico, cuja
natureza pode ser dissipativa. Aqui estão resultados importantes, porém uma abordagem mais profunda e diversifi-
cada é necessária a fim de fornecer conclusões mais fortes e generalizadas acerca do tema.

Palavras-chave
Homogeneização Assintótica ∙ Cálculo Fracionário ∙ Derivadas Compatíveis ∙ Materiais Funcionalmente
Graduados

1 Introduction
Functionally Graded Materials (FGM) are materials which properties show spatial smooth variation [1], allowing
these materials present a peculiar behaviour in some situations, like thermal resistance or structural integrity [2].
Thereby, they have been employed in several areas of the industry, for example: aerospace, maritime, automotive
and biological [3]. The FGM’s microstructure (the structure in the heterogeneity scale) has an important roll in its
physical macroscopic behaviour. In fact, this behaviour depends on the phenomenawhich occurs in themicroscopic
scale [4]. Thus, the knowledge about the existing relations between the microstructure and the physical behaviour
of the material is very important to have.

In this work are considered the FGM which microscale is much smaller than the macro, and much bigger than
the atomic scale, simultaneously. For these ones, the differential equation problems involved in its behaviour mod-
elling present coefficients with rapidly oscillation. Because of that, harder is the direct application of numerical
methods in this type of problems [5], while thin the microscale is, a thinner mesh is necessary. However, at the
same time, the equivalent homogeneity hypothesis is satisfied, so the micro-heterogeneous material can be consid-
ered equivalent to a homogeneous one. For this ideal homogeneous material, the problem involved has constant
coefficients, make this problem a lot easier to solve (in the sense of computational cost). Besides that, the solution
obtained from this “homogeneous problem” is sufficiently close to the solution from the “original problem” (for the
micro-heterogeneous material). The process to obtain these homogeneous material is called of Homogenization.

Among the homogenization methods, we can cite the Asymptotic Homogenization Method (AHM) [6], which
considers an asymptotic approximation of the original problem solution, in the form of a potential series for a
small parameter 𝜀, with double-scale (macro and micro). There are several advantages from this methodology, but
these two are the more interesting ones: low computational cost with the numerical methods application; and the
obtaining of good approximations for the original solution. The AHM has two important applications: approxi-
mate the original problem solution by asymptotic estimates [7] and determine the effective behaviour of the micro-
heterogeneous material using the equivalent homogeneous one [8].

Another tool that has been very used in the mathematical modelling field is the Fractional Calculus (FC), a
theory based in the generalization of the concepts from the usual Differential-Integral Calculus, where the operators
of integer order are replaced by the ones with non-integer order [9]. Among others applications, stands out that
this tool has been useful to reproduces behaviour with dissipation nature, in the solutions of so many mathematical
problems. In [10], by using a operator of Caputo type, the gravity effect are reproduced in a harmonic oscillator
problem - without considering gravity in the equation; the same effect can be verified in [11], where this operator is
used to evaluate the thermal distribution in a thin rectangular plate.

The fractional operators more classical are the Riemann-Liouville and Caputo type[12], but these ones (and the
most of the nonlocal operators) have a peculiar theory behind. For example, a lot of the properties from the usual
Calculus (like the chain rule) are not valid for these operators. The computational cost that is necessary in its ap-
plications is expensive too, in relation to local operators [13]. In this context, in [14] are introduced the concept of
Conformable Derivative, which the main advantage is hold important properties from the usual Calculus (like the
chain rule - different of the operators above mentioned). This Conformable operator can’t be considered exactly a
fractional one, most for being a local operator. But, has been shown that is valid considering these ones in the appli-
cation context of the FC, most because of the results achieved with these local operators, what are very alike to those
obtained with the non-local operators [13, 15], in certain situations.

