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ABSTRACT 

Streamflow dynamics in a basin is known to be a major driver of available water resources. In 

the context of climate change, it is expected that global warming will accelerate the global 

hydrologic cycle, which will drive more intense floods and droughts leading to changes in 

streamflow and water resource availability. Most researchers agree that the amount and intensity 

of precipitation have a direct impact on runoff. Yet, there is no consensus as to how warming can 

affect streamflow. Evapotranspiration (ET) plays a crucial role here. However, there is a shortage 

of real-world observations on it. And yet, ET is considered as the primary determinant of 

available water resources. It is the water that would otherwise become streamflow if not released 

into the atmosphere. In the Passaic River Basin (PRB), this water loss constitutes on average 50 

percent of the approximately 49-inches precipitation. Because of its substantial heterogeneity in 

land use, soils, geology, reservoirs, vegetation, slope, and topography, the PRB exhibit a highly 

complex river system. This complexity amidst the heterogeneous biophysical arrangement within 

the basin present a multifaceted mix of competing interests and water related issues. In a region 

where predicted temperature increases are anticipated to amplify evapotranspiration and reduce 

snowpack, the resulting impact on streamflow could be significant. It is with this consideration 

that this dissertation attempts to better understand the mechanism behind streamflow dynamics in 

the basin, noting that it is a major driver of available water resource. That way, the impacts of 

climate change can be properly assessed. In this work, three independent research studies using 

available hydrological and climate data for the Passaic River Basin were conducted to achieve 

this goal. 

In the first study, I used Gridded datasets from Parameter-elevation Regressions on Independent 

Slopes Model (PRISM), TerraClimate, and Moderate Resolution Imaging Spectroradiometer 
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(MODIS) LAI product to develop spatially-varying monthly ET models. Beyond the widely used 

traditional type regression that has the effect of producing ‘global’ parameter estimates, assumed 

to be uniform throughout a study area, a more localized spatially non-stationary technique — the 

geographically weighted regression (GWR) — was utilized to estimate mean monthly ET in the 

Passaic River Basin (PRB). Key environmental controls of ET have been identified and new sets 

of spatially varying empirical ET models based on variable combinations that produced the best-

fit model have been developed. The analysis showed that temporal and spatial variabilities in ET 

over the PRB are driven by climatic and biophysical factors. It was found that the key controlling 

factors were different from month to month, with wind speed being dominant throughout the 

year in the study basin. Monthly mean ET index map was further generated from the model to 

illustrate areas where ET exceeds precipitation. 

In the second study, I bypassed the frequently used Mann-Kendal trend test in a novel 

application using the wavelet transform tool to identify the hidden monotonic trends in the 

inherently noisy hydro-climatic data. By this approach, the use of Mann Kendal trend test 

directly on the raw data whose results are almost always ambiguous and statistically insignificant 

in respect of precipitation data for instance, no longer pose a challenge to the reliability of trend 

results. The results showed that whereas trends in temperature and precipitation are increasing in 

the PRB, streamflow trends are decreasing. Based on results from the hydrological modelling, 

streamflow is more sensitive to actual ET than it is to precipitation. The general observation from 

climate elasticity results showed that in decades where water is available, energy limits actual 

evapotranspiration which makes streamflow more sensitive to precipitation increase. However, 

in meteorologically stressed or dry decades, water limits actual ET thereby making streamflow 

more sensitive to increases in actual evapotranspiration. It was found that the choice of baseline 
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condition constitutes an important source of uncertainty in the sensitivities of streamflow to 

precipitation and evapotranspiration changes and should routinely be considered in any climate 

impact assessment.  

In the third study, I forced a duly calibrated and verified hydrological model with advanced 

downscaled and bias-corrected climate scenarios in a rare application in the Rockaway sub-

catchment of the Passaic River Basin to assess the impacts of climate change on water resource 

availability. A priori analysis however involved the selection of subset models from twenty (20) 

Multivariate Adaptive Constructed Analog (MACA) climate models that characterized the 

change in temperature and precipitation according to LEAST WARM, HOT, DRY, and WET at 

mid-21st century (2041—2070) as well as a mild future that typifies the MIDDLE of the 

temperature and precipitation range. In all, nine (9) different models, relative to two baseline 

periods, and under two different climate scenarios were selected. Results showed that against the 

2041—2070 period, the margin of error owing to the use of different baseline conditions were 

+/- 0.3 — +/-0.23 oC for temperature and +/-8.15— +/-6.9% for precipitation, indicating the 

extent to which the time perspective used in climate change impacts assessment significantly 

affect outcomes. Across all five (5) climate projections, and the two scenarios, a consistent 

warming from +1.21 to + 4.70 oC is projected in the Rockaway catchment at mid-21st century 

relative to the 1981—2010 baseline period. While precipitation is generally projected to increase, 

streamflow prediction shows an overall decreasing signal, a trend likely induced by the projected 

increase in actual evapotranspiration. In terms of climate extremes, an increase in the number 

heavy rainy days of approximately 2 days is projected in the coldest future whiles an increase of 

about 4 days is expected in the wettest future. In similar vein, the number days with consecutive 

dry spells is expected to decrease by approximately 2 days in the driest future whereas an 



vii 
CLIMATE CHANGE IMPACTS ON WATER RESOURCE AVAILABILITY 

increase of about 3 days is projected in the wettest future. Overall, climate change is expected to 

fuel flooding and drought conditions in the study catchment, and to cause alterations in river 

flows which will in turn affect reservoir operations. With this advance knowledge in hand, swift 

mitigation and adaptation plans are therefore needed.  

The results presented in this dissertation show that climate change will threatened available 

water resources through evapotranspiration. Because the availability of water resource is largely 

driven by river flows in channels, possible increase or decrease in flow as depicted in the study 

will fuel flooding and drought conditions. Given that streamflow is highly sensitive to 

precipitation increases in decades where water is sufficiently available, even higher risk of 

extreme floods can be expected. On the other hand, longer dry spells will lead to water scarcity 

and higher risk of drought potentials. Either way, alterations in river flows will affect routine 

reservoir operations under a changing climate. Particularly, a crucial basis for examining 

possible environmental impacts on dam failure, including physical sedimentation, erosion from 

floodwaters, and chemical contamination has been established in this study. With this advance 

knowledge in hand, swift mitigation and adaptation plans are therefore needed. 
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CHAPTER 1 : INTRODUCTION 

1.1. Background  
Having been accurately described as an era of ubiquitous climate change (Green et al., 2011), the 

21st century has witnessed the most rapid changes in global temperatures (K. E. Trenberth et al., 

2014), constituting a major environmental problem of global significance. On average, global 

surface temperature has shown a warming of 0.85ºC over the 1980—2012 period (IPCC, 2013), 

with the largest increases observed in several locations. Precipitation also showed mixed positive 

and negative trends across the globe, with increases observed over tropical oceans and decreases 

over some regions along mid latitude for the period 1979—2014(Adler et al., 2017).   

This noticeable shift in global climate and the accompanying impacts to humankind motivated 

attempts to estimate the extent to which future climate would be affected by the anthropogenic 

modification of atmospheric composition. Consequently, emission scenarios were established by 

the Intergovernmental Panel on Climate Change, with the most recent based on four 

Representative Concentration Pathways (RCPs): RCP 8.5, RCP 6.0, RCP 4.5, and RCP 2.6. The 

RCP 8.5 is the most pessimistic (but highly probable), assuming a business as usual lifestyle 

where humans make no effort to reduce CO2 emissions. The RCP 6.0 and RCP 4.5 scenarios 

assume that world governments make efforts to reduce emissions which will result in CO2 

concentrations stabilizing at 750ppm and 540ppm respectively in the next century. The most 

(hopelessly) optimistic is the RCP 2.6 scenario, peaking around 2020 and declines throughout 

the rest of the century (Dessler, 2015) (Fig 1.1). 
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Figure 1.1: Representative concentration pathways (RCP) for atmospheric carbon dioxide by 
2100 (U.S. Global Change Research Program et al., 2017) 

Global Circulation Models (GCMs) used by IPCC provide outlooks of temperature, 

precipitation, and other climate variables for all the four RCPs by the end of the 21st century. In 

terms of temperature, an ensemble of models depicts a general agreement towards an increase, 

projected to exceed 2 ºC under RCP 4.5, 6.0, and 8.5, relative to 1986—2005 baseline (IPCC, 

2013). However, precipitation changes are non-uniform, with increases projected along mid-

latitude regions in the northern hemisphere and mix of increases and decreases along other 

latitudes (K. Trenberth, 2011). To derive local effects from global climate changes, regional 

climate models (RCMs) are used. RCMs are much closer to the scale of real-world observation, 

useful in the study of natural variations in climate as well as their impact, and necessary for 

informing strategic planning and adaptation of future climate change. Given that river systems 

are most sensitive to changes in climate (i.e., temperature and precipitation) (Stern, 2008; 

Ormerod, 2009; Kernan et al., 2011), the impacts are expected to reflect in the distribution of 

water resource through acceleration of the hydrologic cycle (IPCC, 2013; Bates et al., 2008; 
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Zhang and Wang, 2007). As a result, water resource availability will be affected primarily 

through evapotranspiration, and indirectly through vegetation water use (Cheng et al., 2014). 

Although the Northeast United State can generally be considered as a “water rich” region, the 

recent observed and projected reduction in snowfall as well as snowpack (Hodgkins and Dudley 

2006; Burakowski et al., 2008; Campbell et al., 2010, NCA, 2018) threatens available water 

resource. This is because, while snowpack is not the dominant source of streamflow in the 

Northeast region, it plays a key role in recharging the groundwater system, which partly forms 

the base-flow component of streamflow. In a region whose economy and way of life depends 

largely on tourism, water supply, recreation, wastewater assimilation, power generation among 

others, changes in snow pack and streamflow owing to climate change will pose serious water-

related issues, and thus require the application of new tools and techniques to inform adaptation 

and planning strategies. In lieu of this, the overall objective of the dissertation is to assess the 

potential impacts of climate change on the hydrology and water resource availability especially 

in a widely diverse and heterogeneous terrain, where future water stress and risks have been 

predicted in the context of climate change (NJDEP, 2017).   

1.2. Research Motivation 
More than 11000 scientists have, on November 5, 2019 sent a strong warning to the effect that 

the planet “clearly and unequivocally faces a climate emergency” (Ripple et al. 2019). Published 

in the Journal of BioScience and reported on by various news outlets (e.g. The Washington Post), 

these scientists note that, the current public posture to climate change and the measures taken are 

woefully inadequate to capture the breadth of human activities and the real dangers resulting 

from a warming planet (Briggs et al. 2015). Although climate change is a global phenomenon, 

the underlying impacts are very local. Therefore, it is necessary for societies to consider the 
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options and responses to climate change by identifying the extent to which various sectors of the 

economy may be affected. 

It has become evident that recent increase in the frequency of extreme weather events and 

associated intensification in hydrological extremes are manifestations that point to a warming 

climate (Kundzewicz, 2005).  Serious devastating effects on the functioning of ecosystems have 

also been linked to climate change. For instance, crop and livestock yields have dwindled in 

productivity (Howden et al., 2007; Piao, et al., 2010), essential ecosystem service deliveries are 

in jeopardy (Mooney et al., 2009), energy systems are failing— threatening more frequent power 

outages and fuel shortages (DOE, 2015), and water security is in serious ruin due to recurrent 

flood events. Within these matrices, the impacts on water lie at the epicenter, tightly linked to the 

other systems. Water is known as the engine of growth to the agricultural, energy, tourism, and 

industrial sectors (NCA, 2018), and sustains the health and productivity of natural and human 

ecosystems. Although the threat due to climate change has already caught up with us, the 

character of the change at regional and local levels remains uncertain going into the future. Yet, 

it is at this level that water resource decisions and the varying environmental stresses that affect 

hydrologic systems converge. 

Given that river systems are the major driver of available water resources, it is important to 

understand and quantify how future climate may influence streamflow. Climate variability and 

change may affect streamflow through one of two ways or both: 1) increases in temperature and 

2) changes in hydro-meteorological cycle (Barnett et al. 2005, Trenberth 2011). Temperature 

increase can result in a shift in precipitation forms (i.e., from snow to rain), runoff timing, and 

changes in streamflow seasonality (Barnett et al. 2005). In terms of hydro-meteorological 

processes such as precipitation and evapotranspiration, warmer climates generally intensify the 
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water cycle bringing about significant changes in precipitation extremes and consequently 

hydrologic alterations (e.g., increase in frequency and magnitude of floods) (Dai, 2013; Espinoza 

et al., 2018).    

Through previous studies, it has become clear that the Northeast United States has witnessed the 

strongest increase in extreme precipitation and temperatures among all US regions in the past 

five decades (Trenberth, 1999; Groisman et al., 2005; Allan & Soden, 2008; Hoerling, 2016, 

Easterling, 2017). Whereas most regions have seen relative increases in precipitation extremes 

ranging from 5% to 37% (e.g., Groisman et al., 2005), the U.S. Northeast has experienced a 

whopping 71 percent increase (e.g., Melillo et al., 2014; Horton et al., 2014; NCA, 2014b)). In 

the Fourth National Climate Assessment report (NCA, 2018), it is projected that Northeast will 

continue to experience further increases in rainfall intensity, with total precipitation increase 

expected during the winter and spring seasons (Thibeault and Seth, 2014). On the other hand, 

temperatures are projected to increase beyond preindustrial average by 2ºC (3.6ºF) by 2035 

under RCP4.5 and RCP8.5 scenarios. This is said to be the largest increase in the contiguous 

U.S. and is expected to occur as much as two decades before global average temperatures reach 

similar record (Karmalkar and Bradley, 2017). Under such climate conditions and given the 

largely varied physiographic characteristics of the Northeast, it is expected that the nature of 

climate vulnerabilities, impacts, and adaptation responses will be very unpredictable 

(Rosenzweig et al., 2011, Leichenko and Solecki, 2013), and spatially heterogeneous. More so, 

current water related infrastructure in the region while nearing the end of their planned life span 

(NCA, 2018), were not designed to cope with the projected wider variability in future climate 

conditions compared to climate records in the last hundred years. As a result, any climate related 

disruption would only worsen existing issues with the aging infrastructure, leading to 
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disproportionate effects on at-risk communities in the region. Moreover, assumption of 

stationarity in conventional hydrologic considerations during the design of these water resource 

structures (e.g., dams, bridges, roads, culverts, etc.) may no longer hold under future climate 

conditions. A more locally relevant climate impact assessment is therefore needed. This will help 

build the needed resilience and adaptation to possible climate impacts through incorporation of 

climate related risks in future water resource decision and planning process.  

The Passaic River Basin (PRB) of New Jersey, noted for its dense population with diverse land 

uses and many reservoirs, represent a suitable terrain to assess the impacts of climate variability 

and change on water resources. The major setbacks that have over the years challenged a 

research such as this to be conducted in the area have largely been surmounted because of the 

following:    

1) The challenge of the numerous regulated streamflows that rendered such study 

impossible in the basin has, largely, been addressed by the now available time series 

records of reconstructed streamflows from 1920—2010 occasioned by Hickman and 

McHugh (2018). 

2) Sufficiently high spatial resolution (4km x 4km) regional climate outputs based on the 

Multivariate Adaptive Constructed Analogs (MACA) downscaling technique are now 

available for the new sets of Coupled Model Inter-comparison Project Phase 5 

(CMIP5) experiments. This dataset also complements the already available gridded 

(4km) meteorological observations from Parameter-elevation Regressions on 

Independent Slopes Model (PRISM) at a resolution relevant for basin level water 

resource planning.  
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3) A state-of-the-science physically-based hydrological model that integrates both 

surface and subsurface processes has been acquired and will for the first time, be 

applied to the PRB. Consequently, the duly calibrated and verified model will be 

forced with scenarios of future climate projections over the basin. 

Thus under the overall objective of this dissertation, the specific goals are:  (1) to establish a 

temporal and spatially-varying actual ET model from readily available data over the Passaic 

River basin; (2) to detect and analyze hydro-climatic trends and examine catchment hydrologic 

response to climate variability and change in historic time; and (3) to assess the hydrological 

impacts of climate variability/change based on selected climate models and projections that 

capture the range of future conditions in the PRB. In line with the objectives, this study will 

address the following research questions:  

 How has the physiographic characteristics of the area influenced the spatial and temporal 

dynamics of actual evapotranspiration in the PRB? 

 From a hydrological modeling perspective, what mechanism likely drives observed 

hydro-climatic patterns in the PRB?  

  Will recent trends in precipitation and temperature change continue into the future, and 

if so, how will they alter water resource availability in the PRB? 

1.3. Summary of the Research Tasks 
The research questions raised in section 1.2. were addressed by carrying out the following 

research tasks: (1) identify key environmental controls on actual evapotranspiration and develop 

new sets of spatially varying empirical ET models over the twelve (12) months; (2) employ the 

advance wavelet transform tool to detect and analyze hydro-climatic trends and set up 

hydrological model to examine hydrologic response of recent climate changes using the 

Rockaway sub-catchment as case study; and (3) select appropriate regional climate models that 
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represent the range of future climate conditions and assess future climate impacts on the 

hydrology of the modelled Rockaway sub-basin.  

The above tasks have been carried out in the form of three independent research studies and 

presented in a research journal style format in three core chapters (Chapters 2, 3, and 4) in this 

dissertation. A brief summary of the three major research tasks and their main findings have been 

presented below:  

 

To identify key environmental controls on actual evapotranspiration and develop new sets of 

spatially varying empirical ET models over the twelve (12) months. 

Gridded datasets from Parameter-elevation Regressions on Independent Slopes Model (PRISM) 

(PRISM, Oregon State University, http://prism.oregonstate.edu), TerraClimate (Abatzoglou et 

al., 2018) (http://www.climatologylab.org/terraclimate.html), and Moderate Resolution Imaging 

Spectroradiometer (MODIS) LAI product (LAADS/DAAC, 

https://ladsweb.modaps.eosdis.nasa.gov/search/) provided environmental variables needed to 

develop the monthly ET models. Beyond the widely used traditional type regression that has the 

effect of producing ‘global’ parameter estimates, assumed to be uniform throughout a study area, 

we utilized a more localized spatially non-stationary technique — the geographically weighted 

regression (GWR) — to estimate mean monthly ET in the Passaic River Basin (PRB). Key 

environmental controls of ET have been identified and new sets of spatially varying empirical 

ET models based on variable combinations that produced the best-fit model have been 

developed. The analysis showed that temporal and spatial variabilities in ET over the PRB are 

driven by climatic and biophysical factors. It was found that the key controlling factors were 

different from month to month, with wind speed being dominant throughout the year in the study 

https://ladsweb.modaps.eosdis.nasa.gov/search/
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basin. Monthly mean ET index map was further generated from the model to illustrate areas 

where ET exceeds precipitation. 

 

To detect and analyze hydro-climatic trends and set up hydrological model to examine 

hydrologic response of recent climate changes using the Rockaway sub-catchment as case 

study. 

In a rather novel application using the wavelet transform tool, the frequently used Mann-Kendal 

trend test has been by-passed, and the hidden monotonic trends in the inherently noisy hydro-

climatic data has been identified. By this approach, the use of Mann Kendal trend test directly on 

the raw data whose results are almost always ambiguous and statistically insignificant in respect 

of precipitation data for instance, no longer pose a challenge to the reliability of trend results. 

The results showed that whereas trends in temperature and precipitation are increasing in the 

PRB, streamflow trends are decreasing. Based on results from the hydrological modelling, 

streamflow is more sensitive to actual ET than it is to precipitation. The general observation from 

climate elasticity results showed that in decades where water is available, energy limits actual 

evapotranspiration which makes streamflow more sensitive to precipitation increase. However, 

in meteorologically stressed or dry decades, water limits actual ET thereby making streamflow 

more sensitive to increases in actual evapotranspiration. It was found that the choice of baseline 

condition constitutes an important source of uncertainty in the sensitivities of streamflow to 

precipitation and evapotranspiration changes and should routinely be considered in any climate 

impact assessment.   
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To select appropriate regional climate models that represent the range of future climate 

conditions for the basin and assess future climate impacts on the hydrology of the modelled 

Rockaway sub-basin. 

Duly calibrated and verified hydrological modeling and advanced climate scenarios have been 

combined in a novel application in the Rockaway sub-catchment to assess impacts of climate 

change on water resource availability in the PRB. A priori analysis however involved the 

selection of subset models from the twenty (20) Multivariate Adaptive Construted Analog 

(MACA) models that characterized the change in temperature and precipitation according to 

LEAST WARM, HOT, DRY, and WET at mid-21st century (2041—2070) as well as a mild 

future that typifies the MIDDLE of the temperature and precipitation range. In all, nine (9) 

different models, relative to two baseline periods, and under two different climate scenarios were 

selected. Results showed that against the 2041—2070 period, the margin of error owing to the 

use of different baseline conditions were +/- 0.3 — +/-0.23 oC for temperature and +/-8.15— +/-

6.9% for precipitation, indicating the extent to which the time perspective used in climate change 

impacts assessment significantly affect outcomes. Across all five (5) climate projections, and the 

two scenarios, a consistent warming from +1.21 to + 4.70 oC is projected in the Rockaway 

catchment at mid-21st century relative to the 1981—2010 baseline period. While precipitation is 

generally projected to increase, streamflow prediction shows an overall decreasing signal, a trend 

likely induced by the projected increase in actual evapotranspiration. In terms of climate 

extremes, an increase in the number heavy rainy days of approximately 2 days is projected in the 

coldest future whiles an increase of about 4 days is expected in the wettest future. In similar vein, 

the number of days with consecutive dry spells is expected to decrease by approximately 2 days 

in the driest future whereas an increase of about 3 days is projected in the wettest future. Overall, 
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climate change is expected to fuel flooding and drought conditions in the study catchment, and to 

cause alterations in river flows which will in turn affect reservoir operations. With this advance 

knowledge at hand, swift mitigation and adaptation plans are therefore needed. 

1.4 Innovation 
Within the scope of this dissertation, key innovative work carried out is as follows:  

 Selected high resolution (4 km) regional climate scenarios coupled with state of the art 

physically based, distributed hydrological model run for climate change impact 

assessment was seldom performed before and is relatively new within the Passaic River 

Basin and its environs.  

 The modeling of environmental variables using conventional type regression technique 

has become one too many, clothe with an assumption of stationarity unbefitting of most 

environmental variable at the scale of the PRB. The use of a more localized approach—

the geographically weighted regression—which overcomes the long-held “global” 

estimates of environmental variables over an area, represents an ideal alternative, and has 

until this study never been applied before in the study terrain. Being the first of its kind in 

the study basin, actual ET has been successfully mapped to key controlling 

environmental variables in such a complex terrain, and demonstrates the superiority of 

the geographically weighted regression over the ordinary least square approach in 

modeling spatially-varying environmental relationships. 

  At long last, the frequently used Mann-Kendal (MK) trend test has been by-passed. The 

wavelet transform technique, commonly used in the field of signal processing but have 

found usefulness in hydrologic science, has been cleverly used in identifying the hidden 

monotonic trends in the almost always inherently noisy hydro-climatic data. By this 

approach, the use of MK test directly on raw data whose results are almost always 
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ambiguous and statistically insignificant in respect of precipitation data for instance, no 

longer pose a challenge to the reliability of trend results. This technique is also relatively 

new in the study basin and around, and has been successfully used in finding significant 

hydroclimatic trends in the PRB.  
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2.1. Abstract 
Actual evapotranspiration (ET) is perhaps the most difficult quantity to directly measure among 

the major water balance components. Because of the high cost and labor constraints associated 

with the direct measurement of ET, empirical data-driven modeling has frequently been used to 

estimate ET. Beyond the widely used traditional type regression that has the effect of producing 

‘global’ parameter estimates, assumed to be uniform throughout a study area, we utilized a more 

localized spatially non-stationary technique — the geographically weighted regression (GWR) 

— to estimate mean monthly ET in the Passaic River Basin (PRB). We identified the key 

environmental controls of ET and developed new sets of spatially varying empirical ET models 

based on variable combinations that produced the best-fit model. The analysis showed that 

temporal and spatial variabilities in ET over the PRB are driven by climatic and biophysical 

factors. We found that the key controlling factors were different from month to month, with wind 

speed being dominant throughout the year in the study basin. A monthly mean ET index map 

was further generated from the model to illustrate areas where ET exceeds precipitation. This 

https://doi.org/10.2166/wcc.2022.111
mailto:otengf1@montclair.edu
mailto:aloc@montclair.edu
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will among others enable water loss due to evapotranspiration to be accounted for in future water 

supply plans for the basin.    

Keywords: Evapotranspiration, Climate Change, Geographically Weighted Regression, Passaic 

River Basin, Water resources  

 

2.2. Introduction 
Actual evapotranspiration (hereafter referred to as ET), involving soil-water evaporation (E) and 

vegetation transpiration (T), plays an integral role in the transfer of water and energy within the 

hydrologic cycle (Gowda et al., 2007). It accounts for more than 60% of precipitation input on a 

global scale (Ma and Szilagyi, 2019), and about 50 —70% in the United States (Sun et al., 2002; 

Brooks et al., 2012). Apart from being used as index for climate change, location specific data on 

ET has practical significance in water resources management planning and monitoring of 

hydrologic systems (e.g. storage changes) in river basins (Verstraeten et al., 2008; Senay et al., 

2016). However, accurate quantification of this important variable at the watershed scale is often 

costly and time consuming (Gasca-Tucker et al., 2007), with underlying uncertainties due to the 

complex array of ET processes (Li et al., 2014), and data limitation. Because it occurs in the 

gaseous state, unlike precipitation and streamflow, ET is also the most difficult quantity to 

directly measure among the major water balance components.  

The literature is replete with different techniques of quantifying ET at various spatial and 

temporal scales. Generally, direct measurement of ET includes the lysimeter method, water 

balance approach, sapflow, eddy covariance (EC), Bowen Ratio methods, and stable isotope 

techniques (Lu et al., 2003; Williams et al., 2004; Liu et al., 2013; Sanford & Selnick, 2013; 

Gebler et al., 2015). While it is acknowledged that each method exhibits some inherent 
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limitations, the eddy covariance technique is by far the most accurate (Fang et al., 2016). It 

continuously measures site-level fluxes to generate data series at high temporal resolution. On 

the other hand, recent advances in optical remote sensing (RS) have also achieved sufficient 

accuracy in estimating ET and is widely used at large spatial scales (e.g. Zhang et al., 2016; 

Reitz et al., 2017; Chen and Liu, 2020; Ma and Zhang, 2022). In estimating ET, remote sensing 

models employ surface energy balance formulations to partition incident solar radiation into soil 

heat flux, sensible heat flux, and latent heat flux. At a relatively high spatial resolution (~4km) 

covering broader temporal record, ET has been estimated with the TerraClimate dataset 

(Abatzoglou et al., 2018). The water-balance based ET product from TerraClimate has received 

wide acceptance in the remote sensing community due to its demonstrated skill in capturing 

hydroclimatic variables across different regions (e.g. Hu and Hu, 2019; Salhi et al., 2019; Xu et 

al., 2019; Zhao and Gao, 2019;). It was developed by combining high-spatial resolution 

climatological normals of temperature and precipitation from the WorldClim dataset with time-

varying datasets from the Climate Research Unit data (CRU Ts4.0) and Japanese 55-year 

Reanalysis (JRA-55) (Abatzoglou et al., 2018). The performance of resulting RS—Water-

balance-based ET model products are often evaluated using EC flux observations (e.g. Ruhoff et 

al., 2013; Fang et al., 2016). However, Kalma et al. (2008), after reviewing 30 published 

validation studies underscored that more sophisticated physical and analytical methods do not 

necessarily perform better in estimating ET than empirical and statistical techniques.   

