
Technical Disclosure Commons Technical Disclosure Commons 

Defensive Publications Series 

November 2023 

Continual Learning System with Sentence Embeddings Continual Learning System with Sentence Embeddings 

Anonymous 

Follow this and additional works at: https://www.tdcommons.org/dpubs_series 

Recommended Citation Recommended Citation 
Anonymous, "Continual Learning System with Sentence Embeddings", Technical Disclosure Commons, 
(November 28, 2023) 
https://www.tdcommons.org/dpubs_series/6452 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for 
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons. 

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F6452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/6452?utm_source=www.tdcommons.org%2Fdpubs_series%2F6452&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


1

Continual Learning System with Sentence Embeddings 

Abstract

Recent improvements in computing power and ambient technologies have opened up new 

perspectives in ambient intelligence and proactive software systems. The need emerges for an 

ambient and supportive system that deeply understands the user's needs and preferences under 

the current context. In this work, we propose a recommendation system that aggregates and 

understands the current situation and continuously learns from the user’s decision history. To 

leverage a rich pool of contextual data, the system dynamically changes the strategy and scope 

for contextualization and encodes multimodal data into unified embeddings. A contextual 

similarity database consisting of these embeddings is leveraged for finding, ranking and 

comparing scenarios. The proposed recommender is intended to fit into a decentralized service 

system and addresses challenges in application interaction, user engagement, user privacy and 

scalability. 

2

Anonymous: Continual Learning System with Sentence Embeddings

Published by Technical Disclosure Commons, 2023



2

Chapter 1: Background Information

With the advancement in computing hardware and ambient technologies, the human-

computer interaction model will undergo a fundamental paradigm shift from reactive systems to 

proactive systems in the near future [1]. For always-on, intelligent devices like XR devices and 

AR glasses to be further integrated into people’s lives, they should be able to leverage the rich 

context of past and present to infer and fulfill the user’s needs in an proactive, low-friction way. 

In other words, instead of having the user explicitly invoking applications, recommendations 

should dynamically emerge by monitoring the environment and anticipating what the user wants. 

One way that this vision can be achieved is to actively compose recommendations based 

on the services available in the environment [3]. In this proactive software framework, 

recommendations are generated by having the services proactively propose to the user. For 

example, when the user walks into the living room, multiple services including smart light bulbs, 

smart speaker and smart tv will all propose to perform certain tasks for the user.

As services in the ambient environment are aggregated in a decentralized manner, a 

recommendation system is needed whenever multiple actions are proposed at the same time. The 

recommender should remember the user’s preference and recommend items that are appropriate 

to the current context. Due to the high frequency of interaction between the user and device, the 

recommendation system’s ability to learn from user feedback is essential to improving efficiency 

and reducing friction. This project focuses on building a recommendation system that 

incorporates contextual information for continual learning. 

1.1 Challenges in Recommender Design 

As the recommender operates in a new framework with a unique set of requirements and 

constraints, it needs to contend with a new set of challenges. We will identify and define some of 

the most important challenges. 

1.1.1 Contextualization 

The recommender system is designed to model the preference of the user using relevant 

contexts, such as time, location, user’s intention etc. The main challenge lies in figuring out the 

scope of relevant contexts and the way to encode them.  

All types of descriptive information about the user and the environment can be 

considered as context but not all contexts are relevant. For example, when the user enters the 

3

Defensive Publications Series, Art. 6452 [2023]

https://www.tdcommons.org/dpubs_series/6452



3

living room, the ambient brightness is useful in deciding whether to switch on the light, but is 

irrelevant to the smart speaker in deciding whether to play music. 

To efficiently and accurately represent the contexts, the recommender also needs to 

encode contextual data from an arbitrary set of sensors and services into a unified representation. 

Furthermore, because new services might be added or dynamically defined by the user at any 

time, the contextualization model should be able to dynamically comprehend new types of data. 

The main challenge lies in the diversity of multimodal data, both in terms of data type and 

semantics. 

1.1.2 Privacy 

Given the unprecedented level of personally-relevant context provided by head-mounted 

sensors and wearables, respecting and protecting the user’s privacy must be embedded in the 

low-level system design as services are a fundamental building block of the proactive software 

system. If not designed with care, a proactive system can be distracting, intrusive or even 

harmful. The challenge is to define a data schema for training the recommender with significant 

limitations in the collection, use and analysis of identifiable user data. 