Given the above, the purpose of this paper is to apply the AHM and the Conformable operators to a boundary
value problem (BVP) for the steady-state linear diffusion equation, and evaluate the results obtained from this two
methodologies. A continuously differentiable coefficient, 𝜀-periodic, will be taken to simulate a functionally graded
rod.
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2 Methodology

2.1 BVP formulation
The functionally graded rod can be idealized by the one-dimensional case for the problem, represented by [0, 𝑙] ⊂ ℝ.
As the structure has a microperiodic property ( 𝜀-periodic by the way, where 𝜀 ≪ 1), the periodicity cell will be [0, 𝜀].
The scale separation will be taken like that: 𝑥 represents the macroscale, and 𝑦 = 𝑥∕𝜀, the micro one. So, [0, 𝜀] will
be equivalent to the interval [0, 1], in the microscale. The functionally graded property will be represented by 𝐾𝜀,
which varies continuously. In the Fig. 1 follows a illustration of this idea.

Figure 1: Illustration of a functionally graded and microperiodic bar.

To model the phenomenon of interest, the following BVP for the steady-state linear diffusion equation will be
considered:

⎧

⎨
⎩

𝑑
𝑑𝑥

[𝐾𝜖 (𝑥) 𝑑𝑢
𝜀

𝑑𝑥
] = 𝑓 (𝑥), 𝑥 ∈ (0, 𝑙)

𝑢𝜀 ⏐𝑥=0= 𝑔1
𝑢𝜀 ⏐𝑥=𝑙= 𝑔2

, (1)

where 𝐾𝜀 ∈ 𝐶1 ([0, 𝑙]), 𝜀-periodic in 𝑥, positive and strictly limited, and 𝑓 (𝑥) ∈ 𝐶 ([0, 𝑙]). Under these hypothesis,
the particular solution for the BVP in Eq. (1) is:

𝑢𝜀 (𝑥) = ∫
𝑥

0
[
∫ 𝑠0 𝑓(𝑡)𝑑𝑡 + 𝐶1

𝐾𝜀 (𝑠)
]𝑑𝑠 + 𝑔1, (2)

where

𝐶1 = [∫
𝑙

0

1
𝐾𝜀 (𝑠)

𝑑𝑠]
−1

(𝑔2 − 𝑔1 − ∫
𝑙

0

∫ 𝑠0 𝑓(𝑡)𝑑𝑡
𝐾𝜀 (𝑠)

𝑑𝑠) . (3)

It is important to observe that, by the continuity of 𝐾𝜀 (𝑥) and 𝑓(𝑥), the existence of the integrals in Eqs. (2) and
(3) is guaranteed.

Furthermore, 𝑢𝜀 (𝑥) can represents the temperature, electric field or a displacement;𝐾𝜀 (𝑥) the thermal or electric
conductivity, or the elasticity coefficient of the media; and 𝑓 (𝑥) the thermal or electrical sources or even a external
force, depending on the context of interest: thermal, electric or mechanic.

2.2 Asymptotic Homogenization Method
Initiating the AHMapproach, first is took an asymptotic expansionwith double scale, for the BVP in Eq. (1) solution,
𝑢𝜀(𝑥):

𝑢𝜀(𝑥) ∼ 𝑢(2) (𝑥, 𝑦) = 𝑣0 (𝑥) + 𝜀𝑢1 (𝑥, 𝑦) + 𝜀2𝑢2 (𝑥, 𝑦) , (4)
where 𝑢𝑘(𝑥, 𝑦) are 1-periodic for 𝑦 (for 𝑘 = 1, 2). From the application of 𝑢(2)(𝑥, 𝑦) into the BVP equation in Eq. (1),
considering the chain rule in relation to 𝑦, is obtained:

𝑑
𝑑𝑥

[𝐾𝜀 (𝑥) 𝑑𝑢
𝜀

𝑑𝑥
] − 𝑓 (𝑥) ≈ 𝜀−1 [ 𝜕

𝜕𝑦
(𝐾(𝑦) (

𝑑𝑣0
𝑑𝑥

+
𝜕𝑢1
𝜕𝑦

))] + (5)

