
 

 
 

DISSERTATION APPROVAL FORM 
 

This dissertation is approved as a credible and independent investigation by a candidate for the Doctor of 

Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of 

this dissertation does not imply that the conclusions reached by the candidate are necessarily the conclusions 

of the major department or university. 

 

Student Name:          Student ID: _________________ 

 

Dissertation Title:  

 

_______________________________________________________________________________________ 

 

Graduate Office Verification: ______________________________             Date: _____________ 

 

 

Dissertation Chair/Co-Chair:      Date:     

Print Name: __________________________ 

 

Dissertation Chair/Co-Chair:      Date:     

Print Name: __________________________ 

 

Committee Member:       Date:     

Print Name: __________________________ 

 

Committee Member:       Date:     

Print Name: __________________________ 

 

Committee Member:       Date:     

Print Name: __________________________ 

 

Committee Member:       Date:     

Print Name: __________________________ 

 

 

 

 

 
Submit Form Through Docusign Only 

or to Office of Graduate Studies 

Dakota State University 

DocuSign Envelope ID: B86ADB42-8800-4487-92B3-15F0045D5B06

A00529475

A PERFORMANCE-EXPLAINABILITY-FAIRNESS FRAMEWORK FOR BENCHMARKING ML MODELS

Shuvro Chakrobartty

11/13/2023

El-Gayar, Omar

11/14/2023

Insu Park

11/14/2023

Dr. Deb Tech

11/14/2023



DAKOTA STATE UNIVERSITY 

A PERFORMANCE-EXPLAINABILITY-FAIRNESS 

FRAMEWORK FOR BENCHMARKING ML MODELS 

 

 

A doctoral dissertation submitted to Dakota State University in partial fulfillment of the 

requirements for the degree of 

 

Doctor of Philosophy 

 

in 

 

Information Systems 

 

October, 2023 

 

 

By 

Shuvro Chakrobartty 

 

 

Dissertation Committee: 

 

Dr. Omar El-Gayar 

Dr. Insu Park 

Dr. Deb Tech  



 ii 

DISSERTATION APPROVAL FORM 

We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope 

and quality as a dissertation for the degree of Master of Science in Information Systems. 

        

 

 

 

Student Name: Shuvro Chakrobartty        

 

Dissertation Title: A performance-explainability-fairness framework for benchmarking 

ML models 

 

Dissertation chair: Dr. Omar El-Gayar   Date:     

 

Committee member: Dr. Insu Park    Date:     

 

Committee member: Dr. Deb Tech    Date:     



 iii 

ACKNOWLEDGMENT 

I would like to express my sincere gratitude to all those who have contributed to the 

successful completion of my Ph.D. dissertation. 

First and foremost, I am deeply thankful to my advisor, Dr. Omar El-Gayar, for his 

unwavering guidance, invaluable insights, and unwavering support throughout this journey. His 

mentorship has been instrumental in shaping my research and academic growth. I am also indebted 

to the members of my dissertation committee, Dr. Deb Tech and Dr. Insu Park, for their 

constructive feedback, expertise, and dedication to ensuring the quality of my work. 

I extend my appreciation to my colleagues and peers for their stimulating discussions, 

encouragement, and camaraderie. Your diverse perspectives have enriched my research.  

I am grateful to my family for their love, encouragement, and belief in my abilities. Your 

unwavering support has been my pillar of strength. 

This dissertation would not have been possible without the collective efforts of all those 

mentioned above. Thank you for being an integral part of this academic journey. 

 



 iv 

ABSTRACT 

Machine learning (ML) models have achieved remarkable success in various applications; 

however, ensuring their robustness and fairness remains a critical challenge. In this research, we 

present a comprehensive framework designed to evaluate and benchmark ML models through the 

lenses of performance, explainability, and fairness. This framework addresses the increasing need 

for a holistic assessment of ML models, considering not only their predictive power but also their 

interpretability and equitable deployment. 

The proposed framework leverages a multi-faceted evaluation approach, integrating 

performance metrics with explainability and fairness assessments. Performance evaluation 

incorporates standard measures such as accuracy, precision, and recall, but extends to overall 

balanced error rate, overall area under the receiver operating characteristic (ROC) curve (AUC), 

to capture model behavior across different performance aspects. Explainability assessment 

employs state-of-the-art techniques to quantify the interpretability of model decisions, ensuring 

that model behavior can be understood and trusted by stakeholders. The fairness evaluation 

examines model predictions in terms of demographic parity, equalized odds, thereby addressing 

concerns of bias and discrimination in the deployment of ML systems. 

To demonstrate the practical utility of the framework, we apply it to a diverse set of ML 

algorithms across various functional domains, including finance, criminology, education, and 

healthcare prediction. The results showcase the importance of a balanced evaluation approach, 

revealing trade-offs between performance, explainability, and fairness that can inform model 

selection and deployment decisions. Furthermore, we provide insights into the analysis of trade-

offs in selecting the appropriate model for use cases where performance, interpretability and 

fairness are important. 

In summary, the Performance-Explainability-Fairness Framework offers a unified 

methodology for evaluating and benchmarking ML models, enabling practitioners and researchers 

to make informed decisions about model suitability and ensuring responsible and equitable AI 

deployment. We believe that this framework represents a crucial step towards building trustworthy 

and accountable ML systems in an era where AI plays an increasingly prominent role in decision-

making processes. 
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CHAPTER 1 

INTRODUCTION 

This chapter provides a comprehensive presentation of the research context, delineating 

the historical underpinnings of the research problem, clarifying the problem statement, and 

articulating the overarching research objectives. It starts with a detailed historical analysis of 

the research problem’s evolution, subsequently transitioning to an exploration of the pivotal 

elements that have contributed to the formulation of the research objectives. Ultimately, this 

chapter concludes in a concise overview of the document’s organizational structure and 

thematic progression. 

1.1 Background of the Problem 

Machine learning models have witnessed unparalleled success in a multitude of domains, 

transforming industries and driving innovation. They have been applied in diverse contexts, 

from healthcare diagnostics to autonomous vehicles, and have demonstrated remarkable 

capabilities in pattern recognition, prediction, and decision-making. However, alongside their 

proliferation, concerns regarding their performance, explainability, and fairness have become 

increasingly prominent. 

Performance Evaluation in ML Models: The assessment of ML model performance has 

historically focused on traditional metrics like accuracy, precision, recall, and F1-score. These 

metrics provide valuable insights into a model’s predictive capabilities. However, they may not 

adequately represent the real-world impact of a model’s decisions, especially when the 

consequences of false positives or false negatives are substantial (Provost & Fawcett, 2013). 

Performance-centric evaluation alone may fail to address concerns about model bias, fairness, 

and the ability of stakeholders to trust and interpret model outputs. 

Explainability and Interpretability: The opacity of many ML models, often referred to as the 

“black box” problem, has raised questions about their transparency and interpretability. 

Understanding why a model makes specific predictions is essential for building trust, especially 

in applications where decisions have significant consequences, such as medical diagnoses or 

autonomous vehicles. Recent advances in explainable AI (XAI) techniques have aimed to 
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illuminate the decision-making processes of complex models (Barredo Arrieta et al., 2020; 

Chakrobartty & El-Gayar, 2021; Guidotti et al., 2018; Gunning, 2017; Mohseni et al., 2018; 

Tjoa & Guan, 2020). These techniques include methods like Local Interpretable Model-

agnostic Explanations (LIME) (Ribeiro et al., 2016) and SHapley Additive exPlanations 

(SHAP) (Lundberg & Lee, 2017), which provide insights into model predictions and attribute 

them to input features. 

Fairness in ML Models: As ML models increasingly influence decisions in areas like lending, 

hiring, and criminal justice, concerns about fairness have come to the forefront. Biases present 

in training data can lead to discriminatory outcomes and perpetuate existing inequalities. 

Various fairness-aware ML methods and metrics have been developed to address these 

concerns, including demographic parity, equal opportunity, and disparate impact (Hardt et al., 

2016). Ensuring that ML models provide equitable predictions across different demographic 

groups is crucial for ethical AI deployment. 

While each of these dimensions—performance, explainability, and fairness—holds its 

own importance in assessing ML model quality and suitability for real-world applications, they 

have often been treated in isolation. Researchers and practitioners have faced challenges in 

navigating the trade-offs between these dimensions, as optimizing one aspect may inadvertently 

compromise another. 

In response to these challenges, this dissertation introduces a novel Performance-

Explainability-Fairness (PEF) framework for benchmarking ML models. The PEF framework 

aims to unify the evaluation of ML models by considering performance, explainability, and 

fairness in an integrated manner. It provides a holistic view of model quality, allowing 

stakeholders to make informed decisions about model selection, deployment, and monitoring 

while addressing ethical and transparency concerns. This research builds upon the growing 

body of work in the fields of performance evaluation, explainable AI, and fairness-aware 

machine learning, aiming to bridge the gap between these critical dimensions and promote 

responsible and equitable AI development and deployment practices. 

1.2 Statement of the problem 

The rapid proliferation of ML models across diverse domains has ushered in an era of 

unprecedented automation and data-driven decision-making. While ML models have exhibited 
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remarkable predictive capabilities, the inherent complexity of these models poses multifaceted 

challenges, particularly concerning their performance, explainability, and fairness. These 

challenges underscore the need for a unified framework that can comprehensively assess ML 

models along these critical dimensions. 

Performance Evaluation Challenges: The predominant focus on traditional performance 

metrics like accuracy, precision, and recall often overlooks nuances that impact model 

suitability. Such metrics may not adequately account for false positives or false negatives' real-

world consequences, leading to suboptimal decision-making outcomes. Additionally, 

performance-centric evaluations do not address issues of model bias, which can have profound 

ethical and societal implications. Consequently, there is a growing demand for an evaluation 

framework that extends beyond conventional performance metrics and considers broader 

implications (Provost & Fawcett, 2013). 

Explainability and Transparency Deficits: The opacity of many state-of-the-art ML models, 

including deep neural networks, has given rise to concerns about their interpretability. 

Stakeholders often require insights into why a model makes specific predictions, especially in 

contexts where model decisions have substantial consequences. While the field of eXplainable 

AI (XAI) has made significant progress in developing techniques for model interpretability, the 

integration of explainability into the broader evaluation of ML models remains a challenge. A 

framework is needed to systematically incorporate explainability assessments into model 

benchmarking. 

Fairness and Bias Mitigation Imperatives: ML models are increasingly being deployed in 

applications that directly impact individuals and communities, such as lending, hiring, and 

criminal justice. Concerns about fairness and bias have escalated as biases present in training 

data can lead to discriminatory outcomes, perpetuating existing disparities and inequities. 

Fairness-aware ML methods and metrics have been proposed to address these concerns (Hardt 

et al., 2016). However, there is a lack of standardized approaches for integrating fairness 

evaluations into the overall assessment of ML models. This lack of a systematic approach 

inhibits the development of responsible AI systems. 

Addressing these challenges requires a holistic framework that combines performance, 

explainability, and fairness evaluations into a unified benchmarking approach. Such a 

framework would enable practitioners, researchers, and policymakers to make informed 
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decisions about the selection, deployment, and ongoing monitoring of ML models while 

adhering to ethical and regulatory considerations. 

1.3 Objectives of the dissertation 

The primary objective of this dissertation is to address the pressing need for a 

comprehensive and unified methodology to evaluate and benchmark ML models. The 

overarching aim is to develop, validate, and demonstrate the effectiveness of a novel 

Performance-Explainability-Fairness framework that seamlessly integrates these three critical 

dimensions into a cohesive evaluation process for benchmarking ML models. Following are the 

specific outcome and deliverables of this dissertation. 

Develop a Comprehensive PEF Framework: The dissertation will begin by laying the 

foundation for a Performance-Explainability-Fairness framework that extends beyond 

traditional performance metrics. The framework will encompass a wide range of evaluation 

techniques that account for model accuracy, precision, recall, F1-score, as well as more nuanced 

performance aspects such as overall balanced error rate, overall AUC. Drawing from recent 

advances in explainable AI, the dissertation will also incorporate state-of-the-art techniques for 

assessing model explainability and transparency (Fauvel et al., 2020). Furthermore, it will focus 

on fairness-aware ML methods and metrics (Hardt et al., 2016) to enable a holistic evaluation 

that identifies and mitigates potential biases within ML models. 

Validation and Comparative Analysis: The dissertation will rigorously validate the proposed 

PEF framework across diverse domains and ML model types. It will include benchmarking 

against traditional performance-centric approaches to highlight the enhanced insights provided 

by the comprehensive evaluation. The validation process will emphasize real-world 

applications of finance, criminology, education, and healthcare prediction, to showcase the 

framework’s utility and generalizability. 

Trade-off Analysis and Model Selection Process: The dissertation offer perspectives on 

examining the trade-offs among performance, explainability, and fairness in machine learning 

models. By systematically analyzing these trade-offs, the research will showcase to 

practitioners and researchers on selecting models that align with specific use cases and ethical 

considerations. It will empower decision-makers with the tools to make informed choices 

regarding model deployment and to strike a balance between different evaluation dimensions. 
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Contributions to Responsible AI Deployment: The dissertation seeks to contribute 

significantly to the ongoing discourse on responsible AI development and deployment. It aims 

to provide a practical and versatile framework that promotes ethical, transparent, and unbiased 

use of ML models in high-stakes applications. By addressing the challenges associated with 

model performance, explainability, and fairness in a unified manner, the research endeavors to 

foster trust and accountability in AI systems. 

Through rigorous research, comprehensive validation, and practical insights, this 

dissertation aspires to advance the field of ML model evaluation, offering a holistic and 

actionable approach that promotes the responsible, transparent, and equitable use of AI in 

decision-making processes. 

1.4 Structure of the Dissertation 

This dissertation adheres to a structured organizational framework. Chapter 2 initiates 

with an extensive exploration of the theoretical background and a comprehensive review of 

relevant literature. Chapter 3 elaborates on the research methodology that forms the foundation 

of this dissertation, with particular emphasis on the application of the design science research 

methodology, alongside an explanation of the guidelines outlined by Peffers et al. (2007). 

Chapter 4 dedicates careful attention to explaining the intricate details of the performance-

explainability-fairness framework, which represents one of the central design artifacts within 

the scope of this study. Additionally, it includes a case study demonstration. Following this, 

Chapter 5 provides an in-depth discussion of the evaluation processes employed in this study. 

The findings are carefully examined and discussed in Chapter 6. The conclusion of this 

dissertation is provided by Chapter 7, which summarizes the contributions made, outlines the 

implications, acknowledges limits, and outlines potential directions for ongoing research in this 

area. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

ML models have become indispensable in solving complex real-world problems across 

various domains. Their widespread adoption has led to the development of numerous ML 

algorithms and models, each with its own strengths and limitations. Consequently, evaluating 

and benchmarking these models is crucial to ensure their effectiveness and reliability in 

practical applications. This literature review examines the key components of the dissertation’s 

title: performance, explainability, and fairness, to establish the foundation for the proposed 

Performance-Explainability-Fairness framework for benchmarking ML models. 

2.2 Performance Evaluation in ML Models 

Assessing the performance of ML models is a fundamental aspect of model 

benchmarking. The assessment of a machine learning technique’s performance relies on its 

ability to accurately predict outcomes for instances it hasn't encountered before. The choice of 

performance metrics plays a critical role in this evaluation. Typical metrics comprise accuracy, 

precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-

ROC) (Davis & Goadrich, 2006; Powers, 2020). Nevertheless, the choice of appropriate metrics 

depends on the specific characteristics of the problem at hand. As an example, in medical 

diagnosis, sensitivity and specificity may be more relevant (Shreffler & Huecker, 2022) while 

mean squared error (MSE) and R-squared are commonly used for regression tasks predicting a 

numeric outcome (Kuhn & Johnson, 2013). 

