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Automatically Detecting Expensive Prompts and Configuring Firewall Rules to Mitigate 

Denial of Service Attacks on Large Language Models 

ABSTRACT 

 Denial of service attacks on generative artificial intelligence systems, e.g., large 

language models (LLMs), can include sending LLMs requests that include expensive prompts 

designed to consume computing resources and degrade model performance. This disclosure 

describes techniques to automatically detect such prompts and then configure firewall rules that 

prevent such prompts in subsequent requests from reaching the LLM. Per the techniques, 

prompts provided to an LLM are matched against input and output token size as well as 

resource utilization to identify prompts that deviate significantly from a baseline. Expensive 

prompts are identified, and semantically similar prompts are automatically generated using the 

same LLM or another model. A subset of the generated prompts that are semantics similar to 

expensive prompts are identified by comparing respective vector embeddings. The subset of 

prompts and the received expensive prompts are provided to a pre-trained LLM that generates 

firewall rules, e.g., web application firewall (WAF) rules. Incoming requests from applications 

are evaluated based on the rules, and expensive prompts are blocked from reaching the LLM or 

are rate-limited. 
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BACKGROUND 

A threat faced by providers of large language models (LLMs) is model denial of service 

(MDoS) attacks. MDoS is a type of cyber-attack where machine learning models are marked 

unavailable by overloading the model provider with a high volume of crafted inputs designed to 

waste resources and degrade model performance. These attacks are characterized by repeatedly 

sending long, meaningless text blocks to exhaust processing quotas (e.g., GPU); posing 

confusing questions or paradoxes to reduce output quality over time; entering prompts (known 

as expensive prompts) that are crafted to cause the model to produce a large amount of text in 

the response; etc. Model denial of service attacks are similar to domain name system (DNS) 

amplification attacks. The risks of sustained denial of service include increased costs, service 

level agreement violations, rapid surge pricing, inflated resource consumption, data egress fees, 

budget overruns, etc. While the total number of output tokens per response may be subjected to 

a cap (e.g., up to 1024 tokens), as models become integrated in more applications, the need for 

outputs with greater token size increases, thus limiting the capping-based security approach. 

Models can be protected against MDoS and other input-based attacks by proactively 

identifying and blocking anomalous patterns. Some of the techniques used to mitigate risks of 

MDoS include: 

● Rate limiting: Throttling requests to prevent overload and abuse of model 

servers.  

● Request throttling: Slowing down or blocking unusual spikes in traffic to 

stabilize workloads. 

● Input filtering: Scanning inputs for known indicators of exploitation like 

excessively long text.  
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● Load balancing: Distributing queries across servers to smoothly handle 

increased loads. 

● Auto-scaling: Automatically provisioning additional model servers based on 

demand to maintain performance.  

● Service quotas: Setting usage quotas per customer account to contain costs of attacks.  

● AI-assisted queue prioritization: Using AI to score request urgency and priority to 

triage service.  

● Model degradation: Gradually reducing model capabilities or precision to spread 

load if needed.  

● Content Delivery Network (CDN) caching: Caching common model responses at 

edge locations to absorb spikes in traffic.  

● Client-side mitigations: Software development kit (SDK) level features such as retry 

logic, graceful degradation, and input validation.  

These techniques have several limitations in addressing the risk of MDoS attacks. Some 

of these defenses are reactive and vulnerable to circumvention. Some of the techniques are 

relatively expensive and slow to implement in production. Queue prioritization (rather than 

first-come ordering) based on predictive confidence scores can help to ensure critical queries 

get through. However, completely locking down models for other queries has a substantial 

impact on the intended users and business outcome. 