Because of the high cost and labor constraints associated with the direct measurement of ET (e.g. 

eddy covariance method), coupled with its limited coverage, empirical data-driven modeling has 

largely been used to estimate ET (e.g. Lu et al., 2003; Sanford & Selnick, 2013; Valipor, 2015; 

Fang et al., 2016). These studies cover multiple scales, use different data types, and address 
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various research questions. Data from such studies are typically drawn from specific 

geographical units where a single regression is estimated for ET based on a relationship between 

one or more controlling factors and a dependent variable. For example, Valipor (2015) used a 

linear regression technique to estimate evapotranspiration from eleven (11) temperature-based 

models in thirty-one (31) provinces of Iran and revealed that the best model for estimating 

evapotranspiration performed well (R2 values > 0.99) in only 11 out of the 31 provinces. While 

this traditional type of regression has seen wide utility, it has the effect of producing “average” 

or “global” parameter estimates which are always assumed to be uniform over the study area — 

an implicit assumption that has frequently been overlooked. This assumption is inherently 

deficient particularly when applied to environmental variables such as ET which are spatially 

non-stationary over a large area coverage. Fotheringham et al. (2003) noted that relationships 

which are not stationary, when applied in a conventional regression model, create problems for 

the interpretation of estimated parameters. As such, more localized approach (i.e. geographically 

weighted regression (GWR)), may be an ideal alternative. Geographically weighted regression 

belongs to the family of local statistics, comprised of multi-valued estimates as opposed to global 

statistics. As location changes, local statistics can take on different values. The strength of GWR 

lies in its ability to explain spatially varying relationships by essentially allowing model 

parameters to vary over space. Within a highly heterogeneous space, this type of regression will 

provide opportunity to make significant progress towards understanding and predicting patterns 

in response variables on the basis of influential environmental factors.   

One terrain inviting, and perhaps requiring a more localized regression (i.e. GWR) approach is 

the Passaic River Basin (PRB) (Figure 2.1). The PRB is a highly diverse and complex basin with 

substantial heterogeneity in land use, soils, geology, reservoirs, vegetation, slope, and 
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topography. It has been distinctly separated into three sections: The Highlands Area, the Central 

Basin, and the Lower Valley. Trending northeast—southwest in the basin is the mountainous 

heavily-forested Highlands, which is by far the largest, and well noted for its pristine and 

environmental integrity. The Central Basin is described as the hydrologic centerpiece of the PRB 

(USACE NY District, 1987), with its many wetlands serving as buffer to flood waters generated 

from the Highlands region. The Lower Valley, as opposed to the Highlands, is a densely-

populated, highly industrialized urban belt forming the eastern flank of the basin and features the 

tidal, saline lower reach of the Passaic River. In the New Jersey Water Supply Plan, 2017—2022 

(NJDEP,2017), there is the recognition that the biophysical arrangement within New Jersey’s 

five (5) water regions, including the PRB, represents a complex array of competing interests and 

issues in respect of water use and demand. Consequently, the amount of water loss due to 

evapotranspiration from reservoirs, vegetation, and soil, is unaccounted for in the water supply 

plan due to unavailability of reliable and complete data. Yet ET is considered as the primary 

determinant of available water resources. It is the water that would otherwise become streamflow 

if not released into the atmosphere; and this water loss constitutes on average 50 percent of the 

approximately 49-inches precipitation that occurs over the PRB (Newcomb, 2000).    

It is therefore crucial that in order to accurately assess water resources availability in the PRB, 

the factors that control the amount and timing of ET in the basin be fully explored, based on 

which ET can be modelled and reliably quantified. This has become even relevant at this time in 

light of the pressing need to predict future water stress and risks in the context of climate change 

(e.g. NJDEP, 2017). Given the widely diverse and heterogeneous character of the basin, it will be 

necessary to identify and analyze the role that internal (e.g. biophysical) characteristics and 
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external (e.g. climatic) conditions play in the spatial distribution of actual evapotranspiration 

within a spatiotemporal framework.  

In that regard, the objectives of this study are to: 1) use the classical ordinary least square (OLS) 

method to identify and determine the major internal (i.e. leaf area index (LAI), elevation) and 

external (i.e. mean temperature, precipitation, dew point, mean vapor pressure deficit (VPD), 

solar radiation, wind speed) controls on ET at monthly time scale; and 2) employ GWR to 

develop spatially varying mathematical models from readily available datasets that can be used 

to estimate monthly ET within the PRB. 

2.3. Materials and Methods 
2.3.1. Study Area  
The non-tidal Passaic River Basin is an oval-shaped area of about 2,135 square kilometers (824 

square miles), of which about 84 percent is located in New Jersey and the rest in New York State 

(Figure 2.1). The surface elevation in the basin ranges from below sea level at 0.2m (0.66ft) to 

454m (1490ft). As previously mentioned, physiographically, the basin is divided into three main 

regions: the series of parallel ridges that trend northeast/southwest forming the Highlands; the 

Central Basin, comprised of large areas of swamps and meadows; and the roughly flat Lower 

Valley.  

According to Paulson et al. (1991), New Jersey is located in a modified continental climate zone 

(i.e. with hot summer and cold winter). Five different climate zones have been identified: North, 

Central, Southwest, Pine Barrens, and Coastal zones, with PRB located within the North and 

Central zones. Temperatures in the North are about 10 ºF colder than the coastal zone with above 

90 ºF commonly observed within the Central zone during warm seasons. Annual precipitation 

typically ranges from 1016mm to 1321mm (40 to 52 inches), with peak values observed along 

the coast during summer and winter (Paulson et al., 1991). On average, approximately 1245mm 
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(49 inches) of precipitation occurs in the PRB annually (Newcomb, 2000). Of this, about 50 

percent is lost to the atmosphere through evapotranspiration, another 5 percent becomes surface 

runoff, and the remaining 45 percent becomes available as recharge to groundwater aquifers 

(Mitchell 1992 as cited in NJ Watershed Basins, n.d).  

Land use/ land cover patterns in the basin is dominated by forest type vegetation. According to 

the 2011 National Land Cover Dataset (NLCD) (https://www.mrlc.gov/viewer/), approximately 

43% of the area is forested; 36% developed; 14% Woody Wetlands; 3% open water and the 

remaining 4% comprising of other land cover types. Land use decisions in the basin continue to  

https://www.mrlc.gov/viewer/


27 
CLIMATE CHANGE IMPACTS ON WATER RESOURCE AVAILABILITY 

 

 

encourage flood events, with direct and indirect consequence on water resources (i.e. in terms of 

flow, water quality, and water quantity). Driven by socioeconomic and biophysical factors, many 

communities in the lower urbanized section of the basin are close to being built out. Meanwhile, 

Figure 2.1: Physiographic map of the Passaic River Basin 
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the Highlands region is currently undergoing suburban and rural development (NY Rapid 

Assessment Profile, 2011). Coupled with a historically unprecedented warming projected over 

New Jersey (State Climate Summaries, https://statesummaries.ncics.org/chapter/nj/), it is likely 

that climate and land use change will pose serious threat to the water supply systems in the basin. 

As climate change continues and is expected to accelerate the hydrological cycle, water resource 

availability and ecosystem services will be directly affected through alteration in 

evapotranspiration (ET) processes, and indirectly through vegetation water use. 

2.3.2. Environmental factors and data sources 
Gridded datasets from Parameter-elevation Regressions on Independent Slopes Model (PRISM, 

Oregon State University, http://prism.oregonstate.edu), TerraClimate (Abatzoglou et al., 2018) 

(http://www.climatologylab.org/terraclimate.html), and Moderate Resolution Imaging 

Spectroradiometer (MODIS) LAI product (LAADS/DAAC, 

https://ladsweb.modaps.eosdis.nasa.gov/search/) provided the environmental variables necessary 

to develop the ET models. PRISM has received wide acceptance because of its ability to 

reasonably reproduce weather patterns over areas with complex topography such as the study 

region, and serves as the official spatial climate data sets of the United States Department of 

Agriculture (USDA) (Daly et al., 2008). As actual observations of ET are not available for the 

basin, the water-balance based TerraClimate ET was used as a proxy. According to Abatzoglou 

et al. (2018), the accuracy of TerraClimate has been proven by its strong validation with station-

based observations from meteorological networks including the Global Historical Climate 

Network (GHCN), Snow Telemetry (SNOTEL), and Remote Automatic Weather Stations 

(RAWS). TerraClimate fields of annual reference evapotranspiration also tracked well with 

reference evapotranspiration from FLUXNET stations (Abatzoglou et al., 2018). In the 

assessment of water balance through different sources of precipitation and actual ET datasets, 

https://statesummaries.ncics.org/chapter/nj/
http://prism.oregonstate.edu/
http://www.climatologylab.org/terraclimate.html
https://ladsweb.modaps.eosdis.nasa.gov/search/
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Neto, et al. (2022) found that against other three sources, TerraClimate emerged as the most 

sensitive to variations in the spatial distribution of precipitation and actual ET variables. This 

demonstrated skill of the TerraClimate product in capturing both point and spatial observations is 

also corroborated by Soleimani-Motlagh et al. (2022), Wiwoho, & Astuti, (2022), and 

Lemenkova (2022), and therefore gives credence to its use as proxy in this study. 

On the other hand, biophysical variables suggested to sufficiently explain variability in ET 

included precipitation (ppt, mm), air temperature (temp, ºC), dew point (dewpt, ºC), solar 

radiation (srad, MJm-2), vapor pressure deficit (vpd, 100Pa), wind speed (ws, m/s), leaf area 

index (LAI), and surface elevation (elev, m) (Lu et al., 2003; Sanford and Selnick, 2013; Reitz et 

al., 2017). Table 2.1 provides details of data source, resolution, and time periods of each 

environmental variable. Further processing of the datasets was carried out using the raster 

calculator in ArcGIS 10.2.2 to compute mean monthly values. After converting each variable file 

from raster to feature class, a spatial join was performed to obtain attributes of all the 

environmental variables in a single layer. Rather than resampling which tends to compromise 

data values, a one-to-one join operation based on an intersect matching was used in the spatial 

join tool. This ensured that spatial relationship was still established between records of coarse 

versus finer resolution datasets. In the end, a single feature layer for each month containing 

attributes of all dependent and independent variables at 800m grid was prepared for further 

analysis in R (R, 2020).   

2.3.3. Regression diagnostics and evaluation   
Diagnosing a regression model involves using a class of techniques for detecting problems raised 

either by the model or the datasets that may compromise the predictive ability of the model. In 

arriving at an optimal model for predicting ET, environmental variables were assessed using: 1) 
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Pearson correlation metrics (r), 2) statistical significance, 3) Bayesian Information Criterion 

(BIC), 4) Mallow’s Cp, and 5) adjusted R-square (R2). The presence of multi-collinearity that 

reveals near-redundancy among explanatory variables were also explored. Although multi-

collinearity was detected, the exclusion or otherwise of explanatory variables from the model 

was guided by our understanding of the key processes that influenced the response variable (i.e. 

ET) as well as their statistical significance. Thus, because all variables were significant, and in 

order not to compromise the predictive ability of the model, we refrained from removing any 

variables just on the bases of multi-collinearity.    

Table 2.1: Environmental variables used in the study 

Data Abbrev. Spatial 

resolution 

Time frame Source 

Dependent variable  

ET 

 

4km 

 

1981 – 2010 

 

TerraClimate Actual evapotranspiration                                                                    

Independent variables  

ELEV 

LAI 

PPT 

TEMPmin 

TEMPmax 

DEWPT 

VPDmax 

VPDmin 

SRAD 

WS 

 

800m 

1km 

800m 

800m 

800m 

800m 

800m 

800m 

4km 

4km 

 

1981 – 2010 

2000 – 2010  

1981 – 2010  

1981 – 2010  

1981 – 2010  

1981 – 2010 

1981 – 2010 

1981 – 2010 

1981 – 2010 

1981 – 2010 

 

PRISM 

MODIS 

PRISM 

PRISM 

PRISM 

PRISM 

PRISM 

PRISM 

TerraClimate 

TerraClimate 

Elevation 

Leaf Area Index 

Precipitation 

Minimum temperature 

Maximum temperature 

Dew point 

Maximum vapor pressure deficit 

Minimum vapor pressure deficit 

Solar radiation 

Wind speed 
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Further diagnostic analysis such as Best Subsets regression technique was performed to provide 

a reasonable subset of variables to include in the model. Unlike other selection techniques such 

as the Stepwise, the Best Subsets approach models every possible combination of variables that 

exist. For this study, the ten (10) independent variables underwent this technique and the best 

significant model selected according to a reasonable adjusted r-square, a lower BIC, and a 

minimum Cp.  Note that underpinning our objectives was to identify the model with the 

minimum number of variables (i.e. not more than 5) that potentially provided an optimal model 

accuracy and whose variables are readily available from standard meteorological monitoring 

stations and regional remote sensing products.   

2.3.4. Regression modeling approach 
Classical regression modelling approaches such as OLS ride on the assumption that the statistical 

properties of variables (e.g. mean, standard deviation and covariance) are constant over space 

and time for a given area of interest. As such, parameter estimates of an OLS model is 

considered global. The downside to this is that important variations in the spatial pattern and 

relationship between independent and dependent variables are lost. The standard expression for 

spatially invariant OLS model is given as:  

𝑦𝑦𝑖𝑖 = 𝑏𝑏0 +  𝑏𝑏ℎ(𝑥𝑥𝑖𝑖ℎ) + ⋯+ 𝑏𝑏𝑛𝑛(𝑥𝑥𝑛𝑛) + 𝜀𝜀𝑖𝑖                                                                      Equation 2.1 

where 𝑦𝑦𝑖𝑖 represents a proxy ET variable, 𝑏𝑏0, the intercept and 𝑏𝑏ℎ—𝑏𝑏𝑛𝑛, the slope coefficients for 

the independent variables of interest 𝑥𝑥𝑖𝑖ℎ— 𝑥𝑥𝑛𝑛 respectively that control ET, and 𝜀𝜀𝑖𝑖 is the error 

term.  

In respect of environmental variables that are spatially dynamic, a better approach such as GWR 

was developed by Fortheringham et al. (2003). Their concept of GWR is based on Tobler’s first 

law in Geography (Tobler, 1970) which states that “everything is related to everything else, but 
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near things are more related than distant things”. Unlike the traditional OLS regression 

framework, GWR allows local rather than global parameters to be estimated for each of the 

predictor variables. So that equation 2.1 is rewritten as:  

𝑦𝑦𝑖𝑖 = 𝑏𝑏0(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) +  𝑏𝑏ℎ(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)𝑥𝑥𝑖𝑖ℎ + ⋯+ 𝑏𝑏𝑛𝑛(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)𝑥𝑥𝑛𝑛 + 𝜀𝜀𝑖𝑖                                          Equation 2.2 

where (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) are coordinate locations of the 𝑖𝑖 − 𝑡𝑡ℎ point in space; 𝑏𝑏ℎ(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) is the local 

regression coefficient for the ℎ − 𝑡𝑡ℎ independent variable of the  𝑖𝑖 − 𝑡𝑡ℎ point, 𝑥𝑥𝑖𝑖ℎ is the ℎ − 𝑡𝑡ℎ  

independent variable of the 𝑖𝑖 − 𝑡𝑡ℎ point, and 𝜀𝜀𝑖𝑖 is the error term of the 𝑖𝑖 − 𝑡𝑡ℎ point.  

Parameter estimates in a GWR model depend on a spatial weighting function and the selected 

bandwidth for model calibration. The weighting function determines the weight to assign to a 

local observation based on its closeness to a sample point. As formulated by Fortheringham et al. 

(2003), the local regression coefficients for the 𝑖𝑖 − 𝑡𝑡ℎ data point are estimated as:  

𝑏𝑏�(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) = [𝑋𝑋𝑇𝑇𝑊𝑊(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)𝑋𝑋]−1𝑋𝑋𝑇𝑇𝑊𝑊(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)𝑌𝑌                                                             Equation 2.3 

where 𝑋𝑋 is the matrices of independent variables, 𝑏𝑏� represents an estimate of 𝑏𝑏 in equation 2.2 

and 𝑊𝑊(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) is an 𝑛𝑛 × 𝑛𝑛 matrix (where 𝑛𝑛 is the sample size) whose off-diagonal elements are 

zero and whose diagonal elements represent the geographic weighting for each 𝑛𝑛 observed data 

around the 𝑖𝑖 − 𝑡𝑡ℎ data point, and 𝑌𝑌 is the vector of the dependent variable. 

Here, the weighting scheme, as expressed in equation 2.4 below is applied to all observations in 

a certain sliding neighborhood around each data point. The size of this sliding neighborhood is 

the bandwidth and it determines which nearby observation is to be considered when calibrating 

coefficient for a data point. Bandwidths can either be constant (fixed kernel) or variable 

(adaptive kernel) depending on the density of data points at a location. Bandwidths are smaller 
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where sample points are dense and larger at sparse locations (Fortheringham et al., 2003; Tu and 

Xia, 2008). A fixed bandwidth was chosen in this study because of the gridded structure of the 

datasets. Two schemes of weighting function can be used in calculation: Gaussian and the bi-

square. In this study, the Gaussian scheme, suited for modelling numerical rather than binary 

response variables, was chosen. It is expressed as: 

𝜔𝜔𝑖𝑖𝑖𝑖 = exp �
−𝑑𝑑𝑖𝑖𝑖𝑖

2

𝑏𝑏2
�                                                                                                            Equation 2.4 

where 𝜔𝜔𝑖𝑖𝑖𝑖 is the weight observation 𝑗𝑗 exerts at data point 𝑖𝑖, 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between 

observation 𝑖𝑖 and 𝑗𝑗 and 𝑏𝑏 is the kernel bandwidth. Weight rapidly approaches zero when the 

distant observations is greater than the kernel bandwidth (Tu and Xia, 2008). The optimal 

bandwidth was selected automatically with the spgwr R package based on the corrected Akaike 

information criterion (AICc).  

2.3.5. Evaluation of model performance 
Performance of the modelled actual ET was evaluated based on two approaches: 1) an external 

basin-scale validation, and 2) an internal metric-based validation. For the external validation, 

precipitation, discharge, and storage data were utilized to estimate basin-level water balance ET 

for comparison with geographically weighted ET (GW ET). Total annual precipitation was based 

on the gridded 4km PRISM dataset (Daly et al., 1994). Discharge data at the outlet of the study 

basin (i.e. Passaic River at Little Falls NJ, site 01389500) was obtained from the USGS water 

data website (USGS, https://waterdata.usgs.gov/nwis/), and change in storage from Gravity 

Recovery and Climate Experiment (GRACE) data (Watkins et al., 2015; Wiese et al., 2019). 

Specifically, we used version 2 RL06 0.5° × 0.5° grids processed by the National Aeronautics 

and Space Administration (NASA) Jet Propulsion Laboratory (JPL) 

https://waterdata.usgs.gov/
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(https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/). Constrained by the available time 

range of GRACE data as well as the end of our analysis period, we carried out our comparison 

for 2003—2010. The data were processed and aggregated into annual precipitation, annual 

discharge, and annual change in storage over the PRB to compute ET using the water balance 

equation (e.g. Ma and Szilagyi, 2019) below:  

WBET = P − (Q ± ∆S)                                                                                                Equation 2.5 

    where P, Q, and ∆S are annual basin precipitation, basin discharge, and change in storage, 

respectively. Because of the tendency of water balance not closing at monthly scale, we chose to 

do the validation over the annual scale although our model was developed on a monthly basis 

(e.g. Ma et al., 2021). Indeed, water balance-based ET (WBET) validation is not new. It has been 

used extensively to verify remote sensing-based ET at regional and watershed scales (e.g. Zhang 

et al., 2010; Senay et al., 2011; Velpuri et al., 2013; Senay et al., 2016, Ma et al., 2021). In their 

study, Senay et al. (2016) used WBET to validate Landsat8-based ET estimates. 

For the internal variable evaluation, three metrics were used to assess the performance of the 

geographically-weighted ET model. They are: 

 The local coefficient of determination (local R2), which denotes how much the model 

explained the variability in the independent variables. 

 The prediction error (PE), which expresses the difference between Terraclimate ET 

and modelled geographically-weighted ET. 

 The corrected Akaike Information Criterion (AICc), which estimates the quality of 

models relative to each other for a given set of data.  

https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/
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2.4. Results and Discussion  
2.4.1. Model comparison analysis 
Comparison of annual water balance-based ET (WBET) with aggregated annual geographically 

weighted modelled ET (GWET) is depicted in Figure 2.2, Table 2.2. GWET compared 

reasonably well with the WBET over the basin for the 2003—2010 validation period. The 

calculated water balance ET was, however slightly pronounced as against the modelled ET with 

a mean bias of approximately 11 percent. This could be attributed to the numerous open water 

bodies within the basin. The runoff — rainfall coefficients (Q/P) of less than 0.55 in Table 2.2 

are indicative of water balance closure.  Velpuri et al. (2013) found that, coefficients more than 

0.55 suggest dominant regional groundwater flows, and such conditions could introduce errors in 

the water balance computation thereby affecting closure. Similarly, computations should not 

result in negative water balance (where combined (Q+S)>P) (Table 2.2). 

Figure 2.2: Comparison of the annual (2003—2010) geographically weighted modelled ET with 
ET water balance-based ET in the PRB 
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Table 2.2: Comparison of water balance-based ET with modelled Geographically weighted ET 

Year Precip Discharge 

Grace 

Storage Q/P (Q+S)>P WB ET GW ET 

2003 1645.21 697.50 7.07 0.42 704.57 940.64 757.66 

2004 1366.83 455.57 -1.73 0.33 453.84 913.00 796.89 

2005 1343.87 531.78 0.79 0.40 532.58 811.30 780.92 

2006 1392.75 531.44 0.91 0.38 532.36 860.39 815.67 

2007 1383.73 432.44 -2.56 0.31 429.88 953.85 798.63 

2008 1344.85 477.88 2.31 0.36 480.19 864.66 768.27 

2009 1281.54 403.08 -0.28 0.31 402.80 878.74 809.98 

2010 1327.27 491.78 -2.14 0.37 489.64 837.63 770.69 

 

Over the entire PRB, the geographically weighted regression model successfully predicted the 

magnitude and seasonal ET patterns derived from the observed environmental variables (i.e. 

PPT, TEMP, DEWPT, SRAD. VPD, WS, LAI, ELEV).  Figures 2.3 and 2.4 respectively 

illustrate ET from TerraClimate data and that predicted by the GW regression model over the 

PRB. Their close semblance demonstrates the clear spatial and seasonal patterns featured in the 

area. For approximately 95 percent of the basin’s area, the GWR model explained between 52—

100 percent of the variations in monthly ET (Figure 2.5; Table 2.3). The local coefficient of 

determination (local R2) were all statistically significant at p-value < 0.001. These results 

showed the robustness and reliability of the geographically weighted ET model. There were, 

however, few locations in the area that showed somewhat large differences between the 

predicted and TerraClimate ET values. These were especially observed in the months of 

December, February, and March where predicted ET was either lower or higher than the 
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TerraClimate ET. Overall, the geographically weighted ET model was a good predictor when 

absolute PE values were less than 0.5 (Figure 2.6; Table 2.3).  

Table 2.4 shows how the geographically weighted ET model compares with that of the 

traditional ordinary least square model in terms of their Akaike Information Criterion (AIC) 

(Akaike, 1974). The AIC determines which model performs best in associating explanatory 

variables to the dependent variable. A model with smaller AIC value is considered better as it is 

more likely to minimize information loss in contrast to the ‘true’ model that generates the 

observation data (Burnham and Anderson, 2002). The smaller AIC values obtained by the 

geographically weighted ET model in this study further corroborates the point that spatially non-

stationary local models are an ideal alternative to the global ordinary least square models when 

explaining spatially varying relationships over large scale.    
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Table 2.3: Summary of monthly local coefficient and prediction error from the GWR ET model 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
      Local coefficient of determination     
Minimum 0.374 -0.156 0.215 0.074 -0.122 -0.339 0.089 -0.169 0.275 -2.372 -1.590 -0.351 
1st quantile 0.809 0.729 0.717 0.739 0.715 0.662 0.669 0.709 0.767 0.694 0.759 0.770 
Median 0.883 0.858 0.815 0.815 0.846 0.824 0.791 0.864 0.822 0.879 0.911 0.880 
Mean 0.867 0.820 0.793 0.801 0.808 0.778 0.776 0.813 0.810 0.805 0.851 0.846 
Standard 
Deviation 0.098 0.148 0.124 0.113 0.157 0.180 0.141 0.171 0.100 0.225 0.162 0.143 
3rd quantile 0.947 0.941 0.883 0.883 0.936 0.926 0.900 0.954 0.879 0.966 0.973 0.960 
Maximum 1.000 1.000 0.996 0.998 0.999 1.000 0.999 1.000 0.983 1.000 1.000 1.000 
      Prediction error         
Minimum -0.980 -1.443 -4.550 -1.021 -1.622 -1.087 -1.654 -0.651 -1.959 -1.069 -1.161 -1.444 
1st quantile -0.031 -0.050 -0.235 -0.090 -0.043 -0.028 -0.058 -0.023 -0.094 -0.024 -0.031 -0.042 
Median 0.000 0.000 0.001 -0.001 -0.001 0.000 -0.001 0.000 -0.002 0.000 0.000 0.000 
Mean -0.001 0.000 0.008 0.004 0.000 0.000 0.002 0.000 0.000 -0.001 0.001 -0.002 
Standard 
Deviation 0.112 0.148 0.803 0.220 0.205 0.121 0.203 0.087 0.238 0.124 0.154 0.224 
3rd quantile 0.034 0.044 0.223 0.093 0.041 0.027 0.056 0.022 0.092 0.020 0.032 0.044 
Maximum 0.903 1.715 6.410 1.376 2.329 1.134 2.117 0.614 1.646 1.367 1.495 1.768 
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Figure 2.3: Monthly actual evapotranspiration (mm/month) maps of the Passaic River Basin 
from the TerraClimate dataset 



40 
CLIMATE CHANGE IMPACTS ON WATER RESOURCE AVAILABILITY 

 

 

Figure 2.4: Modelled monthly actual evapotranspiration (mm/month) maps of the Passaic River 
Basin from Geographically Weighted Regression 

 

Potential sources of uncertainty associated with the modeled ET can be linked to the 

corresponding uncertainties inherent in the TerraClimate data, remote sensing LAI data from 

MODIS, and other meteorological data from PRISM. For instance, any existing noise or errors in 

the MODIS LAI product will be propagated in the ET mathematical model. Additionally, 

relatively coarse grid cells from the MODIS LAI (1km) as well as TerraClimate data (4km) were 

applied to an 800m grid for the study basin to derive the ET model. At such smaller resolution, 

the MODIS LAI, for instance, may not sufficiently capture sub-grid scale vegetation signals in 

the basin, especially where the topography and land cover are highly complex and spatially 

heterogeneous, and thus introduce some errors in the model. Likewise, the coarse grid size of the 

radiative and aerodynamic variables obtained from the TerraClimate products may present some 

degree of errors to the derived ET model. In the course of our analysis, it was observed that the 
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accuracy of ET estimates was largely dependent on the meteorological datasets. For the most 

part, these datasets, obtained from PRISM at a resolution of 800m, guaranteed a reasonably 

accurate ET model.   