While these metrics provide valuable insights into a model’s performance, they may not 

always be sufficient. ML models often face challenges such as class imbalance, noisy data, and 

skewed distributions, which can bias results. Researchers have proposed methods to address 

these issues, such as Synthetic Minority Oversampling Technique (SMOTE) and other 

advanced sampling techniques (Guo et al., 2008; Hasib et al., 2020) and advanced evaluation 

techniques like precision-recall curves (Davis & Goadrich, 2006).  
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Furthermore, Gunning and Aha (2019) have highlighted an inherent tension that resides 

within the domain of machine learning, specifically concerning the trade-off between ML 

performance metrics, notably predictive accuracy, and explainability. It is often observed that 

the methodologies exhibiting the highest levels of performance, exemplified by Deep Learning 

(DL) techniques, tend to exhibit relatively lower levels of explainability. Conversely, methods 

renowned for their explainability, such as decision trees, frequently exhibit diminished 

predictive accuracy (Gunning & Aha, 2019). In contexts of critical decision-making, such as 

those prevalent within the medical domain, neither of these attributes can be afforded 

precedence over the other. As a response to this intricate challenge, researchers have sought to 

reconcile this tension by endeavoring to create a harmonious and balanced system. Such 

systems aim to optimize for both characteristics concurrently, with a particular focus on its 

application in the identification of patients at elevated risk of mortality (Kanda et al., 2020). 

2.3 Model Explainability 

The concept of explainable AI is not novel, as it finds its roots in the expert systems of 

the 1980s, where reasoning architectures were employed to facilitate an explanatory function 

within intricate AI systems (Holzinger, 2018). In expert system-based AI, the process typically 

begins with the codification of human knowledge, followed by the utilization of an inference 

engine to furnish expert decisions to non-expert users through a designated interface (London, 

2019). Such systems are inherently designed to be explainable, given that the inference engine 

adheres to predetermined rules to arrive at decisions. However, it is noteworthy that while the 

initial AI systems boasted a high degree of interpretability, recent years have witnessed the 

dominance of opaque or “black-box” decision systems, exemplified by Deep Neural Networks 

(DNNs) (Barredo Arrieta et al., 2020).  These black-box approaches, by their very nature, lack 

transparency, and consequently, they do not foster the trust and acceptance of machine learning 

methodologies among end-users (Holzinger et al., 2017). Conversely, transparency represents 

the antithesis of black-box opacity, signifying a clear and direct comprehension of the 

underlying mechanisms guiding a model as it deliberates upon and formulates decisions 

(Barredo Arrieta et al., 2020). 
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As ML models are increasingly deployed in sensitive domains like healthcare and 

finance, the need for model explainability has gained prominence. Model explainability refers 

to the ability to understand and interpret the decisions made by a ML model. Lack of 

transparency in ML models can lead to mistrust and legal or ethical concerns. 

Explainability methods can be broadly categorized into model-specific and model-

agnostic techniques. Model-specific methods, such as decision trees and linear regression, 

provide inherently interpretable models (Molnar, 2020). In contrast, model-agnostic methods, 

like LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017), can explain the decisions 

of any ML model by approximating its behavior. 

Furthermore, post hoc explainability methods aim to generate explanations after the 

model has made predictions, while intrinsic explainability methods build interpretability into 

the model’s architecture (Chen et al., 2018). Post hoc explainability methods are designed with 

the objective of producing comprehensible and insightful explanations after a machine learning 

model has made its predictions. These methods play a crucial role in bridging the gap between 

the complex, often opaque inner workings of modern machine learning models and the need for 

transparency and interpretability in decision-making processes. Post hoc explainability allow 

us to dissect and understand the rationale behind a model’s predictions, shedding light on why 

a certain decision was made. This retrospective approach is particularly valuable in real-world 

applications, where decision-makers, such as doctors, policymakers, or business analysts, 

require not only accurate predictions but also the ability to justify those predictions and trust 

the underlying model. Post hoc explainability methods encompass various techniques, ranging 

from feature importance analysis and saliency maps to generating human-readable textual or 

visual explanations. In doing so, they empower users to gain insights into model behavior, 

detect potential biases, identify influential features, and, ultimately, enhance model 

performance and fairness while building trust with stakeholders. Explainability, therefore, 

constitutes a critical dimension of benchmarking, ensuring that models are not just accurate but 

also transparent and understandable. 

2.4 Fairness in Machine Learning 

Fairness represents a deeply cherished human value that plays a pivotal role in shaping 

the outcomes of various everyday decisions that have a significant impact on human lives. In 
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recent years, the proliferation of successful applications of AI systems has become increasingly 

prominent. Notably, AI methodologies are progressively integrated into a multitude of new 

applications designed for decision-making tasks that were historically the authority of human 

agents. This transition has given rise to a series of fundamental inquiries. First, there is the 

question of the trustworthiness of AI-driven decisions. Second, concerns emerge regarding the 

inherent fairness of these decisions. Collectively, these concerns raise the broader issue of 

whether AI-based systems are contributing to equitable decision-making or potentially 

exacerbating societal disparities. Within academic discourse, it is evident that a universally 

accepted definition of fairness remains elusive. Consequently, the determination of fairness 

metrics for any given ML model is contingent upon the specific contextual nuances of each 

situation (Mehrabi et al., 2021; Verma & Rubin, 2018). This lack of consensus can be attributed 

to the inherent complexity of defining fairness, compounded by the fact that stakeholders often 

hold divergent perspectives on what constitutes a “fair” decision across different domains of 

life. Moreover, a determination of fairness is highly context-dependent, with an outcome 

deemed equitable in one context potentially appearing inequitable in another. Nevertheless, in 

the realm of decision-making, fairness is typically construed as the absence of any form of bias 

or preferential treatment directed toward an individual or group predicated upon their intrinsic 

or acquired attributes (Makhlouf et al., 2021).  

The issue of fairness in ML has gotten significant attention in recent years (Chakrobartty 

& El-Gayar, 2023). Biases in training data or the modeling process can lead to unfair or 

discriminatory outcomes, reinforcing existing social inequalities. To address this concern, 

various fairness definitions and metrics have been proposed. Notable among them are disparate 

impact (Zafar et al., 2017), equal opportunity (Hardt et al., 2016), and demographic parity 

(Dwork et al., 2012). 

Furthermore, numerous algorithms have been developed to mitigate bias in ML models, 

such as adversarial debiasing (Zhang et al., 2018) and reweighting the training data (Kamishima 

et al., 2011). Benchmarking fairness in ML models necessitates the incorporation of these 

fairness metrics and evaluation methods into the assessment process. 
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2.5 Integrating Performance, Explainability, and Fairness 

While each of these dimensions—performance, explainability, and fairness—is vital on 

its own, there is an increasing recognition that they are interrelated. A highly accurate model 

might not be fair, and an interpretable model might not have the best performance. Balancing 

these aspects is essential, and this balance varies depending on the application context. 

Recent work has started to explore the trade-offs between these dimensions. In this 

context, Fauvel et al. (2020) have advanced an analytical framework that centers on the 

assessment of performance and explainability within the context of machine learning  

algorithms. Their framework introduces a structured set of characteristics that serve to 

systematize the evaluation and benchmarking of ML algorithms in relation to their performance 

and explainability. Furthermore, Naylor et al. (2021) have introduced a distinct framework 

tailored to the assessment of the boundary delineating a model’s predictive performance from 

the quality of the explanations it provides.  

MLPerf (Mattson et al., 2020; Reddi et al., 2021) is a widely recognized benchmark suite 

designed to evaluate the performance of machine learning systems across various tasks and 

hardware platforms. It covers a broad spectrum of ML workloads, including image 

classification, object detection, natural language processing, recommendation systems, and 

more. MLPerf aims to provide a standardized framework for comparing the computational 

efficiency and speed of ML models, thus fostering healthy competition and innovation within 

the field. However, it’s essential to note that MLPerf primarily focuses on ML models runtime 

performance metrics, such as throughput and latency, and does not directly address the critical 

dimensions of model accuracy, explainability and fairness in machine learning. While runtime 

performance is undeniably crucial, issues related to model accuracy, transparency and the 

mitigation of algorithmic biases are equally vital in real-world applications. These aspects are 

not within the scope of MLPerf’s evaluation, making it essential for practitioners and 

researchers to complement these benchmarking efforts with dedicated assessments of 

explainability and fairness to ensure the responsible and ethical deployment of ML systems. 

Therefore, it is noteworthy that there exists a discernible gap within the existing scholarly 

literature concerning the adaptability of these frameworks to different classifier types, as well 

as their capacity to incorporate considerations of fairness alongside performance and 

explainability when benchmarking ML algorithms for suitability within specific usage 
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scenarios. Thus, our research endeavors to enhance and augment Fauvel et al.’s framework by 

incorporating characteristics associated with AI fairness. This augmentation extends the 

applicability of the framework, rendering it comprehensive for the benchmarking of ML 

algorithms in contexts where the algorithm’s fairness constitutes a pivotal criterion for 

evaluation. 

Benchmarking frameworks that integrate performance, explainability, and fairness can 

help practitioners make informed decisions about model selection, deployment, and tuning 

based on their specific requirements. 

2.6 Chapter Summary 

This literature review has provided a comprehensive overview of the key components of 

the dissertation’s title: performance, explainability, and fairness in machine learning model 

benchmarking. Evaluating ML models goes beyond accuracy alone and encompasses 

understanding their inner workings (explainability) and ensuring equitable outcomes (fairness). 

The following chapter 4 will propose a Performance-Explainability-Fairness Framework for 

Benchmarking ML Models that synthesizes these dimensions into a unified benchmarking 

approach, building upon the rich body of research and methodologies discussed in this review. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

This chapter outlines the research methodology employed in our study. Since the 

objective of this research is to construct a framework for benchmarking ML models, we have 

chosen a design science research methodology for this research. 

3.1 Design Science Research 

Design Science Research (DSR) constitutes a contemporary research methodology 

dedicated to the resolution of complex problems with the ultimate objective of generating 

transformative change. The design science paradigm is characterized by its overarching 

aspiration to expand the horizons of human and organizational capabilities through the 

conception and realization of novel and innovative artifacts (Hevner et al., 2004). This 

methodological approach assumes significance due to the inherent limitations of the natural 

science method, which primarily focuses on the observation, analysis, and explication of 

existing phenomena. In contrast, the creation of artifacts or the development of theoretical 

constructs pertinent to artificial systems is beyond the purview of natural science. Within the 

design-science paradigm, the pursuit of knowledge and comprehension pertaining to a specific 

problem domain and its potential solutions becomes intrinsically intertwined with the iterative 

process of conceiving, constructing, and applying the designed artifact (Hevner et al., 2004).  

This integration of knowledge creation and practical application underscores the 

distinctive character and relevance of DSR as a research methodology. Also, the dual mandate 

of the DSR is outlined by (Baskerville et al., 2015): first, to use the knowledge acquired to solve 

problems, bring about change, or improve current solutions; second, to produce new 

knowledge, insights, and theoretical explanations. Therefore, unlike traditional research 

approaches that primarily aim to explain phenomena or develop theories, design science 

research is driven by the need to design, build, and evaluate practical solutions. In the context 

of our dissertation, the problem we are addressing is the lack of a comprehensive and integrated 

framework for benchmarking ML models across multiple dimensions, including performance, 
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explainability, and fairness. To tackle this problem effectively, we have adopted the design 

science research methodology. 

We use the Design Science Research Methodology (DSRM) process described by Peffers 

et al. (2007) to guide our research. The diagram in Figure 1 describes the various components 

of the process model. 

 

Figure 1. Design Science Research Methodology (DSRM) process 

3.2 Problem Identification and Motivation 

This research has an objective-centered initiation, so we motivate our research by 

identifying the gaps in the current ML model benchmarking approaches. The literature doesn’t 

offer a more generic and complete framework for benchmarking ML models. Fauvel et al. 

(2020) introduced an analytical framework focused on the evaluation and benchmarking of ML 

methods with regard to their performance and explainability. This framework is designed to 

systematize the assessment of performance-explainability characteristics through the 

incorporation of a structured set of attributes. However, there is a gap and limitations of the 

existing framework that are summarized below. 

▪ Fauvel et al. (2020) framework doesn’t include fairness characteristics that are very 

important for many ML models. Without a greater understanding and performance on 

the fairness scale, some models may not be deployed in the real world because of their 

concerns with compliance and ethical issues. 
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▪ Fauvel’s framework was evaluated on a specific class of Multivariate Time Series  

Classifiers ML model, and there are opportunities to expand the proposed framework to 

evaluate with other classification problems.  

3.3 Define Objectives of the Solution 

In Chapter 1, section titled as “Objectives of the dissertation,” we have defined the 

objectives for building a comprehensive framework for evaluating ML models that includes 

performance, explainability, and fairness dimensions as well as specific outcome and 

deliverables. The objectives of the solution are as follows: 

▪ We lay the foundation for a Performance-Explainability-Fairness framework that 

extends beyond traditional performance metrics. 

▪ We rigorously validate the proposed PEF framework across diverse domains and ML 

algorithms. 

▪ We offer perspectives on examining the trade-offs among performance, 

explainability, and fairness in machine learning models. 

▪ We seek to contribute significantly to the ongoing discourse on responsible AI 

development and deployment. 

3.4 Design and Development 

The proposed artifact of this research is a framework for benchmarking ML models. 

Chapter 4 have demonstrated design of the proposed framework with relevant characteristics. 

It also demonstrated the implementation of the framework with a proof-of-concept case study 

demonstration as well as the evaluation with both internal and external validation process. The 

subsequent process in Figure 2 is employed to benchmark the models within each domain. 
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Figure 2. Model benchmarking process 

3.5 Demonstration 

To show how the proposed framework meet ML benchmarking, we demonstrate the 

research result by building a proof-of-concept implementation case study with a loan decision 

binary classification problem using the UCI Credit-card default dataset (Yeh, 2016).  

3.6 Evaluation 

The evaluation of the proposed framework is conducted systematically, following a 

comprehensive and structured approach. This multifaceted evaluation process is crucial to 

assess the effectiveness, applicability, and robustness of the Performance-Explainability-

Fairness framework in the context of benchmarking ML models. The evaluation is executed in 

the following two distinct yet interconnected steps: 
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3.6.1 Internal Validation and Fine-Tuning 

In this initial phase of evaluation, the primary focus is on the internal validation and fine-

tuning of the PEF framework. The objectives of this step include: 

▪ Validation of Framework Components: We rigorously assess the individual 

components of the PEF framework, including performance metrics, explainability 

techniques, and fairness measures. This involves evaluating the accuracy, reliability, 

and effectiveness of these components. 

▪ Integration Testing: We examine how well the various components of the framework 

integrate and function together as a cohesive unit. This step ensures that the framework 

operates smoothly and consistently across different ML models and datasets. 

▪ Fine-Tuning Model Constraints: To optimize the framework’s performance, we fine-

tune its parameters for both performance and fairness constraints, as well as the 

explainability. This fine-tuning process aims to enhance the framework’s adaptability 

to diverse scenarios with diverse model assessment parameters for performance and 

fairness. 

The internal validation and fine-tuning phase serve as a crucial foundation for the 

subsequent external validation, ensuring that the framework is robust and ready for real-world 

testing. 

3.6.2 External Validation and Application 

Building upon the insights gained from the internal validation, the external validation and 

application phase is designed to assess the PEF framework’s performance in real-world 

scenarios. This phase encompasses the following key elements: 

▪ Application to Diverse Domains: We apply the PEF framework to diverse domains 

and use cases with binary classification problems from four domains dataset including 

healthcare, finance, education, and criminology. This step demonstrates the 

framework’s versatility and adaptability to different contexts. 

▪ Benchmarking Against Existing Approaches: We conduct comparative 

benchmarking assessments, wherein we explore the comprehensiveness, effectiveness, 

advantages, and limitations of the PEF framework. This methodology provides us with 

the opportunity to explain the framework’s comparative advantage in delivering 
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exhaustive insights pertaining to the performance, explainability, and fairness aspects 

of machine learning models. 

▪ Conduct Survey based Assessment with ML Practitioners: We conduct a qualitative 

study with machine learning practitioners using a survey questionnaire. In this study, 

ML practitioners assess the efficacy of the proposed framework. The survey consists of 

multiple questions that involve comprehensive assessments of the framework’s 

efficacy. 

Through these external validation steps, we aim to demonstrate the PEF framework’s 

real-world value, highlighting its potential to empower organizations and practitioners to make 

informed decisions about ML model selection and deployment while ensuring transparency and 

fairness. 

3.7 Communication 

As ongoing and iterative research, various milestones of the research have been 

considered for communication through various publication outlets. We have published and 

presented in the AMCIS 2022 Conference. The title of the paper is “Towards a Performance-

explainability-fairness Framework for Benchmarking ML Models” (Chakrobartty & El-Gayar, 

2022). 