+ 𝜀0 [ 𝜕
𝜕𝑥

(𝐾(𝑦) (
𝑑𝑣0
𝑑𝑥

+
𝜕𝑢1
𝜕𝑦

)) + 𝜕
𝜕𝑦

(𝐾(𝑦) (
𝜕𝑢1
𝜕𝑥

+
𝜕𝑢2
𝜕𝑦

)) − 𝑓(𝑥)] +

+ 𝑂(𝜀) .
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The expansion 𝑢(2)(𝑥, 𝑦) will be a good approximation of the solution of the BVP Eq. (1), if the factors of the 𝜀
potentials which have exponents less than 1 are equal to 0, to get a 𝜀 order error. In that case, 𝑢(2)(𝑥, 𝑦) will be an
asymptotic formal solution (AFS) for the BVP in Eq. (1).

In order to satisfy this need, the follows equations have to be considered:

𝜀−1 ∶ 𝜕
𝜕𝑦

[𝐾(𝑦) (
𝑑𝑣0
𝑑𝑥

+
𝜕𝑢1
𝜕𝑦

)] = 0, (6)

𝜀 0 ∶ 𝜕
𝜕𝑥

[𝐾(𝑦) (
𝑑𝑣0
𝑑𝑥

+
𝜕𝑢1
𝜕𝑦

)] + 𝜕
𝜕𝑦

[𝐾(𝑦) (
𝜕𝑢1
𝜕𝑥

+
𝜕𝑢2
𝜕𝑦

)] − 𝑓(𝑥) = 0. (7)

From the application of 𝑢(2)(𝑥, 𝑦) in the boundary conditions in the BVP, is obtained:

𝑣0(0) = 𝑔1 e 𝑣0(𝑙) = 𝑔2, (8)
𝑢1(0, 0) = 𝑢1 (𝑙, 0) = 0, (9)
𝑢2(0, 0) = 𝑢2 (𝑙, 0) = 0. (10)

The equations (6) e (9) make up the BVP for determinate 𝑢1(𝑥, 𝑦), as Eqs (7) and (10) for determinate 𝑢2(𝑥, 𝑦).
Taking 𝑥 as a fixed parameter, both problems will present this aspect:

⎧

⎨
⎩

𝑑
𝑑𝑦

[𝐾 (𝑦) 𝑑𝑁𝑑𝑦
] = 𝐹(𝑦), 𝑦 ∈ (0, 1)

𝑁(0) = 0
, (11)

where 𝑁(𝑦) is the 1-periodic solution searched.
The existence and uniqueness of the solution of these type of problems is guaranteed by the Lemma 1 that follows:

Lemma 1 [6] Let 𝐾(𝑦) an 1-periodic, positive, limited and continuously differentiable function in [0, 1], and 𝐹(𝑦) just
continuous and 1-periodic. Thus, a necessary and sufficient condition to existence of a 1-periodic solution 𝑁(𝑦) for the
equation:

𝑑
𝑑𝑦

[𝐾 (𝑦) 𝑑𝑁𝑑𝑦
] = 𝐹(𝑦) (12)

is ∫ 10 𝐹𝑑𝑦 = 0.
Besides that, 𝑁(𝑦) is unique, except for an additive constant, namely 𝑁(𝑦) = �̃�(𝑦) + 𝐶, where �̃� is the 1-periodic

solution of (12), such that �̃�(0) = 0, and 𝐶 is an arbitrary constant.

The Lemma proof brings some important details for the determination of 𝑁(𝑦) and can be consulted in [6].
The necessary condition of the Lemma 1 is naturally satisfied for the 𝑢1(𝑥, 𝑦) problem (Eqs. (6) and (9)). And

to ensure the existence and uniqueness of 𝑢2(𝑥, 𝑦), solution of the BVP formed by Eqs (7) and (10), is necessary to
solve the following equation:

�̂�
𝑑2𝑣0
𝑑𝑥2

= 𝑓(𝑥), 𝑥 ∈ (0, 𝑙) , (13)

where �̂� =
[
∫ 10 (𝐾(𝑦))

−1 𝑑𝑦
]−1

.
The Equation (13), together with the conditions in Eq. (8), represent the BVP for the equivalent homogeneous

material. This BVP is the limit of the recurrent sequence of problems for the 𝜀 potentials, when 𝜀 → 0+, or even
more, the called Homogenized Problem. In that way, �̂� is the homogeneous material property. It is worth to note,
that the solution 𝑣0(𝑥) is a good estimate for 𝑢𝜀(𝑥), presenting an error with 𝜀 order [6].