 

Figure 2.5: Map of local coefficient of determination for GWR over the PRB 
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Figure 2.6: Map of residual error for GWR over the PRB 
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Table 2.4: Monthly comparison of Akaike Information Criterion of ordinary least square and 
geographically weighted regression models 

  

 OLS AICc GW AICc 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oct 

Nov 

Dec 

4507 

8642 

14829 

6920 

7982 

5849 

8172 

3504 

7629 

6269 

5991 

9088 

-898 

2490 

10490 

1545 

1495 

-1217 

1307 

-4059 

2082 

-1212 

-38 

2776 

 

2.4.2. Spatiotemporal patterns of ET in the Passaic River Basin 
The geographically-weighted ET model was carried out over the diverse physiographical and 

biophysical terrain of the PRB from 1981—2010 at 800 ×  800𝑚𝑚 grid resolution. Based on the 

ET maps (Figures 2.2 and 2.3), there is evidence of sharp basin-wide variation and longitudinal 

gradients of ET, with lower values trending from northwest to higher values in the southeast. 

Generally, the ET patterns reflect the climatic conditions at the time and varies depending upon 

land use/land cover type, topography, and availability of water. Lower values are typically 

observed in the north climate zone where the temperatures are relatively low, with high 

topographic relief and largely forested vegetation cover. Mean annual ET value of about 

748mm/year is estimated in the upper mountainous region. In contrast, the high ET values are 

seen in the central climate zone where temperatures are intermediate to high, and in highly 
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developed urban communities. Estimated mean annual ET is approximately 793mm/year. 

Although some uncertainties are present and methodologies may differ, the magnitude and 

spatial patterns of the estimated ET rates over the PRB are consistent with other investigations in 

the vicinity (e.g. Sumner et al., 2012).  

Mean monthly ET rates over the basin from 1981—2010, based on the TerraClimate as well as 

the GW-modelled ET show distinct seasonal fluctuations (Figures 2.2 and 2.3). The temporal 

patterns of ET and their spatial variability reflect the controlling effects of prevailing climatic 

conditions as well as the vegetation distribution. In order of magnitude, ET rates in the PRB are 

generally greater in the summer months (Jun-Jul-Aug), followed by spring (Mar-Apr-May), fall 

 

 (Sep-Oct-Nov), and winter months (Dec-Jan-Feb). In the summer months, particularly July, the 

lower southeast half of the basin shows significantly high ET values because of relatively warm 

temperature and high radiation (Figure 2.7).  

Figure 2.7: Mean monthly spatial ET rates in the lower and upper halves of the PRB 
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In contrast, low ET rates are observed in the largely forested upper northwest half because of 

precipitation deficit. Although vegetation and water bodies typically dominate the upper half, the 

winter months show significantly low ET values as a result of relatively low mountainous 

temperatures and sparse deciduous vegetation. Following the trajectory of ET rates in Figure 2.7 

[monthly time series], it can be seen that ET values in all the months are higher in the lower SE 

half than the upper NW portion of the basin. The lowest mean ET values are observed in January 

(Lower SE: 5.65mm; Upper NW: 2.53mm) and the highest values in July (Lower SE: 118mm; 

Upper NW: 115mm).  

2.4.3 Dominant controls on monthly ET 
Pearson correlation coefficient values show that elevation correlates strongly with ET across all 

seasons (Table 2.5). This is followed by energy inputs (DEWPT>TMAX>TMIN>SRAD), 

aerodynamic input (i.e. WS), atmospheric demand (VPD_MAX>VPD_MIN), vegetation 

biomass (i.e. LAI), and water input (i.e. PPT) in that order. After elevation, the two most 

important drivers on monthly ET were DEWPT and TMIN in the winter and spring, DEWPT and 

TMAX in the summer, and SRAD and TMAX in the fall. Interestingly, the strength of the 

correlation of explanatory variables with ET is relatively weak in the summer (i.e. <0.5) across 

the study basin, although these variables are, to a large extent, strongly correlated among 

themselves. It was also noted that PPT correlated negatively with ET in all seasons except in the 

summer, suggesting that water was not available to meet evaporative demand.  

The Best Subset regression technique afforded the opportunity to select at most five (5) out of 

the ten (10) variable combinations that produced the best-fit ET model for each month. As 

represented in Table 2.6, the estimated coefficients from OLS regression revealed the most 

influential variables that control monthly ET. For example, four (4) variables (WS, TMAX, LAI, 
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and ELEV) explained 93% of the variability in ET in November. Wind speed (WS) shows a 

strong positive influence on ET followed by TMAX, LAI and ELEV in that order. Indeed, WS 

appears to be the most dominant ET controlling factor throughout the year, appearing in 10 out 

of the 12 months. Quite notably, details of the relatively weak correlation observed between 

environmental variables and ET in the summer is revealed clearly in the month of June. While it 

may appear that only 39% of the variability in ET has been explained by the 5 variables, it is 

worth pointing out that all the 10 variables included in the model could only explain 

approximately 41% of variability in ET for June. This counters what may be construed as the 

model’s inability to predict ET in the summer. It clearly indicates that the model is quite robust 

and largely represents the key processes that strongly influence monthly ET in the study basin. 

More so, corresponding Mallow’s Cp and BIC were relatively low compared to other model sets. 

Lower Cp and BIC are indicative of relatively precise and best model respectively. Thus, the 

surprisingly large unexplained variance in the relationship for June may be attributed to some 

inherent data error propagated from the source data.   
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Table 2.5: Pearson correlation coefficient between ET and independent environmental variables 
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Table 2.6: Best fit ET models according to key monthly environmental variables controlling ET 

                            Significant codes (p-values):  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’  1 
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2.4.4. Geographically weighted monthly ET models 
Based on the intercept and coefficient values, a mathematical expression of the different sets of 

key independent variables controlling monthly ET could be formulated from Table 2.6. 

However, such an expression will only result in a basin-wide average value of ET, concealing 

the complex nuances of the spatially varying environmental factors that influence monthly ET in 

the basin.  

A new set of mathematical models derived for monthly ET according to the GW regression 

analysis is presented in Table 2.7. Rather than the single, fixed value applied uniformly over 

space by the OLS technique, the GW regression model provides a range of values of intercepts 

and coefficients that reflects the local variations in environmental variables as they relate with 

ET in space (Table 2.7). By this, ET has been spatially mapped to key environmental variables 

across the PRB for each month, depicting the range of values in both intercept and coefficient. 

This will provide a reasonable first approximation of evapotranspiration rates and its spatial 

distribution to aid in the quantification of ET for water resource planning and decision making to 

serve communities in the largely diverse PRB. 

To avoid being redundant, we only show, in Figure 2.8, the spatial map of results relating to 

April as revealed in the geographically weighted ET model. Tabular data for each month that 

includes coordinates locations can be provided upon request. A visual distribution of the 

coefficients of respective variables for selected months are also presented in Figure 2.9. Unlike 

the OLS model, the results of the GWR technique indicates a major degree of spatial and 

temporal variation in the relationship between ET and predictor variables in the study basin. As 

shown in Figure 2.8, the influence of wind speed on ET is both positive and negative. For the 

most part, the lower section of the basin showed a more dominant positive effect on ET whereas 
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portions of the upper part showed a negative effect. Positive coefficient at the lower section is 

intuitive, given its location near the Atlantic Ocean where wind speed is high. The rate of 

evapotranspiration would typically be greater in very windy areas. The mostly negative 

coefficient observed in the upper Highlands region is a reflection of the largely forested 

vegetation in the area, and suggests that at a reduced wind speed, ET decreases. Although 

elevation and maximum temperature feature as key variables in the area, their relatively low 

coefficients suggest that, unlike wind speed, they are less influential in driving mean long-term 

ET in the month of April. Thus, unlike the OLS approach, the changing pattern in coefficients 

for each controlling factor is clearly depicted by the GWR analysis (Figures 2.8 and 2.9).   
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Table 2.7: Monthly GWR ET models for the PRB using best-fit environmental variables 
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Figure 2.8: Spatial distribution of intercept and coefficients [ws (m/s), tmax (oC), elev (m)] of 
key environmental variables predicting ET in April over the PRB 
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Our results generally support the well-known notion that long term mean ET for a region is 

controlled by precipitation and potential evapotranspiration (Budyko, 1947). However, it appears 

that ET is insensitive to precipitation for the most part of the year in the study basin. While this 

could indicate that the PRB is rarely under water stress, the summer months may be an exception 

(see Table 2.6). Although our analyses reveal that wind speed is the main driving force behind 

long term mean monthly ET, precipitation, appears to be the limiting factor in the summer, 

particularly the month of June. Overall, a combination biophysical and climatic factors 

contributes to long term ET on a monthly scale. More importantly, the spatial heterogeneity that 

Figure 2.9: Violin plot distribution of the coefficients of key environments variables predicting ET 
for selected months in the PRB 
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characterize the PRB brings to bare the complex challenge in appropriately quantifying ET. 

However, this has been made possible because of the geographically weighted regression 

technique adopted in this study. Flowing from our results, a monthly ET index (i.e. ET/PPT) was 

reproduced to show how much of precipitation is lost to evapotranspiration across the PRB 

(Figure 2.10).     

 

Figure 2.10: Monthly ET index (%) map over the Passaic River Basin based on GWR 

 

While the GWR technique can be more appropriate than the global regression approaches, it is 

not without concerns. There are concerns raised over issues such as kernel and bandwidth 

selection including those shared with conventional regression techniques. However, the key issue 

here is that the local variation in the relationship between significant predictor variables and ET 

would have gone unnoticed in the commonly used global, OLS method. The monthly ET model 
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outputs generated by the GW regression analysis offer new insights into the key external and 

internal controls on ET. Within the Passaic River Basin, these models can assist in effectively 

quantifying ET under typical climatic conditions and to a large extent, accurately estimate mean 

monthly ET at similar locations. Practical models such as this have been widely used to estimate 

ET given the huge cost involved in measuring ET on large temporal and spatial scales (Sun et al., 

2011 a,b). Here, we have established a reasonably accurate non-stationary monthly ET model 

that uses readily available input data over the PRB.   

2.5. Conclusions 
The 30-year continuous ET and other gridded hydroclimatic and biophysical observations from 

PRISM/TerraClimate/MODIS provided the means to carefully examine and identify the key 

environmental variables controlling ET at a fine temporal (i.e. monthly) and spatial (i.e. 800m 

grid resolution) scale. From this, the best subset variables for each month were used to develop 

twelve (12) empirical geographically weighted ET models that will potentially estimate monthly 

ET over the Passaic River Basin with reasonable accuracy under mean climate conditions. These 

variables are readily available from any standard meteorological monitoring stations and regional 

remote sensing products. Key conclusions from our analyses may be summarized as follows: 

 

1) Temporal and spatial variabilities in mean monthly ET over the PRB are significantly 

controlled by climatic (i.e. TEMP, WS, DEWPT, VPD, PPT) and biophysical (i.e. 

LAI, ELEV) drivers. The analysis revealed that key controlling factors may be 

different from month to month, with wind speed taking dominance throughout the 

year in the study basin. Precipitation, while appearing insignificant in the course of 

the year, appears to be a limiting factor in the summer months.   
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2) The ability to successfully map ET to key environmental variables in such a complex 

terrain in this study demonstrates the superiority of the geographically weighted 

regression over the ordinary least square approach in modeling spatially varying 

environmental relationships. Given the usually unquestioned limitation of the OLS 

technique, one further refinement that could be included in studies concerned with 

spatial analyses should be the use of a more appropriate localized (i.e. geographically 

weighted) method when attempting to explain spatial relationships. 

3) Modeled spatially varying monthly ET developed from this study offer convenient 

and cost effective means to empirically estimate monthly water loss from similar 

ecosystems. The ET index map generated for the PRB illustrates areas where ET 

exceeds precipitation especially in the summer months, and hence useful for water 

resource planning and decision making by water managers in the basin. Moreover, 

reliable quantification of ET has been made possible in the study basin. As such, the 

amount of water loss due to evapotranspiration can be accounted for in future water 

supply plans for the basin.  

It is hoped that this work, being the first of its kind in the study basin to the best of our 

knowledge, will form the foundation for future climate impact studies in the basin and in the 

region at large. 
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CHAPTER 3 : HYDRO-CLIMATIC TRENDS AND STREAMFLOW RESPONSE TO 
RECENT CLIMATE CHANGE: AN APPLICATION OF DISCRETE WAVELET 

TRANSFORM AND HYDROLOGICAL MODELING IN THE PASSAIC RIVER BASIN 

3.1. Abstract 
The exigency of the current climate crisis demands a more comprehensive approach to 

addressing location-specific climate impacts. In the Passaic River Basin (PRB), two bodies of 

research—hydroclimatic trend detection and hydrological modeling—have been conducted with 

the aim of revealing the basin’s hydro-climate patterns as well as the hydrologic response to 

recent climate change. In a rather novel application of the wavelet transform tool, we sidelined 

the frequently used Mann-Kendal (MK) trend test, to identify the hidden monotonic trends in the 

inherently noisy hydro-climatic data. By this approach, the use of MK trend test directly on the 

raw data whose results are almost always ambiguous and statistically insignificant in respect of 

precipitation data for instance, no longer pose a challenge to the reliability of trend results. Our 

results showed that, whereas trends in temperature and precipitation are increasing in the PRB, 

streamflow trends are decreasing. Based on results from the hydrological modeling, streamflow 

is more sensitive to actual evapotranspiration (ET) than it is to precipitation. Generally, for 

decades where water is available, energy limits actual evapotranspiration which makes 

streamflow more sensitive to precipitation increase. However, in meteorologically stressed or dry 

decades, water limits actual ET thereby making streamflow more sensitive to increases in actual 

evapotranspiration. We found that the choice of baseline condition constitutes an important 

source of uncertainty in the sensitivities of streamflow to precipitation and evapotranspiration 

changes and should routinely be considered in any climate impact assessment.   

3.2. Introduction 
Global climate change is expected to accelerate the global hydrologic cycle, which will drive 

more intense floods and droughts leading to changes in streamflow and water resource 
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availability. An alteration of the discharge regime of rivers (Huntington, 2006) is usually the 

ultimate consequence. In the past decades, empirical evidence of warming-driven intensification 

of the hydrologic cycle has led to an increasing interest in the linkage of climatic variability or 

change to hydrological processes across space and time (Fan and He, 2015). More often than not, 

the literature is either rich on the detection and analysis of hydro-climatic trends (e.g. Hu et al., 

2011; Tekleab et al., 2013; Chen and Georgakakos, 2014; Ahmad et al., 2015; Chattopadhyay 

and Edwards, 2016; Mahmood et al., 2019; Qian et al., 2020) or hydrological modeling studies ( 

e.g. Chattopadhyay et al., 2017; Marvel et al., 2021, Ziervogel et al., 2014, Roudier et al., 2014, 

Ding et al., 2021; Leng et al., 2015, Saintilan et al., 2019; Lansbury & Crosby, 2022, Schnorbus 

et al., 2014; Shrestha et al., 2017 [Canada], Nolan et al., 2017 , Pastén-Zapata et al., 2020) 

without considering both. At a time when the global warming problem has evolved into a crisis 

(Sanson et al., 2019; Ojala et al., 2021), it is important that hydrological impact assessments be 

carried out from a holistic standpoint. Although the analysis and detection of trends can provide 

useful insights in terms of a general estimate of the direction and changes in magnitudes of 

hydro-meteorological series, they lack the ability to predict unprecedented future conditions. 

Process-based models, although are only capable of representing processes to the scope that they 

are quantitatively understood, can provide a robust framework for assessing hydrological 

response to climate change (Campbell et al., 2011). More so, because the direction and extent of 

changes in river flows are dependent on the relative balance between precipitation and the 

processes that govern evapotranspiration (Campbell et al., 2011), the causes of discharge 

changes—which oftentimes seem controversial (Do et al., 2017; Sharma et al., 2018), can 

effectively be examined from a hydrological modeling standpoint.  
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In studies that emphasize on the detection and analysis of hydro-climatic trends (e.g. Sharma et 

al. 2016; Meng et al. 2016; Suhaila, and Yusop, 2018; Citakoglu, and Minarecioglu, 2021), one 

statistical tool that is commonly used is the non-parametric Mann-Kendall (MK) test and its 

modified forms. The MK trend test identifies changes in hydroclimatic series by simply fitting a 

monotonic (e.g. linear) trend at a certain time period where a significant level is assigned by a 

statistical test. While the robustness of this test is not in doubt, its application to hydroclimatic 

time series can be particularly challenging due to the non-monotonic and non-uniform character 

of hydroclimatic variables. Fitichi et al. (2009) noted that, because the stochastic structure of 

time series data has the tendency to assume trend-like features, analyzing trends in non-

stationary time series can cause a purely stochastic behavior to appear deterministic, leading to a 

likely erroneous interpretation of results. Furthermore, because climatic phenomena and events 

(e.g. precipitation, hurricanes) are products of various complex atmospheric processes (Lutgens 

& Tarbuck, 2010), the presence of noise is inevitable and this can affect the variability and trend 

in the data series. In hydro-climatic times series where non-monotonicity is more the rule rather 

than the exception (Dixon et al., 2006; Gong et al., 2010), identifying the hidden monotonic 

trend and assessing their statistical significance subsequently provide more reliable results than 

those derived from the direct trend analysis of the raw data (Araghi et al., 2015).  

Because the structure of hydro-climatic data is often hidden behind the noise, a precise 

mathematical operation that looks at the data through the noise and quantifies the structure 

present in the signal is needed. One such tool is the wavelet transform (WT). WT is a relatively 

recent development in the field of signal processing (Hernández and Weiss, 1996; Kirchgässner 

et al., 2012), and has, in recent times, emerged as an effective tool to analyze trends in hydro-

climatic series especially in the atmospheric and hydrological science space [Shiri and Kisi, 
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2010; Adamowski and Chan, 2011; Wang and Li, 2011; Nalley et al., 2012). It can be thought of 

as a ‘mathematical microscope’ with the ability to zoom in and out of the signal (or time series) 

to pull out the patterns. In its application, a signal or time series data is decomposed into their 

low-frequency components and high-frequency components. The different decomposition levels, 

representing different periodic time scales are subsequently analyzed for trends. The last 

decomposition level, which contains the lowest frequency component usually represents the 

trend component of the time series. Thus among the methods presently used in analyzing time 

series data, the wavelet approach has the superior ability to handle the non-stationary 

characteristics of hydro-climatic time series on multiple temporal resolutions (Labat, 2005), 

making it well suited for identifying trends over a long period of time. 

In light of understanding and quantifying the hydrological impacts of climate variability/change, 

different approaches (i.e. conceptual methods, analytical, experimental, and hydrological 

modeling) have been used. Among these, process-based hydrological models provide a means to 

examine the physical mechanisms and processes that drive hydrological changes and variations. 

Their primary purpose is to partition precipitation into evapotranspiration and streamflow. They 

must however be thoroughly evaluated against field observations that sufficiently represent the 

region and timeframe of interest (Gardner and Urban, 2003; Kucharik et al., 2006). By applying 

a rigorously calibrated and validated physically-based hydrological model, MIKE SHE, to the 

Rockaway catchment — a sub-basin of the Passaic River Basin (PRB) in New Jersey, USA, we 

explored the mechanisms underpinning streamflow changes through the examination of MIKE 

SHE simulated water balance terms under various climate scenarios.  

Thus the novelty of this study lies in the application of advanced trend analysis tool with a 

physically-based hydrological model that simulates both surface and subsurface flows in the land 
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phase of the hydrological cycle. This combination will provide important clues on the key 

underlying variables behind the trend as well as insights into how hydroclimatic patterns may 

change into the future.  

In the PRB (Passaic River Basin) and its surrounding areas, the lingering effects of a troubled 

history of improper environmental practices from the industrial boom continue to be 

experienced. According to Brydon (1974), the Passaic River played a central role in the early 

development of New Jersey. In the late 18th century, the river served as navigable routes 

connected by a system of canals to the Delaware River. It was also an early source of 

hydroelectric power at the Great Falls in Paterson, making the region a focal point for industrial 

mills. Consequently, the lower Passaic suffered the significant burden of environmental pollution 

from years of industrialization in the area. By 1970, issues with flooding were already noticeable 

due to the dams, and they still plague the inhabitants of the basin to this day. The complex river 

systems amidst the heterogeneous biophysical arrangement within the basin further present a 

multifaceted mix of competing interests and water related issues. In a region where projected 

temperature increases (Karmalkar and Bradley 2017, NCA 2018) — amidst the already existing 

issues — are expected to enhance evapotranspiration and snowpack loss (Campbell et al., 2010, 

2011), the concomitant effect on streamflow can be far reaching. It is in this light that we carry 

out two bodies of research — hydro-climatic trend detection and hydrological modelling 

studies—, with the aim to provide important foundations for the predictive understanding of 

impacts of climate change on water resources in the PRB and its vicinity. 

To this end, the present study employs a two-fold objective: 1) To detect changes in hydro-

meteorological trends in the PRB for the period 1979 — 2021; and 2) To examine the response 

and sensitivities of hydrologic systems to climate phenomenon in the Rockaway River basin, a 
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sub-catchment of the PRB. The discrete wavelet transform and Mann-Kendal test are applied in 

the hydro-climatic trend analysis whereas hydrological modeling approach coupled with 

sensitivity analysis are used in assessing the implications of recent climate change in the PRB. 

Specifically, the Ringwood, Rockaway, and Upper Passaic catchments of the PRB were selected 

for the hydro-meteorological trend analysis because of their physio-graphically distinct locations. 

The hydrological modeling was, however, conducted for only the Rockaway sub-basin given its 

relatively large size and available groundwater data.  

The remaining part of the paper is organized as follows. Section 3.3 describes the study area and 

data source. Section 3.4 details the methodology used which includes the discrete wavelet 

transform, hydrological model evaluation, and hydrologic impacts assessment. Results of the 

trend analysis and hydrological model performance, and model assessment are presented under 

results and discussion in section 3.5 followed by the conclusion in section 3.6.  

3.3. Study Area and Data Source 
3.3.1. Study area 
The non-tidal portion of the Passaic River basin (PRB) is elliptical in shape, draining 

approximately 2135 square kilometers of Northern New Jersey (NJ) and Southern New York 

State (NY). It is bounded by longitude 74º1ʹ1ʺ and 74º39ʹ16ʺW and latitude 40º35ʹ23ʺ and 

41º23ʹ37ʺ N, intersecting six (6) counties in NJ, two (2) in NY. The entire basin stretches across 

three (3) Watershed Management Areas (WMA-03-04-06) with seven major tributaries: 

Whippany River, Rockaway River, Pompton River, Pequannock River, Wanaque River, Ramapo 

River, and Saddle River. Physio-graphically, the basin can be divided into three main regions: 

the series of parallel ridges that trend northeast/southwest forming the Highlands; the Central 

Basin, comprised of large areas of swamps and meadows; and the roughly flat Lower Valley. 

Winding through seven counties and 45 municipalities, the Passaic river originates from near the 
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Borough of Mendham (Morris County), and finally empties into the Newark Bay. The non-tidal 

part of the river is regulated by 10 major reservoirs (Canister, Greenwood lake, Clinton, Oak 

Ridge, Charlotte-burg, Echo lake, Split Rock, Monksville, Wanaque, and Boonton) to provide 

flood control, water supply among others to surrounding municipalities. Aggregated reservoir 

storage in the basin is about 68533 million gallons (MG). Of this, Wanaque reservoir is the 

largest, with storage capacity of 29630 MG (43%) of the basin total (Wells, 1960; Hendricks, 

1964; USGS, 1970; NJWDR, www.usgs.gov/centers/nj-water). Summary of the hydro-

meteorological conditions in the basin are described in Table 3.1. Mean annual flow at the outlet 

of the basin is estimated at 402088 m3/s for the 1983 – 2021 period. On average, the Rockaway 

river (RA) contributes about 0.62 percent of flow to the Passaic river. The study basin lies within 

the modified continental climate zone, characterized by hot summer and cold winter (Paulson et 

al., 1991). Moving from north to south in New Jersey the modified climate zone is comprised of 

five (5) main divisions: North, Central, Southwest, Pine Barrens, and Coastal zones with PRB 

located in the North and Central climate zones. For the period 1981-2010, mean annual 

precipitation of 1281mm (50.4 in) occurred over the PRB with higher values (1298mm or 51.1 

in) in the Ringwood catchment and the lower values (1269mm or 49.96 in) in the Upper Passaic 

(UP) catchment. Mean temperature for same period in the study basin is calculated as 10.59 °C. 

Colder temperatures are observed over the RW and RA catchments whereas hotter temperatures 

occur in the UP area. Throughout the PRB, mean annual actual evapotranspiration is estimated to 

be approximately 793mm or 31.2in (Oteng Mensah and Alo, 2023).  
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Table 3.1: Basic hydro-climatic information in the Passaic River Basin 

 

3.3.2. Hydro-meteorological data  
For this study, the widely used gridded observations from Parameter-elevation Regression on 

Independent Slopes Model (PRISM, Oregon State University, http://prism.oregonstate.edu) 

provided meteorological data. Flow data for the Rockaway and Upper Passaic sub-catchments 

were obtained from records of reconstructed streamflow by Hickman and McHugh (2018) 

whereas data for the Ringwood catchment were sourced from the United States Geological 

Survey (USGS) water data website (USGS, https://waterdata.usgs.gov/nwis/).  

http://prism.oregonstate.edu/
https://waterdata.usgs.gov/nwis/
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Figure 3.1: Location map of the study area showing available hydro-meteorological stations 
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The data used in this study spanned the periods 1979—2021 and 1981—2021 water years for the 

trend analysis and hydrological modelling respectively. Missing flow data, when present, were 

handled based on streamflow outputs from a duly calibrated and validated hydrological model of 

the sub-catchment [Ringwood, correlation coefficient: 0.85 and Nash-Sutcliffe: 0.71]. In all, 

seven (7) hydro-meteorological variables (i.e. flow, precipitation [precip], minimum temperature 

[Tmin], mean temperature [Tmean], maximum temperature [Tmax], number of days with 

precipitation greater that 10mm [R10], and consecutive dry days [CDD]) for the three (3) studied 

sub-catchments were processed and aggregated into annual time scales for the trend analysis.   