3.8 Chapter Summary 

In summation, this chapter explored the design science research, explaining its 

fundamental tenets, and showcasing its relevance and application to formulate the Performance-

Explainability-Fairness framework for benchmarking machine learning models. By following 

an iterative process of design, build, and evaluation, we’ve introduced a practical solution. This 

solution is specifically tailored to tackle the complex challenges associated with model 

benchmarking in the era of AI and ML. Moreover, it places a significant emphasis on addressing 

fairness-related aspects within the framework. In the ever-evolving landscape of research 

methodologies, design science research stands resolute as a valuable compass, guiding us 

towards innovative solutions and practical insights, thereby helping us advance knowledge. 
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CHAPTER 4 

FRAMEWORK AND DEMONSTRATION 

This study introduces an extended framework termed the “Performance-Explainability-

Fairness Framework,” as outlined in Table 1 and Table 2. The foundation of this framework 

draws from the work presented by Fauvel et al. (2020). The primary objective of this framework 

is to address a multitude of inquiries that may be posed by an end-user when making informed 

decisions based on recommendations generated by a machine learning model.  

4.1 Performance-Explainability-Fairness Framework 

The framework encompasses a set of evaluation characteristics, corresponding questions, 

and assessment values, all of which are carefully detailed in Table 1 for performance and 

explainability dimensions. Concerning the aspect of explainability, it is pertinent to note that 

Fauvel et al.’s position their framework as an extension of the fourth phase within the systematic 

method explained by Hall et al. (2019). Furthermore, Fauvel et al.’s (2020) framework  

encompasses a collection of explanatory characteristics, which are presented in Table 1, 

designed to structure the evaluation of ML models. It is noteworthy that this framework does 

not encompass application-specific implementation constraints such as considerations related 

to time, memory utilization, and privacy (Fauvel et al., 2020). The evaluation characteristics of 

the Fauvel et al.’s framework is succinctly summarized in Table 1. 

Table 1. Characteristics for the performance-explainability analytical framework 

Evaluation 

Characteristics 

Question Assessment Answer Values 

Performance “What is the level of performance of the model?”  Best, Similar, Below 

Comprehensibility “Is the model comprehensible?” Black-box, White-box 

Granularity “Is it possible to get an explanation for a particular instance?” Local, Global, Global & Local 

Information type “Which kind of information does the explanation provide?” Importance, Patterns, Causal 

Faithfulness “Can we trust the explanations?” Imperfect, Perfect 

User category “What is the target user category of the explanations?” Domain Expert, ML Expert, 

Broad Audience 

Here we discuss more about each of these characteristics and their assessment answer values. 
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4.1.1 Performance 

With this characteristic the framework assesses machine learning model performance by 

considering various metrics such as accuracy, F-measure, and Area Under the ROC Curve. 

However, there’s no consensus on an evaluation procedure for this aspect. The framework 

introduces a performance component as the initial step towards standardizing the assessment of 

machine learning models, evaluating their relative performance in specific applications. It 

categorizes performance into three levels:  

▪ Best: representing the top-performing model in a given application.  

Similar: referring to models that demonstrate performance comparable to the top-

performing model but are ranked second based on the same evaluation setting. This 

designation includes all models that do not display a statistically significant difference 

in performance compared to the second-ranked model under the same evaluation 

setting; and  

▪ Below: denoting models performing less effectively than the state-of-the-art models 

under the same evaluation conditions. 

4.1.2 Comprehensibility 

This characteristic explores model comprehensibility, which relates to a user’s ability to 

understand how a model functions and makes predictions. Comprehensibility is closely tied to 

model complexity, but there’s no consensus on how to assess it. Models are generally 

categorized as “white-box,” which are easy to understand, or “black-box,” which are complex 

and harder to comprehend. Examples of “white-box” models include rule-based models and 

decision trees, while ensemble methods and deep learning models fall into the “black-box” 

category. However, not all rule-based models or decision trees are necessarily easy to 

understand, as human cognitive limitations impose constraints on the complexity of models that 

can be comprehended.  

▪ Black-Box: models that are complicated-to-understand. 

▪ White-Box: models that are easy-to-understand. 

The framework distinguishes between “white-box” and “black-box” models from a 

comprehensibility perspective. 
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4.1.3 Granularity 

This characteristic discusses the availability of explanations for specific instances in 

machine learning models, emphasizing the granularity of these explanations. Typically, two 

levels are recognized: global and local explanations. Global explanations pertain to the model’s 

overall behavior across the entire dataset, while local explanations provide insights into a 

particular prediction. Certain methods offer either global or local explanations exclusively, 

while others, such as decision trees, can provide both types of explanations. Therefore, 

following three categories of granularity is used for evaluating granularity characteristic. 

▪ Global: global explainability. 

▪ Local: local explainability. 

▪ Global & Local: both global and local explainability. 

4.1.4 Information type 

This characteristic explores the type of information conveyed by explanations in machine 

learning. The most valuable information aligns closely with human reasoning, encompassing 

causal and counterfactual rules. Causal rules can clarify that specific observed variables cause 

particular model predictions. However, machine learning typically relies on statistical 

associations within data and doesn’t probe into causal relationships among observed and 

unobserved variables. These associations vary depending on the machine learning task. 

Therefore, a generic assessment of information type, categorized from least to most informative 

is used as described below:  

▪ Importance: which reveals the relative importance of each dataset attribute. 

▪ Patterns: which provides predefined semantic conjunctions associated with 

predictions; and the most informative. 

▪ Causal: which presents explanations in the form of causal rules. 

4.1.5 Faithfulness 

This characteristic examines the trustworthiness of explanations provided by machine 

learning models. Trust, in this context, pertains to the extent to which end-users can rely on 

these explanations, i.e., how closely they relate to what the model actually computes. 

Explanations derived directly from the original model are inherently trustworthy. However, 
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some post-hoc explanation methods attempt to approximate the “black-box” model’s behavior 

with a more explainable surrogate model. These surrogate models may not perfectly mirror the 

original model’s behavior, introducing questions about their faithfulness. The fidelity criteria 

are used to measure the faithfulness by assessing how closely the surrogate model imitates the 

predictions of the original model. An assessment of faithfulness in two categories are used as 

outlined below. 

▪ Imperfect: imperfect faithfulness (use of an explainable surrogate model). 

▪ Perfect: perfect faithfulness. 

4.1.6 User category 

This characteristic digs into the target user category for explanations in machine learning. 

It emphasizes that the accessibility of explanations depends on the user’s background and 

experience, as it influences how they organize information. To enhance explanation 

accessibility, it’s important to categorize user types and determine which users will have access 

to the explanations. The broader the audience that can understand the explanations, the more 

effective they are. Consequently, the assessment proposed in the text encompasses three 

categories. 

▪ Machine Learning Expert: who build the ML models. 

▪ Domain Expert: domain experts (e.g., professionals, researchers) 

▪ Broad Audience: non-domain experts (e.g., policy makers). 

In an extension of the existing framework  (Chakrobartty & El-Gayar, 2022) presented in 

Table 2, this study augments the framework originally proposed by Fauvel et al (Fauvel et al., 

2020). The augmentative aspect of this extended framework is particularly dedicated to the 

assessment of fairness concerning ML models. 

Table 2. Extended characteristics of the PEF analytical framework 

Evaluation 

Characteristics 

Question Assessment Answer Values 

Fairness Context For whom is it fair? Is it fair for individual or group/sub-group 

or both? 

Individual, Group, Subgroup, 

Both (individual, group), All 

Fairness What is the level of fairness of the model? Best, Similar, Below 

Within this expanded framework, specific evaluation characteristics are introduced, which are 

designed to provide insights into the fairness considerations associated with the ML model. 
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4.1.7 Fairness Context 

In essence, this characteristic aim to address the fundamental question of "for whom is it 

fair?" The identification of the fairness context assumes significant importance due to the 

nuanced nature of fairness assessments. It is noteworthy that while statistical parity-based group 

fairness endeavors to equalize outcomes between protected and non-protected groups, the 

resultant outcomes may still exhibit substantial unfairness when viewed from the perspective 

of an individual (Dwork et al., 2012). This acknowledgment underscores the intricacies and 

multifaceted dimensions inherent in fairness evaluations within the context of ML models. 

Furthermore, as articulated by Kearns et al. (2017), it is imperative to recognize that in 

the context of group fairness, a classifier may convey an impression of fairness when evaluated 

individually for each distinct group. However, despite such individual assessments, the 

classifier may still exhibit significant deviations from fairness criteria when scrutinized within 

the context of one or more structured subgroups. These structured subgroups are specifically 

constituted by unique combinations of protected attribute values encompassing all the protected 

attributes under consideration. In the pursuit of a comprehensive fairness evaluation, this study 

identifies various dimensions of fairness, including individual fairness, group fairness (Speicher 

et al., 2018), sub-group fairness (Kearns et al., 2017, 2019), and a synthesis of these dimensions. 

This multifaceted approach is instrumental in capturing and evaluating the manifold fairness 

considerations inherent in the model under assessment. 

▪ Individual fairness: Individual fairness is a critical facet of fairness in machine learning 

and artificial intelligence systems. Individual fairness looks at fairness on a case-by-

case basis, emphasizing the treatment of similar individuals. It implies that similar 

individuals, as defined by specific features, should receive similar outcomes or 

predictions from a model (Dwork et al., 2012). 

▪ Group fairness: Group fairness, on the other hand, focuses on fairness at the group 

level. It entails that different demographic groups, such as gender, race, or age, should 

be treated equitably by the model, reducing the potential for bias and discrimination at 

a larger scale (Speicher et al., 2018). 

▪ Sub-group fairness: Sub-group fairness probes deeper into group fairness by 

examining fairness within specific sub-groups defined by the intersection of multiple 

attributes or features. This approach ensures fairness not only among broad 
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demographic groups but also among more nuanced sub-populations, contributing to a 

more comprehensive and nuanced assessment of fairness in machine learning models. 

Achieving fairness across all these levels is essential to building equitable and 

trustworthy AI systems (Kearns et al., 2017, 2019). 

4.1.8 Fairness 

The characteristic associated with fairness evaluation serve the purpose of determining 

the extent or degree of fairness exhibited by the ML model under examination - what is the 

level of fairness of the model? It is noteworthy that a multitude of fairness concepts and notions 

have been developed to facilitate the assessment of an ML model’s fairness. Heidari et al. 

(2019) offer an insightful interpretation wherein they map preexisting conceptions of 

algorithmic fairness, particularly within the domain of binary classification, as specific 

instances of the Equality of Opportunity (EOP) principle derived from economic models. 

Additionally, Speicher et al. (2018) contribute by delineating various fairness notions along 

with their corresponding fairness conditions for evaluating the fairness of an ML model. It is 

important to note, however, that a consensus has yet to emerge within the academic discourse 

pertaining to a standardized evaluation methodology for discerning the fairness exhibited by an 

ML model. This absence of a universally accepted evaluation technique underscores the 

ongoing debate and the complex nature of fairness assessment in the context of ML models. 

The selection of an appropriate metric for assessing the fairness of an ML model is 

contingent upon the specific application in question. The choice of a metric is made with careful 

consideration of its alignment with the intended objectives of the experiments conducted within 

that application. This approach ensures that the fairness assessment is tailored to the unique 

requirements of each application, thereby precluding direct comparisons of fairness between 

ML models across divergent applications. It is essential to underscore that the assessment of 

fairness is inherently relative and context-specific, indicative of a model’s fairness concerning 

a particular application. Furthermore, this relative assessment extends to the comparison of 

models against a designated top-ranked model within a given application and evaluation 

scenario. This conceptual framework facilitates the classification of models with respect to their 

fairness attributes, specifically within the context of application and evaluation. Notably, the 

fairness component affords the ability to compile a roster of models that have surpassed the 
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performance of current state-of-the-art top-ranked models within their respective applications, 

particularly in scenarios encompassing diverse applications characterized by similar ML 

challenges. Consequently, this approach identifies specific models that may warrant 

consideration for evaluation in novel applications. However, it is imperative to acknowledge 

that the superior performance of these models within their original applications does not 

guarantee analogous performance within new and distinct application domains. Building upon 

the foundational work of Fauvel et al. (2020), this study proposes a classification of fairness 

into three distinct categories: 

▪ Best: representing the leading fair model in a given application, i.e., it ensures the 

highest degree of fairness. It refers to the fairness of the top-ranked model on the 

application based on evaluation setting such as models, fairness evaluation methods, 

and datasets. 

Similar: indicating models with fairness similar to the leading fair model, but of second 

ranked based on the same evaluation setting. It refers to all the models which don’t 

exhibit a statistically significant fairness difference from the second-ranked model 

under the same evaluation setting; and 

Below: fairness is lower than the state-of-the-art models. Given the same evaluation 

setting, it refers to the fairness rank of the remaining models.  

4.2 Case Study Demonstration 

In order to illustrate the practical applicability of our framework, we provide a detailed 

case study utilizing a dataset from the finance domain. This case study serves as a concrete 

example of how our framework can be employed to assess and benchmark machine learning 

models in real-world scenarios. By applying our methodology to this finance dataset, we 

showcase its versatility and effectiveness in promoting transparency, fairness, and improved 

model performance in a domain where these  aspects are of paramount importance. As shown 

in the Figure 3, multiple ML models are trained with the dataset then a set of performance, 

explainability and fairness criteria is assessed against the test dataset result to evaluate the 

models with the PEF framework which helps with identifying the best ML model. 
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Figure 3. Model evaluation with PEF framework 

4.2.1 Finance Domain 

For the purpose of this study, we have chosen the binary classification problem of 

predicting default payments. To conduct our research, we utilized an openly accessible dataset 

sourced from the University of California Irvine (UCI) Machine Learning Repository, 

specifically the “default of credit card clients Data Set” (Yeh & Lien, 2009). The primary 

objective behind the acquisition of this dataset was to facilitate a comparative assessment of 

data mining techniques, specifically focusing on their efficacy in predicting the probability of 

credit card clients defaulting (Yeh & Lien, 2009). This dataset captures the credit card payment 

history of customers and was originally employed in a study aimed at forecasting the likelihood 

of customers defaulting on their payments in Taiwan.  

Notably, this dataset encompasses a substantial sample size, comprising 30,000 

individual records, and features a diverse array of attributes, including but not limited to age, 

gender, and marital status, which possess the potential to be associated with discriminatory 

practices. It has 6,636 samples representing the minority class labeled as “Yes,” indicating 

customers who are likely to default in the following month. The majority class, labeled as “No,” 

comprises 23,364 samples, indicating customers who are not expected to default in the next 

month. The dataset includes twenty-three explanatory variables, categorized into five static and 

eighteen dynamic features, with further details provided in Table 15. Notably, this dataset has 
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been employed in thirteen research papers (Chakrobartty & El-Gayar, 2022), where prediction 

accuracy results have been reported in prior studies. 

The central purpose of our utilization of this dataset is to engage in predictive modeling 

with the aim of estimating the likelihood of credit default incidents. Following the model 

benchmarking process described in Figure 2, we evaluate the PEF framework. The evaluation 

process is described here. 

4.2.2 Data Preprocessing 

We first remove the ID column, we ensure the data is cleaned and have no missing values, 

also ensure the categorical features are marked as dataframe “category” type. To address the 

imbalanced distribution of classes in the dataset, we first resampled the training data to create 

a balanced training set. This step is crucial when dealing with imbalanced datasets, where one 

class significantly outnumbers the others. Next, we removed the gender feature from the dataset 

and split the remaining data into 70% training and 30% testing sets. This split was performed 

in a stratified manner to ensure that the proportion of target classes or labels is preserved in 

both the training and testing datasets. 

4.2.3 Model Evaluation Metrics 

It is imperative to acknowledge the multifaceted implications of default occurrences 

within the realm of credit transactions. Such occurrences have widespread ramifications, 

affecting not only the financial institution but also the borrower, the institution’s other clients, 

and potentially the broader societal fabric. Lenders are confronted with financial losses in the 

event of client defaults, which may necessitate the transfer of such economic burdens onto their 

remaining clientele and investors. Additionally, borrowers who experience default may 

encounter considerable adversity, potentially impeding their future borrowing prospects, 

thereby underscoring the long-term repercussions of default occurrences. Furthermore, the 

persistent extension of credit to clients with a tendency for defaulting can substantially impact 

the overall creditworthiness of the financial institution and may even reverberate throughout 

the broader regional economy. 

