
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

January 2024

Semi-Federated Learning of an Embedding Space Across Multiple Semi-Federated Learning of an Embedding Space Across Multiple

Machine Clusters Machine Clusters

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
"Semi-Federated Learning of an Embedding Space Across Multiple Machine Clusters", Technical
Disclosure Commons, (January 30, 2024)
https://www.tdcommons.org/dpubs_series/6646

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F6646&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/6646?utm_source=www.tdcommons.org%2Fdpubs_series%2F6646&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

1

SEMI-FEDERATED LEARNING OF AN EMBEDDING SPACE ACROSS MULTIPLE

MACHINE CLUSTERS

FIELD

[1] The present disclosure relates to learning of embeddings corresponding to items. More

particularly, the present disclosure relates to privacy-preserving learning of a shared embedding

space for data stored across multiple separate clusters of computing machines.

BACKGROUND

[2] In the context of machine learning or other domains of data science, the term

“embedding” can refer to a numerical data element (e.g., expressed as a vector or other array of

floating-point numbers) which represents an item or set of items within a latent embedding

space. The latent embedding space can be a -dimensional vector space to which features from a

different (typically higher-dimensional) vector space are able to be mapped. Typically, the

embedding space contains a semantically-meaningful structure. For example, a measure of

distance (e.g., the dot product or cosine similarity) computed between two embeddings for two

items in the same embedding space may indicate a relative similarity between the two items.

BRIEF DESCRIPTION OF THE DRAWINGS

[3] Detailed discussion of implementations directed to one of ordinary skill in the art is set

forth in the specification, which makes reference to the appended figures, in which:

[4] Figure 1 provides a graphical diagram of an example privacy-preserving learning system

that facilitates the creation of a shared embedding space for data stored across multiple distinct

clusters of computing machines according to example implementations of the present disclosure.

[5] Figure 2 provides a flowchart diagram illustrating an example method for generating a

shared embedding space performed by a central computing system according to example

implementations of the present disclosure.

[6] Figure 3 provides a flowchart diagram illustrating an example method for generating a

shared embedding space performed by a cluster of computing machines according to example

implementations of the present disclosure.

2

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

2

[7] Figure 4 provides a flowchart diagram illustrating an example method for federated

learning with differential privacy performed by a cluster of computing machines according to

example implementations of the present disclosure.

[8] Figure 5 provides a block diagram of an example central computing system according to

example implementations of the present disclosure.

[9] Figure 6 provides a block diagram of an example cluster of computing machines

according to example implementations of the present disclosure.

DETAILED DESCRIPTION

[10] As a general summary, the present disclosure is directed to privacy-preserving learning of

a shared embedding space for data split across multiple separate clusters of computing machines.

In one example, the multiple separate clusters of computing machines can correspond to multiple

separate data silos.

[11] As a more detailed explanation, various settings exist in which data examples associated

with the same or different items are held or maintained in a plurality of different data silos that

are separate from each other. For example, the multiple separate data silos can correspond to a

“semi-federated” learning setting. In some instances, the semi-federated learning setting is also

referred to as a cross-silo federated-learning setup. This semi-federated setting can be contrasted

with a centralized data setting in which all data examples for all items are collected and held

together by a central entity. The semi-federated learning setting can also be contrasted with a

fully federated learning setting in which the data is completely distributed, such that each

computing device contains data for only a single item.

[12] An item can be any item, object, or entity, such as a product (e.g., movie, book, item of

clothing, etc.), a document (e.g., a webpage, a data file, etc.), or entity (e.g., a user or user

account, a location, a business, a point of interest, etc.). Data associated with item(s) can be

stored in a data silo as one or more data example(s). A data example can refer to a data entry that

is associated with a particular item and that includes feature values for a set of features. In

machine learning, a “feature” refers to a variable for which feature values are or can be recorded.

The set of different features for which data exists in a particular collection of data examples can

define or be referred to as the “feature-space” for such collection of data examples.

3

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

3

[13] The term “data silo” can refer to a data storage system (e.g., including or leveraging one

or more databases or other physical data storage apparatus) that stores a collection of data

examples that are held separate from data examples stored in another data silo. For example, data

examples stored by one data silo may be kept physically and/or logically separate from data

examples stored by another data silo. For example, two collections of data examples held in two

data silos may be stored such that they are not mixed or cross-referenced. A silo computing

system refers to a computing system that operates to implement a particular data silo or operates

in conjunction with a particular data silo. The storage of data examples in multiple different data

silos may be driven by various operational and/or regulatory constraints.

[14] One significant technical problem in the field of machine learning is the difficulty of

creating meaningful embeddings from data examples stored in different data silos or clusters of

computing machines. These data silos, whether physical or virtual, hold data examples

associated with different sets of features and/or sets of items, presenting a significant challenge

for generating shared embedding spaces. Current methods often result in the generation of

respective embedding spaces that cannot be meaningfully combined or interpreted with respect

to each other. This issue arises due to the isolation of data silos and the random rotations that

occur during the generation of embeddings. Consequently, this problem prevents the efficient

utilization of distributed data stored across various data silos for machine learning purposes,

particularly in a semi-federated learning setting.

[15] The present disclosure provides a solution to this problem by introducing a privacy-

preserving learning system that generates a shared embedding space for data stored across

multiple separate clusters of computing machines. The system can be applied in a semi-federated

learning setting, where different data examples associated with the same or different items are

held or maintained in different data silos. The system, which may include a central computing

system, performs operations such as receiving feature metadata for different component feature-

spaces and preprocessing this metadata to establish an embedding generation model.

[16] The preprocessing step conducted by the central computing system can involve a variety

of operations, including data normalization, missing value handling, and dimensionality

reduction. The system can also perform federated learning rounds with the different clusters of

computing machines. Each cluster trains a local model on its own data, then sends model updates

to the central system for aggregation, a process that can be repeated until the model converges.

4

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

4

[17] In addition to generating a shared embedding space, the present disclosure also offers

several technical advantages. It facilitates the integration of feature-spaces across different data

silos, thus creating a unified embedding space that provides more comprehensive insights. This

process enables better data analysis and more accurate modeling across all data silos. The system

also allows for federated learning across different clusters of computing machines, which can

enhance data privacy as only the model updates are shared.

