
Technical Disclosure Commons Technical Disclosure Commons 

Defensive Publications Series 

January 2024 

Targeted Software Profiling Based on Static Code Analysis to Targeted Software Profiling Based on Static Code Analysis to 

Detect Small Regressions Detect Small Regressions 

Shu-Wei Cheng 

Kamakshi Kodur 

Anne Stern 

Yue Hu 

Fei Wang 

See next page for additional authors 

Follow this and additional works at: https://www.tdcommons.org/dpubs_series 

Recommended Citation Recommended Citation 
Cheng, Shu-Wei; Kodur, Kamakshi; Stern, Anne; Hu, Yue; Wang, Fei; Li, Zening; Ding, Oscar; Culberg, Kevin; 
Krasichkov, Eugene; Aseffa, Aleph; and Lu, George, "Targeted Software Profiling Based on Static Code 
Analysis to Detect Small Regressions", Technical Disclosure Commons, (January 16, 2024) 
https://www.tdcommons.org/dpubs_series/6607 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for 
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons. 

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F6607&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/6607?utm_source=www.tdcommons.org%2Fdpubs_series%2F6607&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


Inventor(s) Inventor(s) 
Shu-Wei Cheng, Kamakshi Kodur, Anne Stern, Yue Hu, Fei Wang, Zening Li, Oscar Ding, Kevin Culberg, 
Eugene Krasichkov, Aleph Aseffa, and George Lu 

This article is available at Technical Disclosure Commons: https://www.tdcommons.org/dpubs_series/6607 

https://www.tdcommons.org/dpubs_series/6607


Targeted Software Profiling Based on Static Code Analysis to Detect Small Regressions 

ABSTRACT 

Degradation of performance between different release versions of a software is termed as 

regression. Traditional reliability testing and benchmarking tools can detect regressions of large 

magnitudes much more easily compared to those with smaller regression effects. As code 

changes accumulate over time, the cumulative impact of undetected micro regressions can add 

up to noticeable negative impact on performance. This disclosure describes techniques for timely 

detection of micro regressions based on static analysis of code changes in a change request and 

by targeted dynamic benchmarking. The static analyses can be performed by comparing the AST 

and/or call graphs of the software before and after changes connected to a change request. The 

results of the comparison can be employed to detect any small or large regression resulting from 

the changes via bytecode injected binaries of the software in a laboratory testing environment. 

The approach can save substantial time and effort in detecting and addressing small regressions, 

thus helping speed up the application as well as the software development pipeline and avoiding 

negative impacts on user engagement. 

KEYWORDS

● Regression testing 

● Reliability testing 

● Performance metrics 

● Abstract Syntax Tree (AST) 

● Call graph 

● Change log 

● Code injection 

● Static analysis 

● Micro regression 

● Targeted code profiling

  

2

Cheng et al.: Targeted Software Profiling Based on Static Code Analysis to Dete

Published by Technical Disclosure Commons, 2024



BACKGROUND 

Software development involves work that is performed by teams of software 

professionals. Large development teams are often divided into sub-teams. Software releases are 

organized with individual software features serving as the base coding unit used for tracking 

various milestones, such as experiments, rollouts, launches, etc. Different software features are 

developed independently by assigning the responsibility for implementing individual features to 

specific developers or sub-teams. The individual or team in charge of developing a feature 

commits the corresponding code in the form of a change request to a code repository that stores 

the code for the overall software solution. 

Software solutions typically evolve over time with each successive released version 

containing a number of additional features and/or refinements to existing features. In addition, it 

is generally expected that performance metrics for a software release be better than, or at least 

equal to, those of the previous release. The performance metrics can include a number of 

measures and benchmarks such as user interface latency, memory use, computational resource 

use, etc.  

Software performance can be examined by benchmarking and tracing tools. 

Benchmarking tools treat the software as a black box and run multiple A/B tests across multiple 

devices to detect performance changes. Tracing tools measure various parameters and tracing 

tools generate an end-to-end stack log of software operation containing various pieces of runtime 

information about invoked methods calls, such as name, start time, duration, call depth, threat 

number, etc. If the performance for a given metric for a software release degrades compared to 

the previous release, the situation is termed as “regression.”  

