
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

January 2024

Automatically Detecting Expensive Prompts and Configuring Automatically Detecting Expensive Prompts and Configuring

Firewall Rules to Mitigate Denial of Service Attacks on Large Firewall Rules to Mitigate Denial of Service Attacks on Large

Language Models Language Models

Assaf Namer

Prashant Kulkarni

Erik Jeansson

Brandon Maltzman

Hauke Vagts

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Namer, Assaf; Kulkarni, Prashant; Jeansson, Erik; Maltzman, Brandon; and Vagts, Hauke, "Automatically
Detecting Expensive Prompts and Configuring Firewall Rules to Mitigate Denial of Service Attacks on
Large Language Models", Technical Disclosure Commons, (January 29, 2024)
https://www.tdcommons.org/dpubs_series/6642

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F6642&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/6642?utm_source=www.tdcommons.org%2Fdpubs_series%2F6642&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Automatically Detecting Expensive Prompts and Configuring Firewall Rules to Mitigate

Denial of Service Attacks on Large Language Models

ABSTRACT

 Denial of service attacks on generative artificial intelligence systems, e.g., large

language models (LLMs), can include sending LLMs requests that include expensive prompts

designed to consume computing resources and degrade model performance. This disclosure

describes techniques to automatically detect such prompts and then configure firewall rules that

prevent such prompts in subsequent requests from reaching the LLM. Per the techniques,

prompts provided to an LLM are matched against input and output token size as well as

resource utilization to identify prompts that deviate significantly from a baseline. Expensive

prompts are identified, and semantically similar prompts are automatically generated using the

same LLM or another model. A subset of the generated prompts that are semantics similar to

expensive prompts are identified by comparing respective vector embeddings. The subset of

prompts and the received expensive prompts are provided to a pre-trained LLM that generates

firewall rules, e.g., web application firewall (WAF) rules. Incoming requests from applications

are evaluated based on the rules, and expensive prompts are blocked from reaching the LLM or

are rate-limited.

KEYWORDS

● Expensive prompts

● Model Denial of Service (MDoS)

● Large language model (LLM)

● Web application firewall (WAF)

● MLOps

● SecOps

● LLM security

● Generative AI (Gen AI)

● Semantically similar prompt

● Resource utilization

2

Namer et al.: Automatically Detecting Expensive Prompts and Configuring Firewal

Published by Technical Disclosure Commons, 2024

BACKGROUND

A threat faced by providers of large language models (LLMs) is model denial of service

(MDoS) attacks. MDoS is a type of cyber-attack where machine learning models are marked

unavailable by overloading the model provider with a high volume of crafted inputs designed to

waste resources and degrade model performance. These attacks are characterized by repeatedly

sending long, meaningless text blocks to exhaust processing quotas (e.g., GPU); posing

confusing questions or paradoxes to reduce output quality over time; entering prompts (known

as expensive prompts) that are crafted to cause the model to produce a large amount of text in

the response; etc. Model denial of service attacks are similar to domain name system (DNS)

amplification attacks. The risks of sustained denial of service include increased costs, service

level agreement violations, rapid surge pricing, inflated resource consumption, data egress fees,

budget overruns, etc. While the total number of output tokens per response may be subjected to

a cap (e.g., up to 1024 tokens), as models become integrated in more applications, the need for

outputs with greater token size increases, thus limiting the capping-based security approach.

Models can be protected against MDoS and other input-based attacks by proactively

identifying and blocking anomalous patterns. Some of the techniques used to mitigate risks of

MDoS include:

● Rate limiting: Throttling requests to prevent overload and abuse of model

servers.

● Request throttling: Slowing down or blocking unusual spikes in traffic to

stabilize workloads.

● Input filtering: Scanning inputs for known indicators of exploitation like

excessively long text.

3

Defensive Publications Series, Art. 6642 [2024]

https://www.tdcommons.org/dpubs_series/6642

● Load balancing: Distributing queries across servers to smoothly handle

increased loads.

● Auto-scaling: Automatically provisioning additional model servers based on

demand to maintain performance.

● Service quotas: Setting usage quotas per customer account to contain costs of attacks.

● AI-assisted queue prioritization: Using AI to score request urgency and priority to

triage service.

● Model degradation: Gradually reducing model capabilities or precision to spread

load if needed.

● Content Delivery Network (CDN) caching: Caching common model responses at

edge locations to absorb spikes in traffic.

● Client-side mitigations: Software development kit (SDK) level features such as retry

logic, graceful degradation, and input validation.