3.3.3. Land use, soil, and elevation data 
In hydrological processes, the combined effect of land cover, soil, elevation and other catchment 

characteristics are reflected in the flow dynamics of river systems in a basin. The 2011 Land 

cover data were available from the National Land Cover Dataset (NLCD) 

[https://www.mrlc.gov/viewer/], and simplified into six (6) dominant land cover/ vegetation 

classes (i.e. developed, forest, agricultural, wetlands, bare land, and water). Soil information 

were accessed using the United States Department of Agriculture (USDA) soil data viewer 

software [version 6.2] (NRCS, 2009). The topography of the PRB was defined by a digital 

elevation model (DEM) extracted from the USGS database at 10m spatial resolution 

(https://apps.nationalmap.gov/downloader/). 

 3.4. Methods 
In line with the objectives of the study, two major tasks were carried out: 1) the analysis of 

hydro-climatic trends via the discrete wavelet transform (DWT) approach; and 2) the 

development of a hydrological model to assess the impacts of recent climate changes on water 

balance terms (i.e. precipitation, evapotranspiration, and streamflow). As alluded to earlier, the 

hydro-climatic trend detection was conducted for seven (7) indicator variables in three (3) sub-

https://www.mrlc.gov/viewer/
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catchments whereas the hydrological study was conducted for the Rockaway catchment. 

Summary of the steps involved in our analysis are outlined below and described in more detail in 

the forthcoming sub-sections:   

1. Seven (7) different hydro-climatic indicator variables used in the trend analysis were 

derived from temperature, precipitation, and streamflow data series obtained for each 

sub-catchment. They were mean annual Tmin, Tmean, Tmax, Precip, Flow, R10, and 

CDD spanning the period 1979-2021; 

2. Each time series was decomposed via the DWT, having selected the Daubechies (db) 

wavelet, deemed an appropriate mother wavelet in our study context, to split the series 

into their high frequency detailed (D) and low frequency approximate (A) components;  

3. Compute the MK Z-values of the original signal and the approximation of each 

Daubechies (db) wavelet form starting from db4-db10 (e.g. Adarsh and Janga Reddy, 

2015) to determine the wavelet form that gives MK Z-value closer to that of the original 

signal. This will be the optimal trend from the approximation components of each 

analyzed time series.  

4. Having selected the optimal monotonic trend, a MK test was subsequently applied to 

determine the statistical significance of the DWT-based trend.  

5. Develop, calibrate, and validate a hydrological model for the Rockaway sub-basin and 

evaluate the performance of the model against observed streamflow and groundwater 

data using standard statistical criterion. The water balance module is run to obtain outputs 

of water balance components for impact assessment.  

6. Carry out change point analysis to divide data into the naturalized or baseline periods, 

where minimum effects of human activity on streamflow is expected and impacted 
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periods. Subsequently, a climate elasticity exercise was undertaken to explore 

sensitivities of climate variables to streamflow and corresponding contributions in the 

Rockaway sub-basin. 

3.4.1. Discrete wavelet transform 
Wavelet transform (WT) is a mathematical tool that uses wave functions known as wavelets—

akin to the sine and cosine functions in Fourier transforms (FT), to convert signals or time series 

data into different frequency components. WT rides on the fundamental concept of Fourier 

transform, which operates on the idea that any function can be decomposed into a sum of pure 

waves with different frequencies. Such that, the frequency domain represents the relative 

contributions of each frequency that comprises the function. The major limitation with FT is that, 

knowledge about frequency is accessed at the expense of the temporal dynamics (i.e. there is no 

clue as to when certain frequencies begin or end). As a result, wavelets come into play to resolve 

this inherent trade-off of information between frequency and time in the FT (Li et al., 2013). 

Through the application of wavelet transform, an optimal frequency-time balance is attained. The 

key feature about wavelets is that the wave-like oscillations are short-lived and localized in time. 

It is worth noting that, a wavelet is not just a function, but a whole family of functions which all 

satisfy certain requirements. The popular family of functions include Daubechies, Coiflet, 

Symlet, Haar, Morlet, Gaussian, Shannon, Meyer, and Mexican Hat; and each one of these is 

tuned for specific applications. In general, to be considered a proper wavelet, a function must 

satisfy two main constraints; 1) the admissibility condition of having a zero mean, and 2) the 

finite energy condition of having a limited duration, from which a function attains its localized 

nature in time. In short, wavelet analysis is a completely flexible windowing technique that 

allows a function to change over time based on the shape and compactness of the time series 

signal (Daubechies, 1990). By this very nature, different modes of variability that varies in time 
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can be extracted in the WT process, allowing the time-frequency characteristics of any kind of 

signal to be analyzed (Wei et al., 2012). The recent years has seen a wide range of studies using 

WT, especially to analyze hydro-meteorological time series. (e.g. Partal and Kahya, 2006; 

Adamowski, 2008; Chellali et al., 2010; Adamowski and Chan, 2011; Nalley et al., 2013; Araghi 

et al., 2015; Sang et al., 2018). While the vast majority of these studies focused on trends, others 

emphasized on the dominant periodic time scale responsible for the trends.    

In the WT process, as a mother wavelet moves across the signal, several coefficients are 

generated according to the similarity between the signal and the mother wavelet at any specific 

scale. Generally, WT is divided into two main types, the continuous wavelet transform (CWT) 

and the discrete wavelet transform (DWT). The continuous type can generate quite numerous 

and often redundant coefficients at every resolution level, making its application and 

interpretation more complex and uncertain. The DWT is however, considered a more effective 

approach, having the ability to overcome the data redundancy issue by simplifying the 

transformation process based on the dyadic (power of 2) scale (Partal and Küçük, 2006). Given a 

suitable wavelet family and decomposition level, the DWT decomposes a series into several sub-

series during the transformation process (Whitcher et al., 2002). Following equation 3.1 below 

(reader is referred to Partal and Küçük, 2006 for details), the coefficients of DWT can be 

calculated: 

𝑊𝑊𝜑𝜑(𝑎𝑎, 𝑏𝑏) = 1
(2)𝑎𝑎/2 ∑ 𝑋𝑋(𝑡𝑡)𝜑𝜑 � 𝑡𝑡

2𝑎𝑎
− 𝑏𝑏�𝑁𝑁−1

𝑡𝑡=0                                                                             Equation 3.1 

where 2𝑎𝑎 denotes the dyadic scale of the DWT. 

Note that the resulting detail and approximation coefficients from the decomposition are merely 

intermediate coefficients, and has to be reconstructed, first to their approximation and detail 



78 
CLIMATE CHANGE IMPACTS ON WATER RESOURCE AVAILABILITY 

 

components and then to the original signal. This readjustment to the original one-dimensional 

signal ensures that each component has the same length as the original signal, thereby enabling 

proper investigations of their contribution to the signal (Dong et al., 2008). In a simplified form, 

the reconstruction of the detail and approximation components can be computed as: 

𝑆𝑆(𝑡𝑡) = 𝐴𝐴𝑛𝑛(𝑡𝑡) + ∑ 𝐷𝐷𝑙𝑙(𝑡𝑡)𝑛𝑛
𝑙𝑙=1                                                                               Equation 3.2 

where 𝑆𝑆(𝑡𝑡) is the original signal, and 𝐴𝐴𝑛𝑛(𝑡𝑡) is the approximation component at level 𝑛𝑛, and 

𝐷𝐷𝑙𝑙(𝑡𝑡) is the details component at different levels (where 𝑙𝑙 = 1, 2, 3, …, 𝑛𝑛 denotes index for the 

levels). In MATLAB, computation of a perfect signal reconstruction is achieved using the 

Inverse Discrete Wavelet Transform (IDWT).  

Although nearly all hydro-climatic processes are continuous in nature, their available time series 

outputs are delivered in discrete formats (Wilks, 2011), making its use with DWT more 

appropriate than that of CWT. In the application of DWT, original time series signal is passed 

through low-pass and high-pass filters and emerge as Approximation (A) and Detail (D) 

components respectively. While component D represents the small scale, high-frequency series, 

component A comprises the high scale, low-frequency series. The decomposition process can 

continue iteratively, where component A from the first decomposition is further divided into new 

A and D components (Partal, 2010; Li et al., 2013; Nalley et al., 2012, 2013). In this studies, the 

Daubechies mother wavelet was chosen because of its characteristic orthogonality, and compact 

support—which are very important properties for localizing events in signal analysis, and 

deemed appropriate for hydro-meteorological time series (Nalley et al., 2012; Venkata Ramana 

et al, 2013).   
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3.4.2. Time series decomposition via DWT 
In our wavelet analysis, the one dimensional flow signal (data series) and each of the temperature 

and precipitation indicator variables served as inputs to the multi-level 1-D wavelet 

decomposition function in the MATLAB Wavelet Toolbox (MATLAB version R2021a). With 

the db wavelet family as the mother wavelet, the operation produced a wavelet transform of each 

input time series signal at all dyadic scales. Three main parameters were taken into account 

during the DWT process (Nalley et al., 2012): 1) the appropriate type of db wavelet; 2) a suitable 

signal border extension method; and 3) the most appropriate number of decomposition levels. 

First, several forms of db wavelet (e.g. db1—db10) exist, and the appropriate type must be 

selected for the decomposition process (Vonesch et al., 2007). As suggested by Nalley et al. 

(2012), a useful method in selecting the appropriate db wavelet type is to calculate the relative 

error (RE) between the MK Z-values of the original signal and that of the approximation (A) of 

the last decomposition level. RE is computed as follows: 

𝑅𝑅𝐸𝐸 = |𝑍𝑍𝑎𝑎−𝑍𝑍𝑜𝑜|
|𝑍𝑍0|                                                                                                                 Equation 3.3 

where 𝑍𝑍𝑎𝑎 and 𝑍𝑍𝑜𝑜 are the MK Z-values of the approximation of the last decomposition level and 

the original dataset respectively. For each indicator variable and study catchment, the appropriate 

db wavelet was selected to minimize 𝑅𝑅𝐸𝐸. Because trends are supposed to be gradual and slowly 

changing process, smoother db wavelets (i.e. db4—db10), considered as better in detecting time 

varying behavior over the long term (Adamowski et al., 2009; Nalley et al., 2012), was used in 

the selection of the appropriate db wavelet in the study (Table 3.2). Second, border extension is 

an important consideration due to the issue of border distortions in the DWT process, arising 

because of the finite length of the signal. Thus, the decomposition process cannot occur outside 

the two limits (i.e. the start and end points) of a signal as there is no available information 
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beyond the ends (Su et al., 2011). As suggested by Su et. al. (2011), three different border 

extension methods are employed to address the issue: zero-padding, symmetrization, and 

periodic padding. In our analysis, symmetrization—which is the default mode in MATLAB, was 

used. It assumes that signals beyond the original support can be retrieved by symmetric boundary 

replication (Nalley et al., 2013). Finally, the relevant number of decomposition level must be 

determined in order to avoid unnecessary levels of data decomposition especially, for larger 

datasets (see Nalley et al., 2012, 2013). This will however depend on the length of data points as 

well as the type of mother wavelet used. According to de Artigas et al. (2006), the maximum 

number of decomposition level, 𝐿𝐿, can be calculated from equation 3.4 below.   

𝐿𝐿 =
𝐿𝐿𝑜𝑜𝐿𝐿( 𝑛𝑛

2𝑣𝑣−1)

𝐿𝐿𝑜𝑜𝐿𝐿(2)
                                                                                                                  Equation 3.4 

where 𝑛𝑛 is the number or length of data points in the time series and 𝑣𝑣 is the number of vanishing 

moment of a db wavelet. In MATLAB, the number of vanishing moments (𝑣𝑣) is equal to the db 

wavelet type number (i.e. 1—10). Note that the number of data points (𝑛𝑛) in a time series  is not 

exactly in a dyadic format (as in the case of this study, 43 data points ). Thus the DWT 

computation in MATLAB is carried out using the nearest upper dyadic arrangement. Therefore, 

the maximum decomposition level based on our data points was calculated to be 6 in the study. 

Additionally, because data decomposition via DWT assume a dyadic format, each of the 

decomposed component represents a different period of integer powers of two from the lowest 

scale. Therefore, D1, D2, and D3 respectively represents 2, 4, and 8-unit periodic component in 

that order according to the time scale (e.g. seasonal, monthly, annual) used in the analysis. For 

example, D2 will represents a 4-year or 4-month intervals in an annual or monthly data series 

respectively, but a 12-month intervals for a seasonal data series since its time step is 3 months.  
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3.4.3. Trend and change-point detection tests 
In this study, the Mann-Kendal (MK) test (Mann, 1945; Kendal, 1975) was used to determine the 

statistical significance of the DWT-based trend (Adarsh and Janga Reddy, 2015). It is probably 

the most widely used nonparametric statistical test for monotonic trend evaluation (McBean and 

Motiee, 2006); and well noted for its simplicity, robustness, and resilience to missing values in a 

data series (Adamowski et al., 2009). One key issue that may arise when using MK test is the 

presence of serial correlation or autocorrelation, very common in precipitation and streamflow 

data (Partal and Küçük, 2006). It occurs when a variable and a lagged version of itself is 

observed to be correlated between two successive time intervals. If the lag-1 autocorrelation in a 

time series is found to be significant, the modified MK test must be used (Hamed and Rao, 

1998). Although autocorrelation issues are not common in annual data series, we applied the 

modified version of the MK test in this study where significant lag-1 autocorrelation was 

detected in our data series. 

Furthermore, a change-point analysis was performed to identify the most likely year(s) in our 

streamflow data where significant changes could occur (Gao et al., 2010; Guo et al. 2018). This 

was key in our hydrological impacts analysis where we needed to explore a naturalized period or 

baseline period when stream flow experienced little or no disturbance. Various change-point 

methods exist, including the sequential Mann-Kendal test (Sneyers, 1990), Pettit’s test (Pettitt, 

1979), the cumulative sum (CUSUM) test (Inclan and Tiao, 1994), and the Worsley Likelihood 

Ratio Test (Worsley, 1979). Using the R packages changepoint and ecp (R Core Team, 2023), 

the distribution free CUSUM test (Csörgö et al., 1997), complemented by the Permutation test 

(Matteson and James, 2014) was used because they revealed similar break-point years in our 

streamflow time series. These methods detect significant changes in the mean or distribution of a 
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time series when the exact times of the changes are not known. For a detailed description of 

these methods, we refer the reader to the relevant literature cited.    

3.4.4. Hydrological model development for the Rockaway river basin 
In the present study, the numerical code used for our hydrological assessment studies is MIKE 

SHE (Abbott et al., 1986a, b). MIKE SHE is an integrated, fully distributed, physically-based 

hydrological modeling system (DHI, 2017; Refsgaard, 1997), that simulates all the major 

hydrologic process in the land phase of the hydrological cycle including evapotranspiration, 

overland flow, unsaturated flow, saturated flow, and streamflow (Figure 3.2). It uses the 

hydrodynamic model MIKE 11 to simulate channel flow and lakes (using flood code) in one 

dimension. For a detailed description on the development and modelling structure of the MIKE 

SHE hydrologic model the reader is referred to the MIKE Zero user manual by DHI (2017). 

 

  

Figure 3.2: Hydrologic processes simulated by MIKE SHE (Butts et al. 2015) 
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3.4.5. Model calibration and validation 
A distributed hydrologic model such as MIKE SHE typically requires large number of model 

parameters to be assigned. Although, these parameters have a clear physical meaning and can be 

defined explicitly from field measurements, Singh (1995) suggested that the number of 

parameters subject to calibration should be as small as possible. For this study, initial values as 

well as ranges of primary parameters from field data, published literature, and prior modelling 

experience guided the calibration process. The manual “trial and error” procedure was first 

applied, which involves perturbing one parameter while keeping all other parameters unchanged. 

This was done repeatedly within a reasonable range of values for a series of model runs until a 

favorable agreement between measured and simulated flow and groundwater level was achieved. 

Following the manual approach, an automatic calibration was conducted. Finally, validation was 

done to ensure that model parameters derived from calibration were generally valid.  

Prior to the model calibration, change point analysis was performed on the streamflow data for 

the time span of 1981—2022 to find likely break-point year(s). Accordingly, the data was 

divided into baseline periods (1982—1991, 1992—2001, and 1982—2001) and impacted periods 

(2002—2011 and 2012—2021) as mentioned earlier. The calibration and validation of the model 

was carried out within the baseline period for 1982—1986 and 1986—1991 respectively. 

Typically, the simulation period includes the first few months of warm-up period to stabilize the 

model; as well as the calibration and validation periods. The adequacy of the model was 

evaluated based on four standard statistical criteria used in MIKE SHE: mean error (ME), root 

mean square error (RMSE), correlation coefficient (R), and the widely used Nash-Sutcliffe 

coefficient (R2). These indicators detect system errors and the goodness of fit between simulated 

and observed monitoring observations in the form:  
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𝑀𝑀𝑀𝑀𝑖𝑖 = ∑ �𝑂𝑂𝑏𝑏𝑂𝑂𝑖𝑖,𝑡𝑡−𝐶𝐶𝑎𝑎𝑙𝑙𝐶𝐶𝑖𝑖,𝑡𝑡�𝑡𝑡

𝑛𝑛
                                                                                               Equation 3.5 

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 =
�∑ �𝑂𝑂𝑏𝑏𝑂𝑂𝑖𝑖,𝑡𝑡−𝐶𝐶𝑎𝑎𝑙𝑙𝐶𝐶𝑖𝑖,𝑡𝑡�

2
𝑡𝑡

𝑛𝑛
                                                                                       Equation 3.6 

𝑅𝑅 = �∑ �𝐶𝐶𝑎𝑎𝑙𝑙𝐶𝐶𝑖𝑖,𝑡𝑡−𝑂𝑂𝑏𝑏𝑂𝑂𝑖𝑖�
2

𝑡𝑡

∑ �𝑂𝑂𝑏𝑏𝑂𝑂𝑖𝑖,𝑡𝑡−𝑂𝑂𝑏𝑏𝑂𝑂𝑖𝑖�
2

𝑡𝑡
                                                                                                Equation 3.7 

𝑅𝑅2 = 1 − ∑ �𝑂𝑂𝑏𝑏𝑂𝑂𝑖𝑖,𝑡𝑡−𝐶𝐶𝑎𝑎𝑙𝑙𝐶𝐶𝑖𝑖,𝑡𝑡�
2

𝑡𝑡

∑ �𝑂𝑂𝑏𝑏𝑂𝑂𝑖𝑖,𝑡𝑡−𝑂𝑂𝑏𝑏𝑂𝑂𝑖𝑖�
2

𝑡𝑡
                                                                                        Equation 3.8 

where t is the simulation time in day; n is the total simulation days; i is the calibration point i; 

Obsi,t is the observed daily discharge at location i at day t; 𝑂𝑂𝑏𝑏𝑂𝑂𝑖𝑖 is the mean of the observed 

discharge at location i for the simulation period, and Calci,t is the simulated discharge at location 

i at day t. 

3.4.6. Hydrological Impacts Assessment 
After successfully calibrating and validating the hydrologic model for the period (1982-1991) 

considered to be within the naturalized undisturbed periods, the model was run with climatic 

inputs to simulate discharge for both the naturalized periods and the impacted periods identified 

by the change point analysis. In all, discharge for five (5) different periods were simulated, and a 

water balance output obtained for precipitation (P), streamflow (Q), actual evapotranspiration 

(ET). Further, we assessed the hydrological impacts by computing changes between the control 

or baseline periods and impacted periods for the water balance components. Finally, the concept 

of elasticity as proposed by Schaake (1990) was employed to evaluate the sensitivities of 

streamflow to changes in climate. According to this concept, climate elasticity of streamflow is 

the proportional change in streamflow divided by the proportional change in a climate variable. 

For instance, the precipitation elasticity of streamflow is defined as: 
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𝜀𝜀𝑝𝑝 = 𝑑𝑑𝑑𝑑 𝑑𝑑⁄
𝑑𝑑𝑑𝑑 𝑑𝑑⁄

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑
𝑑𝑑

                                                                                                        Equation 3.9 

Likewise, the actual evapotranspiration elasticity of streamflow is: 

𝜀𝜀𝐸𝐸𝑇𝑇 = 𝑑𝑑𝑑𝑑 𝑑𝑑⁄
𝑑𝑑𝐸𝐸𝑇𝑇 𝐸𝐸𝑇𝑇⁄ = 𝑑𝑑𝑑𝑑

𝑑𝑑𝐸𝐸𝑇𝑇
∙ 𝐸𝐸𝑇𝑇
𝑑𝑑

                                                                                               Equation 3.10 

In applying equations (3.9) and (3.10) to the water balance outputs obtained for the Rockaway 

catchment model, the relative contributions of precipitation and actual ET changes to streamflow 

changes can be quantified. Over the long term, the water balance model can be expressed as: 

𝑄𝑄� = 𝑃𝑃� − 𝑀𝑀𝐸𝐸����                                                                                                                Equation 3.11 

where 𝑄𝑄�, 𝑃𝑃�, and 𝑀𝑀𝐸𝐸���� denote long term mean values. In Equation (3.11), there is an implicit 

assumption that groundwater flow into and out of the Rockaway sub-catchment cancels out and 

storage change over the long term is negligible.  

For a largely undisturbed catchment, the changes in streamflow between two periods (𝑑𝑑𝑄𝑄) based 

on equation (3.11) can be estimated as: 

𝑑𝑑𝑄𝑄 = 𝑑𝑑𝑄𝑄𝑑𝑑 + 𝑑𝑑𝑄𝑄𝐸𝐸𝑇𝑇                                                                                                      Equation 3.12 

with 𝑑𝑑𝑄𝑄𝑑𝑑 and 𝑑𝑑𝑄𝑄𝐸𝐸𝑇𝑇 denoting the contribution to streamflow from precipitation and actual ET 

respectively. Combining equations (3.9), (3.10), and (3.12), 𝑑𝑑𝑄𝑄 can be rewritten as:  

𝑑𝑑𝑄𝑄 = 𝑑𝑑𝑄𝑄𝑑𝑑 + 𝑑𝑑𝑄𝑄𝐸𝐸𝑇𝑇 = �𝜀𝜀𝑑𝑑∙𝑑𝑑𝑑𝑑 𝑑𝑑⁄ +  𝜀𝜀𝐸𝐸𝑇𝑇∙𝑑𝑑𝐸𝐸𝑇𝑇 𝐸𝐸𝑇𝑇⁄ �𝑄𝑄                                                        Equation 3.13 

where 𝑑𝑑𝑃𝑃 and 𝑑𝑑𝑀𝑀𝐸𝐸 are changes in precipitation and actual evapotranspiration between two 

periods. 𝜀𝜀𝑝𝑝 and 𝜀𝜀𝐸𝐸𝑇𝑇 are precipitation elasticity and actual evapotranspiration elasticity of 

streamflow respectively. According to Tang et al. (2013), a 1% change in P or ET triggers an 𝜀𝜀𝑝𝑝 

or 𝜀𝜀𝐸𝐸𝑇𝑇 percent change in Q.  
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Note that flow data used in this analysis form part of the reconstructed streamflow records by 

Hickman and McHugh (2018) for selected watersheds in the PRB, and therefore the Rockaway 

sub-catchment is assumed to be largely undisturbed for the purpose of this study. Being mindful 

of the fact that climate elasticity to streamflow varies depending on the location and reference 

period (Vano et al., 2012), we explored the sensitivities of flow relative to different baseline 

periods. Thus, equation (3.13) was set up for the two impacted periods (2002—2011, and 2012—

2021) relative to three baseline periods (i.e. 1982—1991, 1992—2001, and 1982—2001). The 

values of 𝜀𝜀𝑝𝑝 and 𝜀𝜀𝐸𝐸𝑇𝑇 were then computed simultaneously from two equations to obtained the 

contributions of P and ET changes to streamflow change in the Rockaway sub-basin.  

3.5. Results and Discussion 
3.5.1. Decomposition of time series data via DWT 
According to equation 3.3, the type of db mother wavelet that produced the optimal parameters 

for the decomposition process for each dataset are presented in Table 3.2. Figure 3.3 illustrates 

an example of the decomposition results for the flow data in the Rockaway sub-catchment. The 

original time series or signal (S) can be reconstructed by summation of all the Detailed 

components (D1—D6) and the Approximation component of the last decomposition level (A6). 

It can be seen that at higher decomposition levels, the frequency of the D components decrease. 

The last decomposition level of the A component (A6) shows the trend of streamflow in the 

Rockaway catchment. On a dyadic scale, D1 depicts time series of a 2-year mode, D2 shows a 4-

year mode, D3 is in an 8-year mode, D4, a 16-year mode, D5 corresponds to a 32-year mode, 

and 64-year mode for D6. These modes are the time scales at which those cycles are revealed, 

implying that for a dataset spanning a period of 42 years, the trend as revealed by the DWT for 

stream flow in the Rockaway catchment could only emerge over a 64-year cycle. It was thus 

impossible to see this trend just by applying the MK trend test on the raw dataset. The same 
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process was replicated in all three sub-catchments for each hydro-climatic indicator variable as 

depicted by figures 3.4, 3.5, and 3.6. At a confidence level of 95% (i.e. p-value= 0.05), MK 

statistics were subsequently applied to the decomposed times series. 

 

3.5.2. DWT Trend analysis of hydro-climatic indicators 
Results from the trend analysis using the discrete wavelet transform for Precip, Flow, R10, CDD, 

Tmin, Tmean, and Tmax from the Ringwood, Rockaway, and Upper Passaic catchments are 

shown in Figures 3.4, 3.5, and 3.6.  Mann-Kendall statistics (i.e. significant level (SL) and Sen’s 

slope (SS)) applied on the DWT trend results are also summarized in Table 3.2. The positive and 

negative MK values indicate significantly increasing and decreasing trends respectively, the 

Figure 3.3: Annual streamflow time series of the original dataset and its decomposed components via 
DWT (level 6) for the Rockaway sub-catchment 
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magnitude of the trends are described by the SS values. All the analyzed hydro-climatic signals 

were significant at p=0.05, identified by the asterisk.  