1.1.3 Personalization

Recommenders should be able to provide personalized recommendations based on user 

preferences and history. The system should be able to define behaviors for each item-context-

user combination. However, for an always-on device that aims to be a seamless part of daily life, 

the use of centralized machine learning and cloud-based AI would pose serious danger to user 

privacy. Therefore, the challenge lies in ensuring the quality of personalization in a privacy-

preserving manner. 

1.1.4 Cold Start 

“Cold start” refers to a situation where the recommender system cannot draw inferences 

for a new item or a new user. This problem is more prevalent in ambient intelligent systems as 

the availability of services changes dynamically with the environment. 

1.1.5 Explainability

Trustful persuasion and end-user programming are two of the important research 

perspectives in ambient computing [2]. For a proactive system, applications are invoked 

implicitly by observing the context rather than explicitly by the user. Therefore, the 

circumstances under which an application is invoked must be clearly defined and configurable. 

4

Anonymous: Continual Learning System with Sentence Embeddings

Published by Technical Disclosure Commons, 2023



4

Furthermore, the recommender needs to be able to explain to the user why an application is 

preferred over others, so the AI model must display a high level of explainability.  

1.1.6 Scalability

The system should be able to incorporate and coordinate a large number of services and 

scenarios. If not designed properly, the inference speed, learning speed, and computational 

complexity can all deteriorate significantly as the number of services increases. Thus, the 

architecture should put emphasis on decoupling and the API and message format between 

components should have low complexity. 

1.1.7 Developer Workflow

We want to foster an ecosystem that allows developers to design, implement and iterate 

on their applications as proactive services. The main difference for a proactive system is that the 

developers need to define the context to invoke the application and design the user interface 

accordingly. 

To promote user engagement, developers might like the application to launch as often as 

possible, which can be a major source of user friction in a proactive system. We need to design 

mechanisms to avoid frequent invocation on a system level. In other words, we need to carefully 

balance developer access/permission, ease of development, personalization and user friction. 

Ideally, the system should encourage developers to specify strict and accurate conditions for the 

app to be invoked but also maintain full control over the individual recommendations. 

Chapter 2: Research Goals and Outcomes 

2.1 Research Goals 

The goal of this research is to prototype possible software and AI model design of a 

recommendation system that learns to predict the user’s preference under different situations 

over time. More specifically, given a set of entities and their status representing the current 

context, the recommendation system should be able to rank a list of proposed applications from 

the most likely to be accepted by the user to the least. Apart from the recommender model itself, 

the communication protocols between the recommender system and the rest of the framework 

will also be defined. We will also discuss how the new design addresses the challenges in 

contextualization, privacy, personalization, explainability, scalability and developer workflow. 

5

Defensive Publications Series, Art. 6452 [2023]

https://www.tdcommons.org/dpubs_series/6452



5

2.2 Problem Formulation 

Due to the novelty of the proactive framework, we will try to formulate the problem with 

some examples and explanations. We will describe the concept of context and proposals, which 

are the input for the recommender system. 

2.2.1 Context as Entities and States 

Fig. 1: An illustration of a scenario defined by a set of entities and their status. The entities are 

represented as a node in a tree to encapsulate structural and hierarchical information.

A context/scenario is defined by a set of entities and their status (Fig 1). An entity can 

either be one aspect of a tangible thing (light brightness, door open/shut, camera view) or an 

abstract concept (time of day, season of the year, user goal, user mood, user moving speed). To 

capture the hierarchical information, entities are arranged as nodes for a tree. At any time, the 

system will have access to only a subset of all available entities. There are 2 categories of entity: 

user attribute and environment attribute. 

User Attributes are entities that describe the situation/condition/attribute of the user. 

These attributes are either detected (moving speed, skin temperature, heart rate) or inferred (user 

indoor/outdoor, user mood, active/inactive), and are merely observed. Notice that some of these 

attributes may not be instantaneous (activity last night, schedules for tomorrow) to be relevant. 

Environment Attributes are entities that describe the status of the surrounding 

environment. These attributes are either detected (noise level, ambient light luminance, 

temperature) or reported by smart devices (lightbulb brightness, AC status, current playlist on 

speaker). 