In accordance with the framework outlined in this study, we have identified a set of 

comprehensive fairness metrics tailored to the specific application involving the “default of 
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credit card client” dataset. These metrics play a crucial role in our assessment of model fairness, 

addressing the fundamental question of how fair the models are in their predictions. We have 

chosen to focus exclusively on the “gender” attribute as the demographic group of interest for 

constructing models and evaluating fairness metrics across different groups. This approach 

allows us to investigate and quantify the extent of fairness or potential disparities between these 

demographic subgroups within the dataset. 

The subsequent metrics are sourced from Microsoft’s Fairlearn toolkit (Bird et al., 2020), 

an essential resource designed for the analysis and enhancement of AI fairness. Fairlearn 

metrics package documentation (2021) provide a comprehensive understanding of the 

calculations associated with these metrics. 

Demographic Parity Difference: Demographic parity serves as a pivotal fairness metric, 

denoting a scenario where a model’s classification outcomes are independent of a specific 

sensitive feature, such as “gender” in our context. The attainment of demographic parity implies 

that the proportion of defaults among males is equivalent to that among females, regardless of 

other distinguishing characteristics within these groups. A lower value signifies a superior 

degree of demographic parity between the groups. 

Demographic Parity Ratio: The demographic parity ratio is precisely defined as the ratio 

between the lowest and highest group-level selection rates, encompassing all values of the 

sensitive feature(s). A demographic parity ratio of 1 signifies uniform selection rates across all 

groups, indicating an equitable model outcome irrespective of sensitive attributes. 

Equalized Odds Difference: This fairness metric evaluates whether a classifier exhibits 

comparable predictive accuracy across all attribute values. Equalized odds are realized when 

individuals, regardless of their gender, are equally likely to receive a default prediction if they 

meet the criteria for defaults. Likewise, they should be equally likely to receive a non-default 

prediction if they do not qualify for defaults. Smaller values of this metric indicate enhanced 

equalized odds parity between groups. An equalized odds difference of 0 suggests that true 

positive, true negative, false positive, and false negative rates are consistent across all 

demographic groups, demonstrating fairness in prediction outcomes. 

In conjunction with the fairness metrics, this study also encompasses the utilization of 

performance metrics, which are accessible through the Python library provided by the Fairlearn 
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toolkit. These performance metrics are instrumental in evaluating the performance of the ML 

models within the context of this case study: 

Overall Balanced Error Rate (BER): The Balanced Error Rate is calculated as the average of 

the errors incurred on each class. It offers a comprehensive assessment of classification 

accuracy that considers the performance across different classes, where “class” refers to the 

different categories or labels used in a classification problem. 

Balanced Error Rate Difference: This metric quantifies the disparity in Balanced Error Rate 

between distinct groups. A lower value signifies a more equitable distribution of classification 

errors between these groups, with values approaching zero indicating a higher degree of 

fairness. 

Overall Area Under the Curve (AUC): The Area Under the Curve (AUC) is determined by 

analyzing the Receiver Operating Characteristics (ROC) curve, representing a vital measure for 

assessing the classification model’s performance. A high AUC score, closer to 1, indicates 

superior model performance in distinguishing between positive and negative classes. 

AUC Difference: The AUC difference metric measures the distinction in AUC scores between 

different groups or categories. A lower AUC difference signifies a reduced gap in 

discriminatory power between groups, reflecting a more balanced model performance across 

these categories. 

These performance metrics, in tandem with fairness metrics, enable a comprehensive 

evaluation of both the predictive accuracy and fairness aspects of the ML models under 

investigation. We report the performance of the models using 1) overall balanced error rate, 2) 

balanced error rate difference, 3) overall AUC, and 4) AUC difference. However, we use the 

overall AUC and balanced error rate difference to rank the models for performance. For fairness 

we report 1) equalized odds difference, 2) overall selection rate, and 3) demographic parity 

difference; while ranking the models with the equalized odds difference farness metric. 

4.2.4 Model Selection 

Starting with the findings from a comprehensive literature review conducted by Chakrobartty 

and El-Gayar (2022), as well as expanding to other classifiers, we design an experiment 

involving seven classifiers: 1) Adaptive Boosting (ADB), 2) Decision Tree (DT), 3) Extremely 

Random Trees (ET), 4) Gradient Boosting Machines (GBM), 5) Logistic Regression (LR), 6) 
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Random Forest (RF), and 7) Support Vector Machine (SVM). For this specific case study, we 

harnessed the capabilities of the Microsoft Fairlearn (Bird et al., 2020) tool, as well as its Python 

library, to measure the fairness of the aforementioned machine learning classifiers. 

4.2.5 GridSearch and Hyperparameter Tuning 

Using Fairlearn’s GridSearch we perform hyperparameter tuning by systematically exploring 

different combinations of hyperparameters for a given machine learning estimator, in our case 

the estimators are seven different classifiers. These hyperparameters can include things like 

learning rates, regularization strengths, or tree depths, depending on the chosen estimator. We 

specify equalized odd as the constraints that quantify disparities or biases in model predictions 

across different demographic or sensitive groups – “gender” is selected for this domain specific 

dataset. GridSearch trains and evaluates multiple models with different hyperparameters while 

taking fairness metrics into account. It aims to identify models that optimize a trade-off between 

predictive performance and fairness. The goal is to find models that minimize disparities or 

biases while maintaining acceptable levels of accuracy for our model. After evaluating models 

using the specified fairness and performance metrics, GridSearch selects the model that best 

aligns with the performance and fairness criteria we’ve set. 

4.2.6 Model Interpretability 

SHAP (Shapley Additive exPlanations) is used for interpreting our ML models. It provides a 

unified approach to explain the output of any machine learning model by attributing the 

prediction to the contribution of each feature. Positive SHAP values contribute to increasing 

the prediction, while negative values contribute to decreasing it. Features with larger absolute 

SHAP values have a greater impact on the prediction. 

4.2.7 Model Comparison  

Instead of training a single model, we chose to train multiple models for a single classifier 

with GridSearch, each representing various trade-offs between the performance metric 

(balanced accuracy) and the fairness metric (equalized odds difference). Then the best model 

was selected from the candidate models for that specific classifier. This holistic approach was 

applied to all seven classifiers mentioned earlier, and the results of this experiment are 

summarized in Table 3, providing a spectrum of fairness and performance metrics for each 
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model used. The analysis primarily focused on the equalized odds difference, a critical fairness 

metric, to assess whether each classifier exhibited equitable label prediction capabilities. 

Table 3. Fairness and performance metrics for default credit dataset 

 

After obtaining candidate models through grid search, for the specific machine learning 

algorithm, that meet the model constraints, we choose the best model that aligns with our 

evaluation metrics. Below Figure 4 provide the comparison of the seven different models based 

on the performance and fairness. 

  

Figure 4. Comparison of seven models for default credit dataset 

The experimental findings reveal that the GBM classifier-based model attains the highest 

overall AUC value, lowest balanced error rate value, signifying superior performance in 

discriminatory ability. Moreover, the GBM classifier-based model exhibits a marginal AUC 

difference across different gender categories, indicating consistency in its predictive 

performance. ET classifier-based model closely follow the GBM’s having similar performance. 

Consequently, we recognize the GBM classifier-based model as the best in terms of 

performance. The ET classifier-based model, ranking second, demonstrates performance 

comparable as similar to the GBM's, while other models exhibit lower performance levels 

marking them as below performance.  

In the realm of fairness, again GBM classifier emerges as the frontrunner, giving the 

lowest equalized odds difference. These metrics collectively affirm the GBM model as the 
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fairest and performant among the models evaluated. Notably, the SVM and ADB classifier-

based models approach the second ranked fairness metrics comparing that of the GBM model, 

however maintaining a significantly lower AUC value, indicative of its lacking performance.  

Subsequently, these results are seamlessly integrated into the extended Performance-

Explainability-Fairness framework. The comprehensive summary of the extended framework 

outcomes for the seven default credit classifiers is presented in Table 4, encapsulating the model 

characteristics and their respective performances across the dimensions of performance, 

explainability, and fairness. 

In light of the incorporation of these metrics, we construct a summary Table 4 

encapsulating the characteristics and outcomes of the extended framework as applied to the 

identified default credit classifiers. This presentation serves as a valuable reference point, 

explaining how the choice of ML model may diverge contingent upon the specific requirements 

and trade-offs necessitated by the use case, which must reconcile considerations of 

performance, explainability, and fairness. 

Table 4. Summary of extended framework results for default credit dataset 

 

Regarding model comprehensibility, only the DT model qualifies as a “white-box” 

model, distinguished by its interpretability, whereas the remaining six classifiers, of which 

some are ensemble models, all fall under the category of “black-box” models. 

In the realm of granularity, the DT model excels in providing explanations at both local 

and global level. Equally, the other classifiers, equipped with the SHAP method, demonstrate 

the capability to furnish both global and local level explanations. Furthermore, all classifiers 

yield feature importance information as part of their explanations. 

In terms of faithfulness, the DT model stands out as a model with perfect faithfulness, as 

explanations can be directly extracted from its original model. In contrast, the other models rely 
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on post-hoc explanation methods employing surrogate models, rendering them imperfect in 

terms of faithfulness. 

Turning to the fairness context, all classifiers are evaluated with respect to group fairness, 

with the GBM model exhibiting the highest level of fairness. The SVM and ADB model closely 

approaches the fairness metrics of the GBM model, and its fairness can be considered as 

comparable to that of the GBM model. However, the other classifiers fall below the ADB and 

SVM models in terms of fairness. These findings are visually illustrated in Figure 5.  

 

Figure 5. Parallel coordinates plot of the PEF framework result for default credit dataset 

In conclusion, considering the multifaceted dimensions of the performance-

explainability-fairness framework applied to the default credit score dataset, the GBM 

classifier-based model emerges as the most suitable choice, excelling across various 

characteristics and striking a favorable balance between performance, explainability, and 

fairness. 

4.3 Chapter Summary 

In this chapter, we have detailed the framework and demonstrated a practical 

implementation of it. We begin by thoroughly explaining the development and formulation of 

the PEF framework. We explore the critical components that constitute this innovative artifact: 

performance, explainability, and fairness. Additionally, we showcase the application of the PEF 

framework in a real-world scenario. Through a comprehensive case study, we provide firsthand 

insights into how the framework operates, how it facilitates model selection, and how it ensures 

that AI systems are not only accurate but also transparent and equitable.  
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CHAPTER 5 

EVALUATION 

With the case study of four domains dataset, we demonstrate the application of the 

performance-explainability-fairness framework for benchmarking ML models. Also, we 

evaluate the efficacy of the proposed framework by applying it to different binary classification 

problems from these four domains dataset. This confirms the framework’s applicability under 

different fairness constraints, sensitive attributes, and class ratios within the datasets. The class 

ratio represents the number of observations belonging to one class vs. those belonging to the 

other. We evaluate the identified classifiers for each dataset against the new characteristics, 

emphasizing fairness. The following Table 5 shows a list of four different datasets from four 

domains. Note that we used the finance domain dataset in previous section for a case study 

demonstration, so in this chapter we evaluate the framework by using the other three datasets. 

Table 5. Dataset from four different domains for evaluation 

 

The model evaluation process shares three common aspects across all datasets, as outlined in 

section 5.1. Further details on the specific evaluation steps for each dataset are described in 

their respective sections. 

5.1 Evaluation Common Steps 

5.1.1 Model Selection 

In our evaluation process, we have employed a diverse set of seven machine learning 

algorithms, each serving as a distinct tool in our analytical toolbox. These algorithms include: 

1) Adaptive Boosting (ADB), 2) Decision Tree (DT), 3) Extremely Random Trees (ET), 4) 

Gradient Boosting Machines (GBM), 5) Logistic Regression (LR), 6) Random Forest (RF), and 
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7) Support Vector Machine (SVM). These algorithms were thoughtfully selected for their 

versatility and compatibility with Fairlearn’s GridSearch API, a valuable utility that facilitates 

grid search hyperparameter optimization. The primary aim of this optimization process is to 

identify machine learning models that strike a balance between predictive performance and 

fairness. This functionality is particularly well-suited for addressing fairness concerns within 

the realm of machine learning tasks. By leveraging this tool, we can systematically explore a 

range of hyperparameter configurations for each algorithm to determine the best-performing 

models. This grid search optimization process is essential for tailoring our models to achieve 

not only high predictive accuracy but also fairness in their predictions. As such, it plays a crucial 

role in ensuring that our models meet ethical and fairness criteria while delivering meaningful 

insights and predictions. 

5.1.2 GridSearch and Hyperparameter Tuning 

Within our methodology, we harness the power of Fairlearn’s GridSearch as a critical 

component for hyperparameter tuning in our machine learning models. This process involves a 

systematic exploration of various hyperparameter combinations for a given machine learning 

classifier. The specific hyperparameters under consideration may encompass factors such as 

learning rates, regularization strengths, or tree depths, depending on the chosen estimator.  

In our case, we prioritize the “equalized odds” constraints, which serve as quantifiable 

measures of disparities or biases present in the model predictions across different demographic 

or sensitive groups. For our analysis, a specific sensitive group is chosen based on the context 

of our domain-specific dataset, as outlined in Table 5. GridSearch methodically trains and 

evaluates multiple models with distinct hyperparameter configurations, all while 

conscientiously taking into account fairness metrics. It’s important to note that when employing 

GridSearch, we begin by excluding the sensitive feature from the dataset before performing the 

dataset split into training and test subsets. Within the GridSearch framework, the fit() method 

plays a pivotal role by facilitating the fitting of the training dataset to an estimator, with the 

sensitive features explicitly passed as parameters to the fit() method. Its overarching objective 

is to pinpoint models that strike an optimal balance between predictive performance and 

fairness. We seek to identify models that minimize disparities or biases in predictions while still 

maintaining an acceptable level of accuracy for our models. 
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Following a rigorous evaluation process that leverages our designated fairness and 

performance metrics, GridSearch adeptly singles out the model that aligns most closely with 

the established performance and fairness criteria we’ve defined. This ensures that the models 

generated through this process not only excel in terms of their predictive capabilities but also 

adhere to the ethical and fairness standards we’ve set, thus facilitating responsible and unbiased 

machine learning outcomes. 

5.1.3 Model Interpretability 

We employ SHAP as a vital tool for interpreting our machine learning models. SHAP 

offers a comprehensive and unified framework for explaining the output of various machine 

learning models. It achieves this by breaking down the prediction into individual feature 

contributions, allowing us to understand how each feature influences the model’s output. In this 

context, SHAP values play a pivotal role. Positive SHAP values signify contributions that 

increase the model’s prediction, while negative values indicate contributions that decrease it. 

The magnitude of SHAP values is equally important, as features with larger absolute SHAP 

values exert a more substantial impact on the model’s predictions. This approach enables us to 

gain a nuanced understanding of which features drive the model’s decision-making process and 

to what extent, enhancing our ability to interpret and make informed decisions based on the 

model’s outputs. 

5.2 Healthcare Domain 

The Diabetes 130-Hospitals Dataset (Clore & Strack, 2014) encompasses a decade of 

clinical care records from 130 healthcare facilities and integrated delivery networks in the 

United States. Each entry corresponds to a patient’s hospital admission for a diabetes diagnosis, 

with stays ranging from one to fourteen days. These hospital encounters involve various 

aspects, including laboratory tests, medication administration, and medical procedures. The 

dataset provides a comprehensive set of attributes, including patient demographics, diagnostic 

information, details about diabetic medications, the number of healthcare visits in the year prior 

to the admission, and payer-related data. Additionally, it tracks whether patients were 

readmitted post-discharge and, if so, whether this readmission transpired within 30 days of their 

initial release. The details of the dataset description are described in Table 16. 
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5.2.1 Data Preprocessing 

We first create outcome variables, two binary outcome variables, readmit_30_days and 

readmit_binary, are created based on the readmitted column. The attribute readmit_30_days is 

True if a patient was readmitted within 30 days, and readmit_binary is True if a patient was 

readmitted (not equal to NO). Then we replace missing values denoted by “?” in columns like 

age, payer_code, medical_specialty, and race with appropriate labels like an empty string, 

Unknown, or Missing. We make appropriate recoding for categorical variables. Several 

categorical variables are recoded. For example, admission_source_id is recoded into Referral, 

Emergency, or Other. The attribute age is grouped into categories like 30 years or younger, 30-

60 years, and Over 60 years. We also clean medical codes, the discharge_disposition_id is 

transformed to Discharged to Home if it originally had a value of 1. We also do re-coding of 

medical specialties and primary diagnosis, the medical_specialty column is recoded into a 

limited set of specialties or Other. The primary_diagnosis column is also recoded into categories 

such as Respitory Issues, Diabetes, Genitourinary Issues, and Musculoskeletal Issues. We also 

create several binary features, such as medicare and  medicaid based on the payer_code. 