[18] Furthermore, the system can handle data silos with different feature-spaces, including

those with unique features that are not present in other feature-spaces. This flexibility makes it

possible for organizations with diverse and complex data landscapes to leverage the benefits of

federated learning and shared embeddings. The system also promotes efficient use of

computational resources by distributing the computational load across each cluster of computing

machines, reducing data transfer requirements, and potentially improving the speed and

efficiency of the overall learning process.

[19] Another aspect of the present disclosure relates to the interplay between the proposed

semi-federated arrangement and the application of differential privacy techniques. In particular,

in the field of data science and machine learning, differential privacy has emerged as an

important technique for protecting individual user data when aggregating information across

multiple sources. The fundamental principle of differential privacy is to introduce a degree of

uncertainty, or "noise", to the data, such that the privacy of individual data points is preserved

while still allowing for accurate aggregate data analysis. In a fully federated system, each user's

device stores and processes data for only that particular user. Consequently, when differential

privacy measures are applied in such systems, they necessitate the addition of a significant

amount of noise to maintain privacy, which can substantially degrade the utility of the user's

data.

[20] In contrast, the present disclosure addresses this challenge through a semi-federated

approach. In this system, a data silo holds a more extensive collection of data records, possibly

associated with a broader range of features and/or items. Due to the larger dataset, the amount of

noise that must be added to any single data record to achieve differential privacy is reduced. This

is because the noise can be spread across the many data records, diminishing its impact on any

single data point. By leveraging the collective dataset within each silo, the present disclosure

achieves a balance between privacy protection and data usability. The central computing system,

5

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

5

as part of the learning process, can be responsible for determining the appropriate level of noise

to add to the data or model updates. This determination can take into account the number of data

records, the diversity of features and items, and the desired level of privacy.

[21] The technical benefits of the semi-federated approach disclosed herein with respect to

differential privacy are numerous. As one example, the reduced noise levels contribute to higher

data quality, allowing for more precise machine learning models and data analytics. This

improved precision can directly translate into better decision-making in the context of data-

driven predictions or inferences.

[22] As another example, the semi-federated approach can offer a more scalable solution to

privacy-preserving data analysis. As the amount of data within a silo grows, the relative amount

of noise added per data record decreases, which can significantly enhance the scalability of data

analytics solutions in environments with ever-increasing data volumes.

[23] In addition, the present disclosure can improve computational efficiency. By centralizing

the data processing within each silo, rather than distributing it across numerous individual

devices, computational tasks can be optimized, and resources better allocated, leading to faster

processing times and reduced costs. Furthermore, as new data records are added to each silo, the

system can adaptively adjust the differential privacy parameters to maintain an optimal balance

between privacy and data utility.

[24] Another aspect of the present disclosure relates to the use of negative training samples in

the semi-federated context. In particular, in a fully federated system each user device stores data

about only a single user, thus lacking access to negative samples that are crucial for certain

machine learning techniques. Negative samples are data instances that do not correspond to the

positive class of interest but are helpful to teach the model the boundaries between classes. This

limitation hinders the implementation in a fully federated context of advanced representation

learning methods that rely on contrasting different samples, such as contrastive loss and triplet

training.

[25] However, the present disclosure introduces a novel approach to address this limitation by

incorporating negative training samples within the semi-federated context. Each data silo in the

semi-federated system may contain both positive and negative training samples, which can be

leveraged to perform new types of representation learning. The presence of negative samples

within the same data silo allows for the application of machine learning techniques that require

6

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

6

contrasting positive instances with negative ones, such as contrastive loss functions and triplet

training methods.

[26] In some implementations, the central computing system and/or the clusters of computing

machines can orchestrate the use of negative samples for advanced representation learning. For

example, when employing contrastive loss, each cluster can select pairs of positive and negative

samples from its data silo and compute the loss in such a way that the model learns to bring

embeddings of positive samples closer together while pushing away the embeddings of negative

samples. Similarly, for triplet training, the system can guide the clusters to form triplets

consisting of an anchor sample, a positive sample similar to the anchor, and a negative sample

dissimilar to the anchor, and then optimize the model to satisfy this relational structure.

[27] Using negative training samples in the semi-federated context provides a number of

technical benefits. As one example, by incorporating negative samples, the system can utilize

representation learning techniques that improve the discriminative power of the embeddings,

leading to more robust and generalizable models. As another example, the use of contrastive loss

and triplet training has been shown to result in higher-quality embeddings, which can improve

the performance of downstream tasks such as classification, recommendation, and anomaly

detection. As yet another example, by maximizing the information extracted from both positive

and negative samples within each data silo, the system can achieve better learning outcomes

without the need for additional external data, thus making efficient use of the available data

resources.

[28] With reference now to the Figures, example implementations of the present disclosure

will be described in further detail.

[29] Figure 1 provides a graphical diagram of an example privacy-preserving learning system

12 that includes The system 12 facilitates the creation of a shared embedding space for the data

records 16, 20, 24 that are stored across the multiple distinct clusters of computing machines 14,

18, 22. These clusters of computing machines 14, 18, 22 can, for example, be different data silos

and can be either physical or virtual computing machines. The data records 16, 20, 24 can be

associated with varying sets of features and/or sets of items.

[30] The system 12 illustrated in Figure 1 thus represents a "semi-federated" learning scenario,

where data instances linked to the same or different items are stored or maintained in different

7

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

7

data silos. This is a departure from a centralized data scenario, where all data instances for all

items are gathered and held together by a central entity.

[31] The central computing system 26 can include one or more computing devices that

manage, coordinate, or perform operations on data. It can be considered as the core or hub in a

network of computing resources, where it is responsible for processing data, executing

algorithms, and managing interactions among different components of the network. In some

implementations, the central computing system 26 can include physical servers, virtual

machines, cloud-based platforms, or any combination thereof, which provide the computational

power and storage capabilities necessary to handle complex data tasks.

[32] According to one aspect, the central computing system 26 is configured to receive feature

metadata for each of a numerous different component feature-spaces. These feature-spaces are

respectively associated with a variety of different and separate clusters of computing machines,

such as the first cluster of computing machines 14, second cluster of computing machines 18,

and third cluster of computing machines 22.

[33] The central computing system 26 can preprocess the feature metadata for the numerous

different component feature-spaces to establish an embedding generation model. The

preprocessing can consist of various steps, such as normalizing the data, handling missing

values, or transforming the data to reduce its dimensionality. For instance, the preprocessing

might involve generating an aggregate feature-space, which comprises an aggregation of the

numerous different component feature-spaces.