These techniques have several limitations in addressing the risk of MDoS attacks. Some

of these defenses are reactive and vulnerable to circumvention. Some of the techniques are

relatively expensive and slow to implement in production. Queue prioritization (rather than

first-come ordering) based on predictive confidence scores can help to ensure critical queries

get through. However, completely locking down models for other queries has a substantial

impact on the intended users and business outcome.

DESCRIPTION

This disclosure describes techniques to detect abuse of large language models (LLMs)

by measuring input and output size over time, detect anomalies in GPU/TPU utilization, and

apply policies on the downstream channel(s). The techniques include identifying expensive

4

Namer et al.: Automatically Detecting Expensive Prompts and Configuring Firewal

Published by Technical Disclosure Commons, 2024

prompts and generating semantically similar prompts to be used for web application firewall

(WAF) rules. An embedding database is used to extend expensive prompt rule creation by

identifying expensive prompts that are semantically similar. WAF rules can be generated for

automatic actions to be taken, for example, blocking, redirecting, rate limiting, etc., on

identified expensive input prompts, where the rule applies to a category of expensive prompts

rather than just the original one. WAF rules are configured on the basis of original and

semantically similar prompts ensuring a wide scope of identification. Input prompts received

during model serving are scored based on similarity to pre-generated WAF rules. If a received

prompt is above a threshold, specific actions are triggered. Rule configuration can be varied as

appropriate. The actions are triggered as soon as it is determined that the input prompt matches

a WAF rule, e.g., if the first N tokens of the prompt match the WAF rule, rather than matching

the entire prompt against WAF rules.

Fig. 1: Automatically generating web application firewall (WAF) rules

5

Defensive Publications Series, Art. 6642 [2024]

https://www.tdcommons.org/dpubs_series/6642

 Fig. 1 illustrates the process of identifying expensive prompts, generating semantically

similar prompts, and utilizing a model to generate WAF rules that can be applied to proactively

identify expensive prompts received at the LLM endpoint that receives prompts from

applications or users.

 As illustrated in Fig. 1, a large language model (LLM) endpoint receives (1) an

application programming interface (API) request from an application or user. The LLM

endpoint can be a load balancer or any other system that can process and send API requests to

backend services. The LLM endpoint is connected to a web application firewall (WAF) that can

evaluate Layer-7 HTTP/S requests. The WAF is used to enforce security policies based on

predefined rules, which can be of different types and can use a rules framework.

The LLM endpoint uses (8) the WAF to evaluate the API request. If the request satisfies

the rules (e.g., does not include an expensive prompt or other types of prompts that violate a

rule), the request is sent (2) to a large language model (LLM). Based on the input prompt, the

LLM generates a response that is subjected to (3.1) prompt output processing. After the output

processing (e.g., filtering, evaluation, etc.), the response is sent back to the application.

The response is also sent (3.2) to a table that stores the prompt and the number tokens or

characters in the LLM response. In the context of LLMs, tokens are basic units of text (e.g.,

words, subwords, characters, or larger linguistic units), code, or other types of data the LLM

uses to process and generate the response. Additionally, resource utilization details for

resources such as graphics processing units (GPUs) or machine learning processors for

generating the response to the prompt are obtained using resource monitoring tools and are also

stored (3.2) in the table. Such data may be stored only for prompts that are deemed expensive.

6

Namer et al.: Automatically Detecting Expensive Prompts and Configuring Firewal

Published by Technical Disclosure Commons, 2024

Metadata from each prompt is stored in the table. The table can be sorted by prompt

expensiveness (i.e., the number of tokens and/or resource utilization).

 A set of processes and algorithms are utilized to analyze (4) data stored in a table as part

of the data processing and analytics stage. Various parameters, such as average, mean, top

percentile, etc., are calculated from the data in the table. The expensiveness of the prompt can

be determined based on a comparison of the values in the table against the baseline of resource

utilization and token mean. For example, a token may be determined to be an expensive token if

it has a resource utilization which is two times (or other suitable value) the standard deviation

from the mean. If the resource utilization for a prompt has a deviation more than the threshold

resource utilization for the number of tokens, it can be identified as an expensive prompt. The

baseline can also be set based on risk tolerance and application usage.

Once a prompt is identified as expensive, a request is sent to the LLM to generate (5.1)

semantically similar prompts. This can be implemented using the same LLM used for

application (as depicted in Fig. 1) or a dedicated, smaller LLM. A generated set of similar

prompts is received from the LLM (5.1). The newly generated prompts are tested (5.2) against a

vector database to verify a similar embedding space distance between each newly-generated

prompt and the original expensive prompt (5.2). The most semantically similar prompts are

then selected.