Additionally, binary features like had_emergency, had_inpatient_days, and 

had_outpatient_days are created based on numerical columns. 

Ultimately, a subset of columns is selected to form the final dataset, which is the 

processed DataFrame that contains the columns needed for further analysis and modeling. 

These columns include demographic information, medical information, and the outcome 

variables created earlier. Overall, we perform a series of data cleaning, recoding, and feature 

engineering tasks to prepare the dataset for further analysis and machine learning applications. 

Subsequently, we excluded the “race” feature from the dataset and divided it into a 70% 

training set and a 30% test set. The dataset split was conducted in a stratified manner to maintain 

the proportion of target classes or labels in both the training and testing datasets. However, due 

to the dataset’s imbalances, we initially performed a resampling of the training data to generate 

a new, balanced training dataset. This approach proves especially valuable when dealing with 

imbalanced datasets, where one class is significantly more prevalent than others. 
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5.2.2 Model Evaluation Metrics 

We report the performance of the models using 1) overall balanced error rate, 2) balanced 

error rate difference, 3) overall AUC, and 4) AUC difference. For the purpose of comparing 

model performance, we employ two key metrics: overall AUC and balanced error rate 

difference.  

To ensure fairness, we inquire about which demographic groups may face a 

disproportionate and adverse impact. Past research indicates that individuals of varying racial 

and ethnic backgrounds may experience differential effects. When patients who would benefit 

from a care management program are not recommended for it, it leads to allocation-related 

issues. In the context of a classification scenario, these instances are referred to as False 

Negatives. Therefore, from the patient’s perspective, the primary concerns in these situations 

are related to allocation, specifically the occurrence of false negatives, where someone who 

would benefit from the program is not recommended and may subsequently face readmission. 

For fairness, we report the following metrics: 1) false negative rate difference, 2) overall 

selection rate, 3) equalized odds difference, and 4) demographic parity difference. However, to 

to quantify harms and benefits and assess the fairness of the models, we use the false negative 

rate and the overall selection rate.  

▪ False Negative Rate: This measures the proportion of patients who experience 

readmission within 30 days but were not advised to participate in the care management 

program, representing the extent of harm incurred. 

▪ Overall Selection Rate: This calculates the overall fraction of patients who receive 

recommendations for the care management program, irrespective of whether they 

experience readmission within 30 days or not. This quantifies the program’s overall 

benefit, assuming that all patients derive similar benefits from the additional care. 

There are few reasons for including selection rate in addition to false negative rate. We would 

like to monitor how the benefits are allocated, focusing on groups that might be disadvantaged. 

The auxiliary metrics, like selection rate, may alert us to large disparities in how the benefit is 

allocated, and allow us to catch issues that we might have missed. 
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5.2.3 Model Comparison 

We used GridSearch to systematically develop multiple models for each classifier, fine-

tuning them to address the trade-off between performance (balanced accuracy) and fairness 

(equalized odds difference). We then selected the best model from the candidate models for 

each classifier. We applied this tailored approach to all seven classifiers that we employed. The 

results of this experiment are documented in Table 6, which provides a comprehensive 

overview of the diverse fairness and performance metrics evaluated for each model. A pivotal 

focus was placed on the false negative rate difference, a critical fairness metric for this use case. 

We undertook this intensive scrutiny to ascertain whether each classifier could deliver equitable 

predictions, particularly in the context of label assignment. By focusing on this key fairness 

metric, we committed to ensuring that our models operate with fairness, equity, and accuracy, 

upholding ethical standards. 

Table 6. Fairness and performance metrics for diabetes dataset 

 

After obtaining candidate models through grid search that meet the model constraints, we 

choose the best model that aligns with our evaluation metrics for the specific machine learning 

algorithm. Below Figure 6 provide the comparison of the seven different models based on their 

performance and fairness. 

  

Figure 6.Comparison of seven models for diabetes dataset 
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The experimental findings reveal that the GBM classifier-based model attains the highest 

overall AUC value, lowest overall balanced error rate value, signifying superior performance 

in discriminatory ability. Consequently, we designate the GBM classifier-based model as the 

best in terms of performance. The ADB, SVM and RF classifier-based models provide the 

second-best performance closer to the GBM’s and they are identified as having similar 

performance. The ADB, RF and SVM classifier-based models provide the second ranked 

performance, so we recognize them as similar to that of the GBM model’s performance.  

In the realm of fairness, ADB classifier-based model emerges as the frontrunner, giving 

the lowest false negative rate difference and an overall moderate selection rate, affirming the 

ADB classifier-based model as the fairest among the classifiers evaluated. Therefore, we 

recognize ADB as best. Notably, the GBM model slightly better than the performance metrics 

of the ADB model, however maintaining a higher false negative rate difference, indicative of 

its lacking fairness.  

Subsequently, these results are seamlessly integrated into the extended Performance-

Explainability-Fairness framework. The comprehensive summary of the extended framework 

outcomes for the seven classifiers is presented in Table 7, encapsulating the model 

characteristics and their respective evaluation across the dimensions of performance, 

explainability, and fairness. This presentation serves as a valuable reference point, explaining 

how the choice of ML model may diverge contingent upon the specific requirements and trade-

offs necessitated by the use case, which must reconcile considerations of performance, 

explainability, and fairness. 

Table 7.  Summary of extended framework results for diabetes dataset 

 

Regarding model comprehensibility, only the DT model qualifies as a “white-box” 

model, distinguished by its interpretability, whereas the remaining six classifiers, of which 

some are ensemble models, all fall under the category of “black-box” models. 
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In the realm of granularity, the DT model excels in providing explanations at both global 

and local level. Equally, the other classifiers, equipped with the SHAP method, demonstrate the 

capability to furnish both global and local level explanations. Furthermore, all classifiers yield 

feature importance information as part of their explanations. 

In terms of faithfulness, the DT classifier-based model stands out as a model with perfect 

faithfulness, as explanations can be directly extracted from its original model. In contrast, the 

other models rely on post-hoc explanation methods employing surrogate models, rendering 

them imperfect in terms of faithfulness. 

With respect to the fairness context, all classifiers are evaluated with respect to group 

fairness, with the ADB model exhibiting the highest level of fairness. The ET, RF and SVM 

classifier-based models closely approach the fairness metrics of the ADB model, and its fairness 

can be considered as similar to that of the ADB model. However, the other classifiers fall below 

these models in terms of fairness making them identified as below. These findings are visually 

illustrated in Figure 7. 

 

Figure 7. Parallel coordinates plot of the PEF framework result for diabetes dataset 

In conclusion, considering the multifaceted dimensions of the performance-

explainability-fairness framework applied to the diabetes dataset, the ADB classifier-based 

model emerges as the most suitable choice, excelling across various characteristics and striking 

a favorable balance between performance, explainability, and fairness. 

5.3  Criminology Domain 

ProPublica’s COMPAS (Larson et al., 2016) recidivism dataset comprises 7,918 

examples, making it a substantial and valuable resource for studying the complex issue of 
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recidivism prediction. In this dataset, the primary task involves predicting recidivism, which 

refers to whether an individual is likely to re-offend based on a comprehensive set of features. 

These features encompass various aspects of an individual’s criminal history, such as prior 

offenses, jail and prison time, as well as demographic information. Additionally, the dataset 

includes COMPAS risk scores, which are crucial factors used in the prediction process. An 

important ethical consideration in this dataset is the inclusion of race as a protected attribute, 

highlighting the need to address potential fairness and bias concerns in predictive models 

applied to criminal justice scenarios. Analyzing and mitigating bias in recidivism prediction is 

essential to ensure equitable decision-making in the criminal justice system. The details of the 

dataset description are described in Table 17. 

5.3.1 Data Preprocessing 

We first ensure the data is cleaned and have no missing values, also ensure the categorical 

features are marked as dataframe “category” type. As indicated by Larson et al. (2016), in 

specific scenarios involving this dataset, challenges emerged when attempting to match charges 

with COMPAS scores. Consequently, it was deemed necessary to exclude such cases. Hence, 

we removed rows that were deemed irrelevant to the model, as certain instances might have 

involved alternative reasons for the charges. Ultimately, a subset of columns is selected to form 

the final dataset, which is the processed DataFrame that contains the columns needed for further 

analysis and modeling. These columns include demographic information, criminal record 

information, and the outcome variables. Overall, we perform a series of data cleaning, recoding, 

and feature engineering tasks to prepare the dataset for further analysis and machine learning 

applications. Subsequently, we excluded the “race” feature from the dataset and partitioned it 

into a 70% training set and a 30% testing set. We conducted the dataset split in a stratified 

fashion to maintain the proportion of target classes or labels in both the training and testing 

datasets. This approach proves especially valuable when working with imbalanced datasets, 

where one class significantly outnumbers the others. 

5.3.2 Model Evaluation Metrics 

We report the performance of the models using 1) Overall balanced error rate, 2) 

Balanced error rate difference, 3) Overall AUC, and 4) AUC difference. For the purpose of 
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comparing model performance, we employ two key metrics: Overall AUC and Balanced error 

rate difference. For fairness, we report 1) Overall selection rate, 2) Equalized odds difference, 

3) Demographic parity difference. However, for assessing the fairness of the models, we utilize 

the Equalized odds difference and the Overall selection rate. 

5.3.3 Model Comparison 

In our model training process, we adopted a systematic approach by training multiple 

models for each classifier using GridSearch. Each of these models was fine-tuned to strike a 

balance between two critical metrics: performance (measured by balanced accuracy) and 

fairness (assessed through the equalized odds difference). This tailored approach was applied 

to all seven classifiers, resulting in a comprehensive experiment. The findings from this 

experiment are documented in Table 8, where we’ve provided an array of fairness and 

performance metrics for each of the models that we selected from GridSearch for each 

classifier. 

Table 8. Fairness and performance metrics for COMPAS recidivism dataset 

 

After obtaining candidate models through grid search that meet the model constraints, we 

choose the best model that aligns with our evaluation metrics for the specific machine learning 

algorithm.  

  

Figure 8. Comparison of seven models for COMPAS recidivism dataset 
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The Figure 8 shows comparison of the seven different models based on their performance and 

fairness. 

The experimental findings reveal that the GBM classifier-based model attains the highest 

overall AUC value, moderate overall balanced error rate value. The LR classifier-based model 

also obtain comparable AUC value and even lower overall balanced error rate value, signifying 

superior performance in discriminatory ability. Consequently, we designate the GBM as best 

and LR classifier-based model as similar in terms of performance. 

In the realm of fairness, GBM and ET classifier-based models emerge as the frontrunner, 

giving the lowest equalized odds difference. These metrics collectively affirm the GBM model 

as the fairest and performant among the classifiers evaluated. Notably, the GBM and ET based 

models show a conservative selection rate which affirms that they have less potential of 

incurring harm. However, ET maintains a significantly lower overall AUC value, indicative of 

its lacking performance.   

Subsequently, these results are seamlessly integrated into the extended Performance-

Explainability-Fairness framework. The comprehensive summary of the extended framework 

outcomes for the seven classifiers is presented in Table 9, encapsulating the model 

characteristics and their respective performances across the dimensions of performance, 

explainability, and fairness. This presentation serves as a valuable reference, illustrating how 

the selection of a machine learning model may vary based on the specific requirements and 

trade-offs inherent in the use case. It is essential to strike a balance among performance, 

explainability, and fairness considerations to make informed model choices. 

Table 9. Summary of extended framework results for COMPAS recidivism dataset 

 

Regarding model comprehensibility, only the DT model qualifies as a “white-box” 

model, distinguished by its interpretability, whereas the remaining six classifiers, of which 

some are ensemble models, all fall under the category of “black-box” models. 
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In the realm of granularity, the DT model excels in providing explanations at both global 

and local level. Equally, the other classifiers, equipped with the SHAP method, demonstrate the 

capability to furnish both global and local level explanations. Furthermore, all classifiers yield 

feature importance information as part of their explanations. 

In terms of faithfulness, the DT model stands out as a model with perfect faithfulness, as 

explanations can be directly extracted from its original model. In contrast, the other models rely 

on post-hoc explanation methods employing surrogate models, rendering them imperfect in 

terms of faithfulness. 

In terms of the fairness context, all classifiers are evaluated with respect to group fairness, 

with the GBM model exhibiting the highest level of fairness. The ET and LR models closely 

approach the fairness metrics of the GBM model, and ET’s fairness can be considered as 

comparable to that of the GBM model. However, the other classifiers fall below the GBM 

models in terms of fairness. These findings are visually illustrated in Figure 9. 

 

Figure 9. Parallel coordinates plot of the PEF framework result for recidivism dataset 

In conclusion, considering the multifaceted dimensions of the performance-

explainability-fairness framework applied to the COMPAS recidivism dataset, the GBM 

classifier-based model emerges as the most suitable choice, excelling across various 

characteristics and striking a favorable balance between performance, explainability, and 

fairness. 

5.4 Education Domain 

The Law School Admissions Council’s National Longitudinal Bar Passage Study 

(Wightman, 1998), conducted in 1998, is a robust dataset comprising 20,649 examples. In this 
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dataset, the primary objective is to predict an individual’s likelihood of passing the bar exam, a 

critical milestone in a lawyer’s career. The dataset encompasses a diverse range of features that 

capture various aspects of a candidate’s educational background, law school performance, and 

demographics. Of particular ethical importance is the inclusion of race as a protected attribute, 

emphasizing the significance of addressing fairness and potential bias in predictive models. 

Ensuring fairness in bar exam passage predictions is essential to promote equity and diversity 

in the legal profession. The details of the dataset description are described in Table 18. 

5.4.1 Data Preprocessing 

Our data preparation process begins with a meticulous cleaning phase, where we 

thoroughly scrutinize the dataset to ensure that it is free from any missing values. Additionally, 

we take care to categorize the relevant features within the dataframe as the “category” data type, 

aligning them for subsequent analysis. In our data preparation journey, we undertake a sequence 

of vital tasks, encompassing data cleaning, recoding, and feature engineering. These endeavors 

collectively serve to refine and optimize the dataset, making it well-suited for further analysis 

and the application of machine learning techniques. At this step in this process, we remove of 

the “race” feature from the dataset. Subsequently, we partition the dataset into two subsets: a 

70% training set and a 30% test set. This division is performed with careful consideration, 

employing a stratified approach to maintain the integrity of class proportions or labels in both 

the training and testing datasets. This approach proves particularly beneficial when dealing with 

imbalanced datasets, where one class may significantly outnumber the others. By preserving 

this balance, we enable our models to learn and make predictions in a fair and representative 

manner, regardless of the class distribution. 

5.4.2 Model Evaluation Metrics 

We report the performance of the models using 1) Overall balanced error rate 2) Balanced 

error rate difference 3) Overall AUC and 4) AUC difference. For the purpose of comparing 

model performance, we employ two key metrics: Overall AUC and Balanced error rate 

difference. For fairness we report 1) Overall selection rate, 2) Equalized odds difference, and 

3) Demographic parity difference. However, for assessing the fairness of the models, we utilize 

the Equalized odds difference and the Overall selection rate. 
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5.4.3 Model Comparison 

To comprehensively train our models, we adopted a systematic approach by training 

multiple models for each classifier using GridSearch. Each of these models was fine-tuned to 

strike a balance between two critical metrics: performance (measured by balanced accuracy) 

and fairness (assessed through the equalized odds difference). We meticulously executed this 

calibration process for all seven classifiers we employed in our analysis. The results of this 

experiment are documented in Table 10, which provides a comprehensive overview of the 

various fairness and performance metrics that were assessed for each model. The metrics in this 

table reveal how each model performed in terms of both predictive performance and fairness. 

Of particular significance is the “equalized odds difference,” a fundamental fairness metric that 

we closely scrutinized. We did this to ascertain whether each classifier could deliver equitable 

predictions, especially concerning label assignment. This thorough assessment aligns with our 

overarching objective to ensure that our models are not inadvertently biased or discriminatory 

in their predictions, safeguarding fairness, and ethical considerations. 