[34] In another example, the preprocessing could involve generating feature means for the

numerous different component feature-spaces. This could involve calculating the average value

of each feature across all the data points in a given component feature-space. Alternatively,

preprocessing might involve generating categorical variables for the numerous different

component feature-spaces. This could involve converting continuous variables into discrete

categories based on certain thresholds or ranges.

[35] Thus, the preprocessing step executed by the central computing system 26 can encompass

diverse operations. These can include the generation of feature variances, one-hot encoding,

outlier detection and removal, feature selection, and creation of interaction features for the

numerous different component feature-spaces. For instance, the generation of feature variances

can involve the calculation of each feature's variance across all data points within a given

8

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

8

component feature-space. This can normalize the data across various feature-spaces, making the

resulting embeddings comparable. Similarly, one-hot encoding can convert categorical variables

into a format suitable for machine learning algorithms, thus enhancing predictions. Outlier

detection methods can identify and appropriately handle data points that significantly deviate

from other observations in the same feature-space. Feature selection can optimize the relevance

of features in each feature-space, thereby improving the learning model's performance and

efficiency. Lastly, interaction features can be generated from existing features, capturing

complex relationships between features, and potentially enhancing the learning model's

performance.

[36] In some implementations, at least one of the numerous different component feature-

spaces can contain data for at least one feature not included in at least one of the other

component feature-spaces. This could occur, for example, if first cluster of computing machines

14 is collecting data on a particular feature that the second cluster of computing machines 18 and

third cluster of computing machines 22 are not.

[37] In some implementations, the different and separate clusters of computing machines can

include different and separate clusters of physical machines. For example, these could be

separate servers in different locations, each processing and storing its own distinct set of data.

Additionally or alternatively, the clusters of computing machines could include different and

separate clusters of virtual machines. These might be virtual servers hosted on a cloud platform,

each with its own dedicated resources and data. Thus, in some cases, the different and separate

clusters of computing machines might be physically co-located (or even implemented using the

same device(s)) but may be distinct computational systems from each other (e.g., where data

does not pass between the computational systems despite being implemented on the same

device(s)).

[38] The central computing system 26 can perform one or more rounds of federated learning

with the clusters of computing machines 14, 18, 22. Federated Learning is a machine learning

approach that involves training models across multiple devices or servers while keeping the data

localized. Instead of centralizing all the data to a single server for model training, federated

learning allows each device or server to learn a model from its own local data, and then share

only the model updates with a central server. This way, all the learning happens on the device

9

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

9

itself, which can enhance data privacy, reduce data transmission costs, and utilize the

computational resources of each device effectively.

[39] Thus, each cluster of computing machines can perform, in cooperation with the central

computing system 26, one or more rounds of federated learning on the embedding generation

model. As applied to the computer system 12 illustrated in Figure 1, performing federated

learning can include each cluster 14, 18, 22 training a local model on its own data, then sending

the model updates to the central system 26 to be aggregated. This process can be repeated for

several rounds until the model converges.

[40] In some implementations, these rounds of federated learning could be performed with

differential privacy, adding noise to the data or model updates to protect individual privacy.

Differential privacy is a system for publicly sharing information about a dataset by describing the

patterns of groups within the dataset while withholding information about individuals in the

dataset. It provides a mathematical guarantee that the privacy of an individual is protected when

statistical analysis is performed on the data. In practical terms, it involves adding a certain

amount of noise to the data or query results to obscure the impact of individual data points,

thereby providing privacy protection while still allowing for accurate aggregate data analysis.

[41] In some implementations, each of the clusters of computing machines 14, 18, 22 sends

the resulting embeddings within the shared embedding space back to the central computing

system 26. This stage facilitates the subsequent analysis of these embeddings by the central

computing system 26. The embeddings, which are representative of data stored in each of the

separate clusters of computing machines, are transmitted securely to the central computing

system 26. The transmission can take place over a secure network, ensuring the preservation of

data privacy. The central computing system 26 receives these embeddings and can perform

various analytical operations on them. These operations may include, but are not limited to,

examining the structure of the shared embedding space, identifying patterns or correlations

among the embeddings, and using the embeddings as input to downstream machine learning

tasks. The analysis performed by the central computing system 26 can provide insights into the

relationships between the data stored across the different clusters of computing machines,

thereby enabling more accurate and comprehensive data analysis and decision-making.

[42] Figure 2 provides a flowchart illustrating an example method 200 of preprocessing by the

central computing system in the exemplary implementation of the present disclosure. The flow

10

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

10

chart depicts the sequence of operations that a central computing system can perform to

preprocess the feature metadata for the plurality of different component feature-spaces to

establish the embedding generation model. As one example, the central computing system 26 of

Figure 1 can operate to perform the method 200 shown in Figure 2.

[43] The method 200 begins with the central computing system receiving feature metadata for

each of a plurality of different component feature-spaces, as indicated by block 202. The feature

metadata can be provided by various clusters of computing machines, such as clusters 14, 18, 22

depicted in Figure 1. The feature metadata may contain information about the distribution of data

in each feature-space, the nature of the features, and other relevant details.

[44] The operation of receiving feature metadata for each of a plurality of different component

feature-spaces, as indicated by block 202, can be implemented in various ways. For instance, the

central computing system can establish a secure connection with the clusters of computing

machines, such as through a virtual private network (VPN) or a secure shell (SSH) protocol. The

system can then request the transmission of feature metadata from each cluster, which can be

sent in a compressed or encrypted format to ensure data security.

[45] Alternatively, the system can employ APIs or web services to facilitate this data

exchange. The received metadata can include information about the types of features, the range

or distribution of feature values, the number of data examples in each feature-space, and other

descriptive statistics. In another implementation, the feature metadata can be stored in a

standardized format, such as a JSON or XML file, for easy parsing and processing by the central

computing system. The system can use various data processing libraries, such as pandas or

NumPy in Python, to load and manipulate the received metadata. This operation can also involve

error handling procedures to account for instances where the connection fails, the metadata is

incomplete, or the data format is not as expected.

[46] Following the receipt of feature metadata at 202, the central computing system can

advance to the preprocessing stage, as depicted by block 204. This stage can involve a variety of

operations to prepare the data for subsequent machine learning tasks. These operations can be

tailored to the specific characteristics of the feature metadata and the requirements of the

embedding generation model.

[47] The central computing system can perform a number of different approaches to

preprocess the feature metadata for the plurality of different component feature-spaces. For

11

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

11

instance, the central computing system can employ statistical methods to analyze and transform

the feature metadata. This can include calculating descriptive statistics such as mean, median,

mode, range, variance, and standard deviation for each feature across all data points in each

component feature-space.

