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SEMI-FEDERATED LEARNING OF AN EMBEDDING SPACE ACROSS MULTIPLE 

MACHINE CLUSTERS 

 

FIELD 

[1] The present disclosure relates to learning of embeddings corresponding to items. More 

particularly, the present disclosure relates to privacy-preserving learning of a shared embedding 

space for data stored across multiple separate clusters of computing machines.  

 

BACKGROUND 

[2] In the context of machine learning or other domains of data science, the term 

“embedding” can refer to a numerical data element (e.g., expressed as a vector or other array of 

floating-point numbers) which represents an item or set of items within a latent embedding 

space. The latent embedding space can be a -dimensional vector space to which features from a 

different (typically higher-dimensional) vector space are able to be mapped. Typically, the 

embedding space contains a semantically-meaningful structure. For example, a measure of 

distance (e.g., the dot product or cosine similarity) computed between two embeddings for two 

items in the same embedding space may indicate a relative similarity between the two items.  

 

BRIEF DESCRIPTION OF THE DRAWINGS 

[3] Detailed discussion of implementations directed to one of ordinary skill in the art is set 

forth in the specification, which makes reference to the appended figures, in which: 

[4] Figure 1 provides a graphical diagram of an example privacy-preserving learning system 

that facilitates the creation of a shared embedding space for data stored across multiple distinct 

clusters of computing machines according to example implementations of the present disclosure. 

[5] Figure 2 provides a flowchart diagram illustrating an example method for generating a 

shared embedding space performed by a central computing system according to example 

implementations of the present disclosure. 

[6] Figure 3 provides a flowchart diagram illustrating an example method for generating a 

shared embedding space performed by a cluster of computing machines according to example 

implementations of the present disclosure. 
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[7] Figure 4 provides a flowchart diagram illustrating an example method for federated 

learning with differential privacy performed by a cluster of computing machines according to 

example implementations of the present disclosure. 

[8] Figure 5 provides a block diagram of an example central computing system according to 

example implementations of the present disclosure. 

[9] Figure 6 provides a block diagram of an example cluster of computing machines 

according to example implementations of the present disclosure. 

 

DETAILED DESCRIPTION 

[10] As a general summary, the present disclosure is directed to privacy-preserving learning of 

a shared embedding space for data split across multiple separate clusters of computing machines. 

In one example, the multiple separate clusters of computing machines can correspond to multiple 

separate data silos.  

[11] As a more detailed explanation, various settings exist in which data examples associated 

with the same or different items are held or maintained in a plurality of different data silos that 

are separate from each other. For example, the multiple separate data silos can correspond to a 

“semi-federated” learning setting. In some instances, the semi-federated learning setting is also 

referred to as a cross-silo federated-learning setup. This semi-federated setting can be contrasted 

with a centralized data setting in which all data examples for all items are collected and held 

together by a central entity. The semi-federated learning setting can also be contrasted with a 

fully federated learning setting in which the data is completely distributed, such that each 

computing device contains data for only a single item. 

[12] An item can be any item, object, or entity, such as a product (e.g., movie, book, item of 

clothing, etc.), a document (e.g., a webpage, a data file, etc.), or entity (e.g., a user or user 

account, a location, a business, a point of interest, etc.). Data associated with item(s) can be 

stored in a data silo as one or more data example(s). A data example can refer to a data entry that 

is associated with a particular item and that includes feature values for a set of features. In 

machine learning, a “feature” refers to a variable for which feature values are or can be recorded. 

The set of different features for which data exists in a particular collection of data examples can 

define or be referred to as the “feature-space” for such collection of data examples.  
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[13] The term “data silo” can refer to a data storage system (e.g., including or leveraging one 

or more databases or other physical data storage apparatus) that stores a collection of data 

examples that are held separate from data examples stored in another data silo. For example, data 

examples stored by one data silo may be kept physically and/or logically separate from data 

examples stored by another data silo. For example, two collections of data examples held in two 

data silos may be stored such that they are not mixed or cross-referenced. A silo computing 

system refers to a computing system that operates to implement a particular data silo or operates 

in conjunction with a particular data silo. The storage of data examples in multiple different data 

silos may be driven by various operational and/or regulatory constraints. 

[14] One significant technical problem in the field of machine learning is the difficulty of 

creating meaningful embeddings from data examples stored in different data silos or clusters of 

computing machines. These data silos, whether physical or virtual, hold data examples 

associated with different sets of features and/or sets of items, presenting a significant challenge 

for generating shared embedding spaces. Current methods often result in the generation of 

respective embedding spaces that cannot be meaningfully combined or interpreted with respect 

to each other. This issue arises due to the isolation of data silos and the random rotations that 

occur during the generation of embeddings. Consequently, this problem prevents the efficient 

utilization of distributed data stored across various data silos for machine learning purposes, 

particularly in a semi-federated learning setting. 

[15] The present disclosure provides a solution to this problem by introducing a privacy-

preserving learning system that generates a shared embedding space for data stored across 

multiple separate clusters of computing machines. The system can be applied in a semi-federated 

learning setting, where different data examples associated with the same or different items are 

held or maintained in different data silos. The system, which may include a central computing 

system, performs operations such as receiving feature metadata for different component feature-

spaces and preprocessing this metadata to establish an embedding generation model. 

[16] The preprocessing step conducted by the central computing system can involve a variety 

of operations, including data normalization, missing value handling, and dimensionality 

reduction. The system can also perform federated learning rounds with the different clusters of 

computing machines. Each cluster trains a local model on its own data, then sends model updates 

to the central system for aggregation, a process that can be repeated until the model converges. 
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[17] In addition to generating a shared embedding space, the present disclosure also offers 

several technical advantages. It facilitates the integration of feature-spaces across different data 

silos, thus creating a unified embedding space that provides more comprehensive insights. This 

process enables better data analysis and more accurate modeling across all data silos. The system 

also allows for federated learning across different clusters of computing machines, which can 

enhance data privacy as only the model updates are shared. 

[18] Furthermore, the system can handle data silos with different feature-spaces, including 

those with unique features that are not present in other feature-spaces. This flexibility makes it 

possible for organizations with diverse and complex data landscapes to leverage the benefits of 

federated learning and shared embeddings. The system also promotes efficient use of 

computational resources by distributing the computational load across each cluster of computing 

machines, reducing data transfer requirements, and potentially improving the speed and 

efficiency of the overall learning process. 