DESCRIPTION 

This disclosure describes techniques to detect abuse of large language models (LLMs) 

by measuring input and output size over time, detect anomalies in GPU/TPU utilization, and 

apply policies on the downstream channel(s). The techniques include identifying expensive 
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prompts and generating semantically similar prompts to be used for web application firewall 

(WAF) rules. An embedding database is used to extend expensive prompt rule creation by 

identifying expensive prompts that are semantically similar. WAF rules can be generated for 

automatic actions to be taken, for example, blocking, redirecting, rate limiting, etc., on 

identified expensive input prompts, where the rule applies to a category of expensive prompts 

rather than just the original one. WAF rules are configured on the basis of original and 

semantically similar prompts ensuring a wide scope of identification. Input prompts received 

during model serving are scored based on similarity to pre-generated WAF rules. If a received 

prompt is above a threshold, specific actions are triggered. Rule configuration can be varied as 

appropriate. The actions are triggered as soon as it is determined that the input prompt matches 

a WAF rule, e.g., if the first N tokens of the prompt match the WAF rule, rather than matching 

the entire prompt against WAF rules. 

 

Fig. 1: Automatically generating web application firewall (WAF) rules 

5

Defensive Publications Series, Art. 6642 [2024]

https://www.tdcommons.org/dpubs_series/6642



 

 Fig. 1 illustrates the process of identifying expensive prompts, generating semantically 

similar prompts, and utilizing a model to generate WAF rules that can be applied to proactively 

identify expensive prompts received at the LLM endpoint that receives prompts from 

applications or users. 

 As illustrated in Fig. 1, a large language model (LLM) endpoint receives (1) an 

application programming interface (API) request from an application or user. The LLM 

endpoint can be a load balancer or any other system that can process and send API requests to 

backend services. The LLM endpoint is connected to a web application firewall (WAF) that can 

evaluate Layer-7 HTTP/S requests. The WAF is used to enforce security policies based on 

predefined rules, which can be of different types and can use a rules framework.  

The LLM endpoint uses (8) the WAF to evaluate the API request. If the request satisfies 

the rules (e.g., does not include an expensive prompt or other types of prompts that violate a 

rule), the request is sent (2) to a large language model (LLM). Based on the input prompt, the 

LLM generates a response that is subjected to (3.1) prompt output processing. After the output 

processing (e.g., filtering, evaluation, etc.), the response is sent back to the application.  

The response is also sent (3.2) to a table that stores the prompt and the number tokens or 

characters in the LLM response. In the context of LLMs, tokens are basic units of text (e.g., 

words, subwords, characters, or larger linguistic units), code, or other types of data the LLM 

uses to process and generate the response. Additionally, resource utilization details for 

resources such as graphics processing units (GPUs) or machine learning processors for 

generating the response to the prompt are obtained using resource monitoring tools and are also 

stored (3.2) in the table. Such data may be stored only for prompts that are deemed expensive. 
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Metadata from each prompt is stored in the table. The table can be sorted by prompt 

expensiveness (i.e., the number of tokens and/or resource utilization). 

 A set of processes and algorithms are utilized to analyze (4) data stored in a table as part 

of the data processing and analytics stage. Various parameters, such as average, mean, top 

percentile, etc., are calculated from the data in the table. The expensiveness of the prompt can 

be determined based on a comparison of the values in the table against the baseline of resource 

utilization and token mean. For example, a token may be determined to be an expensive token if 

it has a resource utilization which is two times (or other suitable value) the standard deviation 

from the mean. If the resource utilization for a prompt has a deviation more than the threshold 

resource utilization for the number of tokens, it can be identified as an expensive prompt. The 

baseline can also be set based on risk tolerance and application usage. 

Once a prompt is identified as expensive, a request is sent to the LLM to generate (5.1) 

semantically similar prompts. This can be implemented using the same LLM used for 

application (as depicted in Fig. 1) or a dedicated, smaller LLM. A generated set of similar 

prompts is received from the LLM (5.1). The newly generated prompts are tested (5.2) against a 

vector database to verify a similar embedding space distance between each newly-generated 

prompt and the original expensive prompt (5.2). The most semantically similar prompts are 

then selected. 