[48] As another example, the central computing system can also implement data cleaning

steps such as handling missing values by methods like deletion, imputation, or prediction.

Additionally, the central computing system can execute feature scaling techniques such as

normalization or standardization to standardize the range of independent variables or features of

data. For example, this can involve rescaling the features to a range of 0 to 1, or transforming the

features to have a mean of 0 and a standard deviation of 1.

[49] As another example, the central computing system can perform feature encoding

processes such as one-hot encoding or label encoding to convert categorical variables into a form

that could be provided to machine learning algorithms. Furthermore, the central computing

system can conduct feature selection techniques like filter methods, wrapper methods, or

embedded methods to select the most relevant features for use in model construction. These

examples of computer operations can be performed in some implementations to preprocess the

feature metadata, thus preparing it for the subsequent establishment of the embedding generation

model.

[50] At block 206, the central computing system can generate an aggregate feature-space. This

aggregate feature-space can be a combination of the plurality of different component feature-

spaces associated with the plurality of different and separate clusters of computing machines.

The central computing system may apply various techniques to integrate these feature spaces

into a unified aggregate feature-space.

[51] As one example, each component feature-space associated with the different clusters of

computing machines can initially be represented as a multi-dimensional matrix, where each row

corresponds to a data example and each column represents a feature. The central computing

system can then combine these matrices into a larger matrix that represents the aggregate feature-

space. This can be done by concatenating the matrices along their rows if they share the same

features, or appending new columns if new features are introduced. In another example, the

central computing system can generate a mapping function for each component feature-space

that aligns it to the aggregate feature-space. This can involve aligning the statistical properties of

12

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

12

the features, such as their means and variances, across the different component feature-spaces.

The central computing system can further use techniques such as Principal Component Analysis

(PCA) to reduce the dimensionality of the aggregate feature-space, creating a more compact

representation that preserves the most important variances in the data.

[52] In some implementations, generating the aggregate feature-space at 206 can include

generating feature means for the plurality of different component feature-spaces. This operation

can involve calculating the average value for each feature across all data points in each

component feature-space. The resulting feature means can provide a useful summary of the data

distribution in each feature-space and can aid in aligning the different feature-spaces. For

example, in some implementations, the central computing system can perform an operation that

calculates an arithmetic mean for each feature across all data points in each component feature-

space. This operation may involve summing up all the feature values and then dividing the sum

by the total number of data points. In certain implementations, this operation can also handle

missing values, for instance, by ignoring them in the summation and denominator calculation. In

another example, the central computing system can calculate a geometric mean, which may

involve multiplying all the feature values together and then taking the nth root of the product,

where n is the total number of data points. This approach can be particularly useful when the data

follows a log-normal distribution or when dealing with rates of change.

[53] In some implementations, the central computing system can generate categorical

variables for the plurality of different component feature-spaces. This operation can involve

converting continuous variables into a series of discrete categories based on predefined

thresholds or ranges. The creation of categorical variables can enable more efficient handling of

non-numeric data and can facilitate the application of certain machine learning algorithms.

[54] In some implementations, generating the aggregate feature-space at 206 can include

generating categorical variables for the plurality of different component feature-spaces. For

example, the central computing system may employ data transformation techniques to convert

continuous numeric data into categorical variables. For example, the central computing system

can perform "binning" or "bucketing", where the range of a continuous feature is split into

several intervals, and each interval is treated as a category. Another method can be

"quantization", which also involves converting continuous variables into discrete categories but

does so based on quantiles such that each category contains approximately the same number of

13

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

13

data points. For nominal data, the central computing system can employ "one-hot encoding",

where each category of a nominal feature is taken and made into a binary feature. For ordinal

data, which involves categories that have a specific order, an "ordinal encoding" method can be

used, whereby each category is assigned an integer value that reflects the order of the categories.

[55] Next, at block 208, the central computing system can initialize the embedding generation

model based on the preprocessed feature metadata and the aggregate feature-space. This process

can include the initialization of a model architecture tailored to handle data examples across the

aggregate feature-space. The model architecture can be designed to accommodate the specific

characteristics of the feature-spaces, such as the number of features, the range of feature values,

the presence of categorical variables, and so on. Moreover, the model's hyperparameters, which

control the learning process, can also be initialized. These hyperparameters can include the

learning rate, the batch size, the number of epochs, the regularization parameters, among others.

The initialization of these hyperparameters can be based on the specifics of the aggregate

feature-space and the requirements of the federated learning process.

[56] Once the embedding generation model is established, then at block 210, the central

computing system transmits the model to the different clusters of computing machines for

performance of federated learning. Each cluster can then train the model on its own data in a

federated learning scheme. This involves each cluster making local updates to the model based

on its own data examples, and then sending these updates back to the central computing system.

The central computing system aggregates these updates to update the global model. This cycle of

local training and global aggregation continues for several rounds until the model converges.

This approach allows the learning process to benefit from the distributed data stored across the

various clusters, while preserving the privacy of the data by keeping it localized within its

respective cluster.

[57] Figure 3 provides a detailed flowchart illustrating an example method 300 performed by

a cluster of computing machines in an example implementation of the present disclosure. The

flow chart depicts the sequence of operations that a cluster of computing machines can perform

in cooperation with a central computing system to generate a shared embedding space. As one

example, a cluster of computing machines, such as the first cluster of computing machines 14

depicted in Figure 1, can operate to perform the method 300 shown in Figure 3.

14

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

14

[58] The method begins at block 302, where the cluster of computing machines determines

data descriptive of a data distribution within a component feature-space of a collection of data

examples stored by the cluster of computing machines. The data examples can be associated with

one or more entities, such as users, items, or events. The data descriptive of the data distribution

can include various statistics, such as mean, median, mode, standard deviation, variance,

skewness, and/or others, for each feature in the component feature-space.

[59] In some implementations, the cluster of computing machines might implement various

data mining techniques to determine the data descriptive of the data distribution. For instance,

the cluster of computing machines might perform clustering analysis to identify groups or

clusters in the data that share similar characteristics. Alternatively, the cluster of computing

machines might conduct association rule mining to discover interesting relations or associations

among a set of items in the data.

