
Technical Disclosure Commons Technical Disclosure Commons 

Defensive Publications Series 

January 2024 

Generating Readable RTL Using a Language Model Generating Readable RTL Using a Language Model 

Christopher D. Leary 

Paul Rigge 

Follow this and additional works at: https://www.tdcommons.org/dpubs_series 

Recommended Citation Recommended Citation 
Leary, Christopher D. and Rigge, Paul, "Generating Readable RTL Using a Language Model", Technical 
Disclosure Commons, (January 16, 2024) 
https://www.tdcommons.org/dpubs_series/6609 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for 
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons. 

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F6609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/6609?utm_source=www.tdcommons.org%2Fdpubs_series%2F6609&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


Generating Readable RTL Using a Language Model 

ABSTRACT 

This disclosure describes the use of a language model to improve the readability of 

generated Register-Transfer Level (RTL) code. The language model is provided with a prompt 

that includes generated RTL and (optionally), the original hardware description. The model 

produces as output a readable version of the RTL. Prompts can be iterated upon automatically, 

e.g. if the code fails to pass a test (e.g., a lint test) or does not compile, or manually if the user 

prefers the output to be in a particular style. The readable RTL output by the language model can 

be subjected to a logic equivalence check (LEC) to confirm that the output readable RTL is 

equivalent to the input RTL to ensure that the behavior of the design is identical. Unlike a 

traditional code formatter, a language model can perform complex transformations and interpret 

the ideas in a block of code. A language model can also generate meaningful comments as part 

of the output. 

KEYWORDS

● Code generation 

● Code readability 

● Code rewrite 

● Register-Transfer Level (RTL) 

● Design verification 

● Physical Design 

● Logic equivalence check 

● Language model 

● Code formatter

2

Leary and Rigge: Generating Readable RTL Using a Language Model

Published by Technical Disclosure Commons, 2024



BACKGROUND 

Programmatically generating code is common. Protocol buffers, parser generators, and 

generators for language bindings are some examples of programmatic code generation. 

Programmatically generated code is often challenging for humans to comprehend due to 

abstraction mismatch or difficulties in generating human-readable code. In many cases, humans 

do not need to read the generated code and therefore, programmatically generated code being 

hard to read is not a problem. For example, protobuf [1] is a well-tested and well-understood 

abstraction that users rarely need to read programmatically generated protobuf code. 

However, in the context of generating Register-Transfer Level (RTL) (abstraction level 

commonly used to describe hardware), human-readable code is useful, but the generated RTL is 

often difficult to read. Similar to protocol buffer or parser generators, hardware generators take 

an abstract hardware description as input and produce RTL as output. The generated RTL often 

needs to be integrated with a substantial amount of manually written RTL. Crucially, RTL 

undergoes a higher degree of verification than software code since hardware cannot be updated 

once manufactured. Such verification includes meeting coverage metrics and debugging, both of 

which require some level of human understanding of the code. 

Additionally, physical designers also rely on RTL to understand issues related to clock 

frequency, area required, etc. For both design verification and physical design (compiling RTL 

into a manufacturable chip), the readability of RTL is important. This poses a challenge for RTL 

generation tools that aim to boost developer productivity by raising the abstraction level of 

hardware design. Code that is not easily readable can undermine the gains in developer 

productivity by making design verification and physical design tasks difficult. 

3

Defensive Publications Series, Art. 6609 [2024]

https://www.tdcommons.org/dpubs_series/6609



Code formatters attempt to make code more readable by reformatting code. However, 

these tools are limited in transformations and do not address most problems with generated RTL. 

DESCRIPTION 

This disclosure describes the use of a language model to improve the readability of 

generated Register-Transfer Level (RTL). The language model is provided with a prompt that 

includes generated RTL and (optionally), the original hardware description. The model produces 

as output a readable version of the RTL. Prompts can be iterated upon automatically, e.g. if the 

code fails to pass a test (e.g., a lint test) or does not compile, or manually if the user prefers the 

output to be in a particular style. The readable RTL output by the language model can be 

subjected to a logic equivalence check (LEC) to confirm that the output readable RTL is 

equivalent to the input RTL to ensure that the behavior of the design is identical. Unlike a 

traditional code formatter, a language model can perform complex transformations and interpret 

the ideas in a block of code. A language model can also generate meaningful comments as part 

of the output. 

 

Fig. 1 : Obtaining readable RTL using a language model 

4

Leary and Rigge: Generating Readable RTL Using a Language Model

Published by Technical Disclosure Commons, 2024



Fig. 1 illustrates an example diagram illustrating obtaining readable RTL by using a 

language model to perform a code rewrite. Hardware description (102) is converted into 

generated RTL (106) using a compiler (104) using established techniques. The generated RTL 

and optionally the hardware description are provided as inputs to a language model (108) along 

with a prompt that instructs the language model to rewrite the RTL for readability. The original 

hardware description can also be utilized when generating the prompt to augment the context. 

The language model (108) generates a readable version of the RTL code (110). The 

readable RTL output by the language model is subjected to testing (e.g., lint test) and/or manual 

review. Further, a logic equivalence check (112) can be performed between the generated RTL 

and the readable RTL. Based on the testing, user review, and LEC, additional prompts can be 

provided to the language model to generate new versions of readable code until the code passes 

tests and the user confirms readability. 

CONCLUSION 

This disclosure describes the use of a language model to improve the readability of 

generated Register-Transfer Level (RTL) code. The language model is provided with a prompt 

that includes generated RTL and (optionally), the original hardware description. The model 

produces as output a readable version of the RTL. Prompts can be iterated upon automatically, 

e.g. if the code fails to pass a test (e.g., a lint test) or does not compile, or manually if the user 

prefers the output to be in a particular style. The readable RTL output by the language model can 

be subjected to a logic equivalence check (LEC) to confirm that the output readable RTL is 

equivalent to the input RTL to ensure that the behavior of the design is identical. Unlike a 

traditional code formatter, a language model can perform complex transformations and interpret 

5

Defensive Publications Series, Art. 6609 [2024]

https://www.tdcommons.org/dpubs_series/6609



the ideas in a block of code. A language model can also generate meaningful comments as part 

of the output. 

REFERENCES 

1. “Protocol Buffers” available online at https://protobuf.dev/ accessed Jan 2, 2024. 

2. “ANTLR: (ANother Tool for Language Recognition)” available online at 

https://www.antlr.org/ accessed Jan 2, 2024. 

3. “SWIG.org” available online at https://www.swig.org/ accessed Jan 2, 2024. 

6

Leary and Rigge: Generating Readable RTL Using a Language Model

Published by Technical Disclosure Commons, 2024

https://protobuf.dev/
https://www.antlr.org/
https://www.swig.org/

	Generating Readable RTL Using a Language Model
	Recommended Citation

	tmp.1705384779.pdf.3dS18