Now, from solve the above problems, the following formulas can be found, for the AFS 𝑢(2)(𝑥, 𝑦):

𝑣0(𝑥) = 1
𝐾
[∫

𝑥

0
∫

𝑠

0
𝑓(𝑡) 𝑑𝑡 𝑑𝑠 + 𝑥

𝑙 (
𝐾 (𝑔2 − 𝑔1) − ∫

𝑙

0
∫

𝑠

0
𝑓(𝑡) 𝑑𝑡 𝑑𝑠)] + 𝑔1, (14)

𝑢1(𝑥, 𝑦) =
𝑑𝑣0
𝑑𝑥

∫
𝑦

0
( �̂�
𝐾(𝑠)

− 1)𝑑𝑠, (15)

𝑢2(𝑥, 𝑦) =
𝑑2𝑣0
𝑑𝑥2

∫
𝑦

0
( �̂�
𝐾(𝑠)

∫
1

0
𝑁1(𝑡)𝑑𝑡 −𝑁1(𝑠))𝑑𝑠. (16)
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2.3 Fractional Calculus: Conformable Derivative and Integral
First of all, the conformable derivative is defined as follows:

Definition 1 [14] Let 𝑓 ∶ [0,∞)→ ℝ a function, 𝛼 ∈ (0, 1) and 𝑡 > 0. Thus, the 𝑓 conformable derivative of 𝛼 order,
denoted by 𝑇𝛼 (𝑓), is defined by:

𝑇𝛼 (𝑓) (𝑡) = lim
𝛿→0

𝑓(𝑡 + 𝛿𝑡1−𝛿) − 𝑓(𝑡)
𝛿

. (17)

Some observations about the Definition 1: (i) in the case of the limit in Eq.(17) exists, 𝑓 is 𝛼-differentiable called; (ii)
to summarize the notation, 𝑓(𝛼) or 𝑑

𝛼𝑓
𝑑𝑡𝛼

will be take instead 𝑇𝛼 (𝑓); (iii) if 𝑓 is 𝛼-diferentiable in (0, 𝑎) for some 𝑎 ∈ ℝ
and the limit lim𝑡→0+ 𝑓(𝛼)(𝑡) exists, so 𝑓(𝛼)(0) = lim𝑡→0+ 𝑓(𝛼)(𝑡); (iv) if 𝛼 → 1was taken, thus the 𝑓(𝛼) coincides with
the usual definition for a derivative of order 1.

The main idea of this definition is to maintain the most as possible the integer order derivatives properties. In
the Theorem 1, follow some of these ones:

Theorem 1 [14] Let 𝛼 ∈ (0, 1), and 𝑓 and 𝑔 𝛼-diferentiable functions for 𝑡 > 0. So:
(1) 𝑇𝛼 (𝑎𝑓 + 𝑏𝑔) = 𝑎𝑇𝛼 (𝑓) + 𝑏𝑇𝛼 (𝑔), for all 𝑎, 𝑏 ∈ ℝ;
(2) 𝑇𝛼 (𝑡𝑝) = 𝑝𝑡𝑝−𝛼 , for all 𝑝 ∈ ℝ;
(3) 𝑇𝛼(𝜆) = 0, for 𝜆 constant;
(4) 𝑇𝛼 (𝑓𝑔) = 𝑓𝑇𝛼 (𝑔) + 𝑇𝛼 (𝑓) 𝑔;
(5) 𝑇𝛼 (

𝑓
𝑔
) = 𝑓𝑇𝛼(𝑔)−𝑇𝛼(𝑓)𝑔

𝑔2
, if 𝑔(𝑡) ≠ 0;

(6) If 𝑓 differentiable in the usual sene, so: 𝑇𝛼 (𝑓(𝑡)) = 𝑡(1−𝛼) 𝑑𝑓
𝑑𝑡
(𝑡).