[60] At block 304, the cluster of computing machines transmits the data descriptive of the data

distribution to a central computing system. The central computing system, such as the central

computing system 26 depicted in Figure 1, can use this data to generate an aggregate feature-

space. This aggregate feature-space can be a combination of the component feature-space

associated with the cluster of computing machines and one or more other component feature-

spaces associated with one or more other, different clusters of computing machines that are

separate from the cluster of computing machines.

[61] In some implementations, the transmission of the data descriptive of the data distribution

can be facilitated by various data transmission protocols, such as Hypertext Transfer Protocol

(HTTP), File Transfer Protocol (FTP), or other suitable protocols. In some cases, the data may be

encrypted before transmission to ensure data privacy and security. The encryption can be

performed using various encryption algorithms, such as Advanced Encryption Standard (AES),

Rivest-Shamir-Adleman (RSA), or other suitable encryption methods.

[62] At block 306, the cluster of computing machines receives an embedding generation

model from the central computing system. The embedding generation model can be tailored to

the aggregate feature-space, which comprises an aggregation of the component feature-space

associated with the cluster of computing machines and one or more other component feature-

spaces associated with one or more other, different clusters of computing machines.

15

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

15

[63] In some implementations, the embedding generation model can be a machine learning

model designed to map the data from the high-dimensional aggregate feature-space to a lower-

dimensional embedding space. The embedding generation model can be a type of neural

network, such as a multilayer perceptron (MLP), a convolutional neural network (CNN), a

recurrent neural network (RNN), or other types of neural networks. Alternatively, the embedding

generation model can be a type of unsupervised learning model, such as an autoencoder, a self-

organizing map (SOM), or other types of unsupervised learning models.

[64] At block 308, the cluster of computing machines performs, in cooperation with the

central computing system, one or more rounds of federated learning on the embedding

generation model. During each round of federated learning, the embedding generation model is

trained on at least some of the data examples stored by the cluster of computing machines.

[65] In some implementations, the federated learning can be performed with differential

privacy. This involves adding noise to the data or model updates derived from the data to protect

individual privacy. The amount of noise added can be determined based on the number of data

records held at the cluster of computing machines. For example, the noise can be reduced

proportionally to an increase in the number of data records held at the cluster of computing

machines.

[66] In some implementations, the noise can be adjusted dynamically based on real-time

assessments of data distributions within the cluster of computing machines and the performance

of the embedding generation model. For example, if the model's accuracy begins to degrade

beyond an acceptable threshold due to noise, the system can reduce the noise scale, provided that

the reduced noise still offers an adequate level of privacy protection.

[67] In some implementations, the collection of data examples can further include negative

training samples. In the context of machine learning, negative training samples are data instances

that do not belong to the class of interest but are used in the training process to improve the

model's ability to distinguish between different classes. They provide examples of what the

model should not predict as the positive class. For instance, in a binary classification problem, if

one class is considered as positive (the class of interest), then the other class is considered as

negative. Using negative training samples can be beneficial for certain machine learning

techniques and can enhance the model's performance by teaching it the boundaries between

classes.

16

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

16

[68] The inclusion of negative training samples in the collection of data examples allows the

cluster of computing machines to utilize the negative training samples during the one or more

rounds of federated learning on the embedding generation model. The negative training samples

can be used to evaluate contrastive loss functions or triplet loss functions, thereby improving the

discriminative power of the embeddings and the performance of the model.

[69] Figure 4 provides a detailed flowchart illustrating an example method 400 of a cluster of

computing machines performing one or more rounds of federated learning with the plurality of

different and separate clusters of computing machines to directly train the embedding generation

model on private data stored in the plurality of different and separate clusters of computing

machines. As one example, a cluster of computing machines, such as the first cluster of

computing machines 14 depicted in Figure 1, can operate to perform the method 400 shown in

Figure 4.

[70] At block 402, the method begins with local training. In this step, each cluster of

computing machines processes its own set of data examples using an embedding generation

model. As an example, the cluster may utilize machine learning algorithms suitable for the types

of features and items present in its data. The algorithms can be supervised, unsupervised, semi-

supervised, or reinforcement learning algorithms depending on the nature of the data and the

specific learning task. Furthermore, the cluster may use both positive and negative training

samples in this step. For instance, in some implementations, the cluster can employ contrastive

loss functions or triplet loss methods that leverage both positive and negative samples to enhance

the discriminative power of the embeddings.

[71] At block 404, the method proceeds with the application of differential privacy. If a

differential privacy mechanism is implemented, the cluster of computing machines can add a

calculated amount of noise to the local model updates or to the data used in the local training.

For instance, the noise can be added directly to the model parameters or to the gradients during

the optimization process. The amount of noise to be added can be determined based on various

factors such as the number of data records within the cluster, the desired level of privacy, and the

performance of the learning model. Accordingly, the cluster can use a privacy budget parameter,

such as epsilon in differential privacy, to control the level of noise and balance between data

privacy and learning performance.

17

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

17

[72] In some implementations, the amount of noise added can be determined based on various

factors, including the number of data records within the cluster. As an example, the noise can be

reduced proportionally to an increase in the number of data records held at the cluster of

computing machines, thereby maintaining an optimal balance between privacy protection and

data utility.

[73] The noise for differential privacy can be generated using various methods. In one

example, the cluster of computing machines can use a Laplace mechanism, which adds Laplace-

distributed noise to the data or model updates. In another example, the cluster of computing

machines can use a Gaussian mechanism, which adds Gaussian-distributed noise. Other noise

generation mechanisms can also be used, such as exponential, geometric, or other types of noise

distributions, depending on the specific requirements of the privacy protection.

[74] In some implementations, the amount of noise added for differential privacy can be

adjusted dynamically based on real-time assessments of data distributions within the cluster of

computing machines and the performance of the embedding generation model. For instance, the

cluster of computing machines can monitor the distribution of the data examples and the model's

performance metrics, such as accuracy, loss, or other evaluation measures, during the federated

learning process. If the model's performance starts to degrade beyond an acceptable threshold

due to the added noise, the cluster of computing machines can reduce the noise scale, for

example provided that the reduced noise still offers an adequate level of privacy protection.

Conversely, if the model's performance is satisfactory and the privacy risk is deemed too high,

the cluster of computing machines can increase the noise scale to enhance privacy protection.

This dynamic adjustment of the noise scale can allow the cluster of computing machines to

maintain an optimal balance between privacy protection and learning performance, thereby

improving the efficiency and effectiveness of the federated learning process.