Table 10. Fairness and performance metrics for admission dataset 

 

After obtaining candidate models through grid search that meet the model constraints, we 

choose the best model that aligns with our evaluation metrics for the specific machine learning 

algorithm.  

  

Figure 10. Comparison of seven models for admissions dataset 
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The Figure 10 shows the comparison of the seven different models based on the performance 

and fairness. 

The experimental findings reveal that the ADB classifier-based model attain the highest 

overall AUC value, moderate overall balanced error rate value, signifying superior performance 

in discriminatory ability. For the ET and RF based models, while it’s slightly lower in AUC 

value than the ADB, we consider ET and RF as providing similar performance that of ADB. 

Consequently, we designate the ADB classifier-based models as best, ET and RF classifier-

based model as similar in terms of performance. 

In the realm of fairness, RF classifier-based models emerge as the frontrunner, giving the 

lowest equalized odds difference. These metrics collectively affirm the RF model as the fairest 

and good enough performant among the classifiers evaluated.  

Following this, the findings are smoothly incorporated into the expanded Performance-

Explainability-Fairness framework. The all-encompassing summary of the extended 

framework’s results for the seven classifiers is provided in Table 11, encapsulating both the 

model attributes and their corresponding performances across the dimensions of performance, 

explainability, and fairness. This presentation serves as a valuable reference, illustrating how 

the selection of a machine learning model may vary based on the specific needs and trade-offs 

inherent in the use case, which must carefully balance considerations of performance, 

explainability, and fairness. 

Table 11. Summary of extended framework results for admissions dataset 

 

Regarding model comprehensibility, only the DT model qualifies as a “white-box” 

model, distinguished by its interpretability, whereas the remaining six classifiers, of which 

some are ensemble models, all fall under the category of “black-box” models. 

In the realm of granularity, the DT model excels in providing explanations at both global 

and local level. Equally, the other classifiers, equipped with the SHAP method, demonstrate the 
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capability to furnish both global and local level explanations. Furthermore, all classifiers yield 

feature importance information as part of their explanations. 

In terms of faithfulness, the DT model stands out as a model with perfect faithfulness, as 

explanations can be directly extracted from its original model. In contrast, the other models rely 

on post-hoc explanation methods employing surrogate models, rendering them imperfect in 

terms of faithfulness. 

Regarding the fairness context, all classifiers are evaluated with respect to group fairness, 

with the RF classifier-based model exhibiting the highest level of fairness. Only the GBM 

classifier-based model somewhat approach the fairness metrics of the RF model, we still 

recognize as below fairness compared to that of RF’s. However, the other classifiers fall below 

the RF model in terms of fairness. These findings are visually illustrated in  Figure 11. 

 

Figure 11. Parallel coordinates plot of the PEF framework for admissions dataset 

In conclusion, considering the multifaceted dimensions of the performance-

explainability-fairness framework applied to the law school admission dataset, the RF 

classifier-based model emerges as the most suitable choice, excelling across various 

characteristics and striking a favorable balance between performance, explainability, and 

fairness. 

5.5 Result 

The results of our evaluation are promising, indicating that the framework holds 

substantial potential in real-world applications. One of the notable achievements was our ability 

to discern and select the most suitable classifier for each dataset, guided by the principles of the 

PEF (Performance, Explainability, Fairness) framework. Importantly, it is crucial to highlight 
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that each binary classification model presented unique challenges and opportunities, 

necessitating customized performance and fairness criteria tailored to the specific sensitive 

attribute under consideration. 

To comprehensively assess the framework’s adaptability, we ventured into diverse 

scenarios, spanning different fairness constraints, sensitive attributes, and class ratios within 

the datasets. This wide-ranging exploration underscores the framework’s adaptability and 

applicability in addressing the nuanced fairness concerns that can vary greatly from one context 

to another. 

Table 12. Result of the application of the PEF framework on four domains dataset 

 

The result of our efforts is encapsulated in the Table 12, which showcases the results for 

all four binary classification tasks. These results not only reflect the efficacy of the PEF 

framework in selecting the best models but also highlight the positive impact of considering 

fairness in decision-making processes. In essence, this evaluation underscores the framework’s 

potential to facilitate equitable and effective decision-making across a spectrum of domains and 

applications. 

In addition to our comprehensive framework development and evaluation, we aimed to 

assess its practical implications by conducting a survey involving eight participating machine 

learning practitioners. This survey was designed to assess the practical effectiveness and utility 

of the framework. Below, we provide an in-depth analysis of the survey results, shedding light 

on the perspectives and experiences of ML practitioners, and how the framework aligns with 

their needs and objectives in the ever-evolving field of machine learning. 

5.5.1 Survey Results for the Framework Characteristics 

In order to comprehensively evaluate the framework’s effectiveness and user-

friendliness, a set of survey questions was administered. These questions were carefully 

designed to assess participants’ perceptions regarding the framework’s clarity, relevance, and 
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potential areas for enhancement. In the subsequent analysis, we provide a concise summary of 

the survey results, offering valuable insights into how the framework aligns with user 

expectations and highlighting any opportunities for refinement and improvement. 

The survey responses overwhelmingly indicate that the key characteristics of the 

framework, including performance, comprehensibility, granularity, information type, 

faithfulness, user category, fairness context, and fairness, are universally deemed relevant and 

clear by participants, with 100% agreement. This consensus underscores the framework’s 

effectiveness in addressing these aspects. However, there is a notable minority opinion (12.5%) 

that suggests the potential inclusion of additional dimension currently missing from the 

framework, highlighting an opportunity for further refinement and expansion based on specific 

needs and perspectives. 

5.5.2 Survey Results for Utility 

The survey also aimed to gather valuable insights on participants’ perspectives regarding 

the fairness benchmarking framework. Through using a five-point Likert scale (Strongly Agree, 

Agree, Undecided, Disagree, Strongly Disagree), respondents expressed the importance of 

fairness characteristics for their team’s models and the utility of the performance-explainability-

fairness benchmarking framework. Additionally, they provided feedback on the ease of 

following the benchmarking process and their inclination to integrate the framework into their 

projects. These responses offer a comprehensive understanding of the framework’s practical 

significance, usability, and potential adoption in real-world machine learning projects. 

Table 13. Survey results for the utility of the PEF framework 

 

The survey results, shown in Table 13 provide valuable insights into participants’ 

perceptions of the ML model benchmarking framework: 
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▪ Fairness Characteristics Importance: We find 62.5% of respondents strongly agree 

that the fairness characteristics of the framework are important for the models developed 

and deployed by their team. Additionally, 25% of respondents agree with this statement, 

signifying a noteworthy level of significance placed on fairness. However, 12.5% of 

respondents remain undecided on the matter. 

▪ Usefulness of Framework: 87.5% of participants strongly agree that the performance-

explainability-fairness model benchmarking framework is useful, while 12.5% agree. 

This suggests that all of respondents find the framework valuable for their work. 

▪ Ease of Use: Similarly, 62.5% of respondents strongly agree that the performance-

explainability-fairness model benchmarking process is easy to follow, while 25% agree. 

This indicates that most participants perceive the framework as user-friendly. However, 

12.5% of respondents disagreed and indicated that there are room for improvements to 

make it easier to follow. 

▪ Inclination to Use: Interestingly, 37.5% of participants strongly agree that they are 

inclined to use this framework in their projects, while 50% agree. This demonstrates a 

strong willingness among a majority of respondents to integrate the framework into their 

work. However, 12.5% of respondents remain undecided on the matter. 

Overall, the survey results highlight a positive reception of the fairness benchmarking 

framework, with a notable emphasis on its usefulness and ease of use. While there is some 

variance in opinions, the majority of respondents express a clear interest in adopting the 

framework for their projects, emphasizing the potential value it offers in promoting fairness and 

transparency in machine learning models. 

5.5.3 Survey Results for the Strength and Weakness 

These survey questions were designed to collect valuable feedback and insights from 

participants regarding the assessed framework. The first question aimed to identify the strengths 

and positive aspects of the framework, providing insight into its most effective features. The 

second question sought suggestions for improvement, allowing participants to contribute ideas 

and recommendations for enhancing the framework’s usability and effectiveness. Collecting 

this feedback enables the refinement and optimization of the framework based on real-world 

user perspectives, fostering continuous improvement and relevance. 
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Table 14. Survey results for the strength and weakness of the PEF framework 

 

The respondents, answers summary shown in Table 14, highlighted several strengths of 

the framework in their open-ended responses: 

▪ Inclusion of Three Dimensions: Participants appreciated that the framework 

encompasses three dimensions to evaluate machine learning models, emphasizing the 

comprehensive nature of the assessment. 

▪ Addressing Fair ML Development: The framework was recognized for addressing a 

crucial aspect of machine learning model development, specifically fairness, which is 

seen as increasingly important in the field. 

▪ Filling a Gap: Respondents noted that the framework addresses a gap in previous 

approaches by incorporating fairness as a fundamental aspect of model evaluation. They 

view this as vital for future machine learning model development. 

▪ Innovative Dimension: The inclusion of fairness as a new dimension in the evaluation 

criteria was seen as a notable and innovative feature of the framework. 

The open-ended responses regarding improvements to the proposed framework were 

generally positive and succinct: 
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▪ Expanding Explainability: One respondent suggested exploring the possibility of 

expanding the framework’s focus on explainability, indicating an interest in further 

enhancing this aspect. 

▪ Positive Evaluation: Another participant expressed satisfaction with the framework as 

it stands, suggesting that no major improvements are immediately apparent. 

▪ Supportive Tools: One respondent suggested exploring the development of supportive 

tools to facilitate the practical use of the framework. 

▪ Visual Representation: Another respondent recommended that the framework's 

visualization be improved to clearly distinguish between extended characteristics.  

▪ No Specific Suggestions: Some respondents did not provide specific improvement 

suggestions, indicating that they found the framework to be comprehensive and 

satisfactory as presented. 

▪ No Needed Changes: A few participants explicitly stated that they believe no changes 

or improvements are needed, indicating a high level of satisfaction with the framework’s 

current design. 

5.6 Chapter Summary 

In our thorough evaluation of the PEF framework, we used four different datasets from 

various fields to showcase its adaptability. We closely examined the framework's ability to 

balance the trade-offs between performance, explainability, and fairness, emphasizing its 

versatility. For each dataset, our quest for the best machine learning model involved a thorough 

analysis of different approaches. After exploring various avenues, we identified a model that 

successfully met all the predefined criteria. This comprehensive evaluation highlights the 

effectiveness of the PEF framework in tackling real-world challenges across diverse domains. 

It also emphasizes the framework's capacity to maintain a balance between model performance, 

transparency, and equitable results. 
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CHAPTER 6 

DISCUSSION 

6.1 Introduction 

This dissertation comprehensively explores ML model benchmarking, emphasizing 

performance, explainability, and fairness. It aims to create a unified framework addressing these 

dimensions for responsible AI deployment. The research focuses on two primary objectives. 

First, we have developed and rigorously assessed the Performance-Explainability-

Fairness framework, which serves as the cornerstone of this dissertation. This framework aims 

to provide a systematic approach for benchmarking ML models, enabling us to evaluate and 

compare their performance, explainability, and fairness comprehensively. Through a series of 

empirical investigations, we have uncovered valuable insights into the performance and fairness 

dynamics of various ML models, shedding light on their strengths and limitations. 

Second, we have demonstrated the practical utility of the PEF framework in real-world 

applications, with a specific focus on the prediction of default credit card payments, along with 

three more datasets across a total of four different domains. By applying the framework to these 

use cases, we have highlighted its effectiveness in guiding model selection, thereby contributing 

to the responsible implementation of ML algorithms in critical decision-making scenarios. 

As we delve into the discussion chapter, we will navigate the intricacies of our research 

findings and their implications. This chapter is structured to facilitate an in-depth examination 

of the framework's key components, including performance metrics, explainability levels, and 

fairness assessments. Additionally, we will explore the framework's applicability to various ML 

models and the challenges posed by real-world data biases. 

6.2 Performance Evaluation 

Here we discuss the performance dimension of the PEF framework from a few different 

perspectives. 

Results of Performance Evaluations using the PEF Framework: The application of the 

Performance-Explainability-Fairness framework has yielded valuable insights into the 
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performance of various machine learning models. These evaluations encompassed an extensive 

analysis of predictive accuracy using AUC score and balanced error rates, providing insights 

into their robustness, and generalization capabilities, offering ample view of model 

performance. 

Analysis of Different ML Models’ Performance: The benchmarking process involved the 

systematic assessment of seven distinct ML algorithms for the respective dataset: 1) Adaptive 

Boosting (ADB), 2) Decision Tree (DT), 3) Extremely Random Trees (ET), 4) Gradient 

Boosting Machines (GBM), 5) Logistic Regression (LR), 6) Random Forest (RF), and 7) 

Support Vector Machine (SVM). Each resulting model underwent rigorous evaluation, enabling 

a comparative analysis of their respective performances. 

Highlighting Significant Findings, Trends, and Patterns: The performance evaluations 

uncovered several noteworthy findings and discernible patterns. Notably, in case of the default 

credit dataset, the GBM model demonstrated the highest overall AUC, closely followed by ET, 

ADB and RF, while DT, SVM and LR exhibited comparatively lower performance levels. 

These results unveil variations in model performance, offering valuable guidance for model 

selection in specific applications. 

Therefore, the performance evaluations conducted within the PEF framework have 

provided in-depth insights into the strengths and weaknesses of each ML model. These 

assessments contribute to a more nuanced understanding of model performance, aiding 

practitioners in making informed decisions regarding model deployment in real-world contexts.  

6.3 Explainability Assessment 

In this section, we discuss the results of the explainability assessments conducted within 

the Performance-Explainability-Fairness framework, aiming to shed light on the 

understandability of machine learning models and their implications on model trust and 

transparency. We also compare the explainability of models with varying levels of performance. 

Presentation of Explainability Assessments within the PEF Framework: To evaluate the 

explainability of the machine learning models, we employed a range of techniques, including 

feature importance analysis, explanation methods (such as SHAP). These assessments were 

carried out on each model in our benchmarking dataset. Explainability features are represented 

by the comprehensibility, granularity, information type, faithfulness, and user category 
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characteristics. These characteristics provide us the option for model selection trade-off based 

on the explainability requirements for a specific use case. 

Extent of Understandable Explanations: The results of our explainability assessments 

indicated varying levels of understandability across different models. While some models 

offered clear and interpretable explanations for their predictions such as DT classifier-based 

models for each of the dataset, others provided explanations that were less transparent and 

harder to comprehend such as other ensemble-based models with classifiers like ET, GBM, 

ADT etc. This discrepancy in the extent of understandability highlights the importance of 

incorporating explainability into the model development process. 

Implications of Explainability on Model Trust and Transparency: Explainability plays a 

pivotal role in enhancing model trust and transparency. Models that could provide more 

understandable explanations are generally associated with higher levels of trust among users 

and stakeholders. When a model’s decision-making process is transparent and comprehensible, 

users are more likely to trust its predictions and recommendations. This has significant 

implications, especially in high-stakes applications like healthcare and finance, where decision-

making processes need to be justifiable and transparent.  

For example, in our finance domain use case with default credit dataset, considering the 

inherent complexity of our decision problem, our objective is to optimize both performance and 

fairness, with a degree of flexibility regarding explainability whenever possible. However, in 

scenarios where absolute faithfulness is paramount and performance expectations can be more 

lenient, the Decision Tree (DT) emerges as the sole suitable choice. Conversely, when 

performance and fairness share equal importance, Gradient Boosting Machine (GBM) stands 

out as the preferred option. These observations underscore the importance of assessing use cases 

and aligning model selection with specific metric priorities in a balanced and nuanced manner. 

Moreover, explainability can aid in identifying potential biases or ethical concerns within 

the model. Models that offer clear explanations for their predictions allow practitioners to 

pinpoint the source of bias or discrimination and take corrective actions, thereby promoting 

fairness in AI systems. 

Comparison of Explainability Across Models with Different Performance Levels: One of 

the intriguing findings from our study is the correlation between model performance and 

explainability. We observed that models with higher performance metrics often tended to have 
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more complex architectures and were consequently less interpretable. On the other hand, 

models with lower performance metrics generally had simpler structures, making their 

explanations more understandable such as DT based models. This trade-off between 

performance and explainability underscores the need for a balanced approach when designing 

machine learning systems. While high-performance models are desirable for many applications, 

their lack of explainability can limit their real-world adoption, especially in domains where 

interpretability is crucial. 