Table 3.2: Daubechies (db) wavelet type, minimum relative error (RE), Mann-Kendal test, and 
Sen’s slope (SS) for each metric in each sub-catchment 

Sub-catchment Parameter Metrics             
    Precip Flow R10 CDD Tmin Tmean Tmax 
Ringwood Wavelets db7 db6 db8 db5 db4 db4 db4 
  RE 3.75 0.03 4.86 5.72 3.93 4.48 13.46 
  MKSL 871* -457* -457* -877* 903* 903* 903* 
  SS 0.723 -0.165 -0.024 -0.051 0.047 0.033 0.018 
Rockaway Wavelets db5 db6 db8 db4 db4 db4 db10 

 RE 7.29 4.18 2.91 3.02 4.43 4.29 10.33 

 MKSL 635* -745* 577* 293* 903* 903* 831* 
 SS 0.129 -2.406 0.083 0.0042 0.059 0.035 0.0034 
Upper Passaic Wavelets db4 db4 db7 db4 db4 db4 db4 
  RE 7.49 6.32 67.10 7.79 3.21 3.79 6.86 

 MKSL 903* 903* 433* 213* 903* 903* 903* 
  SS 2.401 7.712 0.0134 0.0062 0.0375 0.0253 0.013 

 

3.5.3 Hydro-climatic trends in the Ringwood, Rockaway, and Upper Passaic sub-catchments 
DWT trend results for all hydro-climatic variables in the Ringwood sub-catchment are shown in 

Figure 3.4. Precipitation shows a significant increasing signal at a rate of 0.723mm/year. 

However, this increase does not reflect in the streamflow trend in the Ringwood sub-catchment. 

Flow is rather showing a significant downward trend beginning from 1996 through to 2021 at a 

rate of 0.165m3yr-1. It does appear that the downward trend observed for streamflow largely 

tracks with heavy precipitation (R10) rather than mean precipitation, and corroborated by the 

decreasing trend in consecutive dry days (CDD). The observed significantly increasing trend in 

minimum, mean, and maximum temperatures suggest that temperature drives the flow dynamics 
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in the Ringwood sub-catchment with minimum temperature having the highest magnitude at 

0.047oCyr-1and maximum temperature having the least at 0.018oCyr-1. 

Long term trends in hydro-climatic indicator variables in the Rockaway catchment are illustrated 

in Figure 3.5. Similar to the Ringwood sub-catchment, precipitation and streamflow are trending 

in opposite directions. As precipitation trends upward, flow is trending downward at rates of 

0.129mmyr-1 and 2.406cmyr-1 respectively. Quite interestingly, a significantly upward trend is 

observed for heavy precipitation, in line with mean precipitation yet these increases do not 

reflect in the observed flow trend. Given that consecutive dry days show significantly increasing 

trend in tandem with minimum, mean and maximum temperatures, there is a likelihood that 

Figure 3.4: Trends in precipitation, flow, and temperature variables for the Ringwood sub-catchment 
from 1979—2021 
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precipitation is overwhelmed by relatively high temperatures in the Rockaway sub-catchment, 

thereby translating in the observed downward trend in streamflow.  

Figure 3.6 shows the hydro-climatic trends in indicator variables for the Upper Passaic sub-

catchment. All the metrics showed significantly increasing trends over the period. The observed 

upward trend in mean and heavy precipitation in the same direction as flow and temperatures 

indicate that, the hydrology of the Upper Passaic sub-catchment is largely driven by precipitation 

than temperature. Precipitation and flow are increasing at a rate of 2.401mmyr-1 and 7.712cmyr-1 

respectively. In the case of temperature, the rate is higher in minimum temperature (0.038 oCyr-1) 

followed by mean temperature (0.025 oCyr-1), and maximum temperature (0.013 oCyr-1) (Table 

3.2).    

Figure 3.5: Observed trends in precipitation, flow, and temperature indicator variables for the 
Rockaway sub-catchment from 1979—2021 
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3.5.4. Comparison of hydro-climatic trends by catchment 
Spatially, trending from North to South of the PRB, the results suggest that hydro-climatic 

indicator variables are spatially non-uniform in terms of magnitude and direction. Over the 

analyzed period (1979—2021), precipitation is observed to show increasing signals in all sub-

catchments. Relatively, the rate of change is observed to be rapid in the Upper Passaic sub-

catchment at 2.401mmyr-1 and smooth in the Rockaway sub-catchment at 0.129mmyr-1. 

Likewise, temperatures also show significantly upward trends in all sub-catchments with mean 

temperature displaying the highest rate of change in the Rockaway sub-catchment, followed by 

Ringwood, and Upper Passaic sub-catchments. The observed long-term increasing trend in 

precipitation and temperature in the PRB is indicative of a changing climate in the basin, 

consistent with the dominant trends in the broader Northeast United States region (Hayhoe et al., 

2007; Lynch et al., 2016). In terms of extremes, precipitation intensity (R10) and consecutive dry 

days (CDD) point towards an upward trend from North to South in the PRB, beginning from 

Ringwood sub-catchment with a decreasing signal to increases in the Rockaway and Upper 

Passaic sub-catchments. This observed increasing trend is also consistent with patterns in rainfall 

intensity in the Northeast (Thibeault and Seth, 2014; Hoerling et al., 2016), and provides further 

evidence to the linkage between extreme weather events and climate change.  

In the case of streamflow, the results suggest that flow patterns appear to be influenced both by 

surface characteristics and climate in the PRB. Although trends in precipitation and temperature 

are observed to increase throughout the basin, the dynamics on streamflow is different, with 

downward trends observed in the Ringwood and Rockaway sub-catchments and an upward trend 

seen in the Upper Passaic sub-catchment. Given that Ringwood and Rockaway sub-catchments 

lie in the mountainous heavily forested Highlands region as against Upper Passaic in the densely  
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populated highly industrialized urban belt, the observed trends are not surprising. With regards to 

attributing causes of streamflow changes in the PRB, the sections that follow, involving the 

hydrological modeling study using the Rockaway sub-basin as a case study, provide sufficient 

clues on the driving mechanism behind the flow dynamics in the study basin.  

3.6.1. Change point analysis and calibration and validation of MIKE SHE model 
3.6.1.1. Change point detection. 
For the purpose of the hydrological impact assessment, change point detection was carried out to 

determine approximate years of abrupt changes in hydro-climatic time series. As presented in 

Table 3.3, precipitation and streamflow time series were explored in the Rockaway sub-

Figure 3.6: Observed trends in precipitation, flow, and temperature indicator variables in the Upper 
Passaic sub-catchment from 1979—2021 
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catchment using the CUSUM test as well as the permutation test, and were significant at α=0.05. 

Given that river flow in the PRB is largely regulated, the similarities as revealed by the break 

point years for both precipitation and streamflow seem to corroborate the findings by Ficklin et 

al. (2016) that climate change signals are apparent in both regulated and natural river systems. 

Following from this, the causes of streamflow were explored by examining outputs of water 

balance terms from the hydrological model developed for the Rockaway sub-catchment. 

Accordingly, we performed decadal changes in water balance terms in line with the break point 

years given in Table 3.3. Over the study period (1979—2021), decades 1 and 2 spanned the 

periods 1982—1991 and 1992—2001 respective, representing baseline periods 1(BLP I) and 2 

(BLP II). The overall period from 1982—2001 was also considered, denoting baseline period 3 

(BLP III). For the impacted periods, 2002—2011, and 2012—2021 respectively represents 

decades 3 (D III) and 4 (D IV). 

Table 3.3: Estimated break point years in precipitation and streamflow in the Rockaway sub-
catchment (α=0.05) 

 
Cumulative sum test Permutation test 

Variables Break point Break point 

Precipitation 1980 1979 

 
1990 1991 

 
2002 2003 

 
2011 2012 

Streamflow 1980 1979 

 
1990 1991 

 
2002 2003 

  2011 2012 
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3.6.1.2. Calibration and validation of Rockaway model. 
The Rockaway model was calibrated using both streamflow and groundwater level data. The full 

model simulation spanned the period 1981-1991 for streamflow and 2005-2016 for groundwater 

flow. Observed streamflow was calibrated and validated at the outlet of the Rockaway catchment 

along with two (2) groundwater well observations located in the catchment. As shown in Table 

3.4 and figure 3.7, the performance of the model was assessed using a combination of statistical 

indicators and graphical representation respectively. Generally, the model can be said to have 

captured the evolution of the observed flow sufficiently well, with few mismatches in peak flows 

likely due to the gridded structure of the forcing data. Rising limbs of hydrographs and baseflow 

were also reasonably simulated. The resulting correlation coefficient (R), Nash-sutcliffe (R2), 

mean error (ME), and RMSE values for both calibration and validation periods are shown in 

Table 3.4.  

 

Figure 3.7: Simulated and observed daily streamflow at the Rockaway sub-catchment for the 
calibration (1982—1986), validation (1986—1991), and the full simulation (1981—1991) 
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In the groundwater level simulation, the transient dynamics of water level were satisfactorily 

simulated for the Berkshire Valley well, but poor in the Morris Maint well. Aside possible errors 

from the DEM, the observed bias could be linked to boundary conditions at the border, that 

favored the Berkshire Valley well more than the Morris Maint well. Although individual biases 

such as this is inevitable, the multiple mode of calibration (i.e. using both streamflow and 

groundwater data) in this study allows for simultaneous optimization of model parameters to 

ensure proper balance between the two solutions (i.e. simulated hydrograph and groundwater 

level dynamics). Thus in general, the MIKE SHE performed reasonably well in capturing the 

observed streamflow and groundwater levels in the Rockaway sub-catchment. On the basis of 

this results, we explore and quantify the possible mechanisms behind the observed streamflow 

changes in the sub-basin.  

Table 3.4: Performance criterion of calibrated and validated MIKE SHE model at the Rockaway 
sub-catchment 

  

 

 

 

 

 

 

 

  Streamflow     Groundwater   

Statistics  Calibration Validation 
Full 
simulation 

Berkshire 
Obs well 

Morris Obs 
well 

    1982-1986 
1987-
1991 1982-1991 2011-2016 2007-2012 

Correlation 
coefficient (R) 0.85 0.87 0.85 0.83 0.28 
Nash efficiency (R2) 0.72 0.71 0.72 - - 
ME  0.57 1.34 0.96 6.01 -1.86 
RMSE   4.78 3.89 0.85 6.07 1.91 
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3.6.2. Decadal changes in hydro-meteorological variables 
Relative to the three different naturalized and baseline periods (i.e. 1982—1991, 1992—2001, 

and 1982—2001), decadal changes in hydro-meteorological variables were computed from the 

impacted periods (i.e. 2002—2011 and 2012—2021) (Table 3.5).  

 

 

(a) 

(b) 

Figure 3.8: Simulated groundwater level dynamics at a) Berkshire valley and b) 
Morris Maint well locations in the Rockaway sub-catchment 
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Table 3.5: Mean annual changes in climatic and streamflow variables of the Rockaway sub-basin 
for the baseline (BLP) and impacted periods (D) 

 

3.6.2.1. Hydro-climatic response to changes relative to 1982—1991 baseline, BLP I. 
Decadal changes (i.e. 2002—2011 and 2012—2021) in Tmin, Tmean, and Tmax for the 

impacted periods relative to the reference showed increase in both decades, with the recent 

decade (D IV) being the warmest (Table 3.5). Compared to mean and maximum temperatures, 

minimum temperature is observed to have a higher increasing rate (2.49o C/decade), and is 

indicative of a rapidly warming climate in the basin. Along with the increasing temperatures, 

actual ET is also observed to increase in both decades (2.58% and 3.98% for D III and D IV 

resp.). However, precipitation is observed to increase in D III but decreased in D IV. This 

decrease in precipitation, though marginal, suggests that the recent decade (D IV) experienced 

meteorological stressed conditions with respect to the baseline and as compared to D III. 

Typically, evapotranspiration is limited in such water stress conditions, and is therefore expected 

Period 
Tmin 
(oC) 

Tmean 
(oC) 

Tmax 
(oC) 

Precip 
(mm) 

Evapo 
(mm) Flow (m3) 

BLP I: 1982~1991 2.76 9.27 15.78 1306 805 2244 

BLP II: 1992~2001 2.99 9.40 15.82 1208 777 1898 

BLP III: 1982~2001 2.87 9.34 15.80 1257 791 2071 

D III: 2002~2011 4.31 10.09 15.89 1427 826 2277 

D IV: 2012~2021 5.24 10.56 15.88 1282 837 1947 

D III minus BLP I 1.55 0.82 0.11 9.29% 2.58% 1.46% 

D IV minus BLP I 2.49 1.29 0.11 -1.83% 3.98% -13.22% 

D III minus BLP II 1.32 0.69 0.07 18.13% 6.25% 19.94% 

D IV minus BLP II 2.25 1.16 0.07 6.11% 7.71% 2.59% 

D III minus BLP III 1.44 0.75 0.09 13.54% 4.38% 9.93% 

D IV minus BLP III 2.37 1.23 0.09 1.99% 5.81% -5.97% 
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to decline in D IV. However, a decreased precipitation not resulting in a decreased ET for D IV 

suggests that the rapid warming observed in the area somewhat played a key role in the increased 

actual evapotranspiration. This partly explains why streamflow declined disproportionately in the 

recent decade.  

At a glance, the observed increase in precipitation in D III by 9.29% resulting in an increase in 

flow by 1.46%, and a decrease in precipitation in D IV by 1.83% leading to a decrease in 

streamflow by 13.22% may lead one to conclude that precipitation is the main climatic factor for 

streamflow changes in the basin. However, recourse to the elasticity of climate variables to 

streamflow in the basin will lead to a different conclusion. In Table 3.6, we find that elasticities 

of precipitation and actual ET are 0.96 and -2.88 respectively. This suggests that, 10% increase 

in precipitation results in 9.6% increase in streamflow, while 10% increase in actual ET leads to 

28.8% decrease in streamflow. Thus generally, streamflow is less sensitive to precipitation for 

the reference period. These elasticities also explain the relatively modest (1.46%) increase in 

streamflow for the 9.29% increase in precipitation in D III, and likewise the 13.22% decrease in 

flow for an only 1.83% decrease in precipitation in D IV with respect to the 1982—1991 

baseline period. Thus it can be concluded from the above results that actual evapotranspiration is 

the main climatic factor responsible for streamflow dynamics in the Rockaway sub-basin for this 

reference period. Although this conclusion holds true, in respect of the actual contribution to the 

observed streamflow changes for D III, precipitation was entirely responsible with 100% 

contribution. This means that the amount of precipitation was more than sufficient to satisfy 

evaporative demands, with the left over going into streamflow generation. For D IV, the impact 

of actual ET sensitivity to streamflow was largely felt. Such that, while actual ET contributed to 

approximately 87% of streamflow, precipitation contributed only 13%.  
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Table 3.6: Annual streamflow elasticities and contribution of precipitation and actual ET to 
streamflow changes for respective baseline periods 

    Elasticity (ε)     

Period 
Contribution to Q 
change Precip Evapo Equation 

I: 2002~2011     

  0.96 -2.88  
 relative to BLP I 100% ~ 

 

  1.35 -0.74  

 relative to BLP II 100% ~ 
 
 

 

  1.19 -1.44 ~ 
 relative to BLP III 55% -30% 

 

II: 2012~2021     

  0.96 -2.88  
 relative to BLP I 13.28% 86.62% 

 

  1.35 -0.74  
 relative to BLP II 100 ~ 

 

  1.19 -1.44  
  relative to BLP III ~ 100% 

 

     
3.6.2.2. Hydro-climatic response to changes relative to 1992—2001 baseline, BLP II. 
Relative to 1992—2001 reference period, all temperature variables in the basin saw increases 

consistent with global trends (Hansen et al., 2006; NCA, 2018), with minimum temperature 

showing the largest increase in D IV (2.25o C/decade). Unsurprisingly, actual ET followed along 

with temperature, with increases of 6.25% and 7.71% for D III and IV respectively. However, 

these increases were overwhelmed by the respective 18.13% and 6.11% increase in precipitation, 

leading to a rise in streamflow by 19.94% and 2.59% for D III and IV respectively. Here D III, 

having precipitation increase by 18.13% can be considered as a meteorologically wet decade 

compared to D IV and relative to the baseline period. While water limits ET values in dry 

conditions, energy limits ET values in wet conditions (Donohue, et al., 2012; Ajjur and Al-

13.54𝜀𝜀𝑑𝑑 + 4.38𝜀𝜀𝐸𝐸 = 9.93 

1.99𝜀𝜀𝑑𝑑 + 5.81𝜀𝜀𝐸𝐸 = −5.97 

9.29𝜀𝜀𝑑𝑑 + 2.58𝜀𝜀𝐸𝐸 = 1.46 

1.83𝜀𝜀𝑑𝑑 − 3.98𝜀𝜀𝐸𝐸 = 13.22 

6.11𝜀𝜀𝑑𝑑 + 7.71𝜀𝜀𝐸𝐸 = 2.59 

18.13𝜀𝜀𝑑𝑑 + 6.25𝜀𝜀𝐸𝐸 = 19.94 
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Ghamdi, 2021). Similarly, actual evapotranspiration in D III was largely energy-limited, leading 

to a considerable streamflow generation by 19.94%. 

In terms of sensitivity to streamflow, Table 3.6 shows that streamflow elasticity to precipitation 

is 1.35, indicating that a 10% rise in mean annual precipitation results in a 13.5% increase in 

streamflow. On the other hand, streamflow elasticity to actual ET is -0.74, which suggests a 

7.4% decline in streamflow for a 10% increase in actual ET. This indicates that streamflow is 

more sensitive to precipitation than actual ET for this reference period and that evaporative 

demand was overcome by the relative increases in precipitation for D III and IV. As such, the 

observed increases in streamflow for both decades can be entirely attributed to precipitation as 

revealed in Table 3.6.    

3.6.2.3. Hydro-climatic response to changes relative to 1982—2001 baseline, BLP III. 
Minimum, mean, and maximum temperatures showed increases in both decades (D III and D IV) 

relative to the baseline. With the recent decade being the warmest in the basin, minimum 

temperature is observed to have the highest increasing rate (2.37oC/decade), followed by mean 

temperature (1.23oC/decade), and then maximum temperature (0.09oC/decade). Similarly, 

precipitation was observed to increase in both decades, with the largest increase in D III, having 

170mm (13.54%) more than in the baseline period. Consistent with temperature, actual 

evapotranspiration was observed to increase in both decades compared to the baseline. Although 

the results in Table 3.5 show that both precipitation and evapotranspiration are increasing for all 

decades relative to the baseline, they induced varied signal and strength in streamflow. Whereas 

precipitation was the dominant contributor to streamflow in D III (55%) leading to an increased 

flow, actual ET entirely overwhelmed precipitation in D IV causing a decrease in flow. The 

reason for this is that in D III, water was sufficient, and energy becomes the more important 
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control of evapotranspiration whereas in D IV, water was limited, and evapotranspiration, largely 

driven by energy, went into further decreasing streamflow (-5.97%).  

This is confirmed by sensitivity results in Table 3.6. It reveals that, elasticity of streamflow in 

relation to precipitation ( 𝜀𝜀𝑝𝑝) and actual ET (𝜀𝜀𝐸𝐸𝑇𝑇) for the Rockaway sub-basin are 1.19 and -1.44 

respectively. This indicates that 10% increase in precipitation results in 11.9% increase in 

streamflow while 10% increase in actual ET would lead to 14.4% decrease in streamflow. Thus 

annual streamflow was generally more sensitive to the change in actual ET than the change in 

precipitation, although in D III, precipitation contributed 55% to streamflow changes whereas 

evapotranspiration contributed 30%.   

3.7. Summary and Conclusions 
At a time when the climate change problem has evolved into a crisis, the piece-meal approach to 

carrying out hydrological impact analysis at a single study location may no longer suffice. At 

best, a comprehensive study that combines the detection and analysis of trends along with 

hydrological modelling study will provide important foundations for understanding the hydro-

climatic patterns in an area and the driving mechanisms behind these trends in the wake of a 

changing climate. In this study, we used long-term meteorological and hydrologic observations 

to identify trends in hydro-climatic indicator variables in the PRB. We also modelled streamflow 

and groundwater elevation using the Rockaway sub-basin as a case study to understand the 

impacts of recent climate changes to streamflow in the study basin. Recognizing that hydro-

climatic variables, by their nature, are non-monotonic, we employed the wavelet transform— an 

advanced trend analysis tool— as against the frequently used MK trend test, to detect and 

identify patterns in hydro-climatic variables in the PRB. Rather than using the MK trend test 

directly on the raw data whose results are almost always ambiguous in respect of precipitation 

data for instance, the wavelet transform approach was applied to identify the hidden monotonic 
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trends in the characteristically noisy hydro-climatic time series. For the hydrological impact 

assessments, the physically-based distributed MIKE SHE hydrologic model provided the 

platform to successfully simulate the hydrologic conditions of the Rockaway catchment. Based 

on the model’s water balance outputs, the impacts of recent climate were assessed from changes 

in naturalized or baseline periods against impacted periods. Further analysis was carried out 

using climate elasticities to determine the sensitivities and contributions of climatic variables to 

streamflow changes in the sub-basin to three different baseline conditions. By this, we 

demonstrated that the time perspective or baseline condition used to assess climate change 

impacts can also substantially influence results.  

Major sources of uncertainty in this study may be that which pertains to hydrological modelling 

such as input, output, structural, and parametric uncertainties (Renard et al., 2010; Ma et al., 

2016). Because streamflow observations used in calibrating and validating the MIKE SHE 

hydrological model was based on reconstructed data, it is likely that errors emanating from the 

methods and data used in estimating daily reconstructed streamflow for the Rockaway catchment 

(refer to Hickman and McHugh, 2018) may be propagated in this study. Howbeit, conscious 

effort was made in minimizing uncertainties in our analyses first by the use of multiple objective 

function (i.e. observed streamflow and groundwater level data) that allowed for simultaneous 

optimization of model parameters. The model’s ability to reasonably simulate both surface and 

subsurface flows as evidenced in the satisfactory performance criterion give credence to the 

findings in the study. In addition, one uncertainty that has almost been universally overlooked in 

climate impact studies is the choice of baseline condition. In our study, we assessed the 

hydrologic response to changes in climate using three different baseline climates against two 

recent future periods (i.e. 2002—2011, 2012—2021). We found that the choice of baseline 
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condition constitutes an important source of uncertainty in the sensitivities of streamflow to 

precipitation and evapotranspiration changes and should routinely be considered in any climate 

impact assessment. Against this background, we present the key findings from our results below:  

1) Over the period 1979—2021, minimum, mean, and maximum temperatures showed 

significantly upward trend in all studied sub-catchments of the PRB with minimum 

temperature having the highest rate of change at 0.059 oCyr-1 in the Rockaway sub-basin. 

In contrast, maximum temperatures experienced the slowest rate of change at 0.0034 

oCyr-1. The rate of change of mean temperatures range from 0.025—0.035 oCyr-1. 

2)  Overall, precipitation showed a significant increasing signal in all analyzed sub-basins 

with the fastest rate of 0.72mm/yr in the Ringwood catchment and the slowest rate at 

0.13mm/yr in the Rockaway catchment. This observed long term increasing trend in 

precipitation and temperature in the PRB is indicative of a changing climate, consistent 

with the dominant trends in the broader Northeastern region. Spatially, trends in both 

precipitation intensity (R10) and consecutive dry days (CDD) were observed to decrease 

in the uppermost portion of the PRB at the Ringwood catchment but increases towards 

the south in the Rockaway and Upper Passaic sub-basins. This pattern is also dominant in 

the wider Northeast, and provide further evidence of the connection between extreme 

weather events and climate change.  

3) In two out of the three analyzed sub-basins, streamflow displayed significantly downward 

trends with an increasing trend in the Upper Passaic sub-catchment. This is in spite of the 

increasing trends in both precipitation and temperature in all the three sub-catchments. 

Although it is well established that precipitation amounts and intensity directly affect 

streamflow (Lan et al. 2010), the present results rather show that an increase in 
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precipitation does not always lead to an increase in streamflow. From a hydrological 

modeling standpoint, attempt was therefore made to examine the causes of streamflow in 

the PRB using the Rockaway sub-catchment as a case study. 

4) Decadal changes in climate revealed that the recent decade (2012—2021) was the 

warmest relative to the 1982—1991 baseline period. The wettest decade was 2002—2011 

relative to all baseline periods with precipitation increase ranging from 9.29% in the 

1982—1991 baseline to 18.13% in the 1992—2001 baseline. In contrast, the recent 

decade (2012—2021) was the driest period with precipitation changing from -1.83% to 

6.11% relative to the 1982—1991 and 1992—2001 baselines respectively.  

5) Across the three baseline periods, we found that precipitation elasticity to streamflow 

ranged from 0.96 to 1.35 suggesting that, a 10% rise in precipitation will result in 

between 9.6% to 13.5% increase in streamflow in the study basin. Similarly, 

evapotranspiration elasticity to streamflow ranged from -2.88 to -0.74 indicating that, a 

10% increase in actual ET will lead to between 28.8% to 7.4% decrease in streamflow. 

The largely negative ET elasticity value also reflects the effect of warming climate in the 

basin. Generally, as temperature increases, ET increases and streamflow decreases. With 

streamflow showing high sensitivity to actual ET increases more than precipitation, it is 

safe to conclude that, to a large extent, actual evapotranspiration is more important in the 

flow dynamics of the PRB in the wake of a warming climate. 

6) The general observation therefore is that in decades where water is available, energy 

limits actual evapotranspiration which makes streamflow more sensitive to precipitation 

increase. However, in meteorologically stressed or dry decades, water limits actual ET 

thereby making streamflow more sensitive to increases in actual evapotranspiration.   
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The application of discrete wavelet transform analysis and process-based hydrological modeling 

in this study adequately captured the hydro-climatic signatures as well as hydrologic response to 

climate change in the PRB. A broader study in the future that incorporates how hydrologic 

sensitivities vary spatially across the PRB will help in further minimizing the uncertainties in 

climate impact assessments for the basin.  
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CHAPTER 4 : ASSESSEMENT OF HYDROCLIMATIC CONDITIONS IN RESPONSE TO 
POTENTIAL CLIMATE CHANGE AT MID-21ST CENTURY IN THE 

PASSAIC RIVER BASIN. 

4.1. Abstract 
The quest to assess future water resource availability in the context of climate change largely 

hinges on reliable and representative hydroclimatic projections. In view of this, downscaled and 

bias-corrected climate data obtained from the Multivariate Adaptive Constructed Analog 

(MACA) datasets were used to drive the MIKE SHE hydrologic model developed for the 

Rockaway catchment of the Passaic River Basin. A priori analysis however involved the 

selection of subset models from the 20 MACA models that characterized the change in 

temperature and precipitation according to LEAST WARM, HOT, DRY, and WET at mid-21st 

century (2041—2070) as well as a mild future that typifies the MIDDLE of the temperature and 

precipitation range. In all, nine (9) different models, relative to two baseline periods, and under 

two different climate scenarios were selected. Results showed that against the 2041—2070 

period, the margin of error owing to the use of different baseline conditions were +/- 0.3 — +/-

0.23 oC for temperature and +/-8.15— +/-6.9% for precipitation, indicating the extent to which 

the time perspective used in climate change impacts assessment significantly affect outcomes. 