[75] At block 406, the method involves the transmission of model updates. Once the local

training is complete and the noise has been added for differential privacy, the cluster transmits its

local model updates to a central computing system. In some implementations, these updates can

be sent using secure communication protocols to maintain data security during transmission. The

local model updates can include aggregated information about how the model parameters should

be adjusted based on the local data, but they do not reveal the actual data records used for

training, thereby preserving data privacy.

18

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

18

[76] Finally, at block 408, the method concludes with the reception of global model updates.

After the central computing system receives the local model updates from all clusters, aggregates

them to produce global model updates, and updates the embedding generation model

accordingly, each cluster receives this updated model from the central system. For instance, the

central system can distribute the updated model to each cluster via a secure network connection.

This updated model, which incorporates knowledge learned from all clusters, is then used for the

next round of federated learning.

[77] This cycle of local training, differential privacy, transmitting model updates, and

receiving global model updates continues until the model converges or meets a predefined

stopping criterion. This iterative process allows each cluster to benefit from the collective

learning across all clusters while preserving the privacy of the local data.

[78] Figure 5 illustrates a block diagram of an example central computing system 500

according to exemplary implementations of the present disclosure. The central computing system

500, similar to the central computing system 26 detailed in previous figures, can comprise one or

more computing devices configured to perform operations in cooperation with a plurality of

different and separate clusters of computing machines. These operations can include receiving

feature metadata for each of several distinct component feature-spaces, preprocessing the feature

metadata to establish an embedding generation model, and executing one or more rounds of

federated learning to directly train the embedding generation model on private data stored across

the various separate clusters of computing machines.

[79] The central computing system 500, as depicted in Figure 5, may include a number of

different components, each of which can be integral to the functioning of the system. The various

components of the central computing system 500 can be interconnected through a system bus

502, which can facilitate communication between the different components. The system bus 502

can be any of several types of bus structures, such as a memory bus or memory controller, a

peripheral bus, or a local bus using any of a variety of bus architectures.

[80] The central computing system 500 can include a processing unit 504, which can be

responsible for executing instructions stored in the main memory 506 or other storage devices.

The processing unit 504 can be any logic circuitry that responds to and processes the basic

instructions that drive the central computing system 500. In some implementations, the

processing unit 504 can include a central processing unit (CPU), a graphics processing unit

19

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

19

(GPU), or both. The processing unit 504 can be a single processing unit, or it can include

multiple processing units, which can operate in parallel or independently.

[81] The central computing system 500 can also include a main memory 506, which can be a

random access memory (RAM) or another type of dynamic storage device. The main memory

506 can store information and instructions to be executed by the processing unit 504. In some

implementations, the main memory 506 can store temporary variables or other intermediate

information during the execution of instructions by the processing unit 504. The main memory

506 can also be used to store the feature metadata received from the various clusters of

computing machines, as well as the aggregate feature-space, the feature means, and the

categorical variables generated during the preprocessing stage.

[82] In addition to the main memory 506, the central computing system 500 can include a read

only memory (ROM) 508 or another type of static storage device that stores static information

and instructions for the processing unit 504. The ROM 508 can store a basic input/output system

(BIOS) that contains the basic routines that help to transfer information between elements within

the central computing system 500, such as during start-up.

[83] The central computing system 500 can also include a storage device 510, which can be a

hard disk drive, a solid-state drive, an optical disk drive, or another type of non-volatile storage

medium. The storage device 510 can store the operating system that controls the operation of the

central computing system 500, as well as other software applications. In some implementations,

the storage device 510 can store the embedding generation model, as well as the data descriptive

of the data distribution received from the different clusters of computing machines.

[84] The central computing system 500 can include a number of other components, such as an

input device 512, an output device 514, and a communication interface 516. The input device

512 can be any mechanism that allows the central computing system 500 to receive input from a

user or another system, such as a keyboard, a mouse, a microphone, or a touch-sensitive display.

The output device 514 can be any mechanism that allows the central computing system 500 to

produce output for a user or another system, such as a display screen, a speaker, or a printer.

[85] The communication interface 516 can enable the central computing system 500 to

communicate with other devices or systems over a network, such as the internet, a local area

network, or a wide area network. The communication interface 516 can include a network

adapter, a wireless network adapter, a modem, or any other device that enables the central

20

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

20

computing system 500 to communicate with other devices or systems. In some implementations,

the communication interface 516 can facilitate the transmission of the feature metadata, the

aggregate feature-space, the feature means, and the categorical variables between the central

computing system 500 and the various clusters of computing machines.

[86] The example central computing system 500 also includes an embedding generation

system 518. The embedding generation system 518 enables the central computing system 500 to

execute various operations associated with the methods described in the present disclosure,

particularly the method 200 depicted in Figure 2.

[87] The embedding generation system 518 is responsible for generating the shared

embedding space for data split across multiple separate clusters of computing machines. The

embedding generation system 518 takes the feature metadata for each of the component feature-

spaces associated with the separate clusters of computing machines and generates a shared

embedding space, wherein similar items are closer together and dissimilar items are further apart.

[88] To generate the shared embedding space, the embedding generation system 518 performs

several operations. First, it preprocesses the feature metadata for each of the component feature-

spaces. This preprocessing can involve various steps, such as normalizing the data, handling

missing values, or transforming the data to reduce its dimensionality. The preprocessing can

result in the generation of an aggregate feature-space, which comprises an aggregation of the

numerous different component feature-spaces.

[89] Next, the embedding generation system 518 establishes an embedding generation model

based on the preprocessed feature metadata and the aggregate feature-space. The embedding

generation model is a machine learning model designed to map the data from the high-

dimensional aggregate feature-space to a lower-dimensional embedding space. The model can be

any suitable type of machine learning model, such as a neural network, that is capable of learning

embeddings from data.

[90] Following the establishment of the embedding generation model, the embedding

generation system 518 performs one or more rounds of federated learning with the different

clusters of computing machines. During federated learning, each cluster trains a local model on

its own data, then sends model updates to the central system for aggregation. This process can be

repeated until the model converges. The federated learning can also be performed with

differential privacy, adding noise to the data or model updates to protect individual privacy.

21

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

21

[91] Upon completion of the federated learning rounds, the embedding generation model can

generate embeddings in a shared embedding space. The shared embedding space presents a

unified view of the data stored across the multiple separate clusters of computing machines,

facilitating better data analysis and more accurate modeling across all data silos.