[19] Another aspect of the present disclosure relates to the interplay between the proposed 

semi-federated arrangement and the application of differential privacy techniques. In particular, 

in the field of data science and machine learning, differential privacy has emerged as an 

important technique for protecting individual user data when aggregating information across 

multiple sources. The fundamental principle of differential privacy is to introduce a degree of 

uncertainty, or "noise", to the data, such that the privacy of individual data points is preserved 

while still allowing for accurate aggregate data analysis. In a fully federated system, each user's 

device stores and processes data for only that particular user. Consequently, when differential 

privacy measures are applied in such systems, they necessitate the addition of a significant 

amount of noise to maintain privacy, which can substantially degrade the utility of the user's 

data. 

[20] In contrast, the present disclosure addresses this challenge through a semi-federated 

approach. In this system, a data silo holds a more extensive collection of data records, possibly 

associated with a broader range of features and/or items. Due to the larger dataset, the amount of 

noise that must be added to any single data record to achieve differential privacy is reduced. This 

is because the noise can be spread across the many data records, diminishing its impact on any 

single data point. By leveraging the collective dataset within each silo, the present disclosure 

achieves a balance between privacy protection and data usability. The central computing system, 
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as part of the learning process, can be responsible for determining the appropriate level of noise 

to add to the data or model updates. This determination can take into account the number of data 

records, the diversity of features and items, and the desired level of privacy.  

[21] The technical benefits of the semi-federated approach disclosed herein with respect to 

differential privacy are numerous. As one example, the reduced noise levels contribute to higher 

data quality, allowing for more precise machine learning models and data analytics. This 

improved precision can directly translate into better decision-making in the context of data-

driven predictions or inferences. 

[22] As another example, the semi-federated approach can offer a more scalable solution to 

privacy-preserving data analysis. As the amount of data within a silo grows, the relative amount 

of noise added per data record decreases, which can significantly enhance the scalability of data 

analytics solutions in environments with ever-increasing data volumes. 

[23] In addition, the present disclosure can improve computational efficiency. By centralizing 

the data processing within each silo, rather than distributing it across numerous individual 

devices, computational tasks can be optimized, and resources better allocated, leading to faster 

processing times and reduced costs. Furthermore, as new data records are added to each silo, the 

system can adaptively adjust the differential privacy parameters to maintain an optimal balance 

between privacy and data utility. 

[24] Another aspect of the present disclosure relates to the use of negative training samples in 

the semi-federated context. In particular, in a fully federated system each user device stores data 

about only a single user, thus lacking access to negative samples that are crucial for certain 

machine learning techniques. Negative samples are data instances that do not correspond to the 

positive class of interest but are helpful to teach the model the boundaries between classes. This 

limitation hinders the implementation in a fully federated context of advanced representation 

learning methods that rely on contrasting different samples, such as contrastive loss and triplet 

training. 

[25] However, the present disclosure introduces a novel approach to address this limitation by 

incorporating negative training samples within the semi-federated context. Each data silo in the 

semi-federated system may contain both positive and negative training samples, which can be 

leveraged to perform new types of representation learning. The presence of negative samples 

within the same data silo allows for the application of machine learning techniques that require 
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contrasting positive instances with negative ones, such as contrastive loss functions and triplet 

training methods. 

[26] In some implementations, the central computing system and/or the clusters of computing 

machines can orchestrate the use of negative samples for advanced representation learning. For 

example, when employing contrastive loss, each cluster can select pairs of positive and negative 

samples from its data silo and compute the loss in such a way that the model learns to bring 

embeddings of positive samples closer together while pushing away the embeddings of negative 

samples. Similarly, for triplet training, the system can guide the clusters to form triplets 

consisting of an anchor sample, a positive sample similar to the anchor, and a negative sample 

dissimilar to the anchor, and then optimize the model to satisfy this relational structure. 

[27] Using negative training samples in the semi-federated context provides a number of 

technical benefits. As one example, by incorporating negative samples, the system can utilize 

representation learning techniques that improve the discriminative power of the embeddings, 

leading to more robust and generalizable models. As another example, the use of contrastive loss 

and triplet training has been shown to result in higher-quality embeddings, which can improve 

the performance of downstream tasks such as classification, recommendation, and anomaly 

detection. As yet another example, by maximizing the information extracted from both positive 

and negative samples within each data silo, the system can achieve better learning outcomes 

without the need for additional external data, thus making efficient use of the available data 

resources. 

[28] With reference now to the Figures, example implementations of the present disclosure 

will be described in further detail. 

[29] Figure 1 provides a graphical diagram of an example privacy-preserving learning system 

12 that includes The system 12 facilitates the creation of a shared embedding space for the data 

records 16, 20, 24 that are stored across the multiple distinct clusters of computing machines 14, 

18, 22. These clusters of computing machines 14, 18, 22 can, for example, be different data silos 

and can be either physical or virtual computing machines. The data records 16, 20, 24 can be 

associated with varying sets of features and/or sets of items.  

[30] The system 12 illustrated in Figure 1 thus represents a "semi-federated" learning scenario, 

where data instances linked to the same or different items are stored or maintained in different 
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data silos. This is a departure from a centralized data scenario, where all data instances for all 

items are gathered and held together by a central entity.  

[31] The central computing system 26 can include one or more computing devices that 

manage, coordinate, or perform operations on data. It can be considered as the core or hub in a 

network of computing resources, where it is responsible for processing data, executing 

algorithms, and managing interactions among different components of the network. In some 

implementations, the central computing system 26 can include physical servers, virtual 

machines, cloud-based platforms, or any combination thereof, which provide the computational 

power and storage capabilities necessary to handle complex data tasks. 

[32] According to one aspect, the central computing system 26 is configured to receive feature 

metadata for each of a numerous different component feature-spaces. These feature-spaces are 

respectively associated with a variety of different and separate clusters of computing machines, 

such as the first cluster of computing machines 14, second cluster of computing machines 18, 

and third cluster of computing machines 22. 

[33] The central computing system 26 can preprocess the feature metadata for the numerous 

different component feature-spaces to establish an embedding generation model. The 

preprocessing can consist of various steps, such as normalizing the data, handling missing 

values, or transforming the data to reduce its dimensionality. For instance, the preprocessing 

might involve generating an aggregate feature-space, which comprises an aggregation of the 

numerous different component feature-spaces.  

[34] In another example, the preprocessing could involve generating feature means for the 

numerous different component feature-spaces. This could involve calculating the average value 

of each feature across all the data points in a given component feature-space. Alternatively, 

preprocessing might involve generating categorical variables for the numerous different 

component feature-spaces. This could involve converting continuous variables into discrete 

categories based on certain thresholds or ranges.  