It’s important to note the item (6) from Theorem 1, because this property allows to transform a fractional differ-
ential equation into a integer order one, if the space of functions considered is the of differentiable functions.

The concept of conformable integral of a function 𝑓, is defined as follows:

Definition 2 [14] Let𝑓 ∶ [0,∞) → ℝ an integrable function (in the usual sense), 𝛼 ∈ (0, 1) and 𝑎 ≥ 0. Thus, the 𝑓
conformable integral of 𝛼-order, denoted by 𝐼𝑎𝛼 (𝑓), is defined by::

𝐼𝑎𝛼 (𝑓) (𝑡) ∶= 𝐼𝑎1
(
𝑡𝛼−1𝑓

)
(𝑡) = ∫

𝑡

𝑎
𝑥𝛼−1𝑓(𝑥)𝑑𝑥. (18)

The property of linearity is valid for the 𝛼-fractional integral, because this one is defined from the Riemann integral,
that is linear. Another properties, which are important to solve fractional differential equationswith the conformable
operator, follow in the Theorems 2 and 3.

Theorem 2 [14] Let 𝛼 ∈ (0, 1), 𝑡 ≥ 𝑎 ≥ 0 and 𝑓 an integrable function in relation to𝐼𝛼 . So,

𝑇𝛼
[
𝐼𝑎𝛼(𝑓)

]
(𝑡) = 𝑓(𝑡). (19)

Theorem 3 [16] Let 𝛼 ∈ (0, 1), 𝑡 ∈ (𝑎, 𝑏), where 𝑎 ≥ 0 and 𝑓 ∶ [𝑎, 𝑏]→ ℝ a differentiable function. So:

𝐼𝑎𝛼 [𝑇𝛼(𝑓)] (𝑡) = 𝑓(𝑡) − 𝑓(𝑎). (20)

The theorem 3 can be considered as a fractional version of the Fundamental Theorem of the Calculus.
In possession of these facts, it’s possible to obtain a fractional version of the BVP of interest, in Eq. (1), namely:

𝑑𝛼
𝑑𝑥𝛼

[𝐾𝜖 (𝑥) 𝑑
𝛼𝑢𝜀
𝑑𝑥𝛼

] = 𝑓 (𝑥) , 𝑥 ∈ (0, 𝑙), (21)

where 𝛼 ∈ (0, 1), that its solution can be obtained by the 𝛼-fractional integration of the Eq. (21), considering the
Theorems 1 and 3, and the boundary conditions in (1):

𝑢𝜀(𝑥) = 𝐼0𝛼 [
𝐼0𝛼(𝑓)(𝑠) + 𝐶1

𝐾𝜀(𝑠)
] (𝑥) + 𝑔1, (22)

where

𝐶1 = [𝐼0𝛼 (
1

𝐾𝜀(𝑠)
) (𝑙)]

−1
(𝑔2 − 𝑔1 − 𝐼0𝛼 [

𝐼0𝛼(𝑓)(𝑙)
𝐾𝜀(𝑠)

] (𝑙)) . (23)

It’s possible to see that the aspect of the solution in Eqs (22) and (23) are the same of those in Eqs. (2) and (3), for
the BVP in Eq. (1). The practical effects of consider these fractional operators in this BVP will be evaluated in some
examples, in the next section.
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3 Some numerical examples
The first example to be solved is the following BVP:

⎧
⎪

⎨
⎪
⎩

𝑑
𝑑𝑥

[𝐾𝜀 (𝑥) 𝑑𝑢
𝜀

𝑑𝑥
] = −1, 𝑥 ∈ (0, 1)

𝑢𝜀(0) = 𝑢𝜀(1) = 0
𝐾𝜀 (𝑥) = 1 + 1

4 sin
(
2𝜋𝑥𝜀

)
, (24)

where the coefficient𝐾𝜀 (𝑥)was took like that to attend the hypothesis of continuity and limitation, and 𝜀-periodicity,
as is shown in Fig. 2; where is its rapidly oscillating aspect clear too, while 𝜀 is decreasing.