[92] Figure 6 presents an illustrative implementation of a cluster of computing machines,

denoted as numeral 600, in accordance with the present disclosure. The cluster 600 can be a

collection of one or more computing devices or machines, such as servers, desktop computers,

laptop computers, mobile devices, or any other type of computing device capable of processing

data and executing machine learning algorithms. These computing machines can be

interconnected through a network, enabling them to communicate and coordinate with each other

as well as with a central computing system. The cluster of computing machines 600 can be a

physical cluster, comprising physically separate machines, or a virtual cluster, comprising virtual

machines hosted on a single physical machine or across multiple physical machines.

[93] The cluster of computing machines 600, as depicted in Figure 6, incorporates a

processing unit 602. The processing unit 602 can be a central processing unit (CPU), a graphics

processing unit (GPU), or any other type of processor capable of executing instructions and

performing computations. The processing unit 602 can execute machine learning algorithms,

preprocess data, generate embeddings, and perform other computational tasks associated with the

methods described in the present disclosure. The processing unit 602 can also facilitate the

communication and coordination among the computing machines within the cluster and with the

central computing system.

[94] Additionally, the cluster of computing machines 600 includes memory 604. The memory

604 can be any type of computer memory, such as random access memory (RAM), read-only

memory (ROM), flash memory, or any other type of storage medium capable of storing data and

instructions for access by the processing unit 602. The memory 604 can store the feature

metadata, the data examples, the embedding generation model, and other data necessary for the

execution of the methods described in the present disclosure. The memory 604 can also store the

instructions that the processing unit 602 executes to perform these methods.

[95] The cluster of computing machines 600 also incorporates a communication interface 606.

The communication interface 606 can be a network interface card (NIC), a wireless adapter, or

any other type of device or component capable of facilitating communication between the cluster

22

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

22

of computing machines 600 and other entities, such as the central computing system or other

clusters of computing machines. The communication interface 606 can transmit and receive data,

such as the feature metadata, the model updates, and other information necessary for the

execution of the methods described in the present disclosure.

[96] Additionally, the cluster of computing machines 600 includes a storage device 608. The

storage device 608 can be a hard disk drive (HDD), a solid-state drive (SSD), a flash drive, or

any other type of non-volatile storage device capable of storing data. The storage device 608 can

store the data examples, the feature metadata, the embedding generation model, and other data

necessary for the execution of the methods described in the present disclosure. The storage

device 608 can also store the software applications, operating system, and other programs that

the processing unit 602 executes to perform these methods.

[97] The cluster of computing machines 600, as depicted in Figure 6, further incorporates an

input/output (I/O) device 610. The I/O device 610 can be a keyboard, a mouse, a display, a

printer, a scanner, or any other type of device or component capable of receiving input from a

user or providing output to a user. The I/O device 610 can facilitate the interaction between the

user and the cluster of computing machines 600, allowing the user to control and monitor the

execution of the methods described in the present disclosure.

[98] Furthermore, the cluster of computing machines 600 includes a bus 612. The bus 612 can

be a data bus, an address bus, a control bus, or any other type of bus capable of transferring data,

addresses, control signals, or other types of information between the components of the cluster of

computing machines 600. The bus 612 can facilitate the communication and coordination among

these components, enabling them to work together in the execution of the methods described in

the present disclosure.

[99] The cluster of computing machines 600 can also include an embedding generation system

614. The embedding generation system 614 can perform the processes depicted in Figures 3 and

4.

[100] The embedding generation system 614 operates by training machine learning models on

the clusters' local data. It can employ federated learning methods which allow each cluster to

learn a model from its own local data and then share only the model updates with a central

server. This way, all the learning happens locally at each cluster, which can enhance data

23

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

23

privacy, reduce data transmission costs, and utilize the computational resources of each cluster

effectively.

[101] For example, the embedding generation system 614 can determine data descriptive of a

data distribution within a component feature-space of a collection of data examples stored by the

cluster of computing machines. The data descriptive of the data distribution is then transmitted to

a central computing system for use in generating an aggregate feature-space. The embedding

generation system 614 receives an embedding generation model configured to be applied to the

aggregate feature-space from the central computing system. Subsequently, the system 614

performs one or more rounds of federated learning on the embedding generation model, where

the model is trained on at least some of the collection of data examples stored by the cluster of

computing machines.

[102] Systems 518 and 614, as described in the present disclosure, can be implemented using

hardware, software, or a combination of both. In some embodiments, systems 518 and 614 can

be realized as computer-implemented methods, computer program products, and/or electronic

devices configured to perform the operations as described. The computer program products can

include computer-readable instructions stored on a non-transitory computer-readable medium,

such as a hard drive, solid-state drive, ROM, RAM, flash memory, or any other type of storage

medium that can be accessed by a processor. These instructions, when executed by the processor,

cause the processor to perform the operations as disclosed. The electronic devices can include

one or more processors, memory for storing computer-readable instructions, and other

components necessary for operation. The processors can be configured to execute the computer-

readable instructions to perform the operations of systems 518 and 614. In certain embodiments,

the logic for implementing the operations of systems 518 and 614 can be hardwired into the

electronic devices, thereby providing a dedicated, high-performance implementation.

[103] The technology discussed herein makes reference to servers, databases, software

applications, and other computer-based systems, as well as actions taken and information sent to

and from such systems. The inherent flexibility of computer-based systems allows for a great

variety of possible configurations, combinations, and divisions of tasks and functionality

between and among components. For instance, processes discussed herein can be implemented

using a single device or component or multiple devices or components working in combination.

24

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

24

Databases and applications can be implemented on a single system or distributed across multiple

systems. Distributed components can operate sequentially or in parallel.

[104] While the present subject matter has been described in detail with respect to various

specific example embodiments thereof, each example is provided by way of explanation, not

limitation of the disclosure. Those skilled in the art, upon attaining an understanding of the

foregoing, can readily produce alterations to, variations of, and equivalents to such embodiments.

Accordingly, the subject disclosure does not preclude inclusion of such modifications, variations

and/or additions to the present subject matter as would be readily apparent to one of ordinary

skill in the art. For instance, features illustrated or described as part of one embodiment can be

used with another embodiment to yield a still further embodiment. Thus, it is intended that the

present disclosure cover such alterations, variations, and equivalents.

[105] In particular, although Figures 1-4 respectively depict steps performed in a particular

order for purposes of illustration and discussion, the methods of the present disclosure are not

limited to the particularly illustrated order or arrangement. The various steps of the methods

shown in Figures 1-4 can be omitted, rearranged, combined, and/or adapted in various ways

without deviating from the scope of the present disclosure.