States are the minimum set of properties that adequately describe a specific entity. For a 

smart light bulb entity, its state can be a boolean value suggesting on/off or an integer value 

6

Anonymous: Continual Learning System with Sentence Embeddings

Published by Technical Disclosure Commons, 2023



6

ranging from 0 to 100 indicating the brightness level. For entity user mood, its property can be a 

categorical classification from a set of predefined moods (happy, anxious, energetic) or can be a 

value on the mood spectrum ranging from positive to negative. 

2.2.2 Proposals 

Services would propose either to invoke a certain application or to perform certain 

actions in the application. The level of details in the proposal may vary significantly depending 

on the type and functionality of the service. For example, the illumination service might propose 

to turn on or off the light, and the food delivery service might ask the user to make multiple 

selections in the application and check out. 

2.3 Research Outcomes 

Fig. 2: Data flow of the recommendation system. 

We designed and implemented a new recommendation system based on text semantic 

embedding. The system parses and represents all relevant information into human-readable text 

and uses these sentences as descriptions for context or proposals. The sentences are then either 

provided to the user as an explanation or encoded into semantic embeddings to provide data to 

the recommendation engine. By collecting explicit and implicit feedback from the user, the 

recommender engine stores a database of context-proposal-feedback combinations, which is used 

to learn the user’s personal preference over time. The recommender engine uses a rule-based 

algorithm for deciding the score for each proposal and the text encoder is the only component 

that uses deep-learning models. 

In terms of the communication protocol, we propose to let the services describe the exact 

circumstances under which they propose. These proposal conditions not only provide explicit 

explanations to the user but also serve as guidance for the scope of contextualization. Adding 

7

Defensive Publications Series, Art. 6452 [2023]

https://www.tdcommons.org/dpubs_series/6452



7

texts as an intermediate representation of contextual data greatly improves the robustness and 

comprehensiveness of the system. 

2.4 Previous Work 

Ambient computing promotes a new vision of an all-inclusive, context-aware framework 

of bottom-up computing [2][12], which requires a drastic redesign of how software components 

are aggregated. [3] proposed to composite applications based on the components available at the 

time in the ambient environment using a new type of middleware, namely an Opportunistic 

Composition Engine (OCE). The OCE is a multi-agent system that periodically detects the 

components and their services presented in the ambient environment. This paper also described a 

communication protocol and an agent-level learning schema based on user feedback via 

reinforcement learning. However, our proactive interaction system diverges from the OCE 

system as it employs a rich pool of contextual data and disallows agent-level learning via deep 

learning due to privacy and explainability concerns. Nevertheless, [3] provides a great 

introduction to a proactive ambient system. 

Traditionally, recommender systems research [4] aims to predict the users’ preferences 

(ratings) for a set of items, such as movies [6], music[8], or books [7]. Three main types of 

information filtering techniques have been proposed and widely adopted, namely collaborative 

filter, content-based filtering and the hybrid approach [5][9-11]. Collaborative filtering is based 

on the assumption that other users with similar preferences (similar ratings) will rate other items 

similarly. Therefore, a user profile can be established by finding other users that behave 

similarly. Content-based filtering utilizes the user's history and tries to find recommendations by 

searching for items similar to those that the user preferred in the past. The hybrid approach is the 

combination of these two. However, many of these recommendation techniques cannot be 

directly used for a recommender system in ambient devices. At any time, the items that an 

ambient device can choose from are highly restricted by the available components in the ambient 

environment, so all decisions the user made in the past should be seen as highly conditional. As 

the device might also be exposed to the same choices repeatedly, the level of personalization and 

contextual understanding needed is much higher than in a general-purpose recommendation 

system. Therefore, collaborative filtering won’t help other than situations like the “cold start” 

(new applications) and content-based filtering is highly restricted by the set of items available. 

An analogy would be the traditional recommender system is a store owner with a huge catalog of 

8

Anonymous: Continual Learning System with Sentence Embeddings

Published by Technical Disclosure Commons, 2023



8

items and can recommend based on customer’s taste, while our recommender system is a butler 

that deeply understands the user and recommends according to context. 