 For example, consider a received input prompt: “Write a fantasy novel about a young 

wizard embarking on an epic quest”. This is a relatively expensive prompt, both in output 

tokens and resource utilization, since it requires generating a large amount of text (as specified 

by the presence of the term “novel” in the prompt) in the response. The generated similar 

prompts may then be as follows:  
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● “Compose a fantasy story regarding a young sorcerer beginning an adventurous 

expedition” 

● “Create a tale of magic focused on a novice mage setting out on a mythic journey” 

● “Draft a magical fiction about a fledgling warlock undertaking a formidable mission” 

● “Produce a fantasy book concerning a burgeoning enchanter venturing on an ambitious 

crusade” 

● “Assemble a fairy tale volume regarding an inexperienced magician departing on a 

formidable endeavor” 

 These prompts are turned into vector embeddings to enable the measurement of 

similarity distance and identifying similar prompts. The original expensive prompt and the 

selected similar prompts are sent (6) to a security LLM model (or other generative model) that 

is pre-trained to build and optimize web application firewall (WAF) rules. Alternatively, these 

rules can also be created manually, e.g., by a security team. WAF rules can be specific to the 

entire prompt or can be broader, e.g., using keywords from the provided prompts. The 

generated WAF rules are deployed (7) on the WAF, thereby enforcing a tailored security policy 

that includes dynamically updated rules generated based on identified expensive prompts and 

semantically similar prompts. When a new expensive prompt is received, WAF rules can, thus, 

automatically block or rate limit the request from the application or take other suitable action 

based on enterprise settings.  

In this manner, expensive prompts that are semantically similar to prior prompts are 

blocked or rate-limited from reaching the LLM, thus saving processing resources. WAFs are 

optimized to evaluate incoming requests from applications and can be more efficient than other 

mechanisms such as data loss prevention (DLP) or pre-trained LLMs that evaluate received 
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requests. Some advantages of applying security control downstream from the LLM include the 

following: 

● Flexibility and scalability, which allows for easier adaptation to changes in 

technology, user requirements, or emerging threats; 

● Minimal system impact; 

● Rapid deployment of security updates; and 

● Reduced development costs and time. 

The described techniques can be applied to secure LLMs or other types of generative 

models against attacks, including MDoS attacks. The techniques can protect LLMs from 

malicious requests from applications and users that use LLMs for natural language processing 

tasks. The techniques ensure availability and deployability of the model with pay-per-use 

pricing for API requests or other forms of usage-based billing. MDoS attacks that can result in a 

spike in resource usage and high cost are detected and mitigated downstream from the model. 

The described techniques can be implemented relatively easily as a managed service for 

cloud computing customers. The techniques enhance model security and provide customers 

with a flexible, scalable way to minimize impact of model attacks, including controlling costs. 

The techniques enable cloud customers that use managed cloud services to build their own 

model protection. 

CONCLUSION 

 Denial of service attacks on generative artificial intelligence systems, e.g., large 

language models (LLMs), can include sending LLMs requests that include expensive prompts 

designed to consume computing resources and degrade model performance. This disclosure 

describes techniques to automatically detect such prompts and then configure firewall rules that 
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prevent such prompts in subsequent requests from reaching the LLM. Per the techniques, 

prompts provided to an LLM are matched against input and output token size as well as 

resource utilization to identify prompts that deviate significantly from a baseline. Expensive 

prompts are identified, and semantically similar prompts are automatically generated using the 

same LLM or another model. A subset of the generated prompts that are semantics similar to 

expensive prompts are identified by comparing respective vector embeddings. The subset of 

prompts and the received expensive prompts are provided to a pre-trained LLM that generates 

firewall rules, e.g., web application firewall (WAF) rules. Incoming requests from applications 

are evaluated based on the rules, and expensive prompts are blocked from reaching the LLM or 

are rate-limited. 
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