[35] Thus, the preprocessing step executed by the central computing system 26 can encompass 

diverse operations. These can include the generation of feature variances, one-hot encoding, 

outlier detection and removal, feature selection, and creation of interaction features for the 

numerous different component feature-spaces. For instance, the generation of feature variances 

can involve the calculation of each feature's variance across all data points within a given 
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component feature-space. This can normalize the data across various feature-spaces, making the 

resulting embeddings comparable. Similarly, one-hot encoding can convert categorical variables 

into a format suitable for machine learning algorithms, thus enhancing predictions. Outlier 

detection methods can identify and appropriately handle data points that significantly deviate 

from other observations in the same feature-space. Feature selection can optimize the relevance 

of features in each feature-space, thereby improving the learning model's performance and 

efficiency. Lastly, interaction features can be generated from existing features, capturing 

complex relationships between features, and potentially enhancing the learning model's 

performance. 

[36] In some implementations, at least one of the numerous different component feature-

spaces can contain data for at least one feature not included in at least one of the other 

component feature-spaces. This could occur, for example, if first cluster of computing machines 

14 is collecting data on a particular feature that the second cluster of computing machines 18 and 

third cluster of computing machines 22 are not.  

[37] In some implementations, the different and separate clusters of computing machines can 

include different and separate clusters of physical machines. For example, these could be 

separate servers in different locations, each processing and storing its own distinct set of data. 

Additionally or alternatively, the clusters of computing machines could include different and 

separate clusters of virtual machines. These might be virtual servers hosted on a cloud platform, 

each with its own dedicated resources and data. Thus, in some cases, the different and separate 

clusters of computing machines might be physically co-located (or even implemented using the 

same device(s)) but may be distinct computational systems from each other (e.g., where data 

does not pass between the computational systems despite being implemented on the same 

device(s)). 

[38] The central computing system 26 can perform one or more rounds of federated learning 

with the clusters of computing machines 14, 18, 22. Federated Learning is a machine learning 

approach that involves training models across multiple devices or servers while keeping the data 

localized. Instead of centralizing all the data to a single server for model training, federated 

learning allows each device or server to learn a model from its own local data, and then share 

only the model updates with a central server. This way, all the learning happens on the device 
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itself, which can enhance data privacy, reduce data transmission costs, and utilize the 

computational resources of each device effectively. 

[39] Thus, each cluster of computing machines can perform, in cooperation with the central 

computing system 26, one or more rounds of federated learning on the embedding generation 

model. As applied to the computer system 12 illustrated in Figure 1, performing federated 

learning can include each cluster 14, 18, 22 training a local model on its own data, then sending 

the model updates to the central system 26 to be aggregated. This process can be repeated for 

several rounds until the model converges.  

[40] In some implementations, these rounds of federated learning could be performed with 

differential privacy, adding noise to the data or model updates to protect individual privacy. 

Differential privacy is a system for publicly sharing information about a dataset by describing the 

patterns of groups within the dataset while withholding information about individuals in the 

dataset. It provides a mathematical guarantee that the privacy of an individual is protected when 

statistical analysis is performed on the data. In practical terms, it involves adding a certain 

amount of noise to the data or query results to obscure the impact of individual data points, 

thereby providing privacy protection while still allowing for accurate aggregate data analysis. 

[41] In some implementations, each of the clusters of computing machines 14, 18, 22 sends 

the resulting embeddings within the shared embedding space back to the central computing 

system 26. This stage facilitates the subsequent analysis of these embeddings by the central 

computing system 26. The embeddings, which are representative of data stored in each of the 

separate clusters of computing machines, are transmitted securely to the central computing 

system 26. The transmission can take place over a secure network, ensuring the preservation of 

data privacy. The central computing system 26 receives these embeddings and can perform 

various analytical operations on them. These operations may include, but are not limited to, 

examining the structure of the shared embedding space, identifying patterns or correlations 

among the embeddings, and using the embeddings as input to downstream machine learning 

tasks. The analysis performed by the central computing system 26 can provide insights into the 

relationships between the data stored across the different clusters of computing machines, 

thereby enabling more accurate and comprehensive data analysis and decision-making. 

[42] Figure 2 provides a flowchart illustrating an example method 200 of preprocessing by the 

central computing system in the exemplary implementation of the present disclosure. The flow 
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chart depicts the sequence of operations that a central computing system can perform to 

preprocess the feature metadata for the plurality of different component feature-spaces to 

establish the embedding generation model. As one example, the central computing system 26 of 

Figure 1 can operate to perform the method 200 shown in Figure 2. 

[43] The method 200 begins with the central computing system receiving feature metadata for 

each of a plurality of different component feature-spaces, as indicated by block 202. The feature 

metadata can be provided by various clusters of computing machines, such as clusters 14, 18, 22 

depicted in Figure 1. The feature metadata may contain information about the distribution of data 

in each feature-space, the nature of the features, and other relevant details. 

[44] The operation of receiving feature metadata for each of a plurality of different component 

feature-spaces, as indicated by block 202, can be implemented in various ways. For instance, the 

central computing system can establish a secure connection with the clusters of computing 

machines, such as through a virtual private network (VPN) or a secure shell (SSH) protocol. The 

system can then request the transmission of feature metadata from each cluster, which can be 

sent in a compressed or encrypted format to ensure data security.  

[45] Alternatively, the system can employ APIs or web services to facilitate this data 

exchange. The received metadata can include information about the types of features, the range 

or distribution of feature values, the number of data examples in each feature-space, and other 

descriptive statistics. In another implementation, the feature metadata can be stored in a 

standardized format, such as a JSON or XML file, for easy parsing and processing by the central 

computing system. The system can use various data processing libraries, such as pandas or 

NumPy in Python, to load and manipulate the received metadata. This operation can also involve 

error handling procedures to account for instances where the connection fails, the metadata is 

incomplete, or the data format is not as expected. 

[46] Following the receipt of feature metadata at 202, the central computing system can 

advance to the preprocessing stage, as depicted by block 204. This stage can involve a variety of 

operations to prepare the data for subsequent machine learning tasks. These operations can be 

tailored to the specific characteristics of the feature metadata and the requirements of the 

embedding generation model. 

[47] The central computing system can perform a number of different approaches to 

preprocess the feature metadata for the plurality of different component feature-spaces. For 
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instance, the central computing system can employ statistical methods to analyze and transform 

the feature metadata. This can include calculating descriptive statistics such as mean, median, 

mode, range, variance, and standard deviation for each feature across all data points in each 

component feature-space.  