With advances in recommender system techniques, context-aware recommender systems 

[13-17] have gained more traction since the late 2000s. Instead of the traditional view, where the 

recommender tries to estimate a rating score for each user-item combination, context-aware 

recommender systems try to estimate a rating score for each user-item-context combination. This 

view drastically increased the dimensionality of the data. Most of the proposed approaches treat 

contextual information (knowledge base) as complementary to personalization and try to alter 

ratings based using context prefiltering, postfiltering or modeling. Such contextual recommender 

systems have been implemented at a smaller scale. [18] uses context prefiltering in a personal 

shopping assistant and [19] uses context postfiltering in personalized advertising. For [18], the 

context consists of the history of a set of well-defined user behaviors. For [19], all contexts are 

from a set of positive physical attributes like temperature or weather. We drew some inspiration 

from these designs, but due to the extensive scale and diverse type of our contextual data, our 

system is very different from most context-aware recommender systems. In our work, rather than 

treating the context as additional information, we treat it as a deciding factor for item rating and 

employ a purely context-based filtering technique. 

Chapter 3: Methods 

For the recommendation engine, we employ a memory-based modeling approach by 

establishing a personal history database that records the user’s decision under different scenarios. 

When a new set of applications are proposed, the recommender module will actively search the 

database and look for similar scenarios in the past. The user acceptance score for each proposal 

is decided by its similarity to the past proposals and the user’s feedback to them. 

To accurately estimate the similarity between scenarios and applications, we need to 

extract the corresponding semantic representation from them. For the purpose of explainability 

and trustful persuasion, we added an intermediate process of encoding multimodal information to 

text. As shown in Fig 2, doing this not only enables decision explanation but also allows for end-

user programming, where the user can use text to specify certain conditions for an application to 

be invoked. 

9

Defensive Publications Series, Art. 6452 [2023]

https://www.tdcommons.org/dpubs_series/6452



9

To address privacy concerns, user history is stored on the device as embeddings of 

scenarios and proposals. With a new device, we inject the database with embeddings of the most 

common decision in typical scenarios as “prior knowledge” (i.e. the user is home -> turn the light 

on; the user is leaving home -> show weather report). When new services are added or new 

scenarios are encountered, the system can then learn from the collective prior knowledge and 

recommend the most probable decision. Note that the injection is one-directional thus won’t 

expose any personal information. As the user engages with the system, it will then gradually 

learn the user’s personal preference and become truly personalized. Therefore, using the 

semantic embeddings increased the robustness of the model and mitigated the effect of a “cold 

start”. 

10

Anonymous: Continual Learning System with Sentence Embeddings

Published by Technical Disclosure Commons, 2023



10

3.1 Recommender Module Architecture 

Fig. 3: Software architecture of the recommendation system.  

In our design, the ProposalRecommender class uses two functions: record_feedback and 

recommend to communicate with the rest of the recommendation engine. Whenever applications 

are proposed, the recommend function will be called to get a user acceptance score for each 

proposal. Whenever explicit (agree, refuse) or implicit (timeout) feedback is received by the 

system, the record_history function is called to insert the record into an on-device database. The 

ProposalRecommender has a TextEncoder object, which is responsible for encoding descriptions 

11

Defensive Publications Series, Art. 6452 [2023]

https://www.tdcommons.org/dpubs_series/6452



11

(sentences) into embeddings (vectors of floats). Enumeration classes like UserFeedback and 

EmbeddingReduction (strategy) are also used to standardize the API. 

3.2 Text Encoder 

Recent developments in natural language processing techniques have greatly improved 

the quality of text embeddings [20-23]. Text embedding techniques aim at encoding text into a 

high-dimensional vector representation that can be used for predictive or exploratory tasks. 

Popular text embeddings model uses the hidden layer outputs of the transformer text 

classification models like BERT [20]. SBERT [22] utilizes transfer learning to modify the pre-

trained encoder of BERT using siamese and triplet network structures. The SBERT network aims 

to derive semantically meaningful sentence embeddings that can be compared with cosine-

similarity. For this project, we used the publicly available pre-trained SBERT. 

Due to the high computation complexity of the transformer architecture, the SBERT 

architecture limits the total number of words to 256. We need to find a way to aggregate the 

sentences and preserve the semantic information. Two strategies have been proposed to avoid 

truncating the sentences. The first method encodes each individual sentence and aggregates the 

embeddings; the second method splits the array of sentences into partitions of less than 256 

words and concatenates each partition into a paragraph for encoding. 

3.3 Ranking Algorithm 

To rank the proposals from most likely to be accepted to the least, we designed and 

implemented a ranking algorithm as follows: 

Setup: define weight for each action: {Accept: 𝑊𝑎 > 0, Reject: 𝑊𝑟 < 0, TimeOut: 𝑊𝑡𝑜}. 