 For example, consider a received input prompt: “Write a fantasy novel about a young

wizard embarking on an epic quest”. This is a relatively expensive prompt, both in output

tokens and resource utilization, since it requires generating a large amount of text (as specified

by the presence of the term “novel” in the prompt) in the response. The generated similar

prompts may then be as follows:

7

Defensive Publications Series, Art. 6642 [2024]

https://www.tdcommons.org/dpubs_series/6642

● “Compose a fantasy story regarding a young sorcerer beginning an adventurous

expedition”

● “Create a tale of magic focused on a novice mage setting out on a mythic journey”

● “Draft a magical fiction about a fledgling warlock undertaking a formidable mission”

● “Produce a fantasy book concerning a burgeoning enchanter venturing on an ambitious

crusade”

● “Assemble a fairy tale volume regarding an inexperienced magician departing on a

formidable endeavor”

 These prompts are turned into vector embeddings to enable the measurement of

similarity distance and identifying similar prompts. The original expensive prompt and the

selected similar prompts are sent (6) to a security LLM model (or other generative model) that

is pre-trained to build and optimize web application firewall (WAF) rules. Alternatively, these

rules can also be created manually, e.g., by a security team. WAF rules can be specific to the

entire prompt or can be broader, e.g., using keywords from the provided prompts. The

generated WAF rules are deployed (7) on the WAF, thereby enforcing a tailored security policy

that includes dynamically updated rules generated based on identified expensive prompts and

semantically similar prompts. When a new expensive prompt is received, WAF rules can, thus,

automatically block or rate limit the request from the application or take other suitable action

based on enterprise settings.

In this manner, expensive prompts that are semantically similar to prior prompts are

blocked or rate-limited from reaching the LLM, thus saving processing resources. WAFs are

optimized to evaluate incoming requests from applications and can be more efficient than other

mechanisms such as data loss prevention (DLP) or pre-trained LLMs that evaluate received

8

Namer et al.: Automatically Detecting Expensive Prompts and Configuring Firewal

Published by Technical Disclosure Commons, 2024

requests. Some advantages of applying security control downstream from the LLM include the

following:

● Flexibility and scalability, which allows for easier adaptation to changes in

technology, user requirements, or emerging threats;

● Minimal system impact;

● Rapid deployment of security updates; and

● Reduced development costs and time.

The described techniques can be applied to secure LLMs or other types of generative

models against attacks, including MDoS attacks. The techniques can protect LLMs from

malicious requests from applications and users that use LLMs for natural language processing

tasks. The techniques ensure availability and deployability of the model with pay-per-use

pricing for API requests or other forms of usage-based billing. MDoS attacks that can result in a

spike in resource usage and high cost are detected and mitigated downstream from the model.

The described techniques can be implemented relatively easily as a managed service for

cloud computing customers. The techniques enhance model security and provide customers

with a flexible, scalable way to minimize impact of model attacks, including controlling costs.

The techniques enable cloud customers that use managed cloud services to build their own

model protection.

CONCLUSION

 Denial of service attacks on generative artificial intelligence systems, e.g., large

language models (LLMs), can include sending LLMs requests that include expensive prompts

designed to consume computing resources and degrade model performance. This disclosure

describes techniques to automatically detect such prompts and then configure firewall rules that

9

Defensive Publications Series, Art. 6642 [2024]

https://www.tdcommons.org/dpubs_series/6642

prevent such prompts in subsequent requests from reaching the LLM. Per the techniques,

prompts provided to an LLM are matched against input and output token size as well as

resource utilization to identify prompts that deviate significantly from a baseline. Expensive

prompts are identified, and semantically similar prompts are automatically generated using the

same LLM or another model. A subset of the generated prompts that are semantics similar to

expensive prompts are identified by comparing respective vector embeddings. The subset of

prompts and the received expensive prompts are provided to a pre-trained LLM that generates

firewall rules, e.g., web application firewall (WAF) rules. Incoming requests from applications

are evaluated based on the rules, and expensive prompts are blocked from reaching the LLM or

are rate-limited.

REFERENCES

1. “HackerOne and the OWASP Top 10 for LLM: A Powerful Alliance for Secure AI”

available online at https://www.hackerone.com/vulnerability-management/owasp-llm-

vulnerabilities#:~:text=The%20supply%20chain%20in%20LLMs,and%20even%20comple

te%20system%20failures accessed Jan 18, 2024.