Across all five (5) climate projections, and the two scenarios, a consistent warming from +1.21 

to + 4.70 oC is projected in the Rockaway catchment at mid-21st century relative to the 1981—

2010 baseline period. While precipitation is generally projected to increase, streamflow 

prediction shows an overall decreasing signal, a trend likely induced by the projected increase in 

actual evapotranspiration. In terms of climate extremes, an increase in the number heavy rainy 

days of approximately 2 days is projected in the coldest future whiles an increase of about 4 days 

is expected in the wettest future. In similar vein, the number days with consecutive dry spells is 

expected to decrease by approximately 2 days in the driest future whereas an increase of about 3 
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days is projected in the wettest future. Overall, climate change is expected to fuel flooding and 

drought conditions in the study catchment, and to cause alterations in river flows which will in 

turn affect reservoir operations. With this advance knowledge at hand, swift mitigation and 

adaptation plans are therefore needed.    

4.2. Introduction 
Three major phenomena of environmental significance are changing globally— population, 

land-use/land-cover, and climate. Of these three, climate change has continuously received 

sustained attention in recent decades, largely because it is occurring at a rate faster than plants 

and animal species can adapt. These major changes working in composite have contributed to the 

many varied and complex climatic impacts such as warmer temperatures, variable precipitation, 

dwindling snowpack, sea level rise, and increased evaporation (Huang et al., 2012; Schmucki et 

al., 2015; Clark et al., 2016; Yin and Tsai, 2018) over the last several decades. Extreme 

temperatures and precipitation have also been reported (e.g. Diaz et al., 2011; Wang et al., 

2017a) and are projected to increase in both frequency and severity.  

 

This rapidly changing climate has been linked to the heating effect created by anthropogenic 

greenhouse gas emissions into the atmosphere (IPCC, 2013; Masson-Delmotte, 2021). In 

particular, carbon dioxide has been observed to increase substantially beyond pre-industrial 

concentrations and is expected to continue in the course of the 21st century (IPCC, 2013; 

Masson-Delmotte, 2021). The direct impact from greenhouse gas addition to the atmosphere is 

an overall warming planet. Indirect impacts such as precipitation change, and sea level rise only 

emerge as a response to temperature change (Dessler, 2015). As such, climate change is in 

principle, temperature change. 
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Global temperatures have risen by an average of 0.08o C per decade since 1880, with a rate of 

warming more than twice as fast since 1981 (0.18o C per decade) (Lindsey and Dahlman, 2020). 

Since 1901, precipitation has increased at an average rate of approx. 1 mm per decade (NOAA, 

2022). Various aspects of precipitation such as intensity, frequency, duration, extent, and timing 

have also been changing throughout many regions around the world (Tan et al., 2020). The 

ultimate effect of these shifts in climate are the changes in quantity and seasonal distribution of 

streamflow, mediated by changes in evapotranspiration. Although climate change is a global 

phenomenon, the underlying impacts are very local and varied. Such that, while some regions 

around the world are experiencing increases in streamflow, others are seeing decreases (Milly et 

al., 2005). It therefore behooves on societies to consider the options and responses to climate 

change by identifying the extent to which various sectors of the economy may be affected. 

Currently, the general approach to climate change impacts studies require starting with one or 

more global climate models (GCMs), downscaling to the region of interest, and then used as 

inputs to a hydrological model to simulate hydrologic responses to changes in climate. The 

problem faced with such studies, however, is the choice of climate models used and what effect 

selecting any models have on the study results (Dettinger, 2005; Brekke et al., 2008). For most 

studies, the leeway is to compute the average over all models with available data (e.g., Seager et 

al., 2007), to establish a mean climate over the region of interest. While the superiority of an 

“average model” to any individual model has been largely upheld (e.g., Gleckler et al., 2008; 

Pincus et al., 2008; Reichler and Kim, 2008), questions have been raised as to whether such 

strategy is valid for model variability as well (Pierce et al., 2009). Recently, the United State 

Department of Agriculture Forest Services (USDA-FS) carried out an extensive evaluation to 

select a range of climate models from 20 downscaled GCMs (Joyce and Coulson, 2020). The 
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process involved identifying a set of projections that characterize the range of temperature and 

precipitation changes as well as a mild projection that represent the middle of this range at 

conterminous scale. While the resulting GCMs have been adopted and used by a number of 

researchers (e.g., Heidari et al., 2020; Aliyari et al., 2021; Lawrence et al., 2021), the scale of 

their analysis precludes its usage at a basin scale. As such, this study employs similar approach 

to subset climate models over the Passaic River Basin and subsequently use in an impact 

assessment.    

Through previous studies, it has become clear that the Northeast United States (which embodies 

the Passaic River Basin) has witnessed the strongest increase in extreme precipitation and 

temperatures among all US regions in the past five decades (Trenberth 1999; Groisman et 

al.2005; Allan & Soden 2008; Hoerling 2016; Easterling 2017). Whereas most regions have seen 

relative increases in precipitation extremes ranging from 5% to 37% (e.g., Groisman et al.2005), 

the U.S. Northeast has experienced a whopping 71 percent increase (e.g., Melillo et al., 2014; 

Horton et al., 2014; USGCRP, 2017). In the recent Fourth National Climate Assessment report 

(NCA 2018), it is projected that Northeast will continue to experience further increases in 

rainfall intensity, with total precipitation increase expected during the winter and spring seasons 

(Thibeault and Seth, 2014). On the other hand, temperatures are projected to increase beyond 

preindustrial average by 2ºC (3.6ºF) by 2035 under RCP4.5 and RCP8.5 scenarios. This is said to 

be the largest increase in the contiguous U.S. and is expected to occur as much as two decades 

before global average temperatures reach similar record (Karmalkar and Bradley 2017). Under 

such climate conditions and given the largely varied physiographic character of the Northeast, it 

is expected that the scope of climate vulnerabilities, impacts, and adaptation responses will be 

quite distinct (Rosenzweig et al. 2011, Leichenko and Solecki, 2013), and spatially diverse. A 
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more locally relevant climate impact assessment study is therefore needed. This will help build 

the needed resilience and adaptation to possible climate impacts through incorporation of climate 

related risks in future water resource decision and planning process. In this context, the Passaic 

River Basin, located in the Northeast US, noted for its dense population, diverse land uses and 

many reservoirs, is a suitable candidate for such a study.  

 The Passaic River Basin is a bi-state watershed (New Jersey and New York) with a drainage 

area of about 2422km2, and its tributaries supporting several large drinking water reservoirs that 

serve millions of inhabitants in northern New Jersey. The Passaic River is one of the major flood 

areas in the region, with its major tributaries already experiencing a 1% annual chance flood over 

a 60 square miles (155.4sqkm) area. Despite historic losses due to urbanization, wetlands in the 

central Passaic Basin provide essential ecosystem service deliveries which includes buffering 

natural flood. Amidst predicted 21st century changes in climate in the region, the environmental, 

hydrological, and economic impacts are expected to be far reaching. Thus, an evaluation of the 

impacts of climate change and variability on the basin’s hydrology would greatly benefit both 

water resource managers and policymakers.  

To this end, the study seeks first to select and identify climate models and projections that would 

characterize the temperature and precipitation changes for the basin according to least warm, hot, 

dry, and wet at the middle of the 21st century as well as a future that could characterize the 

middle of the temperature and precipitation ranges (e.g., Joyce and Coulson, 2020). Based on the 

selected models, further assessment will be carried out in the Rockaway catchment of the PRB to 

predict future flows and hydro-climatic conditions. This study will provide an important template 

of an envelope of future hydro-climatic conditions for the PRB, that can assist water managers 

and decision-makers in the planning of basin-specific adaptation and mitigation strategies.   
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4.3. Materials and Methods 
To carry out the future climate impacts assessment in the PRB, it was important to first 

determine which future emission scenarios and climate models would be needed, based on which 

plausible future climate change scenarios would be projected and used in driving catchment 

hydrological model. More so, the choice of baseline period in climate impacts studies has been 

found to constitute an important source of uncertainty, often at par with, or more significant than 

uncertainties propagated through the choice of global climate models (GCMs) (Koczot et al., 

2011; Baker et al., 2016; Peñaloza et al., 2019). For this reason, two reference periods (i.e., 

1951—1980 and 1981—2010) were explored in the climate models sub-setting over the PRB. 

The impacts assessment in the Rockaway sub-basin was however restricted to the recent baseline 

period to ensure presentation clarity.   

 

4.3.1 Description of the Study Area 
The location map of the Passaic River Basin is delineated in Figure 4.1. For details regarding 

climate, land use/land cover, and the physiographic characteristics of the PRB, the reader is 

referred to Oteng Mensah and Alo (2023).  

The Rockaway River, bolstered by the upstream Whippany River, forms a tributary watershed of 

about 300 square kilometers that flows into the Passaic River. This confluence occurs within the 

extensive wetland area encompassing Hatfield Swamp and Troy Meadows. The catchment is 

well suited for this hydrologic impact study because it is typical of the larger Passaic River 

Basin, having its extent intersecting two of the three physiographic provinces (Highlands and 

Central basin), clouded with numerous reservoirs, and featuring two groundwater wells that 

provide water supply for the local residents. With a greater portion falling within the Highlands 

to the south, the main land cover types in the Rockaway watershed include forest (50%), 
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developed, open space (30%), wetlands (13%), open water (4.3%), and others (2.7%). 

Reconstructed streamflow data record (by Hickman and McHugh, 2018) of the gauge above the 

Boonton reservoir (USGS # 01380500), spanning the period 1981—2010 water years was used 

in the hydrological simulation and assessment.   

4.3.2 Data Source 
Two types of datasets were used in the model selection exercise: observed and the downscaled 

Multivariate Adaptive Constructed Analogs (MACA) datasets.  The observed datasets were daily 

data obtained from Parameter-elevation Regressions on Independent Slopes Model (PRISM) 

(PRISM, Oregon State University, http://prism.oregonstate.edu), complemented with the Daymet 

(Thornton et al., 1997) datasets and aggregated into annual mean temperature, total annual 

precipitation, number of days with precipitation greater than 10mm (R10), and consecutive dry 

days (CDD). These variables were averaged from three stations: Ringwood, Rockaway, and 

Upper Passaic catchments within the PRB boundaries to evaluate the MACA climate models for 

the historical period, 1981—2005. Because the resolution of GCMs are two coarse, ranging from 

about 48—322 km (Naz et al., 2016; Hayhoe et al., 2017), they cannot be used directly for local 

scale hydroclimatic studies, and will require downscaling. Thus, the downscaled MACA climate 

datasets were acquired to provide the plausible future climate projections in this study 

http://prism.oregonstate.edu/
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Figure 4.1: Location map of the Rockaway catchment in the Passaic River Basin 

 

(Abatzoglou et al., 2018).  Table 4.1 shows a summary of the MACA models, comprised of 20 

models that were statistically downscaled and bias-corrected for the entire Conterminous United 

States (CONUS) at ~4 km (1/24 degree) cell size under two future Representative Concentration 

Pathways (RCPs) (i.e., RCP4.5 and RCP8.5). 
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Table 4.1: Summary of downscaled MACA models 

No. Model Name 
Native 
Resolution  Model Institution 

Model 
Country 

1 
 

BCC-CSM1-1 
 

2.8 x 2.8 
 

Beijing Climate Center, China 
Meteorological Administration 

China 
 

2 
 

BCC-CSM1-1-m 
 

1.12 x 1.12 
 

Beijing Climate Center, China 
Meteorological Administration 

China 
 

3 
 

BNU-ESM 
 

2.8 x 2.8 
 

College of Global Change and Earth 
System Science, Beijing Normal 
University, China 

China 
 

4 CanESM2 2.8 x 2.8 
Canadian Centre for Climate 
Modeling and Analysis Canada 

5 CCSM4 1.25 x 0.94 
National Center of Atmospheric 
Research, USA USA 

6 
 

CNRM-CM5 
 

1.4 x 1.4 
 

National Centre of Meteorological 
Research, France 

France 
 

7 
 
 

CSIRO-Mk3-6-0 
 
 

1.8 x 1.8 
 
 

Commonwealth Scientific and 
Industrial Research 
Organization/Queensland Climate 
Change Centre of Excellence, 
Australia 

Australia 
 
 

8 GFDL-ESM2G 2.5 x 2.0 
NOAA Geophysical Fluid Dynamics 
Laboratory, USA USA 

9 GFDL-ESM2M 2.5 x 2.0 
NOAA Geophysical Fluid Dynamics 
Laboratory, USA USA 

10 HadGEM2-CC365 1.88 x 1.25 Met Office Hadley Center, UK 
United 
Kingdom 

11 HadGEM2-ES365 1.88 x 1.25 Met Office Hadley Center, UK 
United 
Kingdom 

12 INMCM4 2.0 x 1.5 
Institute for Numerical Mathematics, 
Russia Russia 

13 IPSL-CM5A-LR 3.75 x 1.8 Institut Pierre Simon Laplace, France France 
14 IPSL-CM5A-MR 2.5 x 1.5 Institut Pierre Simon Laplace, France France 
15 IPSL-CM5B-LR 2.75 x 1.8 Institut Pierre Simon Laplace, France France 

16 
 
 
 

 
MIROC5 
 
 
 

1.4 x 1.4 
 
 
 

Atmosphere and Ocean Research 
Institute (The University of Tokyo), 
National Institute for Environmental 
Studies,and Japan Agency for 
Marine-Earth Science and 
Technology 

Japan 
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17 
 
 
 

MIROC-ESM 
 
 
 

2.8 x 2.8 
 
 
 

Japan Agency for Marine-Earth 
Science and Technology, 
Atmosphere and Ocean Research 
Institute (The University of Tokyo), 
and National Institute for 
Environmental Studies 

Japan 
 
 
 

18 
 
 
 

MIROC-ESM-
CHEM 
 
 

2.8 x 2.8 
 
 
 

Japan Agency for Marine-Earth 
Science and Technology, 
Atmosphere and Ocean Research 
Institute (The University of Tokyo), 
and National Institute for 
Environmental Studies 

Japan 
 
 
 

19 MRI-CGCM3 1.1 x 1.1 
Meteorological Research Institute, 
Japan Japan 

20 NorESM1-M 2.5 x 1.9 Norwegian Climate Center, Norway Norway 

The climatic variables in the MACA dataset includes minimum temperature (tasmin), maximum 

temperature (tasmax), precipitation (pr), maximum relative humidity (rhsmax), minimum 

(rhsmin), eastward component of wind (uas), and northward component of wind (vas). In this 

study, the resultant wind speed was calculated as a combination of the eastward and northward 

winds  (√𝑢𝑢𝑎𝑎𝑂𝑂2 + 𝑣𝑣𝑎𝑎𝑂𝑂2). Reference evapotranspiration was further computed from these climatic 

variables to run the MIKE SHE hydrological model.   

4.3.3 Selection criteria 

In this study, the selection of climate models and projections were based on the downscaled 

MACA models for RCP4.5 (lower scenario) and RCP8.5 (higher or business-as-usual scenario) 

and modified according to the approach by Joyce and Coulson (2020), at a basin scale. The 

process is schematically illustrated in Figure 4.2. Evaluation of climate models was based on 

each model’s ability to mimic historical climate. Thus, models that consistently underperformed 

in capturing observed historical climate conditions were removed from further consideration. For 

individual projections, selection was made on the basis of a set of climate projections that would 

characterize the changes in temperature and precipitation for the MACA models according to 
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LEAST WARM, HOT, DRY, and WET at mid-21st century as well as a mild future that typifies 

the MIDDLE of the temperature and precipitation range.  Over the PRB, these changes were 

calculated as difference in temperature and percent change in precipitation, based on which 

models were ranked. Across the 20 models in the MACA dataset for each scenario, LEAST 

WARM and HOT defines the extreme ends of projected changes in temperature at mid-century 

relative to the baseline period. After arranging these projected changes from the smallest 

temperature change to the greatest, LEAST WARM will be the smallest change with HOT being 

the greatest change in temperature. Similarly, DRY and WET represent the extremes of projected 

precipitation change across all 20 MACA models for each scenario. Grouping these changes 

from the smallest precipitation change to the highest reveal the driest model as well as the 

wettest model which defines the DRY and WET projections at mid-century relative to the 

considered baselines. The MIDDLE of the range of projected temperature and precipitation 

changes represents the mild future climate which involve the computation of basin-average 

change in temperature and precipitation for the two baseline periods (1951—1980 and 1981—

2010) relative to the mid-21st century (1941—1970) period under RCP 4.5 and RCP 8.5. To find 

the middle projection, the mean change in temperature and precipitation for all selected MACA 

models was first calculated under both scenarios. The model with projected temperature and 

precipitation change closest to the mean change of all the selected model was chosen as the 

middle projection. The closest model was determined by calculating the distance between each 

model and the mean of all models on a temperature—precipitation change Cartesian plane. 

Thus relative to one baseline period (e.g. 1951—1980) from the middle of the century (2041—

2070), and the two RCPs, a total of 40 climate models or projections (20 for each scenario) from 

the MACA dataset is considered: the first step in the process. The second step is the evaluation 
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process where some models are dropped for poorly reproducing historical climate, and the last 

step will identify the five (5) projections (LEAST WARM, HOT, MIDDLE, DRY, WET) out of 

the now less-than-20 climate models for each scenario as described earlier. By this criteria, a 

total of ten (10) projections will be identified, five (5) for each RCP as illustrated in Figure 4.2.  

 

Figure 4.2: Schematic of the process used to identify five climate projections from the 
MACAv2-MetDATA climate datasets for use under RCP4.5 and RCP8.5 over the Passaic River 
Basin. Solid black circles denote the MACA climate models (modified after Joyce and Coulson 

(2020)) 

4.3.4. Performance Evaluation of MACA Models 
The performance evaluation of the MACA climate datasets was guided by the model 

performance metrics developed by Rupp et al. (2013), selected on the basis of their theoretical 

merits and relevance for impact modelling. According to Rupp et al. (2013), mean annual 

temperature and precipitation rank highest among all performance metrics. For this study, 

because the Northeast region has over the past decades witnessed the strongest extreme climates 
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(Hoerling 2016; Easterling 2017), metrics that captured the extreme climate conditions of the 

PRB were also considered. As a result, four metrics—mean annual temperature, mean annual 

precipitation, number of days with precipitation greater than 10mm, and consecutive dry days—

were used in the historical performance rankings in this study. For each of the 20 MACA models 

evaluated, the relative error (RE), root mean square error (RMSE), and correlation coefficient (r) 

for each metric was summed or averaged. Corresponding formulas for each statistic are shown in 

equations 4.1, 4.2, and 4.3.  

𝑅𝑅𝑀𝑀 = |𝑀𝑀−𝑂𝑂|
𝑂𝑂

                                                                                                                Equation 4.1 

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = �1
𝑛𝑛
∑(𝑀𝑀− 𝑂𝑂)2                                                                                           Equation 4.2 

𝑟𝑟 = 𝐶𝐶𝑀𝑀𝑀𝑀
𝑆𝑆𝑆𝑆𝑀𝑀×𝑆𝑆𝑆𝑆𝑀𝑀

                                                                                                                Equation 4.3 

where, 𝑀𝑀 = baseline period (MACA models) time series 

           𝑂𝑂 = corresponding observed time series for same variable 

           𝐶𝐶𝑀𝑀𝑂𝑂 = Covariance between baseline period (MACA models) and observation 

          𝑆𝑆𝐷𝐷𝑀𝑀 = Standard deviation of baseline period (MACA models) 

         𝑆𝑆𝐷𝐷𝑂𝑂 = Standard deviation of observation 

On the basis of these statistics, models that consistently performed poor with any two of these 

statistics (i.e., the largest total mean relative error, largest mean RMSE, and/or the smallest mean 

(r)) were then dropped. 

 4.3.5. Hydroclimatic impacts assessment 
The climate impacts assessment examines the future hydroclimatic conditions of the Rockaway 

sub-basin resulting from climate change/variability. Here, assessment was based on the selected 
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MACA models representing the plausible future trajectory of temperature and precipitation 

changes according to LEAST WARM, HOT, DRY, WET, and the MIDDLE of the range under 

the two emission scenarios (RCP4.5 and RCP8.5). Under each scenario, these five climate 

projections for the Rockaway sub-basin was used to force the MIKE SHE hydrological model to 

study: 1) monthly hydroclimatic ratios, 2) seasonal hydro-climatological changes, and 3) annual 

trends in precipitation, R10, CDD, actual evapotranspiration, streamflow, and groundwater 

recharge at mid-21st century relative to 1981—2010 baseline. These hydroclimatic variables 

were obtained from water balance outputs of the MIKE SHE hydrological model developed for 

the Rockaway sub-basin.  

4.4. Results and Discussion  
4.4.1. Temperature and precipitation change at mid-21st century in the PRB 
Rankings for projected mean temperature and annual precipitation change across all MACA 

models at mid-21st century are shown in Figures 4.3 and 4.4 for the baseline periods 1951—1980 

and 1981—2010 respectively. Over the PRB, mean temperature was projected to increase across 

all models and in both scenarios. For the 1951—1980 reference period relative to 2041—2070, 

increases range from 1.24 oC to 3.79 oC under RCP 4.5 and 1.92 oC to 4.63 oC under RCP 8.5. 

Relative to the 1981—2010 period, the least temperature change was 0.87 oC in INMCM4 and 

the highest change was 3.20 oC in MIROC-ESM-CHEM under RCP 4.5 and a 1.62 oC to 4.03 oC 

range under RCP 8.5 for same two models respectively. Although by individual model, projected 

changes in temperature was greater under RCP 8.5 than under RCP 4.5, more models under RCP 

4.5 projected temperature changes greater than models under RCP 8.5. For example, considering 

the 1951—1980 baseline, only 6 models under RCP 8.5 projected changes greater than all the 

models under RCP 4.5. However, against the 1981—2010 reference period, only 3 models under 

RCP 8.5 projected temperature changes greater than all the models under RCP 4.5. Generally, 
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projected changes in temperature for most models under RCP 4.5 are greater than projected 

changes in other models under RCP 8.5. Such overlap in projected changes in temperature 

between these scenarios have also been reported in other studies (e.g. Hayhoe et al., 2017; Joyce 

and Coulson, 2020).  

Relative to the 1951—1980 reference, annual precipitation ranged from 1.04% increase in MRI-

CGCM3 to 12.99% increase in NorESM1-M under RCP 4.5 and from 2.23% increase in 

INMCM4 to 23.29% increase in BCC-CSM1-1-m under RCP 8.5. Note that all models projected 

precipitation increase in the 1951—1980 baseline period under both scenarios. Measured against 

1981—2010 reference however, some models projected decreases in annual precipitation. MRI-

CGCM3 and IPSL-CM5A-MR for example, decreased by 2.02% and 2.49% respectively under 

RCP 4.5 whereas INMCM4 decreased by 5.91% under RCP 8.5. Thus projected changes in 

annual precipitation range from 2.02% decrease to 11.10% increase in HadGEM2-CC365 under 

RCP 4.5 and from 5.91% decrease to 16.39% increase in NorESM1-M under RCP 8.5. In 

general, the range of change in projected precipitation was wider in the 1981—2010 baseline 

than in 1951—1980 baseline and in RCP 8.5 than it is in RCP 4.5. This results were also 

corroborated by Joyce and Coulson, 2020) in their evaluation across the CONUS, though with a 

different reference period. In particular, they also found that IPSL-CM5A-MR projected a 

decrease in annual precipitation by 
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2041—2070 against 1971—2000 baseline period. In the selection process in this study, 

individual model projections either appeared under both scenarios or varied by scenario. For 

example, the same model, INMCM4, projected an increase in precipitation in the 1951—1980 

baseline period and a decrease in the 1981—2010 baseline under RCP 8.5. However, under RCP 

4.5 MRI-CGCM3 projected an increase in precipitation in the 1951—1980 reference period 

whereas IPSL-CM5A-MR projected a decrease in the 1981—2010 baseline period.  

Figure 4.3: Change in mean temperature (oC) and annual precipitation (percent) at mid-century (2041–
2070) relative to the historical period (1951–1980) under RCP 4.5 (a, b) and RCP 8.5 (c, d) for all 20 

models over the Passaic River Basin 
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Thus on the basis of this initial ranking, the model with the smallest change in temperature 

(Least Warm), INMCM4, was the same by scenario and by baseline. The hottest model, having 

the largest change in temperature varied by scenario and by baseline. As shown in Figure 4.3a, b, 

the hottest projection by the 2041—2070 period was HadGEM2-ES365 and MIROC-ESM-

CHEM models under RCP 4.5 and RCP 8.5 respectively relative to the 1951—1980 baseline. By 

baseline, the HadGEM2-ES365 model was the same, project the hottest under RCP 4.5 (Figures 

4.3a and 4.4a), but differed with MIROC-ESM-CHEM being the hottest model for the 1951—

1980 baseline period (Figure 4.3b) and likewise, the HadGEM2-CC365 model for the 1981—

2010 baseline under RCP 8.5 (Figure 4.4b).  

 

The driest and wettest projections largely differed by scenario and also by baseline. At mid-21st 

century relative to the 1951—1980 baseline, the driest model was projected by MRI-CGCM3 

Figure 4.4: Change in mean temperature (oC) and annual precipitation (percent) at mid-century 
(2041–2070) relative to the historical period (1981–2010) under RCP 4.5 (a, b) and RCP 8.5 (c, d) 

for all 20 models over the Passaic River Basin 



136 
CLIMATE CHANGE IMPACTS ON WATER RESOURCE AVAILABILITY 

 

under RCP 4.5 and INMCM4 projected the smallest increase under RCP 8.5. In contrast, the 

NorESM1-M model, being the wettest, projected the largest increase in precipitation under RCP 

4.5 and BCC-CSM1-1-m projected the greatest increase under RCP 8.5. Against the 1981—2010 

baseline, the driest models were projected by IPSL-CM5A-MR and INMCM4 under RCP 4.5 

and RCP 8.5 respectively. The wettest model was projected by HadGEM2-CC365 under RCP 

4.5 and by NorESM1-M under RCP 8.5.    

4.4.2. Model performance evaluation 
The historical performance of each of the 20 models based on the four variable metrics typical of 

the climatic conditions over the Passaic River Basin have been ranked according to their mean 

total relative error (RE), mean root mean square error (RMSE), and mean correlation coefficient 

 (r) and shown in Figure 4.5. A lower rank in RE and RMSE, and a higher rank in r indicated a  

Figure 4.5: Model performance results for 20 models for the 3-region mean results over the Passaic 
River Basin for (a) RE, (b) RMSE, and (c)r. For RE and RMSE, the lower the performance metric, the 

better the projection reproduced the observed historical climate 1981-2005). The order of the 
performance results in each graph was based on the rankings of the mean of Tmean, Precip, R10, and 

CDD 
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better model performance in matching historical climate. Based on the RMSE and r statistics, the 

same model (NorESM1-M) ranked the lowest, being the best model to fairly capture the 

historical mean temperature, precipitation, rainy days greater than 10mm, and consecutive dry 

days in the PRB.  