1. The recommender is given the current context and a list of proposed applications 

(𝑎1,𝑎2, . . . ,𝑎𝑘). 

2. Search the history to get 𝑁 (context, proposal, action) triplets where its context is 

the most similar to the current scenario. 

3. Calculate the similarity between the current context and the 𝑁 past scenarios, 

namely 𝑆𝑐1,𝑆𝑐2, . . . , 𝑆𝑐𝑁 . For each proposal, calculate the similarity to the 𝑁 past 

application, namely 𝑆𝑎𝑖1,𝑆𝑎𝑖2, . . . , 𝑆𝑎𝑖𝑁 for 𝑖 = 1,2, . . . , 𝑘. 

4. The score for an application i is then calculated as 𝑆𝑐𝑜𝑟𝑒(𝑎𝑖)  =  ∑𝑁
𝑗=1 (𝑆𝑐𝑗 ⋅

𝑆𝑎𝑖𝑗 ⋅𝑊𝑎|𝑟|𝑡𝑜) . 

12

Anonymous: Continual Learning System with Sentence Embeddings

Published by Technical Disclosure Commons, 2023



12

5. The proposed applications are ranked according to their scores. Proposals with 

scores under a threshold might be suppressed to reduce friction.  

This algorithm ensures that, if the user has repeatedly accepted one application 𝑎 under 

scenario 𝑆 for more than 
𝑁

2
 times, under scenarios similar to S, 𝑎 will always be ranked higher 

than any other applications. In case of new proposals, we proposed that the installation of a new 

application would automatically inject the database with at least 
𝑁

2
 acceptance records to ensure 

that the system will propose the new application the next time. To understand how a service 

specifies the condition to propose, we will describe the communication dynamics in the next 

section. 

3.4 Service-recommender Communication

Fig. 4: Example of the publish-subscribe pattern employed by the system. 

13

Defensive Publications Series, Art. 6452 [2023]

https://www.tdcommons.org/dpubs_series/6452



13

Fig. 5: Proposal life cycle. 

To create a proactive system, we propose to define services as a simple rule-based 

component that provides proposals under a set of conditions. Each service will subscribe to one 

topic and will be triggered when the trigger event happens (Fig. 4). 

The trigger event specifies when an entity changes to a certain state. For example, the 

Google Map service will be triggered when the user action of “driving” is confirmed. This marks 

the start of the service’s lifecycle. 

The proposal conditions specify all the conditions to be met before an application is 

proposed. For example, for the smart light bulb service, if the trigger event is “smart light bulb is 

connected”, the proposal conditions can be [“user is indoor”, “smart light bulb is turned off”, 

“ambient brightness <= 500 lux”]. The proposal conditions are also the explanation given to the 

recommender and the user. These conditions are explicitly defined and configurable by the user, 

therefore enabling end-user programming. 

When the recommender receives proposals, it will use the current context to get the 

ranking for all applications. The context is a union of all the proposal conditions received by the 

recommender in one cycle which can also be used to explain why a certain application is 

proposed. When new services are added, the context will expand to include the new conditions. 

As these conditions have all been checked before the service proposes, the explanatory context 

forms an accurate description of the relevant context. 

14

Anonymous: Continual Learning System with Sentence Embeddings

Published by Technical Disclosure Commons, 2023



14

Chapter 4: Results and Discussions 

Collecting a dataset for the described ambient system would require large-scale user 

study and data collection. Unfortunately, we are still in the process of collecting this data. 

Therefore we will present the results by showing experimentation and discussing how the new 

system addresses the challenges described in section 1.2. 

4.1 Prototype and Experimentation 

A prototype version of the recommendation system has been implemented in Python 

using the algorithms described above. For this experiment, {Accept: 𝑊𝑎 = 1, Reject: 𝑊𝑟 = −1, 

TimeOut: 𝑊𝑡𝑜 = 0}. 

For the demo, we describe a simple use case. The user wants to drink coffee and has 

installed the services of Starbucks and Tim Hortons. The user encounters the scenario where he 

is walking and is getting closer to both a Starbucks store and aTim Hortons store. To formulate a 

final recommendation, a beverage selection service is also installed to propose a list of beverages 

available at the specified store. We first choose to order a cappuccino from Starbucks and record 

an acceptance. 