2. “5 Approaches to Solve LLM Token Limits,” available online at https://deepchecks.com/5-

approaches-to-solve-llm-token-limits/ accessed Jan 18, 2024.

3. “What is a Vector Database & How Does it Work? Use Cases + Examples,” available

online at https://www.pinecone.io/learn/vector-database/ accessed Dec 13, 2023

4. “OWASP Top 10 for LLM 2023: Understanding the Risks of Large Language Models,”

available online at https://www.giskard.ai/knowledge/owasp-top-10-for-llm-2023-

understanding-the-risks-of-large-language-models accessed Dec 13, 2023

10

Namer et al.: Automatically Detecting Expensive Prompts and Configuring Firewal

Published by Technical Disclosure Commons, 2024

https://www.hackerone.com/vulnerability-management/owasp-llm-vulnerabilities#:~:text=The%20supply%20chain%20in%20LLMs,and%20even%20complete%20system%20failures
https://www.hackerone.com/vulnerability-management/owasp-llm-vulnerabilities#:~:text=The%20supply%20chain%20in%20LLMs,and%20even%20complete%20system%20failures
https://www.hackerone.com/vulnerability-management/owasp-llm-vulnerabilities#:~:text=The%20supply%20chain%20in%20LLMs,and%20even%20complete%20system%20failures
https://www.hackerone.com/vulnerability-management/owasp-llm-vulnerabilities#:~:text=The%20supply%20chain%20in%20LLMs,and%20even%20complete%20system%20failures
https://deepchecks.com/5-approaches-to-solve-llm-token-limits/
https://deepchecks.com/5-approaches-to-solve-llm-token-limits/
https://www.pinecone.io/learn/vector-database/
https://www.giskard.ai/knowledge/owasp-top-10-for-llm-2023-understanding-the-risks-of-large-language-models
https://www.giskard.ai/knowledge/owasp-top-10-for-llm-2023-understanding-the-risks-of-large-language-models

5. “DNS amplification DDoS attack | Cloudflare” available online at

https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack/ accessed Jan 18,

2024.

6. “reCAPTCHA firewall policies overview | reCAPTCHA Enterprise | Google Cloud”

available online at https://cloud.google.com/recaptcha-enterprise/docs/firewall-policies-

overview#policy-actions accessed Jan 18, 2024.

7. “Google Cloud Armor,” available online at

https://cloud.google.com/security/products/armor?hl=en accessed Jan 18, 2024.

8. “OWASP ModSecurity Core Rule Set,” available online at https://owasp.org/www-project-

modsecurity-core-rule-set/ accessed Jan 18, 2024.

9. “System Management Interface SMI,” available online at

https://developer.nvidia.com/nvidia-system-management-interface accessed Jan 18, 2024.

10. “Sklearn.metrics.pairwise.cosine_similarity,” available online at https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html

accessed Jan 18, 2024.

11. “Supercharging security with generative AI,” available online at

https://cloud.google.com/blog/products/identity-security/rsa-google-cloud-security-ai-

workbench-generative-ai accessed Jan 18, 2024.

12. “Foundation models,” available online at https://cloud.google.com/vertex-

ai/docs/generative-ai/learn/models#foundation_models accessed Jan 18, 2024.

13. “New AI capabilities that can help address your security challenges | Google Cloud Blog”

available online at https://cloud.google.com/blog/products/identity-security/security-ai-

next23 accessed Jan 18, 2024.

11

Defensive Publications Series, Art. 6642 [2024]

https://www.tdcommons.org/dpubs_series/6642

https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack/
https://cloud.google.com/recaptcha-enterprise/docs/firewall-policies-overview#policy-actions
https://cloud.google.com/recaptcha-enterprise/docs/firewall-policies-overview#policy-actions
https://cloud.google.com/security/products/armor?hl=en
https://owasp.org/www-project-modsecurity-core-rule-set/
https://owasp.org/www-project-modsecurity-core-rule-set/
https://developer.nvidia.com/nvidia-system-management-interface
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://cloud.google.com/blog/products/identity-security/rsa-google-cloud-security-ai-workbench-generative-ai
https://cloud.google.com/blog/products/identity-security/rsa-google-cloud-security-ai-workbench-generative-ai
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models#foundation_models
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models#foundation_models
https://cloud.google.com/blog/products/identity-security/security-ai-next23
https://cloud.google.com/blog/products/identity-security/security-ai-next23

	Automatically Detecting Expensive Prompts and Configuring Firewall Rules to Mitigate Denial of Service Attacks on Large Language Models
	Recommended Citation

	tmp.1706504678.pdf.gwovH