[48] As another example, the central computing system can also implement data cleaning 

steps such as handling missing values by methods like deletion, imputation, or prediction. 

Additionally, the central computing system can execute feature scaling techniques such as 

normalization or standardization to standardize the range of independent variables or features of 

data. For example, this can involve rescaling the features to a range of 0 to 1, or transforming the 

features to have a mean of 0 and a standard deviation of 1.  

[49] As another example, the central computing system can perform feature encoding 

processes such as one-hot encoding or label encoding to convert categorical variables into a form 

that could be provided to machine learning algorithms. Furthermore, the central computing 

system can conduct feature selection techniques like filter methods, wrapper methods, or 

embedded methods to select the most relevant features for use in model construction. These 

examples of computer operations can be performed in some implementations to preprocess the 

feature metadata, thus preparing it for the subsequent establishment of the embedding generation 

model. 

[50] At block 206, the central computing system can generate an aggregate feature-space. This 

aggregate feature-space can be a combination of the plurality of different component feature-

spaces associated with the plurality of different and separate clusters of computing machines. 

The central computing system may apply various techniques to integrate these feature spaces 

into a unified aggregate feature-space. 

[51] As one example, each component feature-space associated with the different clusters of 

computing machines can initially be represented as a multi-dimensional matrix, where each row 

corresponds to a data example and each column represents a feature. The central computing 

system can then combine these matrices into a larger matrix that represents the aggregate feature-

space. This can be done by concatenating the matrices along their rows if they share the same 

features, or appending new columns if new features are introduced. In another example, the 

central computing system can generate a mapping function for each component feature-space 

that aligns it to the aggregate feature-space. This can involve aligning the statistical properties of 
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the features, such as their means and variances, across the different component feature-spaces. 

The central computing system can further use techniques such as Principal Component Analysis 

(PCA) to reduce the dimensionality of the aggregate feature-space, creating a more compact 

representation that preserves the most important variances in the data.  

[52] In some implementations, generating the aggregate feature-space at 206 can include 

generating feature means for the plurality of different component feature-spaces. This operation 

can involve calculating the average value for each feature across all data points in each 

component feature-space. The resulting feature means can provide a useful summary of the data 

distribution in each feature-space and can aid in aligning the different feature-spaces. For 

example, in some implementations, the central computing system can perform an operation that 

calculates an arithmetic mean for each feature across all data points in each component feature-

space. This operation may involve summing up all the feature values and then dividing the sum 

by the total number of data points. In certain implementations, this operation can also handle 

missing values, for instance, by ignoring them in the summation and denominator calculation. In 

another example, the central computing system can calculate a geometric mean, which may 

involve multiplying all the feature values together and then taking the nth root of the product, 

where n is the total number of data points. This approach can be particularly useful when the data 

follows a log-normal distribution or when dealing with rates of change.  

[53] In some implementations, the central computing system can generate categorical 

variables for the plurality of different component feature-spaces. This operation can involve 

converting continuous variables into a series of discrete categories based on predefined 

thresholds or ranges. The creation of categorical variables can enable more efficient handling of 

non-numeric data and can facilitate the application of certain machine learning algorithms. 

[54] In some implementations, generating the aggregate feature-space at 206 can include 

generating categorical variables for the plurality of different component feature-spaces. For 

example, the central computing system may employ data transformation techniques to convert 

continuous numeric data into categorical variables. For example, the central computing system 

can perform "binning" or "bucketing", where the range of a continuous feature is split into 

several intervals, and each interval is treated as a category. Another method can be 

"quantization", which also involves converting continuous variables into discrete categories but 

does so based on quantiles such that each category contains approximately the same number of 
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data points. For nominal data, the central computing system can employ "one-hot encoding", 

where each category of a nominal feature is taken and made into a binary feature. For ordinal 

data, which involves categories that have a specific order, an "ordinal encoding" method can be 

used, whereby each category is assigned an integer value that reflects the order of the categories.  

[55] Next, at block 208, the central computing system can initialize the embedding generation 

model based on the preprocessed feature metadata and the aggregate feature-space. This process 

can include the initialization of a model architecture tailored to handle data examples across the 

aggregate feature-space. The model architecture can be designed to accommodate the specific 

characteristics of the feature-spaces, such as the number of features, the range of feature values, 

the presence of categorical variables, and so on. Moreover, the model's hyperparameters, which 

control the learning process, can also be initialized. These hyperparameters can include the 

learning rate, the batch size, the number of epochs, the regularization parameters, among others. 

The initialization of these hyperparameters can be based on the specifics of the aggregate 

feature-space and the requirements of the federated learning process. 

[56] Once the embedding generation model is established, then at block 210, the central 

computing system transmits the model to the different clusters of computing machines for 

performance of federated learning. Each cluster can then train the model on its own data in a 

federated learning scheme. This involves each cluster making local updates to the model based 

on its own data examples, and then sending these updates back to the central computing system. 

The central computing system aggregates these updates to update the global model. This cycle of 

local training and global aggregation continues for several rounds until the model converges. 

This approach allows the learning process to benefit from the distributed data stored across the 

various clusters, while preserving the privacy of the data by keeping it localized within its 

respective cluster. 

[57] Figure 3 provides a detailed flowchart illustrating an example method 300 performed by 

a cluster of computing machines in an example implementation of the present disclosure. The 

flow chart depicts the sequence of operations that a cluster of computing machines can perform 

in cooperation with a central computing system to generate a shared embedding space. As one 

example, a cluster of computing machines, such as the first cluster of computing machines 14 

depicted in Figure 1, can operate to perform the method 300 shown in Figure 3. 
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[58] The method begins at block 302, where the cluster of computing machines determines 

data descriptive of a data distribution within a component feature-space of a collection of data 

examples stored by the cluster of computing machines. The data examples can be associated with 

one or more entities, such as users, items, or events. The data descriptive of the data distribution 

can include various statistics, such as mean, median, mode, standard deviation, variance, 

skewness, and/or others, for each feature in the component feature-space. 

[59] In some implementations, the cluster of computing machines might implement various 

data mining techniques to determine the data descriptive of the data distribution. For instance, 

the cluster of computing machines might perform clustering analysis to identify groups or 

clusters in the data that share similar characteristics. Alternatively, the cluster of computing 

machines might conduct association rule mining to discover interesting relations or associations 

among a set of items in the data. 