Fig. 6: Window capture after the user accepted the cappuccino from Starbucks. 

As shown in Fig 6, after the user has chosen a cappuccino from Starbucks once, the 

system recognized the past scenario and recommended cappuccino from Starbucks again. Note 

15

Defensive Publications Series, Art. 6452 [2023]

https://www.tdcommons.org/dpubs_series/6452



15

that although not proposed, cappuccino is recommended at Tim Hortons. This is because 

according to user history the closest context to choosing a drink at Tim Hortons is choosing a 

drink at Starbucks, therefore the same drink is recommended. In an environment where only the 

Tim Hortons store is available, cappuccino will still be proposed according to the user’s past 

preference. Now let’s choose a brewed coffee at Tim Hortons instead. 

Fig. 7: Window capture after the user accepted the brewed coffee from Tim Hortons. 

16

Anonymous: Continual Learning System with Sentence Embeddings

Published by Technical Disclosure Commons, 2023



16

As shown in Fig 7, after the user has chosen brewed coffee from Tim Hortons, the system 

recommended the latest choice. Note that cappuccino is still recommended at Starbucks. 

Fig. 8: Explanation provided as embeddings and scores. 

In Fig 8, the two proposals are plotted against past activities (dimension reduces with 

PCA). Intuitively, the application whose semantic is closest to the past records is proposed.

4.2 Addressing the Challenges 

4.2.1 Contextualization 

All contexts are encoded into text descriptions and then encoded into high-dimensional 

embeddings. Compared to other types of data formats (video, image, representation), the text is 

more expressive and thus can be used as an intermediate encoding. The scope of the context is 

decided dynamically by the services to support exploratory feature selection and end-user 

programming. 

4.2.2 Privacy 

17

Defensive Publications Series, Art. 6452 [2023]

https://www.tdcommons.org/dpubs_series/6452



17

All personal data are stored on the device in the format of embeddings. The only way of 

collaborative filtering is by injecting prior knowledge into the database, which is one-directional 

and doesn’t require any user profiling. 

4.2.3 Personalization

As shown by the demo, our system supports a high level of personalization. It will 

actively adapt to the user’s preferences and  

4.2.4 Cold Start 

As shown by the first recommendation in the experiment, although no prior history exists 

for Tim Hortons, the system was able to correctly identify the user’s preference for a cappuccino. 

In cases where the device or user is new, collaborative knowledge can be selected and injected 

into the database. 

4.2.5 Explainability

By our design, services are defined in a way that automatically provides an explanation 

(proposal conditions) whenever it is invoked. As all contexts are encoded in text, these 

conditions are inherently understandable by the user. However, how text is encoded into 

embedding is still a black-box process and requires further research to promote trustful 

persuasion. 

4.2.6 Scalability

We try to promote scalability by keeping all processes on the device and truncating old 

entries in the database. However, both accessing the database and running SBERT are quite 

expensive. A new type of model or technique is needed to accelerate the inference time for 

SBERT and reduce energy consumption. 

4.2.7 Developer Workflow

Due to how services are defined, developers will need to define the exact proposal 

conditions and balance between proposing vague scenarios (a small set of conditions) or specific 

scenarios (many conditions). When the scenario is too vaguely defined, the application is more 

often proposed but might risk being rejected more often. Furthermore, vague scenarios mean the 

application will be more likely proposed with other applications, so it is facing more 

competition. If the scenario is too specific, the user might never encounter such a situation and 

thus never use the application. By design, developers are encouraged to find specific and well-

18

Anonymous: Continual Learning System with Sentence Embeddings

Published by Technical Disclosure Commons, 2023



18

defined scenarios for their applications. This not only mitigated the risk of spamming but also 

opened up new possibilities for ambient application development. 

4.3 Text Encoder 

To test out the two text embedding reduction strategies, we use the Stanford Natural 

Language Inference (SNLI) [24] dataset, which consists of sentence pairs (text and hypothesis) 

and their judgements (contradiction, neutral or entailment). To test the encoder, we randomly 

picked 20 texts to form a base scenario and replaced a random number of them with either their 

entailment, contradiction or neutral hypothesis to form alternative scenarios. If the sentence 

aggregation is valid, the base scenario will be closest to the entailment scenario and furthest to 

the contradictory scenario. Out of 100 randomly selected scenarios, the first method produces 84 

correct predictions and the second method produces 63 correct predictions. 