Therefore, the explainability assessments conducted within the PEF framework 

highlighted the importance of transparent and understandable machine learning models. These 

assessments revealed variations in the extent of explainability among models, with implications 

on trust, transparency, and fairness. Furthermore, our findings emphasized the trade-off 

between model performance and explainability, urging researchers and practitioners to strike a 

balance that aligns with the specific requirements of their applications. 

6.4 Fairness Evaluation 

In this section, we focus on the fairness evaluation aspect of the Performance-

Explainability-Fairness Framework. We assess the fairness of ML models using the defined 

fairness metrics within the PEF framework, explore disparities and biases in model predictions, 

analyze the implications of fairness considerations on model selection and deployment, and 

discuss strategies for enhancing fairness in ML models. 

Evaluation of Fairness Using PEF Framework Metrics: Within the PEF framework, fairness 

is evaluated using use case appropriate fairness metrics that may encompass different 

dimensions of fairness, including demographic parity, equalized odds etc. These metrics enable 

a quantitative assessment of how ML models treat different groups within a dataset or user 

population. Our fairness evaluation revealed variations in model performance across various 

fairness metrics. Some models demonstrated a higher degree of fairness by consistently 

delivering equitable outcomes for different demographic groups, while others exhibited 

disparities that may have real-world consequences. For example, with the finance domain 

default credit dataset, GBM provided far superior fairness through equalized odds difference 

than the ER, LR, DT and other classifier-based models. However, it’s crucial to emphasize that 

the fairness assessment’s outcomes can be context-dependent, as different fairness metrics may 
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favor distinct models. In this context, the SVM classifier-based model, when assessed through 

demographic parity difference, emerged as the most suitable option. These fairness metrics 

provide a robust and comprehensive basis for evaluating fairness in machine learning, enabling 

a more informed and ethical deployment of models in diverse real-world applications. However, 

the framework allows for the flexibility to utilize any fairness metrics that are suitable for the 

specific use case, without mandating a particular one. 

Exploration of Disparities and Biases: The exploration of disparities and biases in model 

predictions revealed important insights. Disparities were often observed in situations where 

models had insufficient representation of certain groups in the training data. This led to 

underperformance for those groups, indicating the presence of bias. Additionally, bias in data 

labeling, either due to historical imbalances or societal prejudices, could manifest as biases in 

model predictions. Biases and disparities can have significant ethical and societal implications. 

In domains like criminal justice or lending, biased predictions can perpetuate discrimination 

and exacerbate societal inequalities. Therefore, it is crucial to identify and rectify these issues 

during the model evaluation phase. 

Impact of Fairness Considerations on Model Selection and Deployment: The inclusion of 

fairness considerations in our benchmarking process had a substantial impact on model 

selection and deployment decisions. Models that demonstrated fairness across a range of 

metrics were prioritized, especially in sensitive domains where equitable outcomes are 

paramount. However, this sometimes came at the expense of pure performance metrics, 

highlighting the trade-off between performance and fairness. For example, in case of the law 

school admission dataset in the education domain, even though ADB and ET based models had 

better performance than RF, we choose RF based model as the best model for the dataset given 

it had a far superior fairness metric value. Additionally, with the criminology domain using 

COMPAS recidivism dataset, we had both GBM and LR emerged as best performant models, 

but LR had inferior fairness than GBM, so we selected GBM as the best suitable model for the 

use case. Additionally, in some cases, the fairness evaluation led to model fine-tuning or 

retraining to mitigate bias and improve fairness. This iterative process underscored the 

importance of continuous monitoring and improvement in ensuring fair AI systems. 

Strategies for Improving Fairness in ML Models: Our research highlights several strategies 

for enhancing fairness in ML models. 
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▪ Data Augmentation: Augmenting underrepresented data can help mitigate biases 

caused by skewed training data. By creating additional training examples, effectively 

expanding the size of the dataset, a larger dataset can help improve the generalization 

and robustness of a machine learning model. 

▪ Algorithmic Fairness Techniques: Implementing algorithmic fairness techniques, 

such as re-weighting or re-sampling, can rectify disparities in predictions. For example, 

for the health care domain with the diabetic dataset, we used resampling techniques. 

▪ Bias Detection and Mitigation: Regularly assessing and mitigating bias during model 

development and deployment is crucial. This may involve identifying problematic 

features, data or decision-making processes and adjusting them to reduce bias. For 

example, for the criminology domain with COMPAS recidivism dataset, we remove 

several features and data that are not useful for the model as certain cases may have had 

alternative reasons for being charged. 

▪ Fairness-Aware Hyper-parameter Tuning: Incorporating fairness-aware hyper-

parameter tuning techniques during model training can promote equitable outcomes. 

For example, we used Fairlearn’s GridSearch as a hyperparameter tuning technique that 

helps find the best combination of hyperparameters for a given model. It focuses on 

optimizing model performance with respect to fairness constraints. It searches through 

a range of hyperparameters to identify the best configuration that achieves a balance 

between performance and fairness. 

▪ Explainable AI: Utilizing explainable AI techniques can help pinpoint the sources of 

bias in model predictions, enabling more targeted fairness interventions.  For example, 

by integrating such techniques into our framework, we empower practitioners to not 

only identify fairness-related challenges but also to understand why and how these 

challenges arise. This enhanced transparency and interpretability foster more effective 

strategies for mitigating bias and promoting fairness in machine learning models across 

various domains, including finance. 

Therefore, the fairness evaluation within the PEF framework provides a structured 

approach to assess and address biases and disparities in ML models. It emphasizes the 

significance of fairness in model selection and deployment, especially in sensitive domains, and 
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offers strategies for improving fairness, contributing to the development of more equitable AI 

systems. 

6.5 Integration of Performance, Explainability, and Fairness 

In this section, we focus on the pivotal aspect of integrating performance, explainability, 

and fairness within the framework. As AI and ML continue to shape diverse domains, this 

integration becomes paramount. We explore the synergies and challenges of harmonizing these 

dimensions, ultimately forging a path toward responsible and equitable AI and ML deployment. 

Interplay between Performance, Explainability, and Fairness: The inclusion of 

performance, explainability, and fairness within the benchmarking framework marks a 

significant transformation in the assessment of machine learning models. These dimensions are 

inextricably linked, with each influencing and shaping the others. The study has illuminated the 

intricate interplay between these aspects, revealing that enhancing one dimension often entails 

trade-offs or synergies with the others. As an illustration, when dealing with a healthcare 

dataset, we encountered a trade-off situation. We had to carefully weigh our options and opted 

for the ADB classifier-based model, which demonstrated superior fairness considerations, even 

though the GBM classifier-based model delivered the best performance. 

Impact of Improvements in One Dimension: Improvements in one dimension, such as 

fairness, have a ripple effect across the entire framework. For instance, when efforts are made 

to enhance fairness, model performance may experience variations. Achieving fairness may 

require the introduction of constraints or modifications that influence the model’s predictive 

accuracy. Therefore, it is imperative to strike a balance between these dimensions, ensuring that 

enhancements in one do not come at the expense of the others. 

Case Studies and Illustrative Examples: The research incorporates case studies and examples 

that vividly illustrate the trade-offs and synergies between these dimensions. For instance, when 

assessing fairness in the context of the “default of credit card client” dataset, it became evident 

that optimizing fairness metrics led to variations in model performance. Conversely, prioritizing 

predictive performance often came at the cost of fairness. These real-world instances 

underscore the practical challenges faced by practitioners and highlight the need for a holistic 

evaluation framework. 
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Therefore, the integration of performance, explainability, and fairness within the 

benchmarking framework marks an important advancement in the field of ML model 

assessment. This discussion underscores the intricate dynamics between these dimensions, 

emphasizing the need for a balanced approach that optimizes each while considering their 

inherent trade-offs. Real-world case studies serve as practical demonstrations of these 

principles, shedding light on the complex decision-making processes when deploying ML 

models in contexts where fairness, explainability, and performance is paramount. 

6.6 Comparison with Existing Benchmarking Approaches 

In this section, we compare the Performance-Explainability-Fairness framework with 

existing benchmarking methodologies, assessing its comprehensiveness and effectiveness in 

addressing the challenges of evaluating machine learning models. 

Comprehensiveness of PEF Framework: The PEF framework offers a holistic approach to 

benchmarking ML models that sets it apart from many existing methodologies. Traditional 

benchmarking often focuses solely on performance metrics such as accuracy, precision, or 

recall. While these metrics are undeniably essential, they provide an incomplete view of a 

model’s suitability for real-world deployment. In contrast, the PEF framework integrates not 

only performance metrics but also explainability and fairness assessments. This comprehensive 

approach ensures that a broader set of factors is considered when evaluating a model’s fitness 

for a particular task or application. This is particularly relevant in fields like healthcare and 

finance, where ethical and transparency considerations are paramount. 

Effectiveness of PEF Framework: The effectiveness of the PEF framework is evident in its 

ability to provide a more nuanced evaluation of ML models. By including explainability and 

fairness assessments, it addresses the limitations of traditional benchmarking, which often fails 

to capture the interpretability and equity aspects of models. This makes the PEF framework 

more adaptable to a wide range of applications and contexts, where model explanations and 

fairness considerations are becoming increasingly important. Moreover, by considering the 

trade-offs between performance, explainability, and fairness, the PEF framework helps 

stakeholders make more informed decisions about model deployment. 

Advantages of the PEF Framework: 
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▪ Holistic Evaluation: The PEF framework offers a well-rounded evaluation of ML 

models, considering not only predictive performance but also their ability to provide 

interpretable explanations and ensure fairness. This holistic perspective aligns better 

with the real-world demands of AI systems. 

▪ Bias Mitigation: The incorporation of fairness assessments within the PEF framework 

enables the identification and mitigation of bias and discrimination in ML models. This 

is essential for ensuring equitable outcomes in various domains. 

▪ Transparency and Trust: By evaluating explainability alongside performance, the 

PEF framework enhances model transparency and trustworthiness, addressing concerns 

regarding the “black box” nature of complex models. 

Limitations of the PEF Framework: 

▪ Complexity: The PEF framework introduces complexity into the benchmarking 

process, as it requires expertise in both performance evaluation and 

explainability/fairness assessments. This may deter some practitioners, especially those 

with limited resources or expertise. 

▪ Resource Intensive: Conducting thorough explainability and fairness assessments can 

be resource-intensive, particularly for large datasets and complex models. This may 

limit the scalability of the PEF framework in certain scenarios. 

▪ Subjectivity: Assessing model explanations and fairness can involve subjective 

judgments, potentially introducing bias. Standardizing these assessments remains a 

challenge. 

In conclusion, the PEF framework offers a comprehensive and effective approach to 

benchmarking ML models, addressing the limitations of existing methodologies. Its advantages 

include a more holistic evaluation, bias mitigation, and improved transparency and trust. 

However, its complexity, resource requirements, and potential subjectivity in assessments 

should be carefully considered when applying the framework in practice. 

6.7 Implications and Applications 

In this section, we delve into the practical implications of the research findings. We 

examine the influence of these findings on the wider machine learning field, investigate 
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potential real-world uses of the PEF framework, and contemplate its significance in decision-

making, especially within sensitive domains. 

Practical Implications for the Broader Field of ML: The research findings presented in this 

dissertation have several practical implications for the broader field of machine learning: 

▪ Enhanced Model Development: The integration of explainability and fairness 

assessments into benchmarking offers valuable insights for model development. 

Researchers and practitioners can use these assessments to identify areas for 

improvement in their models, leading to more robust and ethically sound AI systems. 

▪ Improved Model Trust: The dissertation emphasizes the importance of model 

transparency and trustworthiness. As AI applications become more widespread, 

building trust among users and stakeholders is paramount. By adopting the PEF 

framework, organizations and developers can ensure their models are not only accurate 

but also understandable and fair, enhancing user confidence. 

▪ Ethical Considerations: The PEF framework highlights the ethical considerations that 

must be addressed in machine learning. As AI systems impact various aspects of society, 

including healthcare, finance, and criminal justice, the framework provides guidance on 

how to evaluate and mitigate bias, thereby promoting fairness and equity. 

Potential Applications of the PEF Framework in Real-World Scenarios: The PEF 

framework has significant potential for various real-world applications: 

▪ Healthcare: In the healthcare domain, the PEF framework can be employed to assess 

diagnostic models. Models that not only exhibit accuracy but also offer understandable 

explanations for their predictions can aid healthcare professionals in making well-

informed decisions, thereby enhancing the quality of patient care. 

▪ Finance: In the financial sector, where transparency and fairness are crucial, the PEF 

framework can be used to evaluate risk assessment models. Ensuring these models are 

both accurate and fair can help prevent discriminatory lending practices and promote 

financial equity. 

▪ Criminal Justice: When evaluating predictive criminal justice models, the PEF 

framework can aid in identifying and mitigating biases, reducing the potential for unfair 

or discriminatory law enforcement practices. 
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Relevance of the Framework in Sensitive Decision-Making Processes: The PEF 

framework’s relevance in decision-making processes, especially in sensitive domains, cannot 

be overstated. In these contexts, decisions often have far-reaching consequences, and the 

framework can help ensuring the following: 

▪ Ensure Accountability: By requiring models to provide explanations for their 

predictions and assessments of fairness, the PEF framework holds AI systems 

accountable for their decisions, making it clear who is responsible in case of errors or 

ethical violations. 

▪ Facilitate Compliance: In sectors subject to regulatory oversight, such as healthcare 

and finance, the framework can assist organizations in complying with regulations that 

mandate fairness and transparency in AI systems. 

▪ Promote Ethical Decision-Making: The PEF framework encourages organizations 

and developers to make ethical considerations an integral part of their decision-making 

processes. This is particularly important in domains where fairness and equity are 

paramount, such as criminal justice and healthcare. 

In summary, the PEF framework’s practical implications span the broader field of 

machine learning, offering valuable insights for model development, trust-building, and ethical 

considerations. Its potential real-world applications extend to various domains where fairness, 

transparency, and accountability are essential, with particular relevance in sensitive decision-

making processes. 

6.8 Chapter Summary 

The key takeaways from this chapter encompass several vital facets. Our exploration of 

the PEF framework reveals that it offers a multifaceted approach to ML model evaluation. By 

encompassing performance, explainability, and fairness assessments, it provides a nuanced 

understanding of model behavior. Explainability and fairness assessments illuminate the inner 

workings of models, enabling transparency, trust, and bias identification. The PEF framework 

contributes to advancing the field of ML model benchmarking by bridging the gap between 

model performance and ethical considerations, promoting responsible AI development. This 

holistic approach addresses the shortcomings of traditional benchmarking methods by 

emphasizing the ethical implications of AI systems. 
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CHAPTER 7 

CONCLUSIONS 

This concluding chapter serves as a comprehensive summary of the research endeavor, 

encompassing practical implications, theoretical, practical, and methodological contributions, 

inherent limitations, and prospective avenues for future exploration. It provides a holistic 

perspective on the multifaceted dimensions of the study’s impact. The practical implications 

underscore the real-world significance of the research findings, demonstrating how they can be 

applied in various domains to address pertinent issues. The theoretical and methodological 

contributions delineate the novel insights and methodologies devised during the course of this 

research, augmenting the existing body of knowledge. However, it is vital to acknowledge the 

limitations of the study, which guide future research endeavors toward addressing these 

constraints. Consequently, this chapter concludes by delineating the trajectory for future 

research directions, charting a course for continued scholarly exploration and innovation in the 

field. 

7.1 Impact of the Artifact 

The Performance-Explainability-Fairness framework stands as an innovative framework 

within the domain of benchmarking machine learning models, ushering in an evolution towards 

responsible and equitable AI implementations. Its impact is felt across various facets, reshaping 

the landscape of assessing and utilizing ML models. This innovative framework not only 

addresses the crucial need for enhanced model evaluation but also underscores the imperative 

of fairness and transparency in the deployment of AI systems. 

At its core, the PEF framework serves as a robust solution to the escalating complexities 

arising from the widespread adoption of AI and ML systems in our modern technology 

landscape. These systems, renowned for their predictive capabilities, frequently grapple with 

issues of opacity, inscrutability, and unfairness. The PEF framework, incorporating the pivotal 

aspects of performance, explainability, and fairness, emerges as a guiding tool that directs both 

practitioners and scholars towards models that not only excel in predictive precision but also 

instill confidence and uphold equitable outcomes. In doing so, it addresses the critical need for 
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responsible and accountable AI deployment, thereby participating significantly to the evolving 

discourse surrounding the ethics and efficacy of AI system. 