[60] At block 304, the cluster of computing machines transmits the data descriptive of the data 

distribution to a central computing system. The central computing system, such as the central 

computing system 26 depicted in Figure 1, can use this data to generate an aggregate feature-

space. This aggregate feature-space can be a combination of the component feature-space 

associated with the cluster of computing machines and one or more other component feature-

spaces associated with one or more other, different clusters of computing machines that are 

separate from the cluster of computing machines. 

[61] In some implementations, the transmission of the data descriptive of the data distribution 

can be facilitated by various data transmission protocols, such as Hypertext Transfer Protocol 

(HTTP), File Transfer Protocol (FTP), or other suitable protocols. In some cases, the data may be 

encrypted before transmission to ensure data privacy and security. The encryption can be 

performed using various encryption algorithms, such as Advanced Encryption Standard (AES), 

Rivest-Shamir-Adleman (RSA), or other suitable encryption methods. 

[62] At block 306, the cluster of computing machines receives an embedding generation 

model from the central computing system. The embedding generation model can be tailored to 

the aggregate feature-space, which comprises an aggregation of the component feature-space 

associated with the cluster of computing machines and one or more other component feature-

spaces associated with one or more other, different clusters of computing machines. 
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[63] In some implementations, the embedding generation model can be a machine learning 

model designed to map the data from the high-dimensional aggregate feature-space to a lower-

dimensional embedding space. The embedding generation model can be a type of neural 

network, such as a multilayer perceptron (MLP), a convolutional neural network (CNN), a 

recurrent neural network (RNN), or other types of neural networks. Alternatively, the embedding 

generation model can be a type of unsupervised learning model, such as an autoencoder, a self-

organizing map (SOM), or other types of unsupervised learning models. 

[64] At block 308, the cluster of computing machines performs, in cooperation with the 

central computing system, one or more rounds of federated learning on the embedding 

generation model. During each round of federated learning, the embedding generation model is 

trained on at least some of the data examples stored by the cluster of computing machines. 

[65] In some implementations, the federated learning can be performed with differential 

privacy. This involves adding noise to the data or model updates derived from the data to protect 

individual privacy. The amount of noise added can be determined based on the number of data 

records held at the cluster of computing machines. For example, the noise can be reduced 

proportionally to an increase in the number of data records held at the cluster of computing 

machines. 

[66] In some implementations, the noise can be adjusted dynamically based on real-time 

assessments of data distributions within the cluster of computing machines and the performance 

of the embedding generation model. For example, if the model's accuracy begins to degrade 

beyond an acceptable threshold due to noise, the system can reduce the noise scale, provided that 

the reduced noise still offers an adequate level of privacy protection. 

[67] In some implementations, the collection of data examples can further include negative 

training samples. In the context of machine learning, negative training samples are data instances 

that do not belong to the class of interest but are used in the training process to improve the 

model's ability to distinguish between different classes. They provide examples of what the 

model should not predict as the positive class. For instance, in a binary classification problem, if 

one class is considered as positive (the class of interest), then the other class is considered as 

negative. Using negative training samples can be beneficial for certain machine learning 

techniques and can enhance the model's performance by teaching it the boundaries between 

classes. 
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[68] The inclusion of negative training samples in the collection of data examples allows the 

cluster of computing machines to utilize the negative training samples during the one or more 

rounds of federated learning on the embedding generation model. The negative training samples 

can be used to evaluate contrastive loss functions or triplet loss functions, thereby improving the 

discriminative power of the embeddings and the performance of the model. 

[69] Figure 4 provides a detailed flowchart illustrating an example method 400 of a cluster of 

computing machines performing one or more rounds of federated learning with the plurality of 

different and separate clusters of computing machines to directly train the embedding generation 

model on private data stored in the plurality of different and separate clusters of computing 

machines. As one example, a cluster of computing machines, such as the first cluster of 

computing machines 14 depicted in Figure 1, can operate to perform the method 400 shown in 

Figure 4. 

[70] At block 402, the method begins with local training. In this step, each cluster of 

computing machines processes its own set of data examples using an embedding generation 

model. As an example, the cluster may utilize machine learning algorithms suitable for the types 

of features and items present in its data. The algorithms can be supervised, unsupervised, semi-

supervised, or reinforcement learning algorithms depending on the nature of the data and the 

specific learning task. Furthermore, the cluster may use both positive and negative training 

samples in this step. For instance, in some implementations, the cluster can employ contrastive 

loss functions or triplet loss methods that leverage both positive and negative samples to enhance 

the discriminative power of the embeddings. 

[71] At block 404, the method proceeds with the application of differential privacy. If a 

differential privacy mechanism is implemented, the cluster of computing machines can add a 

calculated amount of noise to the local model updates or to the data used in the local training. 

For instance, the noise can be added directly to the model parameters or to the gradients during 

the optimization process. The amount of noise to be added can be determined based on various 

factors such as the number of data records within the cluster, the desired level of privacy, and the 

performance of the learning model. Accordingly, the cluster can use a privacy budget parameter, 

such as epsilon in differential privacy, to control the level of noise and balance between data 

privacy and learning performance. 
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[72] In some implementations, the amount of noise added can be determined based on various 

factors, including the number of data records within the cluster. As an example, the noise can be 

reduced proportionally to an increase in the number of data records held at the cluster of 

computing machines, thereby maintaining an optimal balance between privacy protection and 

data utility.  

[73] The noise for differential privacy can be generated using various methods. In one 

example, the cluster of computing machines can use a Laplace mechanism, which adds Laplace-

distributed noise to the data or model updates. In another example, the cluster of computing 

machines can use a Gaussian mechanism, which adds Gaussian-distributed noise. Other noise 

generation mechanisms can also be used, such as exponential, geometric, or other types of noise 

distributions, depending on the specific requirements of the privacy protection. 

[74] In some implementations, the amount of noise added for differential privacy can be 

adjusted dynamically based on real-time assessments of data distributions within the cluster of 

computing machines and the performance of the embedding generation model. For instance, the 

cluster of computing machines can monitor the distribution of the data examples and the model's 

performance metrics, such as accuracy, loss, or other evaluation measures, during the federated 

learning process. If the model's performance starts to degrade beyond an acceptable threshold 

due to the added noise, the cluster of computing machines can reduce the noise scale, for 

example provided that the reduced noise still offers an adequate level of privacy protection. 

Conversely, if the model's performance is satisfactory and the privacy risk is deemed too high, 

the cluster of computing machines can increase the noise scale to enhance privacy protection. 

This dynamic adjustment of the noise scale can allow the cluster of computing machines to 

maintain an optimal balance between privacy protection and learning performance, thereby 

improving the efficiency and effectiveness of the federated learning process. 