Fig. 9: Embedding similarity matrix for different scenarios.

19

Defensive Publications Series, Art. 6452 [2023]

https://www.tdcommons.org/dpubs_series/6452



19

For demonstration, we plot the similarity matrix for 5 hypothetical scenarios under 

method 1 (Fig 4). The individual scenarios are listed below: 

- Original: ['Ambient temperature is 22 degrees.', 'Ambient brightness is 5000 lux.', 

'Ambient noise level is 70 dB.', 'User goal is road trip.', 'User activity is driving.', 'User 

location is outdoor.'] 

- Order_change: original context with sentences in random order. 

- Less_context: original context without the sentence 'User location is outdoor.'. 

- Change: 'Ambient temperature is 22 degrees.' -> 'Ambient temperature is -3 degrees.' 

- More_chnage: 'User activity is driving.' -> 'User activity is none.'; 'User location is 

outdoor.' -> 'User location is indoor.' 

As shown above, the original scenario has exactly the same embedding as the scenario 

with order change, which is intentional since the order of sentences might change each time 

during contextualization. The similarity in embeddings correlates to the similarity in scenarios. 

Chapter 5: Conclusions and Future Research Plans 

The project presented the principles of a new solution in a proactive ambient system. To 

suit the needs of the new proactive software framework, we proposed a contextual 

recommendation system and a communication protocol. The new recommender system utilizes a 

text semantic encoder to enable continual learning and tackle challenges in contextualization, 

personalization and explainability. The new protocol requires proactive services to specify a set 

of proposal conditions and proposed applications. 

In the future, we wish to investigate a faster and more accurate model for the text 

encoder. As a common technique in the recommendation model, one might also investigate the 

use of a knowledge base to expand the description of application and context. 

20

Anonymous: Continual Learning System with Sentence Embeddings

Published by Technical Disclosure Commons, 2023



20

References 

[1] Emiliani, P.L. & Stephanidis, Constantine. (2005). Universal access to ambient 

intelligence environments: Opportunities and challenges for people with disabilities. IBM 

Systems Journal. 44. 605 - 619. 10.1147/sj.443.0605.  

[2] Aarts, Emile & Ruyter, Boris. (2009). New research perspectives on Ambient 

Intelligence. JAISE. 1. 5-14. 10.3233/AIS-2009-0001.  

[3] Younes, Walid & Adreit, Francoise & Trouilhet, Sylvie & Arcangeli, Jean-Paul. 

(2020). Agent-mediated application emergence through reinforcement learning from user 

feedback. 3-8. 10.1109/WETICE49692.2020.00009.  

[4] Bobadilla, Jesus & Ortega, Fernando & Hernando, A. & Gutiérrez, A.. (2013). 

Recommender systems survey. Knowledge-Based Systems. 46. 109–132. 

10.1016/j.knosys.2013.03.012.  

[5] Su, Xiaoyuan & Khoshgoftaar, Taghi. (2009). A Survey of Collaborative Filtering 

Techniques. Adv. Artificial Intelligence. 2009. 10.1155/2009/421425.  

[6] Carrer-Neto, Walter & Hernández-Alcaraz, María & Valencia-García, Rafael & 

Garcia-Sanchez, Francisco. (2012). Social knowledge-based recommender system. 

Application to the movies domain. Expert Systems with Applications. 39. 10990–11000. 

10.1016/j.eswa.2012.03.025.  

[7] Núñez Valdez, Edward & Cueva Lovelle, Juan & Sanjuán, Oscar & García Díaz, 

Vicente & Pablos, Patricia & Marín, Carlos. (2012). Implicit feedback techniques on 

recommender systems applied to electronic books. Computers in Human Behavior. 28. 

1186–1193. 10.1016/j.chb.2012.02.001.  

[8] Lee, Seok Kee & Cho, Yoon & Kim, Soung. (2010). Collaborative filtering with 

ordinal scale-based implicit ratings for mobile music recommendations. Information 

Sciences. 180. 2142-2155. 10.1016/j.ins.2010.02.004. 

[9] Meteren, Robin. (2000). Using Content-Based Filtering for Recommendation.  

[10] Basilico, Justin & Hofmann, Thomas. (2004). Unifying Collaborative and Content-

Based Filtering. Proceedings, Twenty-First International Conference on Machine 

Learning, ICML 2004. 10.1145/1015330.1015394.  