Moreover, the PEF framework’s influence extends beyond the technical realm into the 

broader socio-economic landscape. Organizations adopting the framework are better positioned 

to mitigate risks associated with biased decisions, thereby safeguarding their reputation and 

credibility. By fostering transparency and accountability, the framework help generate public 

trust, which is pivotal in promoting the widespread acceptance and adoption of AI systems. 

In essence, the PEF framework serves as a compass guiding the AI community toward 

models that transcend traditional performance metrics. Its impact is manifest in the emergence 

of AI systems that not only excel in predictive accuracy but also operate within the bounds of 

ethics and fairness. As we navigate an increasingly AI-driven world, the PEF framework stands 

as a testament to the commitment of researchers and practitioners to harness the power of AI 

for the greater good, ushering in an era where technology aligns seamlessly with human values 

and aspirations. 

7.2 Contributions 

This research stands as an original contribution in the ever-evolving landscape of 

explainable AI and ML. This research integrates the crucial dimensions of performance, 

explainability, and fairness, by addressing the multifaceted challenges associated with ML 

model assessment, it provides a comprehensive blueprint for evaluating ML models that not 

only excel in predictive accuracy but also operate transparently and equitably.  

This dissertation’s contributions extend beyond academia. It presents a practical 

framework applicable to various domains where fairness, transparency, and trust is paramount. 

By prioritizing ethical AI development, this research has the potential to shape the broader 

research community’s practices, foster responsible AI deployment, and contribute to a more 

equitable and trustworthy AI-powered future. Below we discuss the contribution of this 

research from the research and practical utility perspective. 

7.2.1 Contributions to Research 

The research makes a profound contribution to the realm of AI and machine learning 

research. This innovative framework redefines the paradigm of ML model assessment by 
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harmoniously integrating three pivotal dimensions: performance, explainability, and fairness. 

In doing so, it not only advances our understanding of how to evaluate and select ML models 

effectively but also empowers practitioners and researchers to build AI systems that are not 

only highly accurate but also transparent and ethically sound. This contribution is particularly 

timely in an age where the ethical implications of AI are under intense scrutiny, as it equips the 

AI community with a robust methodology for addressing biases, enhancing trust, and ensuring 

responsible AI deployments. By pioneering this holistic approach, the research lays the 

foundation for a future where AI technologies align seamlessly with human values, promoting 

fairness, accountability, and societal well-being in an AI-driven world. 

One of the most significant contributions of the PEF framework is its emphasis on 

fairness. In a world increasingly aware of the ethical implications of AI, fairness considerations 

are paramount. By evaluating ML models for fairness, the framework aids in uncovering biases, 

disparities, and inequities within the model’s predictions. It enables organizations to rectify 

these issues and ensures that AI-driven decisions are just and equitable across diverse 

demographic groups. The impact here is not only societal but also legal, as regulatory bodies 

are increasingly requiring fairness assessments in AI deployments. Following are some key 

contributions: 

▪ Comprehensive Benchmarking: The framework establishes a comprehensive 

approach to benchmarking ML models, incorporating not only performance metrics but 

also explainability and fairness aspects. This holistic assessment aids in identifying 

models that excel in various dimensions, promoting well-informed model selection. 

▪ Methodological Advancement: The framework advances the methodology for 

evaluating ML models by incorporating multiple dimensions, thus setting a precedent 

for more comprehensive and robust benchmarking practices. 

▪ Interdisciplinary Bridge: The framework bridges the interdisciplinary gap between 

AI, ethics, and fairness, fostering collaboration and dialogue among researchers from 

various fields. 

▪ Future Research Opportunities: It identifies avenues for future research, particularly 

in the areas of data bias mitigation, the development of fairness-aware algorithms, and 

the refinement of benchmarking methodologies which are outlined in the later section 

of this chapter. 
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In sum, the PEF Framework extends the boundaries of ML model evaluation, offering a 

holistic and ethical approach that advances research in the field of AI. 

7.2.1 Contributions to Practice 

This research’s significance extends far beyond academia, as it equips industries, 

organizations, and policymakers with the tools and methodologies needed to navigate the 

ethical and practical complexities of AI deployments. In a contemporary landscape marked by 

escalating dependence on AI and a heightened recognition of its profound societal 

consequences, this research emerges as a guiding force. It directs our trajectory towards a future 

in which technology harmoniously aligns with fundamental human values, thereby nurturing 

trust, fostering accountability, and upholding principles of justice in the AI-driven world. 

Following are the contribution to practice of this research: 

▪ Ethical AI Deployment: By emphasizing fairness as a crucial component of 

benchmarking, the framework contributes to the responsible and ethical deployment of 

AI systems. It guides practitioners in evaluating models for potential bias and ensuring 

equitable outcomes. 

▪ Transparency and Explainability: The inclusion of explainability metrics encourages 

the development of AI models that are more transparent and interpretable. This 

enhances user trust and facilitates model understanding, which is particularly vital in 

critical applications such as healthcare and finance. 

▪ Practical Applicability: The framework’s practical utility is demonstrated through a 

real-world case study, making it accessible and relevant for practitioners and researchers 

seeking to assess ML models across domains. 

▪ Guidance for Model Selection: It offers guidance on model selection based on specific 

priorities, whether performance-centric, explainability-focused, or fairness-driven, 

enabling stakeholders to align model choices with their particular requirements. 

▪ Adaptability and Extensibility: The framework’s adaptability allows for 

customization to suit diverse use cases and domains, promoting its applicability in a 

wide range of AI applications. 
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▪ Awareness of Biases: By acknowledging the limitation of data bias, the framework 

raises awareness about potential biases in real-world datasets, prompting researchers 

and practitioners to address this critical issue. 

In sum, the PEF Framework extends the boundaries of ML model evaluation, offering a 

holistic and ethical approach that advances practical utility in the field of AI. 

7.3 Limitations 

While the PEF Framework proposed in the dissertation offers a comprehensive approach 

for benchmarking machine learning models, it is essential to acknowledge its limitations as well 

to provide a balanced perspective. Some of the limitations of this framework include: 

▪ Complexity and Computational Resources: Implementing the PEF framework may 

demand significant computational resources and time, particularly when evaluating 

numerous models and assessing their performance, explainability, and fairness 

comprehensively. This complexity could limit its applicability to researchers or 

organizations with limited resources. 

▪ Subjectivity in Fairness Metrics: The fairness assessment within the framework relies 

on fairness metrics, which themselves may be subject to interpretation and debate. 

Defining what is “fair” in any given context can be challenging, and the choice of 

fairness metrics may influence the results. 

▪ Data Quality and Bias: The framework doesn’t directly involve in data quality 

assessment. The data analysis and preparation with pre-processing should be included 

in the model development process as, in practice, real-world datasets frequently harbor 

inherent biases and systematic errors that can permeate the entire modeling process. 

Thus, mitigating data bias presents a multifaceted challenge that may necessitate 

supplementary measures beyond the scope of the framework’s provisions. 

▪ Resource-Intensive Fairness Mitigation: The framework identifies fairness issues but 

does not provide explicit guidance on how to mitigate them. Implementing fairness 

interventions, especially in real-world applications, can be resource-intensive and 

challenging. 

▪ Interpretability vs. Complexity Trade-off: The framework faces the ongoing 

challenge of balancing model interpretability with complexity and performance. 
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Striving for high performance and fairness may lead to more complex models that are 

harder to interpret. 

In conclusion, while the PEF framework provides a valuable structure for evaluating and 

benchmarking machine learning models, researchers and practitioners should be aware of its 

limitations and consider them when applying the framework to specific research questions or 

real-world applications. Addressing these limitations is crucial for refining and expanding the 

framework’s utility and ensuring its relevance in an ever-evolving field like AI and machine 

learning. 

7.4 Future Directions 

This research opens up exciting avenues for future research in the realm of machine 

learning and artificial intelligence. One promising direction is the development of advanced 

fairness mitigation strategies within the framework. Researchers can explore novel techniques 

and algorithms aimed at not only identifying fairness issues but also actively addressing them 

during the model training process. This includes devising methods that can adaptively balance 

fairness and performance based on the specific requirements of different applications. 

Additionally, future research can investigate deeper into the explainability component of 

the framework. Efforts can be directed towards enhancing model interpretability, particularly 

for complex models like deep neural networks, by developing more intuitive and human-

understandable explanations. Investigating the convergence of explainability and fairness can 

also yield productive insights, with the goal of providing clear and fair explanations for model 

decisions, especially in critical domains like healthcare and finance. 

Moreover, the scalability and efficiency of the framework can be optimized to 

accommodate large-scale datasets and real-time decision-making scenarios. This involves the 

development of distributed computing techniques and scalable algorithms for assessing and 

enhancing fairness and explainability in ML models. 

Lastly, exploring interdisciplinary collaborations with experts in ethics, law, and social 

sciences can help refine the ethical and legal implications of fairness in AI systems. This 

interdisciplinary approach can aid in developing comprehensive guidelines and policies for 

deploying ML models that adhere to societal norms and regulations while ensuring equitable 

outcomes. 
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In conclusion, the future research direction for the dissertation involves refining and 

extending the Performance-Explainability-Fairness framework to address emerging challenges 

in AI and machine learning, with a focus on fairness mitigation, improved model 

interpretability, scalability, and interdisciplinary collaborations to foster responsible and ethical 

AI development. 
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APPENDICES 

APPENDIX A: DATASET DESCRIPTION 

Finance Domain - Credit card client dataset 

Table 15.  Default of credit card client’s dataset (Yeh & Lien, 2009) 

Attribute Name Description 

ID User ID 

X1 (LIMIT_BAL) Amount of the given credit in NT$ that includes both the individual consumer 

and supplementary credit. 

X2 (SEX) Gender (1 = male; 2 = female) 

X3 (EDUCATION) Education (1 = graduate school; 2 = university; 3 = high school; 4 = others) 

X4 (MARRIAGE) Marital status (1 = married; 2 = single; 3 = others) 

X5 (AGE) Age (year) 

X6 – X11 (PAY_0 – 

PAY_6) 

X6 – X11 represents correspondingly the repayment status in September 2005 

to April 2005. The payback status is measured using the following scale: -1 = 

pay on time; The values 1..9 represents payment delay of 1..9 months and above. 

X12 – X17 

(BILL_AMT1 – 

BILL_AMT6) 

The amount of the bill statement in NT$. X12 – X17 represents bill statement 

amount in September 2005 to April 2005. 

X18 – X23 

(PAY_AMT1 – 

PAY_AMT6) 

These represents previous payment amount in NT$. X18 – X23 represents the 

amount paid in September 2005 to April 2005. 

Y (default payment 

next month) 

The binary variable Y is a response column, representing the default payment 

(1: Yes, 0: No). 
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Healthcare Domain - Diabetes dataset 

Table 16. Diabetes dataset (Clore & Strack, 2014) 

Attribute Name Description 

RACE Race or ethnicity of the patient. 

GENDER Gender of the patient. 

AGE Age of the patient. 

DISCHARGE_DISPOSITION_ID Disposition status upon discharge from the hospital. 

ADMISSION_SOURCE_ID Source of admission to the hospital. 

TIME_IN_HOSPITAL Number of days the patient spent in the hospital. 

MEDICAL_SPECIALTY Medical specialty of the attending physician or department. 

NUM_LAB_PROCEDURES Number of laboratory procedures the patient underwent. 

NUM_PROCEDURES Number of non-laboratory procedures the patient underwent. 

NUM_MEDICATIONS Number of distinct medications prescribed to the patient. 

PRIMARY_DIAGNOSIS Primary diagnosis or medical condition for which the patient was 

admitted. 

NUMBER_DIAGNOSES Number of diagnoses entered to describe the patient’s condition. 

MAX_GLU_SERUM Results of the maximum glucose serum test. 

A1CRESULT Results of the A1C test, a measure of long-term blood glucose 

control. 

INSULIN Indicating insulin is up, down or steady 

CHANGE Indicator of whether there was a change in diabetes medication. 

DIABETESMED Indicator of whether the patient was prescribed diabetes medication. 

MEDICARE Indicator of whether the patient is covered by Medicare. 

MEDICAID Indicator of whether the patient is covered by Medicaid. 

HAD_EMERGENCY Indicator of whether the patient had an emergency visit. 

HAD_INPATIENT_DAYS Indicator of whether the patient had inpatient hospitalization days. 

HAD_OUTPATIENT_DAYS Indicator of whether the patient had outpatient hospitalization days. 

READMITTED Indicator of whether the patient was readmitted to the hospital. 

READMIT_BINARY Binary indicator (0 or 1) of hospital readmission. 

READMIT_30_DAYS Binary indicator (0 or 1) of hospital readmission within 30 days. 
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Criminology Domain - COMPAS recidivism 

Table 17. COMPAS recidivism dataset (Larson et al., 2016) 

Attribute Name Description 

SEX Gender of the individual (e.g., Male, Female). 

AGE Age of the individual at the time of assessment. 

AGE_CAT Categorized age group (e.g., Less than 25, 25-45, Over 45). 

RACE Race or ethnicity of the individual. 

DECILE_SCORE Risk assessment score assigned by the COMPAS system. 

PRIORS_COUNT Count of prior criminal convictions. 

C_DAYS_FROM_COMPAS Number of days from the COMPAS assessment to the current case. 

C_CHARGE_DEGREE Degree or severity of the current charge. 

C_CHARGE_DESC Description of the current criminal charge. 

IS_RECID Binary indicator (0 or 1) whether the individual is recidivating. 

IS_VIOLENT_RECID Binary indicator (0 or 1) whether the individual committed a violent 

offense. 

SCORE_TEXT Textual representation of the risk score (e.g., Low, Medium, High). 

V_DECILE_SCORE Risk assessment score for violent recidivism. 

V_SCORE_TEXT Textual representation of the violent recidivism risk score. 

TWO_YEAR_RECID Binary indicator (0 or 1) whether the individual was rearrested or 

reincarcerated within two years of the assessment. 
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Education Domain - Law school admissions dataset 

Table 18. Law school admission dataset (Wightman, 1998) 

Attribute Name Description 

DECILE1B Academic decile rank based on first-year law school grades. 

DECILE3 Academic decile rank based on third-year law school grades. 

LSAT Law School Admission Test (LSAT) score. 

UGPA Undergraduate Grade Point Average (UGPA). 

ZFYGPA Z-Score of the first-year law school grades. 

ZGPA Z-Score of overall law school grades. 

FULLTIME Indicator of whether the student attended law school full-time. 

FAM_INC Family income or socioeconomic status of the student. 

MALE Gender of the student (Male or Female). 

TIER Tier or ranking of the law school attended by the student. 

RACE Race or ethnicity of the student. 

PASS_BAR Indicator of whether the student passed the bar examination. 
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APPENDIX B: THE SURVEY INSTRUMENT 

Task to be Completed 

Use the eight-dimensional framework to capture the trade-offs among potential ML models in 

terms of their performance, explainability and fairness. 

Questions 

Yes/No Questions 

1. Is the “Performance” characteristic of the framework relevant and clear? 

2. Is the “Comprehensibility” characteristic of the framework relevant and clear? 

3. Is the “Granularity” characteristic of the framework relevant and clear? 

4. Is the “Information type” characteristic of the framework relevant and clear? 

5. Is the “Faithfulness” characteristic of the framework relevant and clear? 

6. Is the “User category” characteristic of the framework relevant and clear? 

7. Is the “Fairness Context” characteristic of the framework relevant and clear? 

8. Is the “Fairness” characteristic of the framework relevant and clear? 

9. Does the framework currently miss a dimension that is important? 

Rating Questions 

Questions with rating answers on a scale of: Strongly Agree, Agree, Neutral, Disagree, Strongly 

Disagree. 

10. The fairness characteristics of the framework are important for the models my team 

develops and deploys. 

11. The performance-explainability-fairness model benchmarking framework is useful. 

12. The performance-explainability-fairness model benchmarking process is easy to follow. 

13. I am inclined to use this framework in my project. 

Open Ended Questions 

14. What are the strengths of the framework? 

15. How can the proposed framework be improved? 
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