Figure 2: The behaviour of 𝐾𝜀 for some values of the small parameter 𝜀.

Executing the AHM methodology, the approximations 𝑣0(𝑥) and 𝑢(2)(𝑥, 𝑦) are obtained. For 𝑣0, by Eq. (14),
taking in account that

�̂� =
⎡
⎢
⎢
⎣

∫
1

0

1

1 + 1
4
sin (2𝜋𝑦)

𝑑𝑦
⎤
⎥
⎥
⎦

−1

=
√
15
4 , (25)

is obtained:
𝑣0(𝑥) =

2
√
15

(
𝑥 − 𝑥2

)
. (26)

The Fig. 3 brings the comparison of 𝑣0 with the asymptotic approximation 𝑢(2) for 𝜀 = 1∕8. It’s possible to check
the macroscopic aspect of the first one, and how the second one reproduces the local details of the exact solution 𝑢𝜀.
These simulations was executed for 𝑢(2)(𝑥, 𝑦) by the integrals in Eqs (15) and (16), using the Simpson 1/3 rule [17],
with a mesh ℎ = 0.05𝜀 - in that way considered to the mesh follows the values of 𝜀.

Considering the fractional equation for this example, as in the Eq. (21), the integrals in Eqs. (22) and (23) do not
converge. In fact, the solution 𝑢𝜀 obtained in that case do not satisfies the boundary conditions of this example. The
Fig. 4 shows this fact.

However, in the case of a coefficient 𝐾𝜀(𝑥) constant, these integrals (Eqs. (22) and (23)) converge, presenting an
analytical form. So, seems right take in the place of 𝐾𝜀(𝑥), the effective coefficient �̂�, which represents the property
of the equivalent homogeneous material. The problem obtained will be like:

⎧

⎨
⎩

𝑑𝛼
𝑑𝑥𝛼

[�̂� 𝑑
𝛼𝑢𝜀
𝑑𝑥𝛼

] = −1, 𝑥 ∈ (0, 1)
𝑢𝜀(0) = 𝑢𝜀(1) = 0

, (27)

that is, it’s possible evaluate the effect of apply the conformable derivative indirectly, by put the fractional operator
in the Homogenized Problem (Eq 13). In that way:

𝑣0(𝑥) =
2

𝛼2
√
15

[
𝑥𝛼 − (𝑥𝛼)2

]
, 𝛼 ∈ (0, 1), (28)

which preserve the shape of 𝑣0 in Eq. (26). Moreover, 𝑣0 in Eq. (28) converges to 𝑣0 in Eq. (26), when 𝛼 → 1, a
property of the conformable derivative. In the Fig. 5, these solutions are compared for some values of 𝛼, where the
effect of applying this operator can be observed: the solution is nomore a parabola, even the general shape is looking
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Figure 3: Graphic illustration of the solution 𝑣0(𝑥) and the asymptotic approximation 𝑢(2) for 𝜀 = 1∕8. In the right,
the local oscillations of 𝑢(2) are highlighted.

Figure 4: Graphic illustration of the solution 𝑢𝜀, considering the conformable derivative with 𝛼 = 0.99, compared to
𝑣0 and 𝑢(2) (for 𝜀 = 1∕8).

like. In anotherwords, from the application of the fractional operator, the parabola is deformed and lost its symmetry.
If the problem was about a thermal diffusive phenomenon, would be possible make two statements: for the integer
order operator, the highest value of temperature is in the middle of the bar; for 𝛼 → 1, this point isn’t in the middle,
suggesting a change in the bar effective behaviour. However, the boundary conditions are satisfied for all values of
𝛼 that are tested (in fact, it can be verified analytically). This type of effect has been observed in others applications
of this non-integers operators [10, 11]. In that way, these results suggest that these tools are capable of reproduce
some behaviours which the integer order operators aren’t. The main idea is: these behaviours are consequence of
dissipation nature of the phenomena, like the friction or air resistance.