In respect of the worst models, the criteria were to drop models that consistently appeared to 

rank poorly in any two of the three statistics in capturing the historical observed climate. 

Accordingly, and as depicted in Figure 4.5, two models (HadGEM2-ES365 and HadGEM2-

CC365) performed worst. They were consistently in the worst performing ranks in both mean RE 

and mean RMSE, with the order shifting between the last two poorly performing ranks. 

Consequently, they were removed from further consideration, affecting the range of mid-21st 

century changes in temperature and precipitation. For instance, HadGEM2-ES365 model will no 

longer be the hottest projection among the models for both baseline periods under RCP 4.5. 

Similarly, HadGEM2-CC365 ceases to be the wettest model under RCP 4.5 and the hottest 

projection under RCP 8.5 for the 1981—2010 baseline period.  

4.4.3. Middle of the projected changes in temperature and precipitation range 
The model that could represent the middle of the temperature and precipitation change was based 

on projections by the remaining 18 models after dropping HadGEM2-ES365 and HadGEM2-

CC365. These models must show a projection with a change in temperature and precipitation 

proximal to the 18-model mean change in temperature and precipitation. By computing the 

distance from the 18-model mean change in temperature and precipitation on a Cartesian plane, 

the middle projection that reflected the mean change over the PRB was identified. This is 

illustrated in Figures 4.6 and 4.7 and tabulated in Tables 4.2 and 4.3. Based on the computations, 

the projections closest to the 18-model mean temperature and precipitation change were IPSL-
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CM5A-LR and IPSL-CM5B-LR under RCP 4.5 and RCP 8.5 respectively, against the 1951—

1980 baseline period (Figure 4.7, Table 4.2). Similarly, the projected temperature and 

precipitation change in close proximity to the overall mean change for the 18 models was found 

in GFDL-ESM2G under RCP 4.5 and BCC-CSM1-1 under RCP 8.5 relative to the 1981—2010 

reference period (Figure 4.7, Table 4.3). Note that though the precipitation or temperature 

change projected by another model may be closer to the mean projected change than the selected 

model, the other corresponding variable may be drier, hotter, wetter, or cooler than the overall 

mean change. For example, in Figure 4.7 (a), although temperature projection under RCP 4.5 for 

NorESM1-M was closer to the 18-model mean change temperature, the precipitation change was 

wetter at 5.74% increase as against 4.70% for the overall model mean change. Thus, the model 

chosen to represent the middle of the temperature and precipitation range rather produces the 

right combination of temperature and precipitation change with the minimum distance from the 

18-model mean change.   
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Figure 4.6: Annual precipitation change (percent) plotted against mean temperature 
change (°C) at mid-century (2041–2070) from the historical period (1951–1980) under 

RCP 4.5 (a) and RCP 8.5 (b) for all 18 selected MACA models over the PRB. 
Individual models are denoted by open circles in the RCP 4.5 scenario and open 

triangles in the RCP 8.5 scenario. The red “X” represents the mean temperature and 
precipitation change for the 18 selected models in each scenario. The five model 

projections are noted LEAST WARM, HOT, DRY, WET, and MIDDLE in the legend. 
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4.4.4. Mid-21st century selected models over the Passaic River Basin 
Thus far, the set of projections that characterize climate change at mid-century over the PRB 

have been determined. Using the change in temperature and precipitation between 2041—2070 

Figure 4.7: Annual precipitation change (percent) plotted against mean temperature change 
(°C) at mid-century (2041–2070) from the historical period (1981–2010) under RCP 4.5 (a) 
and RCP 8.5 (b) for all 18 selected MACA models over the PRB. Individual models are d 

denoted by open circles in the RCP 4.5 scenario and open triangles in the RCP 8.5 scenario. 
The red “X” represents the mean temperature and precipitation change for the 18 selected 

models in each scenario. The five model projections are noted Least Warm, Hot, Dry, Wet, 
and Middle in the legend. 
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period and two different baseline periods (1951—1980 and 1981—2010), three projections that 

form the lower and upper range of the changes under RCP 4.5 and RCP 8.5 were selected, as 

shown in Table 4.4. Quite interestingly, under the Least Warm category, the same models under 

both scenarios and having the same rank order appeared in the top three ranks for the two 

baseline periods. The same pattern was also seen for the Hot category except under RCP 4.5 for 

the 1951—1980 baseline. For the dry category, only one model appeared under both scenarios 

for both baseline periods, the IPSL-CM5A-MR model for the 1951—1980 baseline, and the 

INMCM4 model for the 1981—2010 baseline. In the Wet category two models (NorESM1-M 

and BCC-CSM1-1-m) appeared under both scenarios for the 1951—1980 baseline period, and 

one model (INMCM4) under both scenarios for the 1981—2010 baseline. By and large, the 

middle category was the only projection that showed variations in the models selected under the 

two scenarios and baseline periods. Note that, unlike Joyce and Coulson (2020), this study 

placed no restriction on the selection of the number of models from a modeling institution. The 

selection process in this study considered all 20 MACA models as distinct on the basis of their 

unique physical characteristic including their native resolution and the role they play in their 

representation of aspects of the climate system based on their numerical formulations. For 

example, while HadGEM2-ES365 and HadGEM2-CC365 may come from the same modeling 

institution, one incorporates an earth system component with the added capability of explicitly 

representing biogeochemical processes that interact with the physical climate, while the later has 

the carbon cycle inclusion. Table 4.5 shows the rankings of various selected models under each 

category, by scenarios for the two baseline periods considered. By this, models or projections 

that encapsulate the plausible range of temperature and precipitation change as well as a mild 

projection at the middle of the range for the Passaic River Basin is projected at mid-century. 
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Under the two different baseline period, this evaluation captures the uncertainty that may arise as 

a result of different baseline condition, which has been noted to be comparable to or more 

important than the uncertainty arising from the choice of GCMs (Peñaloza et al., 2019).  

Table 4.2: Change in mean temperature and annual precipitation from historical to mid-21st 
century over the Passaic River Basin for the 18-model ensemble and the distance of each model 
from the ensemble mean under the RCP 4.5 and RCP 8.5 scenarios. The minimum po possible 
distance colored in red representing the model for middle of the temperature and precipitation 
range relative to the 1951—1980 baseline. 

 

 

 

2041-2070 minus 1951-1980       

Model 

 RCP 4.5   RCP 8.5   

Symbol Temp Precip 
Dist. from 
mean Temp Precip 

Dist. from 
mean 

BCC-CSM1-1 K 2.75 4.05 4.02 3.20 11.14 0.83 
BCC-CSM1-1-m E 2.22 12.20 4.15 3.16 23.29 12.97 
BNU-ESM Q 3.29 9.33 1.43 3.93 12.47 2.22 
CanESM2 N 3.20 9.13 1.20 3.85 5.30 5.04 
CCSM4 H 2.58 10.40 2.33 3.19 14.54 4.23 
CNRM-CM5 F 2.34 10.85 2.79 3.23 7.06 3.27 
CSIRO-Mk3-6-0 I 2.68 9.82 1.75 3.23 7.90 2.42 
GFDL-ESM2G D 2.15 6.62 1.52 2.89 10.45 0.49 
GFDL-ESM2M C 1.91 12.98 4.96 2.71 13.59 3.33 
INMCM4 A 1.24 7.34 1.56 1.92 2.23 8.22 
IPSL-CM5A-LR M 2.95 7.54 0.62 3.83 6.50 3.85 
IPSL-CM5A-MR J 2.75 1.70 6.37 3.62 7.11 3.22 
IPSL-CM5B-LR L 2.78 4.91 3.16 3.25 9.85 0.48 
MIROC5 O 3.23 9.66 1.70 4.30 14.41 4.19 
MIROC-ESM P 3.29 7.27 1.05 4.33 7.11 3.35 
MIROC-ESM-
CHEM R 3.79 7.44 1.33 4.63 9.77 1.38 
MRI-CGCM3 B 1.55 1.04 7.12 2.27 6.68 3.80 
NorESM1-M G 2.48 12.99 4.92 3.11 16.39 6.08 
Mean of 18 Models x 2.62 8.07   3.37 10.32   
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Table 4.3: Change in mean temperature and annual precipitation from historical to mid-21st 
century over the Passaic River Basin for the 18-model ensemble and the distance of each model 

from the ensemble mean under the RCP 4.5 and RCP 8.5 scenarios. The minimum possible 
distance colored in red representing the model for middle of the temperature and precipitation 

range relative to the 1981—2010 baseline 

2041-2070 minus 
1981-2010        

Model 

 RCP 4.5                                        RCP 8.5   

Symbol Temp Precip 
Dist. from 
mean Temp Precip 

Dist. from 
mean 

BCC-CSM1-1 K 2.21 2.30 2.40 2.61 8.11 1.15 
BCC-CSM1-1-m E 1.65 5.40 0.81 2.64 13.62 6.65 
BNU-ESM Q 2.56 3.19 1.58 3.21 3.65 3.35 
CanESM2 N 2.52 6.46 1.84 3.06 2.51 4.47 
CCSM4 H 1.72 5.61 0.98 2.42 10.61 3.66 
CNRM-CM5 F 1.77 5.81 1.15 2.63 3.80 3.18 
CSIRO-Mk3-6-0 I 2.32 9.34 4.66 2.86 8.15 1.19 
GFDL-ESM2G D 1.56 4.27 0.65 2.24 9.05 2.16 
GFDL-ESM2M C 1.22 7.75 3.17 1.99 9.04 2.22 
INMCM4 A 0.87 0.45 4.40 1.62 -5.91 12.94 
IPSL-CM5A-LR M 2.06 6.46 1.77 3.05 3.58 3.40 
IPSL-CM5A-MR J 2.01 -2.49 7.18 2.87 3.84 3.13 
IPSL-CM5B-LR L 2.31 5.88 1.22 2.75 9.20 2.23 
MIROC5 O 2.68 7.75 3.13 3.70 11.94 5.05 
MIROC-ESM P 2.71 4.64 0.66 3.78 3.53 3.58 
MIROC-ESM-CHEM R 3.20 8.10 3.60 4.03 10.22 3.48 
MRI-CGCM3 B 1.44 -2.02 6.73 2.15 4.17 2.87 
NorESM1-M G 2.07 5.64 0.95 2.71 16.39 9.42 

Mean of 18 Models x 2.05 4.70   2.80 6.97   
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Table 4.4: Top three ranked projections in terms of temperature (Least Warm, Hot) and 
precipitation (Dry, Wet) change and the Middle projection representing the temperature and 
precipitation range at mid-21st century (2041—2070) relative to the baseline periods 1951—

1980 and 1981—2010 under scenarios (RCP 4.5, RCP 8.5) over the Passaic River Basin. 

1951-1980 
baseline        

Scenario Rank Least Warm Hot Dry Wet Middle 

RCP 4.5 1 INMCM4 MIROC-ESM-CHEM MRI-CGCM3 NorESM1-M IPSL-CM5A-LR 

 2 MRI-CGCM3 BNU-ESM IPSL-CM5A-MR GFDL-ESM2M MIROC-ESM 

  3 GFDL-ESM2M MIROC-ESM BCC-CSM1-1 BCC-CSM1-1-m CanESM2 

RCP 8.5 1 INMCM4 MIROC-ESM-CHEM INMCM4 BCC-CSM1-1-m IPSL-CM5B-LR 

 2 MRI-CGCM3 MIROC-ESM CanESM2 NorESM1-M GFDL-ESM2G 

 3 GFDL-ESM2M MIROC5 IPSL-CM5A-LR CCSM4 BCC-CSM1-1 
1981-2010 
baseline       

RCP 4.5 1 INMCM4 MIROC-ESM-CHEM IPSL-CM5A-MR CSIRO-Mk3-6-0 GFDL-ESM2G 

 2 GFDL-ESM2M MIROC-ESM MRI-CGCM3 
MIROC-ESM-
CHEM MIROC-ESM 

  3 MRI-CGCM3 MIROC5 INMCM4 MIROC5 BCC-CSM1-1-m 

RCP 8.5 1 INMCM4 MIROC-ESM-CHEM INMCM4 NorESM1-M BCC-CSM1-1 

 2 GFDL-ESM2M MIROC-ESM CanESM2 BCC-CSM1-1-m CSIRO-Mk3-6-0 

  3 MRI-CGCM3 MIROC5 MIROC-ESM MIROC5 GFDL-ESM2G 

 

4.4.5. Hydro-climatic impacts of climate change in the Rockaway watershed 
In examining hydroclimatic response to future climate, the top ranked model of each category in 

Table 4.4 for the 1981—2010 baseline under both scenarios was used to drive the MIKE SHE 

hydrologic model developed for the Rockaway catchment. In all, 9 models (5 under RCP 4.5 and 

4 under RCP 8.5) representing the range of temperature and precipitation change over the basin 

at mid-21st century produced future hydrological outputs (e.g., streamflow, actual 

evapotranspiration, recharge) needed for the impacts assessment. This future hydroclimatic 

response was assessed by evaluating, 1) monthly evapotranspiration—precipitation (ET/P) and 

recharge—streamflow ratios (R/Q); 2) seasonal changes in precipitation (P), temperature (T), 

actual evapotranspiration (ET), and streamflow (Q); and 3) annual trends in water balance 
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outputs, as presented in the subsections below. In respect of the R/Q ratio, note that values 

change from positive to negative in months where ET exceeds precipitation, leading to a net 

negative recharge. This means that ET borrows water from the groundwater system due to the 

deficit of precipitation in a given month and rendering recharge negative for that month.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.6. Monthly hydroclimatic ratios 
In Figure 4.8, the mid-21st century (2041—2070) outlook of ET-P and R-Q ratios are compared 

with the 1981—2010 baseline on a monthly basis in the Rockaway catchment. The magnitude of 

ET-P index is of interest to a number of hydrometeorological considerations, including but not 

limited to hydrologic systems monitoring (e.g., storage changes), basin-wide water budget 

RCP 4.5 RCP 8.5 

Figure 4.8: Monthly hydroclimatic ratios for the period 2041—2070 relative to the 1981—2010 
baseline. (a) and (b) are evapotranspiration—precipitation ratios (E/P) and (c) and (d) are 

recharge—streamflow ratios (R/Q) for RCP 4.5 and RCP 8.5 respectively 
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accounting, water footprint, and climate change indexing (Blatchford et al., 2020; Senay et al., 

2016; Oteng Mensah and Alo, 2023). In Figure 4.8a, b, the projected E/P ratio for all five 

projections is higher than that of the baseline for most months in the year, with values ranging 

from 0.04 in December and 1.76 in May. Excepting the WET model that projects near unity 

values under the highest scenarios, all other models project above-one values, suggesting 

significant water deficit in more than half of the year at mid-century.  

The largely high ET index value foreseen is also reflected in the exceptionally high R-Q ratios 

less than 0.5 in corresponding months as shown in Figure 4.8c, d. Because of possible 

evapotranspiration losses, more than half of the entire year’s total precipitation is consumed, and 

none emerging as water available to streams, and seepage into the groundwater system. Between 

March and August, all models under RCP 4.5 foresee huge deficit in water availability relative to 

the baseline, with R-Q ratio ranging from -10.24 under the DRY projection to 4.16 in the LEAST 

WARM model. It appears that projected deficits occur in the April—September window while 

surpluses are foreseen in the October—March time period for all five climate model projections 

under both scenarios. Flint and Flint (2007) noted that, estimates of R-Q ratio are indicative of 

the mechanisms that largely control groundwater recharge in a basin. Such that, a ratio of 0.5 or 

less suggests that more than twice as much water has the tendency to become surface runoff than 

to recharge the saturated zone whereas ratios of 2.0 or greater indicates that water has more than 

twice the potential to favor recharge than overland flow. Thus, given the results in this study the 

future outlook on water resource in the study basin appear dire, and calls for swifter action by 

decision-makers.     

4.4.7. Changes in temperature and precipitation  
Table 4.5 shows the projected seasonal change in temperature, precipitation, streamflow, actual 

ET and recharge for the range of climate projection under both RCPs at 2041—2070 period 
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relative to 1981—2010 period. Evident as one of the key impacts of global temperature change is 

the shift in the seasonal cycle of hydroclimate variables, in particular precipitation and 

streamflow. Modulated by changes in actual evapotranspiration, the magnitude and direction of 

change in precipitation and flow point to the character of hydroclimatic sensitivity to climate 

forcing as well as the varying nature from one location to another. In the case of the Rockaway 

catchment, a consistent warming from +1.21 to + 4.70 oC is projected by the five models in all 

seasons under both emission scenarios. The greatest temperature rise is projected by the HOT 

model in the winter under RCP 4.5 and in the spring under RCP 8.5. This projected seasonal 

changes are generally consistent with other studies in the northeastern US (Melillo et al., 2014; 

Naz et al., 2016). 

Along with temperature, all models project increases in precipitation with the exception of the 

LEAST WARM model that projects decrease in the fall and winter seasons under both scenarios. 

Projected changes in precipitation ranges from 3.43% decrease in the fall season by the LEAST 

WARM model to 16.32% increase in the summer by the WET model under RCP 4.5. Under 

RCP 8.5 (the business as usual (BAU) scenario), changes are relatively large, ranging from 

12.09% decrease in the winter by the LEAST WARM/DRY model to 20.63% increase in the 

spring by the WET model (Table 4.5). Consistent with the general trends in the region, this 

increases in the winter and spring precipitation are also reported in the Forth National Climate 

Assessment report (NCA, 2018) and others for the Northeastern US (e.g., Thibeault and Seth, 

2014).  
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Table 4.5: Projected seasonal change in precipitation, temperature, actual evapotranspiration, 
recharge, and streamflow in the mid-21st century (2041–2070) relative to the baseline period 

(1981–2010) summarized over the Rockaway catchment in the PRB 

  
      Temperature (oC change)       

  RCP 4.5     RCP 8.5    

  Baseline 
Least 
Warm Hot Dry Wet Middle 

Least 
Warm/Dry Hot Wet Middle 

DJF -1.83 1.25 4.14 2.04 2.91 2.35 2.02 4.67 3.00 3.08 
MAM 8.75 1.43 4.06 2.61 2.56 2.10 2.25 4.70 2.87 3.12 
JJA 20.47 1.28 3.33 3.04 2.75 1.68 1.96 4.46 3.56 3.49 
SON 10.57 1.21 3.36 2.81 2.66 2.39 1.67 4.41 3.12 3.11 

        Precipitation (% change)       

DJF 3.06 -2.51 5.17 6.80 10.13 5.90 -12.09 15.39 12.91 5.21 
MAM 3.59 11.04 9.69 0.19 13.78 5.02 5.88 17.32 20.63 18.11 
JJA 3.72 13.96 14.12 4.20 16.32 4.68 15.35 8.87 18.05 6.37 
SON 3.66 -3.43 11.69 2.78 11.01 15.23 -10.84 10.76 7.44 20.26 

        Evapotranspiration (% change)       

DJF 0.67 -8.00 10.04 3.12 17.14 3.72 -2.70 14.37 51.72 10.35 
MAM 2.54 106.25 120.13 103.71 117.61 109.45 98.58 132.48 32.26 123.92 
JJA 3.55 55.71 59.01 52.13 65.22 53.77 54.76 57.41 12.19 56.42 

SON 1.98 28.25 44.78 33.28 39.18 38.78 24.41 41.76 
-
14.06 46.97 

        Flow (% change)         

DJF 7.80 -52.73 -50.45 -51.70 -44.25 -49.22 -59.88 -46.91 10.79 -46.59 
MAM 6.14 -75.50 -80.90 -77.51 -77.43 -76.82 -79.52 -79.31 -4.60 -74.45 
JJA 3.59 -84.01 -86.06 -87.25 -85.62 -86.42 -86.01 -86.30 9.00 -85.98 
SON 5.45 -78.81 -78.29 -79.40 -74.41 -74.28 -81.79 -77.75 32.39 -73.78 

        Recharge (% change)       

DJF -1.67 -24.79 -18.44 -19.42 -12.50 -17.52 -35.87 -9.85 7.13 -16.49 

MAM -1.06 -156.66 
-
170.04 

-
171.17 -165.81 -166.63 -153.75 

-
172.99 

-
18.85 

-
164.18 

JJA -0.41 -238.12 
-
255.35 

-
269.28 -272.13 -274.25 -228.84 

-
273.04 41.65 

-
282.15 

SON -1.31 -80.32 -73.03 -77.74 -68.91 -61.92 -89.15 -74.63 25.49 -60.40 

 

4.4.8. Seasonal changes in streamflow  
Table 4.5 also summarizes the range of plausible changes in streamflow in the Rockaway 

catchment from 1981—2010 baseline to the 2041—2070 future period. The results show that 
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decreasing changes in seasonal flow are foreseen by all climate projections except the WET 

model in winter, summer, and fall under RCP 8.5 which show increasing changes. This general 

projected decrease in flow as opposed to the projected increase in precipitation can largely be 

attributed to increasing evapotranspiration, driven by rapidly increasing temperatures to a large 

extent. In the paragraphs that follow, focus is given to the DRY, WET, and MIDDLE climate 

models under the business as usual scenario (RCP 8.5) to capture the broad range of potential 

future climate changes over the study catchment. 

In the DRY model, projected increases in seasonal temperature by 1.67 to 2.25 oC and that of 

precipitation by 12.09% decrease to 15.35% increase is expected to trigger a decrease in 

streamflow by 82.01 to 59.88%. With the projected seasonal changes in evapotranspiration by 

2.70% decrease to 98.58% increase, this potential deficit in seasonal streamflow can be linked to 

the relatively high evaporative demand on precipitation due to projected warmer temperatures.   

Unlike the DRY climate model, the WET model projects relatively high changes in temperature. 

An increasing change in projected temperature by 2.87 to 3.56 oC corresponds to projected 

seasonal precipitation increase by 7.44% to 20.63% resulting in changes in projected seasonal 

flows by a 4.60% decrease, 9% increase, 10.79% increase, and a 32.39% increase in the spring, 

summer, winter and fall seasons respectively. This overall increase in streamflow can be 

attributed to the combined effect of projected precipitation increase and the relatively modest 

increase (excepting the 14.01% decreasing change for fall) in projected seasonal 

evapotranspiration. The findings by Hodgkins and Dudley (2005) that indicated a general 

increase in March streamflow and a decline in May was also captured by the present study. In the 

WET model under RCP 8.5, streamflow increased by 20.14% in March, decreased by 16.39% in 

April, and decreased again by 17.56% in May (not shown).  
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Under the MIDDLE climate projection, seasonal actual evapotranspiration, associated with 

projected warming, is expected to increase, ranging from 10.35% increase in the winter to 

123.92% increase in the spring. Because projected precipitation increase (+5.21 to +20.26%) is 

relatively marginal and unable to satisfy the high demand of evapotranspiration, a reduction in 

seasonal streamflow by 85.98% decrease in the summer to 46.59% decrease in the winter is 

projected.    

This overall projected decrease in streamflow in the study catchment is well in line with trends in 

the northeastern US, where there is a strong consensus among models in some basins (e.g. Naz et 

al., 2016). Note here that, projected trends in recharge are associated with that of streamflow, and 

that all the models—except winter, summer, and the fall seasons under the WET model—also 

projected reduction in recharge. As corroborated by findings in earlier study, the results indicate 

that the causes of streamflow in the study catchment is largely dictated by the availability of 

energy and water, which controls the amount of evapotranspiration rates. It was noted in earlier 

study that in meteorological stressed period, streamflow is more sensitive to actual ET than it is 

to precipitation in the study catchment.    

 4.4.9. Annual trends in hydroclimatic metrics  
To better assess on-going effects of climate change, it is important to track the trajectory of 

hydroclimate indicator variables over the long term (at least 30 years). Analyzing hydrologic 

variables in relation to their climate drivers over the long term is fundamental for improved 

water resource predictions under a constantly changing climate. Within the context of the 

LEAST WARM, HOT, DRY, WET, MIDDLE climate projections, trends in baseline (1981—

2010) hydroclimatic metrics are compared with that at mid-21st century (2041—2070). It is 

worth pointing out that trends shown in the figures below are statistically significant at 95% 
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confidence level. These trends were derived from the decomposition of the original time series 

into their low and high frequencies via discrete wavelet transform in earlier studies. 

Figures 4.9, 4.10, 4.11, and 4.12 show a comparison of the temporal evolution of hydroclimatic 

variables and metrics for the historical period as against the future period under RCP 4.5 and 

RCP 8.5 emission scenarios. In terms of precipitation, projected models largely demonstrate 

increasing trends over the baseline period through the mid-21st century except in the DRY 

projection under RCP 4.5 and both LEAST WARM/DRY and MIDDLE under RCP 8.5 that 

deviate from the baseline. The projected rate of change lies between -4.64mm/year in the 

MIDDLE projection under the worst scenario and 8.27mm/year in the MIDDLE projection under 

RCP 4.5. This is relative to the baseline period which increased at a rate of 0.13mm/year over the 

30 years. On average, total projected precipitation would be approximately 50mm more at mid-

21st century.  

Conversely, mid-21st century projection of streamflow reflects a decrease (relative to the 

baseline) under both emission scenarios for all projections except the WET model that 

remarkably exhibit an isolated increasing trend relative to the baseline under the high emission 

scenario. Projected rate of streamflow reduction ranges from -14.6m3/year (or -438m3 in total for 

2041—2070) in the WET model to -0.21m3/year (or -6.3m3 in total for 2041—2070) in the DRY 

model under RCP 4.5. This potentially incongruous signal between precipitation and flow further 

highlight the important influence of actual evapotranspiration on water available in the study 

basin. This finding also corroborate the study by Huntington (2003), who noted that streamflow 

under a warmer climate will be significantly lower because of an increase in evapotranspiration.  

Projected temperature follows the same increasing trajectory as the baseline for all projections 

though in varying degrees under both scenarios. For the range of projections considered in this 
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study, the rate of annual warming trend is in the range of -0.0051oC/year in the LEAST WARM 

model under RCP 4.5 to 0.081 oC/year in the WET model under RCP 8.5 or a total of -0.15oC —

2.43oC for the 30 years from 2041—2070. This is relative to the historical period at 0.035 

oC/year or a total of 1.04 oC for the 30 years from 1981—2010. Although baseline conditions 

differ, the projected temperature change reported in this study falls in the range of change 

reported by Hayhoe and others (2007) in the Northeastern region. They examined past and future 

changes in climate indicators and indicated a regional warming of 2.1 oC to 5.3 oC. Similar range 

was also reported by Karmalkar and Bradley (2017) in the Northeastern region.  