3

Defensive Publications Series, Art. 6607 [2024]

https://www.tdcommons.org/dpubs_series/6607



Traditional reliability testing and benchmarking tools can detect regressions of large 

magnitudes much more easily compared to those with smaller regression effects. The challenges 

in detecting such micro regression effects can arise because of a number of factors, such as noise 

from the software and the device under test (DUT). As a result, current techniques either fail at 

detecting micro regressions or generate false positives that cannot be reliably reproduced. As 

code changes accumulate over time, the cumulative impact of any undetected micro regressions 

can add up to noticeable negative impact on performance. Moreover, even tiny negative changes 

in performance metrics such as startup latency can have a measurable negative impact on user 

engagement and user experience (UX). 

Accurately and timely identification of features that cause small regressions is a 

challenging problem with a history of unsuccessful attempts. The lack of success mostly arises 

because of the large number of devices required to measure small performance changes in a 

meaningful way. Software that involves a number of different configurations can pose additional 

challenges for detecting small regressions because some regressions can be introduced in 

developer builds or be guarded by a testing experiment and surface only after the corresponding 

features are promoted to the production version. 

DESCRIPTION 

This disclosure describes techniques to detect micro regressions by focusing on the parts 

of the software changed by a specific code change request from a developer. Benchmarking can 

be applied in a manner that targets the changed parts to determine whether the changes caused 

regression along with the size and root cause(s) of the regression. 

4

Cheng et al.: Targeted Software Profiling Based on Static Code Analysis to Dete

Published by Technical Disclosure Commons, 2024



 

Fig. 1: Targeted code profiling to detect micro regressions 

Fig. 1 shows an example operational implementation of the techniques described in this 

disclosure. As shown in Fig. 1, the implementation of the targeted code profiling framework 

(102) can be achieved via two approaches involving initial static software analyses (104) 

followed by targeted dynamic analysis (109) of relevant bytecode: 

1. Abstract Syntax Tree (AST) analysis (106): The AST for each file modified in a given 

code change request can be constructed (110) and compared (112) with that for the previous 

version. The comparison can be used to generate a list of methods that changed because of 

5

Defensive Publications Series, Art. 6607 [2024]

https://www.tdcommons.org/dpubs_series/6607



the given change request. The performance impact of the methods in the list can then be 

profiled in a targeted manner (120) using bytecode injected binaries (118) of the software in 

a laboratory testing environment. 

2. Call graph comparison (108): Inter-procedure static analysis can be employed to construct 

the call graphs of the entire application startup path for versions with and without the 

changes introduced in a given change request. The two call graphs can be compared to 

determine whether the change request results in any changes in the call graph. If any changes 

are uncovered, the changed parts can be profiled (120) to measure the performance impact of 

the changes using bytecode injected binaries (118) of the software in a laboratory testing 

environment. 

The two approaches can be employed sequentially or in parallel as appropriate. Because 

of their targeted nature that focuses only on relevant parts of the code when benchmarking, the 

techniques described herein avoid unwanted noise from other parts of the application, thus 

facilitating detection of micro regressions that typically go undetected by traditional regression 

testing methods. 

Reliability testers and feature developers can take appropriate mitigating actions based on 

any detected regressions. For instance, regressions that increase the latency in startup of the 

application can be addressed by preventing the execution of unnecessary regression-inducing 

methods on the main thread, thus ensuring that the application starts and responds to user 

interaction as quickly as possible. 

The techniques described herein can be implemented to perform regression testing in any 

software to check one or more of any relevant performance metrics, such as latency, memory 

usage, computational speed, power drain, etc. Implementation of the techniques can enable the 

6

Cheng et al.: Targeted Software Profiling Based on Static Code Analysis to Dete

Published by Technical Disclosure Commons, 2024



detection of small regressions in a timely and focused manner, thus saving time and effort in 

addressing the underlying issues. As a result, the techniques can help speed up the application as 

well as the software development pipeline and avoid the negative revenue impacts of undetected 

small regressions that degrade the UX and decrease user engagement. 

CONCLUSION 

This disclosure describes techniques for timely detection of micro regressions in software 

based on static analysis of code changes in a change request and by targeted dynamic 

benchmarking. The static analyses can be performed by comparing the AST and/or call graphs of 

the software before and after changes connected to a change request. The results of the 

comparison can be employed to detect any small or large regression resulting from the changes 

via bytecode injected binaries of the software in a laboratory testing environment. The approach 

can save substantial time and effort in detecting and addressing small regressions, thus helping 

speed up the application as well as the software development pipeline and avoiding negative 

impacts on user engagement. 

7

Defensive Publications Series, Art. 6607 [2024]

https://www.tdcommons.org/dpubs_series/6607


	Targeted Software Profiling Based on Static Code Analysis to Detect Small Regressions
	Recommended Citation
	Inventor(s)

	tmp.1705384078.pdf.3Lup8