[75] At block 406, the method involves the transmission of model updates. Once the local 

training is complete and the noise has been added for differential privacy, the cluster transmits its 

local model updates to a central computing system. In some implementations, these updates can 

be sent using secure communication protocols to maintain data security during transmission. The 

local model updates can include aggregated information about how the model parameters should 

be adjusted based on the local data, but they do not reveal the actual data records used for 

training, thereby preserving data privacy. 
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[76] Finally, at block 408, the method concludes with the reception of global model updates. 

After the central computing system receives the local model updates from all clusters, aggregates 

them to produce global model updates, and updates the embedding generation model 

accordingly, each cluster receives this updated model from the central system. For instance, the 

central system can distribute the updated model to each cluster via a secure network connection. 

This updated model, which incorporates knowledge learned from all clusters, is then used for the 

next round of federated learning.  

[77] This cycle of local training, differential privacy, transmitting model updates, and 

receiving global model updates continues until the model converges or meets a predefined 

stopping criterion. This iterative process allows each cluster to benefit from the collective 

learning across all clusters while preserving the privacy of the local data. 

[78] Figure 5 illustrates a block diagram of an example central computing system 500 

according to exemplary implementations of the present disclosure. The central computing system 

500, similar to the central computing system 26 detailed in previous figures, can comprise one or 

more computing devices configured to perform operations in cooperation with a plurality of 

different and separate clusters of computing machines. These operations can include receiving 

feature metadata for each of several distinct component feature-spaces, preprocessing the feature 

metadata to establish an embedding generation model, and executing one or more rounds of 

federated learning to directly train the embedding generation model on private data stored across 

the various separate clusters of computing machines. 

[79] The central computing system 500, as depicted in Figure 5, may include a number of 

different components, each of which can be integral to the functioning of the system. The various 

components of the central computing system 500 can be interconnected through a system bus 

502, which can facilitate communication between the different components. The system bus 502 

can be any of several types of bus structures, such as a memory bus or memory controller, a 

peripheral bus, or a local bus using any of a variety of bus architectures. 

[80] The central computing system 500 can include a processing unit 504, which can be 

responsible for executing instructions stored in the main memory 506 or other storage devices. 

The processing unit 504 can be any logic circuitry that responds to and processes the basic 

instructions that drive the central computing system 500. In some implementations, the 

processing unit 504 can include a central processing unit (CPU), a graphics processing unit 
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(GPU), or both. The processing unit 504 can be a single processing unit, or it can include 

multiple processing units, which can operate in parallel or independently. 

[81] The central computing system 500 can also include a main memory 506, which can be a 

random access memory (RAM) or another type of dynamic storage device. The main memory 

506 can store information and instructions to be executed by the processing unit 504. In some 

implementations, the main memory 506 can store temporary variables or other intermediate 

information during the execution of instructions by the processing unit 504. The main memory 

506 can also be used to store the feature metadata received from the various clusters of 

computing machines, as well as the aggregate feature-space, the feature means, and the 

categorical variables generated during the preprocessing stage. 

[82] In addition to the main memory 506, the central computing system 500 can include a read 

only memory (ROM) 508 or another type of static storage device that stores static information 

and instructions for the processing unit 504. The ROM 508 can store a basic input/output system 

(BIOS) that contains the basic routines that help to transfer information between elements within 

the central computing system 500, such as during start-up. 

[83] The central computing system 500 can also include a storage device 510, which can be a 

hard disk drive, a solid-state drive, an optical disk drive, or another type of non-volatile storage 

medium. The storage device 510 can store the operating system that controls the operation of the 

central computing system 500, as well as other software applications. In some implementations, 

the storage device 510 can store the embedding generation model, as well as the data descriptive 

of the data distribution received from the different clusters of computing machines. 

[84] The central computing system 500 can include a number of other components, such as an 

input device 512, an output device 514, and a communication interface 516. The input device 

512 can be any mechanism that allows the central computing system 500 to receive input from a 

user or another system, such as a keyboard, a mouse, a microphone, or a touch-sensitive display. 

The output device 514 can be any mechanism that allows the central computing system 500 to 

produce output for a user or another system, such as a display screen, a speaker, or a printer. 

[85] The communication interface 516 can enable the central computing system 500 to 

communicate with other devices or systems over a network, such as the internet, a local area 

network, or a wide area network. The communication interface 516 can include a network 

adapter, a wireless network adapter, a modem, or any other device that enables the central 
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computing system 500 to communicate with other devices or systems. In some implementations, 

the communication interface 516 can facilitate the transmission of the feature metadata, the 

aggregate feature-space, the feature means, and the categorical variables between the central 

computing system 500 and the various clusters of computing machines. 

[86] The example central computing system 500 also includes an embedding generation 

system 518. The embedding generation system 518 enables the central computing system 500 to 

execute various operations associated with the methods described in the present disclosure, 

particularly the method 200 depicted in Figure 2. 

[87] The embedding generation system 518 is responsible for generating the shared 

embedding space for data split across multiple separate clusters of computing machines. The 

embedding generation system 518 takes the feature metadata for each of the component feature-

spaces associated with the separate clusters of computing machines and generates a shared 

embedding space, wherein similar items are closer together and dissimilar items are further apart.  

[88] To generate the shared embedding space, the embedding generation system 518 performs 

several operations. First, it preprocesses the feature metadata for each of the component feature-

spaces. This preprocessing can involve various steps, such as normalizing the data, handling 

missing values, or transforming the data to reduce its dimensionality. The preprocessing can 

result in the generation of an aggregate feature-space, which comprises an aggregation of the 

numerous different component feature-spaces. 

[89] Next, the embedding generation system 518 establishes an embedding generation model 

based on the preprocessed feature metadata and the aggregate feature-space. The embedding 

generation model is a machine learning model designed to map the data from the high-

dimensional aggregate feature-space to a lower-dimensional embedding space. The model can be 

any suitable type of machine learning model, such as a neural network, that is capable of learning 

embeddings from data. 

[90] Following the establishment of the embedding generation model, the embedding 

generation system 518 performs one or more rounds of federated learning with the different 

clusters of computing machines. During federated learning, each cluster trains a local model on 

its own data, then sends model updates to the central system for aggregation. This process can be 

repeated until the model converges. The federated learning can also be performed with 

differential privacy, adding noise to the data or model updates to protect individual privacy. 
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[91] Upon completion of the federated learning rounds, the embedding generation model can 

generate embeddings in a shared embedding space. The shared embedding space presents a 

unified view of the data stored across the multiple separate clusters of computing machines, 

facilitating better data analysis and more accurate modeling across all data silos.  