Along with temperature increase is the projected increase in actual evapotranspiration that also 

continues into the future under both scenarios. Relative to the baseline that showed increases at a 

rate of 0.91mm/year, evapotranspiration rate is in the range of -6.97mm/year in the DRY model 

under RCP 4.5 to 2.75mm/year in the LEAST WARM/DRY model under RCP 8.5. Although the 

decreasing trend in recharge and streamflow largely correspond to actual evapotranspiration in 

the historical period, it appears that projected recharge is rather increasing, responding instead to 

the projected precipitation increases under both scenarios. The range of projected recharge is 

decreasing from -0.16mm/year in the DRY model towards an increase at 0.2mm/year under RCP 

4.5. Note that recharge, while appearing to increase at mid-21st century is largely in the deficit, 

likely due to projected high evaporative demand.   

Temperature increases are expected to induce climatic extremes as a result of increase in 

atmospheric moisture. Across scenarios, Figure 4.12a, c, indicates generally increasing trends in 

R10 across all projections, except the DRY model under RCP 4.5 and both DRY and MIDDLE 

projections under RCP 8.5 that deviate from the increasing baseline trends with higher 

magnitudes. Projected rate of change in R10 ranges between -0.16days/year (or 4.8days 
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reduction in total for 2041—2070) in the DRY model to 0.2days/year (or 6days increase in total 

for 2041—2070) in the WET model. Findings regarding CDD generally complements that of 

R10 in that, decreases in CDD were accompanied by increases in R10. Under RCP 4.5, projected 

decrease in CDD are generally consistent with trends observed in the baseline period for all 

models, with the exception of the DRY model that is projected to continue an increasing 

trajectory from the baseline period. However, under the high emission scenario, all four models 

foresee an increasing trend, as reflected in the historical period. Rate of projected changes in 

CDD ranges from -0.083days/year (or 2.49days reduction in total for 2041—2070) in the WET 

model under RCP 4.5 to 0.094days/year (or 2.82days increase in total for 2041—2070) in the 

LEAST WARM model under RCP 8.5. Taken together, the R10 and CDD results largely suggest 

increases in runs of wet days along with decrease in runs of dry days under RCP 4.5 but the 

opposite is the case under RCP 8.5, especially for CDD. For both R10 and CDD, Schoof, (2015) 

in investigating changes in extreme precipitation in the CONUS, reported similar trends in the 

northeastern US, highlighting longer extreme wet and dry spells.  
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Figure 4.9: Annual trends temperature under RCPs 4.5 and 8.5 emission scenarios 
derived from discrete wavelet analysis 
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RCP 4.5 RCP 8.5 

Figure 4.10: Annual trends in precipitation (a, b) and streamflow (c, d) under RCPs 4.5 and 8.5 emission scenarios derived from 
discrete wavelet analysis 
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RCP 4.5 RCP 8.5 

Figure 4.11: Annual trends in actual evapotranspiration (a, b) and groundwater recharge (c, d) under RCPs 4.5 and 8.5 
emission scenarios derived from discrete wavelet analysis 
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RCP 4.5 RCP 8.5 

Figure 4.12: Annual trends in number of rainy days greater than 10mm (R10) (a, b) and consecutive dry days (CDD) (c, d) 
under RCPs 4.5 and 8.5 emission scenarios derived from discrete wavelet analysis 
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4.5. Implications of Mid-21st Climate Change on Reservoirs in the PRB 
With the frequency of heavy precipitation (R10) depicted by the LEAST WARM and WET 

projections under RCP 4.5 projected to increase, accompanied with the projected increase in dry 

spells (CDD) by all projections under RCP 8.5 and the driest future under RCP 4.5, the optimal 

operations of reservoirs across the Passaic River Basin may be significantly challenged, given 

their various competing uses in the basin. For example, in a drier future, prolonged dry spells 

may lead to difficulty in sustaining minimum water release levels from reservoirs. Conversely, 

while reservoirs may store more waters under increased duration of rainfall, it could trigger 

unregulated water releases, causing damages downstream. Variations in annual precipitation and 

the resulting alterations in runoff could disrupt downstream reservoirs operations, impacting 

recreational activities, water quality, and the overall health of streams and ecosystem services.  

Regarding water quality, an expected increase in extreme precipitation is projected to hasten soil 

erosion, leading to significant economic and environmental consequences (Lal, 2017).  Under 

such intense rainfall, eroded sediments carry harmful substances like nutrients, pesticides, and 

contaminants into streams, rivers, groundwater, and reservoirs (Kumar and Singh, 2021), 

resulting in decline in water quality. Moreover, a strong correlation appear to exist between 

evapotranspiration and water quality. In analyzing evapotranspiration effect on seasonal water 

quality index, Ruzvidzo, (2021) found that, high evapotranspiration rates resulted in poor water 

quality in the summer season due to the presence of high chemical concentrations in water. Thus, 

along with the sweeping of pollutants into water bodies, evapotranspiration increases as 

projected in the study basin will not only affect available water resources but also compromise 

the quality of drinking water supply. Additionally, sediment accumulation in surface reservoirs 

tend to reduce their active storage capacity, posing a substantial challenge to sustainable 

reservoir planning and management. Thus the envelope of future precipitation and streamflow 
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events as shown in this study over the Rockaway catchment, particularly regarding the Boonton 

reservoir, will offer insights crucial for enhancing future reservoir operations in the area. 

According to the US Federal Emergency Management Agency (FEMA) on dam safety 

(Normand, 2019), it was discovered that numerous dams built in the last century are deficient in 

proper risk assessments, posing a danger to the safety of communities residing downstream. The 

Boonton reservoir which was completed in 1902, may fall under this category of dams, lying at 

the mercy of the projected wider variability in future extreme conditions. Thus, the region's 

aging water-related infrastructure, nearing the end of its expected lifespan (NCA, 2018), coupled 

with projected climate variability, suggests that climate-related disruptions could exacerbate 

existing issues, disproportionately affecting vulnerable communities. Also, traditional 

assumptions of stability in designing water-related structures may not hold under future climate 

conditions. Thus, apart from helping to build the needed resilience and adaptation to possible 

climate impacts through incorporation of climate related risks in future water 

resource decision and planning process, this study will provide advanced knowledge and 

sufficient lead time for water managers to take precautionary measures against projected extreme 

events that would induce environmental pollution in the study basin.  

4.6. Conclusion 
Evaluation of future water availability under a changing climate is contingent upon reliable 

hydroclimatic projections, often generated by forcing a calibrated hydrological model with 

outputs of global climate models. In this study, the MIKE SHE hydrological model developed 

for the Rockaway catchment was driven by the downscaled MACA datasets. First, a selection 

process was conducted and nine (9) different models out of the 20 MACA models under RCP 4.5 

and 8.5 emission scenarios was chosen on the basis of their ability to capture the average 

historical climatic condition over the PRB. Relative to two baseline periods (1951—1980 and 
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1981—2010), the subset models characterized the change in temperature and precipitation for 

the MACA models according to LEAST WARM, HOT, DRY, and WET at mid-21st century 

(2041—2070) as well as a future that typifies the MIDDLE of the temperature and precipitation 

range. To assess the hydrologic response to future climate change in the PRB, these selected 

future projections were compared with the 1981—2010 baseline simulation, and the simulated 

hydrologic outputs analyzed. Set in the Rockaway sub-catchment, and used as a case study, this 

analysis will inform understanding of how future temperature and precipitation changes impact 

streamflow dynamics, which directly control available water resource at a basin scale. Below are 

the key conclusions that can be drawn from the analyses. 

1) The largely different outcome obtained by the use of different baseline period in the 

model selection process demonstrates the influence of baseline conditions on model 

results. From the results, the top ranked models under DRY, WET, and MIDDLE 

category were different for the 1951—1980 as well as the 1981—2010 baseline periods. 

Similarly, the range of projected temperature and precipitation at the mid-21st century 

over the PRB were different for both baseline periods. For example, under the business-

as-usual scenario, projected mean temperature and precipitation change over the PRB 

ranged from 1.92—4.63 oC and 2.23—23.29% respectively for the 1951—1980 baseline. 

However, for the 1981—2010 baseline period, projected mean temperature and 

precipitation change ranged from 1.62—4.35 oC and -5.92—16.39% respectively. The 

margin of error in these projected changes owing to the different baseline conditions will 

be +/- 0.3 — +/-0.23 oC for temperature and +/-8.15— +/-6.9% for precipitation, and this 

indicates the extent to which the time perspective used in climate change impacts 

assessment significantly affect outcomes.  In investigating the effects of baseline 



161 
CLIMATE CHANGE IMPACTS ON WATER RESOURCE AVAILABILITY 

 

conditions on simulated hydrologic response to projected climate change, Koczot et al, 

(2011) noted substantial amplification in some hydrologic variables under specific time 

periods. They also recognized the uncertainties related to baseline period selection and 

suggested that results from climate impact studies should be evaluated by considering a 

range of different baseline conditions. Baker et al. (2016) also indicated that such 

uncertainties are comparable or more important than that arising from the choice of 

GCMs, and must be routinely considered.  

2)  In the Rockaway catchment, results from evaporation and recharge ratios indicate very 

dire situation in terms of future water availability. With the exception of the WET model 

that projects near unity values under the highest scenarios, all other models project 

above-one values for E-P ratio. An above-one value means that projected 

evapotranspiration in the basin exceeds precipitation in the future, indicative of 

significant water deficit in more than half of the year at mid-century. This is also 

reflected in the R-Q results with exceptionally high R-Q ratios less than 0.5 projected. 

Ratios less than one-half suggest that more than twice as much water is likely to run off 

the surface than to recharge the groundwater system. The largely negative ratios in the 

results is an indication that water would not even be available for surface runoff as 

projected evapotranspiration far exceeds projected precipitation. 

3) Across all five (5) climate projections (i.e. LEAST WARM, HOT, DRY, WET, and 

MIDDLE) and scenarios (RCP 4.5 and RCP 8.5), a consistent warming from +1.21 to + 

4.70 oC is projected in the Rockaway catchment at mid-21st century relative to the 

1981—2010 baseline period. The greatest temperature rise is projected by the HOT 

model in the winter under RCP 4.5 and in the spring under RCP 8.5, generally consistent 
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with other results in the northeastern US. For the range of projections considered in the 

study, the rate of annual warming trend is in the range of -0.0051oC/year in the LEAST 

WARM model and 0.042/year in the DRY model under RCP 4.5 or a total of -0.15oC—

1.26oC for the 30 years from 2041—2070.  Under RCP 8.5, projected rate of warming is 

between 0.04 oC/year in the HOT model to 0.081 oC/year in the WET model or a total of 

1.2 oC—2.43 oC for the 30 years from 2041—2070. This is relative to the historical at 

0.035 oC/year or total of 1.04 oC for the 30 years from 1981—2010. 

4) All but the LEAST WARM climate projection foresee increases in precipitation in the 

Rockaway catchment at mid-21st century. Projected changes in precipitation ranges from 

3.43% decrease in the fall season by the LEAST WARM model to 16.32% increase in the 

summer by the WET model under RCP 4.5. Under the business as usual (BAU) scenario, 

changes are relatively large, ranging from 12.09% decrease in the winter by the LEAST 

WARM/DRY model to 20.63% increase in the spring by the WET model. Annual trends 

in precipitation show overall increasing trend by all models over the baseline period 

except in the DRY projection under RCP 4.5 and both LEAST WARM/DRY and 

MIDDLE under RCP 8.5 that deviate from the baseline. 

5) While precipitation is generally projected to increase, streamflow shows an overall 

decreasing signal. Decreases in seasonal flow are foreseen by all climate projections 

except the WET model in winter, summer, and fall under RCP 8.5 which shows 

increasing changes. In the DRY model, a change in precipitation by 12.09% decrease to 

15.35% increase corresponds to a projected decrease in streamflow by 82.01 to 59.88%. 

It appears that increases in streamflow were mainly projected by the WET model. For a 

projected seasonal precipitation increase by 7.44% to 20.63% in the WET model, 
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associated changes in seasonal flows by only 4.60% decrease, 9% increase, 10.79% 

increase, and a 32.39% increase in the spring, summer, winter and fall seasons 

respectively was projected. This translates into projected annual decreasing trend across 

all models and scenarios, excepting the WET model. 

6) It appears that actual evapotranspiration, driven by rapidly increasing temperature, to a 

large extent, influences flow dynamics in the Rockaway catchment. Apart from the 

winter and fall seasons that projected decreases under the LEAST WARM and WET 

models, all other seasons across model and scenarios projected increases in actual ET. 

This projected increase is largely reflected in the projected reductions in streamflow and 

groundwater recharge in the study basin.  

7) Accompanying higher temperatures are climatic extremes (i.e. R10 and CDD in this 

study) that result from increased atmospheric moisture. Findings regarding CDD 

generally complements that of R10 in that, projected decreases in CDD were 

accompanied by projected increases in R10. Projected rate of change in R10 ranges 

between -0.16days/year (or 4.8days reduction in total for 2041—2070) in the DRY model 

to 0.2days/year (or 6days increase in total for 2041—2070) in the WET model. With the 

rate of 2.49 days total for the baseline period, an increase in the number of days with 

heavy rain of approx. 2 days is projected in the coldest future whiles an increase of about 

4 days is expected in the wettest future. In similar vein, projected rate of change in CDD 

ranges from -0.083days/year (or 2.49days reduction in total for 2041—2070) in the WET 

model under RCP 4.5 to 0.094days/year (or 2.82days increase in total for 2041—2070) in 

the LEAST WARM model under RCP 8.5.  Relative to the baseline, having a total of 

0.13days, suggests that, in the driest future, the number days with consecutive dry spells 
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is expected to decrease by approximately 2 days whereas an increase of about 3 days 

have been projected in the wettest future. 

In an area that has long suffered the devastating impacts of climate change and variability, a 

targeted but more comprehensive study such as this will as least provide sufficient advance 

knowledge and a broad view to water managers and decision makers on the potential impacts of 

climate change on water availability. It is however important to point out that, while the study 

sought to minimize uncertainty in terms of considering the full range of climate model 

projections as well as that emanating from the different choice of baseline conditions, other 

uncertainties pertaining to the choice of GCMs, downscaling and bias correction of GCMs, 

hydrological modeling procedures, and the likely changes in future land use pattern persist. 

Nevertheless, the projected hydrologic response to climate change as revealed in this study can 

be far reaching, affecting water supply that will in turn affect reservoir operations, and fuel 

flooding and drought conditions among others. These findings thus, necessitate swift mitigation 

and adaptation plans.   
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CHAPTER 5 : CONCLUSIONS 

In a substantially heterogeneous terrain like the Passaic River Basin where the presence of highly 

complex river systems present multifaceted mix of competing interests and water related issues, 

coupled with projected temperature increases (Karmalkar and Bradley 2017, NCA 2018) 

expected to enhance evapotranspiration and snowpack loss (Campbell et al., 2010, 2011), the 

concomitant effect on streamflow can be far reaching. It is in this light that this dissertation 

attempts to the better understand the mechanism behind streamflow dynamics in the basin, 

noting that it is a major driver of available water resource.  Furthermore, given the relative 

underrepresentation of climate impacts assessments studies in the vicinity of the Passaic River 

Basin, this dissertation will also become part of the literature responding to the call by the 

Intergovernmental Panel on Climate Change (IPCC) to embark on more research to document 

climate change and assess its impacts (Solomon et al., 2007).  

In doing so, three questions introduced in Chapter 1 have been explored, specifically: (1) How 

has the physiographic characteristics of the area influenced the spatial and temporal dynamics of 

actual evapotranspiration in the PRB? (2) From a hydrological modeling perspective, what 

mechanism likely drives observed hydro-climatic patterns in the PRB? (3) Will recent trends in 

precipitation and temperature changes continue into the future, and if so, how will they alter 

water resource availability in the PRB? These questions form the basis of the three core chapters 
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(Chapters 2, 3, and 4) of this dissertation and feeds into the overall objective to assess climate 

change impacts on the hydrology and water resource availability in the PRB.  

Thus in this Chapter, the main conclusions drawn from the results based on the three (3) research 

questions are presented. The implications of this study and summary of some key uncertainties 

and limitations in the study are also presented, with possible future research that can be pursued.    

5.1. Spatio-temporal controls on actual evapotranspiration 
Forgoing actual evapotranspiration (ET) in any comprehensive climate impacts studies on water 

resource could be likened to trying “to undo a knot without the thumb”. This is because, apart 

from being an index to climate change, actual evapotranspiration is considered as the primary 

determinant of available water resources. It is the water that would otherwise become streamflow 

if not released into the atmosphere. Thus in Chapter 2, an attempt was made to examine the 

physiographic and biophysical influence on actual ET in space and time in the PRB. This was 

necessary in recognition of the fact that, the Passaic River Basin forms part of a complex and 

highly diverse physiographic terrain, and will thus present diverse hydrologic conditions in 

response to climate. In examining the environmental controls on actual evapotranspiration, the 

classical ordinary least square (OLS) technique was used to identify and determine major 

internal (i.e. leaf area index (LAI), elevation) and external (i.e. mean temperature, precipitation, 

dew point, mean vapor pressure deficit (VPD), solar radiation, wind speed) predictor variables 

known to influence ET at monthly time scale. Recognizing the spatial heterogeneity of the PRB, 

the geographically-weighted regression method, belonging to the family of local statistics 

comprised of multi-valued estimates as opposed to the global (OLS) statistics, was employed to 

explain the spatially varying relationships that exist between the predictor and response variables 

in the highly diverse PRB. Key conclusions drawn from the results are as follows: 
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1) Temporal and spatial variabilities in mean monthly ET over the PRB are significantly 

controlled by climatic (i.e. TEMP, WS, DEWPT, VPD, PPT) and biophysical (i.e. LAI, 

ELEV) drivers. The analysis revealed that key controlling factors may be different from 

month to month, with wind speed taking dominance throughout the year in the study 

basin. Precipitation, while appearing insignificant in the course of the year, appears to be 

a limiting factor in the summer months. 

2) Modeled spatially varying monthly ET developed from this study offer convenient and 

cost effective means to empirically estimate monthly water loss in the basin and from 

other similar ecosystems. 

3) The ET index map generated for the PRB illustrates areas where ET exceeds precipitation 

especially in the summer months, and hence useful for water resource planning and 

decision making by water managers in the basin. Moreover, reliable quantification of ET 

has been made possible in the study basin. As such, the amount of water loss due to 

evapotranspiration can be accounted for in future water supply plans for the basin. 

5.2. Observed hydroclimatic trends and their drivers 
In Chapter 3, two bodies of research—1) to detect and analyze hydro-climatic trends, and 2) 

model streamflow at a watershed outlet—were carried out in one study with the aim of revealing 

the basin’s hydro-climate patterns as well as hydrologic response to recent climate change using 

the Rockaway sub-catchment as a case study. By this study, a solid foundation was laid in 

understanding the driving mechanism that underlie streamflow dynamics in the basin, and to 

pave way for potential future climate impacts studies. In detecting and analyzing the trend in 

hydro-climatic variable in the PRB, the commonly used Mann-Kendal (MK) trends test was 

sidestepped, recognizing that hydro-climatic variable are inherently noisy, and that using MK 

test directly on the raw the hydro-climatic series may lead to erroneous interpretation of results. 
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As such, the wavelet transform, a precise mathematical operation that looks at the data through 

the noise and quantifies the structure present in the signal was employed to determine trends in 

the hydro-climatic time series. By this approach, one commonly encountered challenge with 

respect to identifying reliable and significant trends in precipitation data was overcome. With 

hydro-climatic trends clearly identified in the PRB, it was important to be able to explain the 

driving mechanisms behind the observed trend, and this was achieved in the context of 

hydrological modeling framework. It involved the development, calibration, and validation of a 

hydrological model for the Rockaway sub-basin. The performance of this model was evaluated 

against observed streamflow and groundwater data based on standard statistical criterion. 

Subsequently, water balance was computed to obtain the components required to explain the 

hydrologic response to recent climate in the basin. Thus, in a novel application of advanced trend 

analysis tool (i.e. wavelet transform) with a physically-based hydrological model that simulates 

both surface and subsurface flows in the land phase of the hydrological cycle, important clues on 

the key underlying mechanism behind the observed hydro-climatic trends as well as insights into 

how these trends may change the future were obtained. Based on the results, the study showed 

that: 

1)  Whereas trends in temperature and precipitation are increasing in the PRB, streamflow 

trends are decreasing. 

2) Streamflow is more sensitive to actual ET than it is to precipitation. The general 

observation was that in decades where water is available, energy limits actual 

evapotranspiration which makes streamflow more sensitive to precipitation increase. 

However, in meteorologically stress or dry decades, water limits actual ET thereby 

making streamflow more sensitive to increases in actual evapotranspiration. 
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3) The choice of baseline condition constitutes an important source of uncertainty in the 

sensitivities of streamflow to precipitation and evapotranspiration changes and should 

routinely be considered in any climate impact assessment 

5.3. Future climate impacts on water resource availability 
In the quest to assess future water resource availability in the context of climate change, a priori 

analysis was carried out to subset nine (9) different models out of 20 that characterized the 

change in temperature and precipitation according to LEAST WARM, HOT, DRY, and WET at 

mid-21st century (2041—2070) as well as a mild future that typifies the MIDDLE of the 

temperature and precipitation range. LEAST WARM and HOT defines the extreme ends of 

projected changes in temperature at mid-1st century relative to the baseline periods. After 

arranging these projected changes from the smallest temperature change to the greatest, LEAST 

WARM would be the smallest change with HOT being the greatest change in temperature. 

Similarly, DRY and WET represent the extremes of projected precipitation change across all 

models for each scenario. Grouping these changes from the smallest precipitation change to the 

highest reveal the driest model as well as the wettest model which defines the DRY and WET 

projections at mid-century relative to the considered baselines. The MIDDLE of the range of 

projected temperature and precipitation changes represents the mild future climate which 

involves the computation of basin-average change in temperature and precipitation for the two 

baseline periods (1951—1980 and 1981—2010) to the middle of the 21st century (1941—1970) 

period for the PRB under RCP 4.5 and RCP 8.5. The final outcome of the selection process 

revealed the models deemed to represent the historical climate conditions in the study basin, and 

were forced with the MIKE SHE hydrological model to simulate observed streamflow in the 

Rockaway catchment. Conclusions from the study in Chapter 4 are presented below: 
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1) Relative to the 2041—2070 period, the margin of error owing to the use of different 

baseline conditions were +/- 0.3 — +/-0.23 oC for temperature and +/-8.15— +/-6.9% for 

precipitation, indicating the extent to which the time perspective used in climate change 

impacts assessment significantly affect outcomes. 

2) Across all five (5) climate projections, and the two scenarios, a consistent warming from 

+1.21 to + 4.70 oC is projected in the Rockaway catchment at mid-21st century relative to 

the 1981—2010 baseline period. 

3) While precipitation is generally projected to increase, streamflow prediction shows an 

overall decreasing signal, a trend likely induced by the projected increase in actual 

evapotranspiration. 

4) In terms of climate extremes, an increase in the number heavy rainy days of 

approximately 2 days is projected in the coldest future whiles an increase of about 4 days 

is expected in the wettest future. In similar vein, the number days with consecutive dry 

spells is expected to decrease by approximately 2 days in the driest future whereas an 

increase of about 3 days is projected in the wettest future 

The implication of the result of this dissertation is that increased evapotranspiration, which is a 

primary indicator of climate change is expected to alter the streamflow dynamic. Because the 

availability of water resource is largely driven by river flows in channels, possible increase or 

decrease in flow as depicted in the study will fuel flooding and drought conditions. Given that 

streamflow is highly sensitive to precipitation increases decades where water is sufficiently 

available, even higher risk of extreme floods can be expected. On the other hand, longer dry 

spells will lead to water scarcity and higher risk of drought potentials. Either way, alterations in 

river flows will affect routine reservoir operations under a changing climate. Particularly, a 
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crucial basis for examining possible environmental impacts on dam failure, including physical 

sedimentation, erosion from floodwaters, and chemical contamination has been established in 

this study. With this advance knowledge in hand, swift mitigation and adaptation plans are 

therefore needed.    

5.4. Uncertainties 
The results from this dissertation reveal that actual evapotranspiration plays an important role in 

the water resource availability in the Passaic River Basin and constitutes the main driving 

mechanism behind streamflow dynamics in the basin both at present and into the future under a 

changing climate. Employing advanced techniques and state of the art hydrological models, a 

more comprehensive and in-depth understanding of hydroclimatic patterns and projected 

response of hydrologic variables to climate change at basin scale have been harnessed. Although 

attempts were made to, at best, minimize uncertainty in the results, GCMs come with their own 

set of uncertainties arising from assumptions chosen in the process of global climate modeling as 

well as greenhouse gas emission scenarios. This can also be propagated into the hydrological 

modeling process in addition to uncertainties that are characteristic of hydrological modelling 

such as input, output, structural, and parametric uncertainties (Ma et al., 2016). More so, because 

in Chapter 3 the calibration and validation process was based on reconstructed streamflow data, 

it is possible that errors emanating from the methods and data used in estimating the daily 

reconstructed streamflow (refer to Hickman and McHugh, 2018) may be propagated into this 

study.  

It is important to however add that, the aforementioned uncertainties do not at all cast any shred 

of doubt on the results presented in this dissertation as conscious effort were made to incur the 

least additional uncertainty apart from those obvious. These efforts include the use of multi-

objective model calibration in Chapter 3, where both observed streamflow and groundwater data 
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was used as reference datasets. Yin et al. (2020) noted that such an approach helps improve 

model performance and reduce parameter equifinality. In addition, the choice of baseline periods 

used in climate impacts assessment studies is known to constitute an important source of 

uncertainty, comparable to that introduce by global climate models. Again, Chapters 3 and 4 of 

this dissertation utilized multiple baseline periods to at least capture the range of uncertainty in 

the analyses.   

 5.5. Limitations and Future Research 
An important limitation of this study and countless other studies on future climate impacts 

assessment is the assumption of stationarity pertaining to future land-use patterns. Non-

stationarity of land-use will most certainly change catchment hydrologic behavior and can 

influence hydrologic response to climate change. In this study, future simulation of streamflow 

did not incorporate land use/land cover change, which will be a likely future reality in line with 

population and urban growth. Because land use/ land cover change interacts synergistically with 

climate change, their impacts on streamflow can be amplified. Therefore, studies that can 

integrate land use/ land cover change models in future hydrologic simulations in the Passaic 

River Basin will be greatly beneficial in effectively quantifying future risks associated with the 

ongoing environmental changes.   

Another assumption pertains to the routing of water to channels in the development of the 

hydrodynamic model. The study also assumed that the shape of the channel will remain constant 

over time. However, it's important to recognize that channel form can be influenced by various 

factors like the characteristics of the flow, erosion rates upstream, and the supply of sediment, all 

of which can be affected by both human activities and fluctuations in hydrology. Therefore, if 

there are alterations in the flow characteristics, it's likely that the channel shapes will also 

change. This is significant because modifications in channel structure can lead to adjustments in 
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hydraulic properties, ultimately affecting the accuracy of estimated river discharges. 

Consequently, it is recommended to incorporate information about potential changes in channel 

morphology to enhance the precision of streamflow predictions. 
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