Besides that, it’s possible take the local oscillations with the asymptotic expansions 𝑢(2) into the fractional case,
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Figure 5: Graphic comparison between 𝑣0(𝑥) from the integer derivative BVP and the non-integer one, for some
values of 𝛼 ∈ (0, 1).

namely:
𝑢(2)𝛼 (𝑥, 𝑦) = 2

𝛼2
√
15

[
𝑥𝛼 − (𝑥𝛼)2

]
+ 𝜀𝑢1(𝑥, 𝑦) + 𝜀2𝑢2(𝑥, 𝑦), 𝛼 ∈ (0, 1). (29)

In the Fig. 6 a comparison is made between 𝑢(2)𝛼 and 𝑢(2), and is interesting to notice that as small is the value of 𝛼,
less significant are the local oscillations that are reproduced by the asymptotic therms 𝑢1(𝑥, 𝑦) and 𝑢2(𝑥, 𝑦).

Figure 6: Graphic comparison between 𝑢(2)(𝑥) from the integer derivative BVP and the non-integer one, for some
values of 𝛼 ∈ (0, 1).

With the purpose to expand the examples, the same procedure illustrated in Fig. 5 was applied into a BVP like
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the one in Eq. (24), but considering another boundary conditions, which are:

⎧

⎨
⎩

𝑑
𝑑𝑥

[𝐾𝜀 (𝑥) 𝑑𝑢
𝜀

𝑑𝑥
] = −1, 𝑥 ∈ (0, 1)

𝑢𝜀(0) = 0 𝑢𝜀(1) = 1
, (30)

and the result from take the equivalent homogeneous material (with �̂�) and the conformable derivative is in the Fig.
7. Looking at that, are observed the same effects of considering the fractional derivative in the problem: the solution
presents some deformation in relation to that one from the integer order problem, and although the decreasing of
the values of 𝛼, the boundary conditions still satisfied.

Figure 7: Graphic comparison between 𝑣0(𝑥) from the integer derivative BVP and the non-integer one, for some
values of 𝛼 ∈ (0, 1), with non null boundary conditions.

For final remarks, the behaviour presented in Figs. 5, 6 e 7 are useful to understand how the fractional derivatives
(the conformable ones, in this work) can affect the solution of a problem. But it’s important to say that a deeper
analysis is necessary, to allowmore accurate conclusions. Follow somequestionswhich are important to be answered
from this paper: what aspect of the structure or phenomenon is responsible for the anomalous behaviour that is
reproduced by the fractional derivative; what effects will be foundwith the application of others fractional operators;
what can occurs in dynamical problems, in the sense of apply these operator in time (for these, the Homogenization
already shows very good results, in respect of multiple scales); among others.

4 Conclusions
The results in this work show some possibilities of association between the AHM and CF, to solve problems for
micro-heterogeneous media, the FGM specifically. Each methodology provides a different aspect of the problem in
study.

The AHM takes care of approximate the original solution, reproducing local oscillations of that one or by the
homogenized solution, and the applying of the conformable operators causes some interesting effects in the solution
of the problem, that are not achieved by the AHM in this work. It indicates that these two tools can be needed to
model this type of problem in a more general way. Similar results with FC are found in the literature. Otherwise, for
the problem considered, the application of the conformable operator was possible only with the constant coefficient
provided by the AHM.

The association of these two tools looks very productive, and deserve more attention, in the sense of searching
deeper and more diverse approaches, to obtain better and more effective results. It can be archived by varying the
fractional operators and the problems type that are considered.
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