[92] Figure 6 presents an illustrative implementation of a cluster of computing machines, 

denoted as numeral 600, in accordance with the present disclosure. The cluster 600 can be a 

collection of one or more computing devices or machines, such as servers, desktop computers, 

laptop computers, mobile devices, or any other type of computing device capable of processing 

data and executing machine learning algorithms. These computing machines can be 

interconnected through a network, enabling them to communicate and coordinate with each other 

as well as with a central computing system. The cluster of computing machines 600 can be a 

physical cluster, comprising physically separate machines, or a virtual cluster, comprising virtual 

machines hosted on a single physical machine or across multiple physical machines. 

[93] The cluster of computing machines 600, as depicted in Figure 6, incorporates a 

processing unit 602. The processing unit 602 can be a central processing unit (CPU), a graphics 

processing unit (GPU), or any other type of processor capable of executing instructions and 

performing computations. The processing unit 602 can execute machine learning algorithms, 

preprocess data, generate embeddings, and perform other computational tasks associated with the 

methods described in the present disclosure. The processing unit 602 can also facilitate the 

communication and coordination among the computing machines within the cluster and with the 

central computing system. 

[94] Additionally, the cluster of computing machines 600 includes memory 604. The memory 

604 can be any type of computer memory, such as random access memory (RAM), read-only 

memory (ROM), flash memory, or any other type of storage medium capable of storing data and 

instructions for access by the processing unit 602. The memory 604 can store the feature 

metadata, the data examples, the embedding generation model, and other data necessary for the 

execution of the methods described in the present disclosure. The memory 604 can also store the 

instructions that the processing unit 602 executes to perform these methods. 

[95] The cluster of computing machines 600 also incorporates a communication interface 606. 

The communication interface 606 can be a network interface card (NIC), a wireless adapter, or 

any other type of device or component capable of facilitating communication between the cluster 
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of computing machines 600 and other entities, such as the central computing system or other 

clusters of computing machines. The communication interface 606 can transmit and receive data, 

such as the feature metadata, the model updates, and other information necessary for the 

execution of the methods described in the present disclosure. 

[96] Additionally, the cluster of computing machines 600 includes a storage device 608. The 

storage device 608 can be a hard disk drive (HDD), a solid-state drive (SSD), a flash drive, or 

any other type of non-volatile storage device capable of storing data. The storage device 608 can 

store the data examples, the feature metadata, the embedding generation model, and other data 

necessary for the execution of the methods described in the present disclosure. The storage 

device 608 can also store the software applications, operating system, and other programs that 

the processing unit 602 executes to perform these methods. 

[97] The cluster of computing machines 600, as depicted in Figure 6, further incorporates an 

input/output (I/O) device 610. The I/O device 610 can be a keyboard, a mouse, a display, a 

printer, a scanner, or any other type of device or component capable of receiving input from a 

user or providing output to a user. The I/O device 610 can facilitate the interaction between the 

user and the cluster of computing machines 600, allowing the user to control and monitor the 

execution of the methods described in the present disclosure. 

[98] Furthermore, the cluster of computing machines 600 includes a bus 612. The bus 612 can 

be a data bus, an address bus, a control bus, or any other type of bus capable of transferring data, 

addresses, control signals, or other types of information between the components of the cluster of 

computing machines 600. The bus 612 can facilitate the communication and coordination among 

these components, enabling them to work together in the execution of the methods described in 

the present disclosure. 

[99] The cluster of computing machines 600 can also include an embedding generation system 

614. The embedding generation system 614 can perform the processes depicted in Figures 3 and 

4.  

[100] The embedding generation system 614 operates by training machine learning models on 

the clusters' local data. It can employ federated learning methods which allow each cluster to 

learn a model from its own local data and then share only the model updates with a central 

server. This way, all the learning happens locally at each cluster, which can enhance data 
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privacy, reduce data transmission costs, and utilize the computational resources of each cluster 

effectively. 

[101] For example, the embedding generation system 614 can determine data descriptive of a 

data distribution within a component feature-space of a collection of data examples stored by the 

cluster of computing machines. The data descriptive of the data distribution is then transmitted to 

a central computing system for use in generating an aggregate feature-space. The embedding 

generation system 614 receives an embedding generation model configured to be applied to the 

aggregate feature-space from the central computing system. Subsequently, the system 614 

performs one or more rounds of federated learning on the embedding generation model, where 

the model is trained on at least some of the collection of data examples stored by the cluster of 

computing machines. 

[102] Systems 518 and 614, as described in the present disclosure, can be implemented using 

hardware, software, or a combination of both. In some embodiments, systems 518 and 614 can 

be realized as computer-implemented methods, computer program products, and/or electronic 

devices configured to perform the operations as described. The computer program products can 

include computer-readable instructions stored on a non-transitory computer-readable medium, 

such as a hard drive, solid-state drive, ROM, RAM, flash memory, or any other type of storage 

medium that can be accessed by a processor. These instructions, when executed by the processor, 

cause the processor to perform the operations as disclosed. The electronic devices can include 

one or more processors, memory for storing computer-readable instructions, and other 

components necessary for operation. The processors can be configured to execute the computer-

readable instructions to perform the operations of systems 518 and 614. In certain embodiments, 

the logic for implementing the operations of systems 518 and 614 can be hardwired into the 

electronic devices, thereby providing a dedicated, high-performance implementation.  

[103] The technology discussed herein makes reference to servers, databases, software 

applications, and other computer-based systems, as well as actions taken and information sent to 

and from such systems. The inherent flexibility of computer-based systems allows for a great 

variety of possible configurations, combinations, and divisions of tasks and functionality 

between and among components. For instance, processes discussed herein can be implemented 

using a single device or component or multiple devices or components working in combination. 
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Databases and applications can be implemented on a single system or distributed across multiple 

systems. Distributed components can operate sequentially or in parallel.  

[104] While the present subject matter has been described in detail with respect to various 

specific example embodiments thereof, each example is provided by way of explanation, not 

limitation of the disclosure. Those skilled in the art, upon attaining an understanding of the 

foregoing, can readily produce alterations to, variations of, and equivalents to such embodiments. 

Accordingly, the subject disclosure does not preclude inclusion of such modifications, variations 

and/or additions to the present subject matter as would be readily apparent to one of ordinary 

skill in the art. For instance, features illustrated or described as part of one embodiment can be 

used with another embodiment to yield a still further embodiment. Thus, it is intended that the 

present disclosure cover such alterations, variations, and equivalents. 