25

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

25

EXAMPLE EMBODIMENTS OF THE PRESENT DISCLOSURE:

1. A central computing system implemented by one or more computing devices, the

central computing system configured to perform operations, the operations comprising:

receiving, by a central computing system comprising one or more computing devices,

feature metadata for each of a plurality of different component feature-spaces that are

respectively associated with a plurality of different and separate clusters of computing machines;

preprocessing, by the central computing system, the feature metadata for the plurality of

different component feature-spaces to establish an embedding generation model; and

performing, by the central computing system, one or more rounds of federated learning

with the plurality of different and separate clusters of computing machines to directly train the

embedding generation model on private data stored in the plurality of different and separate

clusters of computing machines.

2. The central computing system of embodiment 1, wherein preprocessing, by the

central computing system, the feature metadata for the plurality of different component feature-

spaces to establish the embedding generation model comprises generating, by the central

computing system, an aggregate feature-space, wherein the aggregate feature-space comprises an

aggregation of the plurality of different component feature-spaces that are respectively

associated with the plurality of different and separate clusters of computing machines.

3. The central computing system of embodiment 1, wherein preprocessing, by the

central computing system, the feature metadata for the plurality of different component feature-

spaces to establish the embedding generation model comprises generating, by the central

computing system, feature means for the plurality of different component feature-spaces.

4. The central computing system of embodiment 1, wherein preprocessing, by the

central computing system, the feature metadata for the plurality of different component feature-

spaces to establish the embedding generation model comprises generating, by the central

computing system, categorical variables for the plurality of different component feature-spaces.

26

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

26

5. The central computing system of embodiment 1, wherein at least one of the

plurality of different component feature-spaces contains data for at least one feature not included

in at least one of the other component feature-spaces.

6. The central computing system of embodiment 1, wherein at least one of the

plurality of different component feature-spaces contains data for at least one feature not included

in at least one of the other component feature-spaces.

7. The central computing system of embodiment 1, wherein the plurality of different

and separate clusters of computing machines comprise a plurality of different and separate

clusters of physical machines.

8. The central computing system of embodiment 1, wherein the plurality of different

and separate clusters of computing machines comprise a plurality of different and separate

clusters of virtual machines.

9. The central computing system of embodiment 1, wherein the plurality of different

and separate clusters of computing machines comprises a plurality of different and separate silo

computing systems respectively storing a plurality of different and separate data silos.

10. The central computing system of embodiment 1, wherein performing, by the

central computing system, the one or more rounds of federated learning comprises performing,

by the central computing system, the one or more rounds of federated learning with differential

privacy.

11. The central computing system of embodiment 10, wherein the differential privacy

comprises adding noise to private data or model updates derived therefrom, and wherein an

amount of noise added at each separate cluster of computing machines is determined based on a

number of data records held at such separate cluster of computing machines .

27

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

27

12. The central computing system of embodiment 11, wherein the amount of noise

added at each separate cluster of computing machines is reduced proportionally to an increase in

the number of data records held at such separate cluster of computing machines .

13. The central computing system of embodiment 1, wherein performing, by the

central computing system, the one or more rounds of federated learning comprises performing,

by the central computing system, the one or more rounds of federated learning with negative

training samples stored at the plurality of different and separate clusters of computing machines.

14. A cluster of computing machines configured to perform operations, the operations

comprising

determining data descriptive of a data distribution within a component feature-space of a

collection of data examples stored by the cluster of computing machines, wherein the collection

of data examples are associated with one or more entities;

transmitting the data descriptive of respective data distribution to a central computing

system for use in generating an aggregate feature-space, wherein the aggregate feature-space

comprises an aggregation of the component feature-space with one or more other component

feature-spaces of one or more other, different clusters of computing machines that are separate

from the cluster of computing machines;

receiving an embedding generation model configured to be applied to the aggregate

feature-space; and

performing, in cooperation with the central computing system, one or more rounds of

federated learning on the embedding generation model, wherein at each of the one or more

rounds of federated learning, the embedding generation model is trained on at least some of the

collection of data examples stored by the cluster of computing machines.

15. The cluster of computing machines of embodiment 14, wherein the cluster of

computing machines comprises a plurality of physical computing machines.

16. The cluster of computing machines of embodiment 14, wherein the cluster of

computing machines comprises a plurality of virtual computing machines.

28

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

28

17. The cluster of computing machines of embodiment 14, wherein the cluster of

computing machines comprises a silo computing system associated with a data silo.

18. The cluster of computing machines of embodiment 14, wherein performing, in

cooperation with the central computing system, the one or more rounds of federated learning on

the embedding generation model comprises performing, in cooperation with the central

computing system, one or more rounds of federated learning with differential privacy on the

embedding generation model.

19. The cluster of computing machines of embodiment 18, wherein performing the one or

more rounds of federated learning with differential privacy on the embedding generation model

comprises adding noise to the data examples or model updates derived therefrom, and wherein

an amount of noise is reduced proportionally to an increase in a number of data examples held by

the cluster of computing machines.

20. The cluster of computing machines of embodiment 19, wherein the amount of noise

added is adjusted dynamically based on real-time assessments of data distributions within the

cluster of computing machines and the performance of the embedding generation model.

21. The cluster of computing machines of embodiment 14, wherein the collection of

data examples further comprises negative training samples, and wherein the one or more rounds

of federated learning on the embedding generation model utilizes the negative training samples.

22. The cluster of computing machines of embodiment 21, wherein the negative

training samples are used to evaluate contrastive loss functions or triplet loss functions during the

one or more rounds of federated learning.

29

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

29

ABSTRACT OF THE DISCLOSURE

Provided are systems and methods for privacy-preserving learning of a shared embedding

space for data split across multiple separate clusters of computing machines. In one example, the

multiple separate clusters of computing machines can correspond to multiple separate data silos.

30

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

30

31

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

31

32

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

32

33

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

33

34

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

34

35

Defensive Publications Series, Art. 6646 [2024]

https://www.tdcommons.org/dpubs_series/6646

35

36

et al.: Semi-Federated Learning of an Embedding Space Across Multiple Mac

Published by Technical Disclosure Commons, 2024

	Semi-Federated Learning of an Embedding Space Across Multiple Machine Clusters
	Recommended Citation

	Microsoft Word - GGLS-132 DPUB.docx