21

Defensive Publications Series, Art. 6452 [2023]

https://www.tdcommons.org/dpubs_series/6452



21

[11] Pazzani, Michael. (1998). A Framework for Collaborative, Content-Based and 

Demographic Filtering. Artificial Intelligence Review. 13. 10.1023/A:1006544522159.  

[12] Ramos, C. (2007). Ambient Intelligence – A State of the Art from Artificial 

Intelligence Perspective. In: Neves, J., Santos, M.F., Machado, J.M. (eds) Progress in 

Artificial Intelligence. EPIA 2007. Lecture Notes in Computer Science(), vol 4874. 

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77002-2_24 

[13] Adomavicius, Gediminas & Mobasher, Bamshad & Ricci, Francesco & Tuzhilin, 

Alexander. (2011). Context-Aware Recommender Systems. AI Magazine. 32. 67-80. 

10.1609/aimag.v32i3.2364.  

[14] Chen, Annie. (2005). Context-aware collaborative filtering system: Predicting the 

user's preferences in ubiquitous computing. Proceedings of 2005 Computer-Human 

Interaction (CHI'05). 1110-1111. 10.1145/1056808.1056836.  

[15] Adomavicius, Gediminas & Sankaranarayanan, Ramesh & Sen, Shahana & Tuzhilin, 

Alexander. (2005). Incorporating contextual information in recommender systems using a 

multidimensional approach. ACM Trans. Inf. Syst.. 23. 103-145. 

10.1145/1055709.1055714.  

[16] Song, Linqi & Tekin, Cem & Schaar, Mihaela. (2015). Online Learning in Large-

Scale Contextual Recommender Systems. IEEE Transactions on Services Computing. 9. 

1-1. 10.1109/TSC.2014.2365795.  

[17] Livne, Amit & Shem Tov, Eliad & Solomon, Adir & Elyasaf, Achiya & Shapira, 

Bracha & Rokach, Lior. (2021). Evolving context-aware recommender systems with 

users in mind. Expert Systems with Applications. 189. 116042. 

10.1016/j.eswa.2021.116042.  

[18] S. Sae-Ueng, S. Pinyapong, A. Ogino and T. Kato, "Personalized Shopping 

Assistance Service at Ubiquitous Shop Space," 22nd International Conference on 

Advanced Information Networking and Applications - Workshops (aina workshops 

2008), 2008, pp. 838-843, doi: 10.1109/WAINA.2008.287. 

[19] R. Bulander, M. Decker, G. Schiefer and B. Kolmel, "Comparison of Different 

Approaches for Mobile Advertising," Second IEEE International Workshop on Mobile 

Commerce and Services, 2005, pp. 174-182, doi: 10.1109/WMCS.2005.8. 

22

Anonymous: Continual Learning System with Sentence Embeddings

Published by Technical Disclosure Commons, 2023



22

[20] Devlin, Jacob & Chang, Ming-Wei & Lee, Kenton & Toutanova, Kristina. (2018). 

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.  

[21] Minaee, Shervin & Kalchbrenner, Nal & Cambria, Erik & Nikzad Khasmakhi, 

Narjes & Asgari-Chenaghlu, Meysam & Gao, Jianfeng. (2021). Deep Learning--based 

Text Classification: A Comprehensive Review. ACM Computing Surveys. 54. 1-40. 

10.1145/3439726.  

[22] Reimers, Nils & Gurevych, Iryna. (2019). Sentence-BERT: Sentence Embeddings 

using Siamese BERT-Networks. 3973-3983. 10.18653/v1/D19-1410.  

[23] Conneau, Alexis & Kiela, Douwe & Schwenk, Holger & Barrault, Loïc & Bordes, 

Antoine. (2017). Supervised Learning of Universal Sentence Representations from 

Natural Language Inference Data.  

[24] MacCartney, Bill & Manning, Christopher. (2008). Modeling Semantic Containment 

and Exclusion in Natural Language Inference.. 1. 521-528. 10.3115/1599081.1599147.  

23

Defensive Publications Series, Art. 6452 [2023]

https://www.tdcommons.org/dpubs_series/6452


	Continual Learning System with Sentence Embeddings
	Recommended Citation

	/var/tmp/StampPDF/cIadNBgoik/tmp.1701054640.pdf.GgUW2