[105] In particular, although Figures 1-4 respectively depict steps performed in a particular 

order for purposes of illustration and discussion, the methods of the present disclosure are not 

limited to the particularly illustrated order or arrangement. The various steps of the methods 

shown in Figures 1-4 can be omitted, rearranged, combined, and/or adapted in various ways 

without deviating from the scope of the present disclosure. 
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EXAMPLE EMBODIMENTS OF THE PRESENT DISCLOSURE: 

 

1. A central computing system implemented by one or more computing devices, the 

central computing system configured to perform operations, the operations comprising: 

receiving, by a central computing system comprising one or more computing devices, 

feature metadata for each of a plurality of different component feature-spaces that are 

respectively associated with a plurality of different and separate clusters of computing machines; 

preprocessing, by the central computing system, the feature metadata for the plurality of 

different component feature-spaces to establish an embedding generation model; and 

performing, by the central computing system, one or more rounds of federated learning 

with the plurality of different and separate clusters of computing machines to directly train the 

embedding generation model on private data stored in the plurality of different and separate 

clusters of computing machines. 

 

2. The central computing system of embodiment 1, wherein preprocessing, by the 

central computing system, the feature metadata for the plurality of different component feature-

spaces to establish the embedding generation model comprises generating, by the central 

computing system, an aggregate feature-space, wherein the aggregate feature-space comprises an 

aggregation of the plurality of different component feature-spaces that are respectively 

associated with the plurality of different and separate clusters of computing machines. 

 

3. The central computing system of embodiment 1, wherein preprocessing, by the 

central computing system, the feature metadata for the plurality of different component feature-

spaces to establish the embedding generation model comprises generating, by the central 

computing system, feature means for the plurality of different component feature-spaces. 

 

4. The central computing system of embodiment 1, wherein preprocessing, by the 

central computing system, the feature metadata for the plurality of different component feature-

spaces to establish the embedding generation model comprises generating, by the central 

computing system, categorical variables for the plurality of different component feature-spaces. 
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5. The central computing system of embodiment 1, wherein at least one of the 

plurality of different component feature-spaces contains data for at least one feature not included 

in at least one of the other component feature-spaces. 

 

6. The central computing system of embodiment 1, wherein at least one of the 

plurality of different component feature-spaces contains data for at least one feature not included 

in at least one of the other component feature-spaces. 

 

7. The central computing system of embodiment 1, wherein the plurality of different 

and separate clusters of computing machines comprise a plurality of different and separate 

clusters of physical machines. 

 

8. The central computing system of embodiment 1, wherein the plurality of different 

and separate clusters of computing machines comprise a plurality of different and separate 

clusters of virtual machines. 

 

9. The central computing system of embodiment 1, wherein the plurality of different 

and separate clusters of computing machines comprises a plurality of different and separate silo 

computing systems respectively storing a plurality of different and separate data silos. 

 

10. The central computing system of embodiment 1, wherein performing, by the 

central computing system, the one or more rounds of federated learning comprises performing, 

by the central computing system, the one or more rounds of federated learning with differential 

privacy. 

 

11. The central computing system of embodiment 10, wherein the differential privacy 

comprises adding noise to private data or model updates derived therefrom, and wherein an 

amount of noise added at each separate cluster of computing machines is determined based on a 

number of data records held at such separate cluster of computing machines . 
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12. The central computing system of embodiment 11, wherein the amount of noise 

added at each separate cluster of computing machines is reduced proportionally to an increase in 

the number of data records held at such separate cluster of computing machines . 

 

13. The central computing system of embodiment 1, wherein performing, by the 

central computing system, the one or more rounds of federated learning comprises performing, 

by the central computing system, the one or more rounds of federated learning with negative 

training samples stored at the plurality of different and separate clusters of computing machines.  

 

14. A cluster of computing machines configured to perform operations, the operations 

comprising 

determining data descriptive of a data distribution within a component feature-space of a 

collection of data examples stored by the cluster of computing machines, wherein the collection 

of data examples are associated with one or more entities; 

transmitting the data descriptive of respective data distribution to a central computing 

system for use in generating an aggregate feature-space, wherein the aggregate feature-space 

comprises an aggregation of the component feature-space with one or more other component 

feature-spaces of one or more other, different clusters of computing machines that are separate 

from the cluster of computing machines; 

receiving an embedding generation model configured to be applied to the aggregate 

feature-space; and 

performing, in cooperation with the central computing system, one or more rounds of 

federated learning on the embedding generation model, wherein at each of the one or more 

rounds of federated learning, the embedding generation model is trained on at least some of the 

collection of data examples stored by the cluster of computing machines. 

 

15. The cluster of computing machines of embodiment 14, wherein the cluster of 

computing machines comprises a plurality of physical computing machines.  

 

16. The cluster of computing machines of embodiment 14, wherein the cluster of 

computing machines comprises a plurality of virtual computing machines. 
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17. The cluster of computing machines of embodiment 14, wherein the cluster of 

computing machines comprises a silo computing system associated with a data silo. 

 

18. The cluster of computing machines of embodiment 14, wherein performing, in 

cooperation with the central computing system, the one or more rounds of federated learning on 

the embedding generation model comprises performing, in cooperation with the central 

computing system, one or more rounds of federated learning with differential privacy on the 

embedding generation model. 

 

19. The cluster of computing machines of embodiment 18, wherein performing the one or 

more rounds of federated learning with differential privacy on the embedding generation model 

comprises adding noise to the data examples or model updates derived therefrom, and wherein 

an amount of noise is reduced proportionally to an increase in a number of data examples held by 

the cluster of computing machines. 

 

20. The cluster of computing machines of embodiment 19, wherein the amount of noise 

added is adjusted dynamically based on real-time assessments of data distributions within the 

cluster of computing machines and the performance of the embedding generation model. 

 

21. The cluster of computing machines of embodiment 14, wherein the collection of 

data examples further comprises negative training samples, and wherein the one or more rounds 

of federated learning on the embedding generation model utilizes the negative training samples. 

 

22. The cluster of computing machines of embodiment 21, wherein the negative 

training samples are used to evaluate contrastive loss functions or triplet loss functions during the 

one or more rounds of federated learning. 
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ABSTRACT OF THE DISCLOSURE 

 

Provided are systems and methods for privacy-preserving learning of a shared embedding 

space for data split across multiple separate clusters of computing machines. In one example, the 

multiple separate clusters of computing machines can correspond to multiple separate data silos.  
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