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ABSTRACT 

Return-Oriented Programming (ROP) is an exploitation technique that is commonly 

used by malicious users. It works by leveraging return statements in binaries to gain control 

over the execution of programs. Some mitigations for ROP include changing the binary 

during compilation time, rewriting the binary after compilation, and adding runtime checks to 

the binary. The focus of this study was rewriting the binary after compilation. Rewriting 

during compilation time requires end users to have access to source code, which, in most 

cases, they will not. Adding runtime checks adds additional overhead to the target binary. 

The areas this study aimed to improve in the binary rewriting space were twofold. The 

first was improving static binary rewriting. This was done by attempting to see if the amount 

of information needed to correctly rewrite a binary could be reduced compared to other tools. 

The second area was attempting to use static binary rewriting to reduce the number of 

potential ROP gadgets in a binary. The ROP gadgets that were targeted were those created by 

splitting an instruction that contains a return in them to create new ROP gadgets. This was 

chosen because most current tools focused on the safety of standard returns from function 

ends. 

To determine if static binary rewriting could be used to reduce the amount of ROP 

gadgets created from mid-instruction ROP gadgets, a design science approach was taken. 

There were two artifacts that were created through two design cycles. The first artifact aimed 

to create a static binary rewriter that collected minimal amount of information from binaries. 

The second artifact built upon the first artifact and attempted to use it to remove instructions 

that contained a mid-instruction return. After the removal of the mid-instruction return, the 
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second artifact inserted instructions that allowed for the same functionality of the binary, but 

without the return byte. 

Keywords: reassemblable disassembler, trampoline rewriter, return-oriented 

programming, ROP, ROP gadgets, static binary rewriting 
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CHAPTER 1 

INTRODUCTION 

Binary rewriting is taking a compiled binary and modifying the instructions it executes 

during runtime without having to recompile it. Recently, a large number of binary 

rewriters/patchers have been released (Schulte et al., 2022; Wang et al., 2015; Wenzl et al., 

2019). These binary rewriters fall into two main categories: static and dynamic. The dynamic 

rewriters require the binary to be running to perform modifications and the static rewriters can 

make their modifications without needing the binary to be running. Binary rewriting is also 

being used to add or enhance security features in binaries (CHENG et al., 2014; Onarlioglu et 

al., 2010; Xu et al., 2020). The main security feature this study is going to investigate is 

Return-Oriented Programming (ROP) defense. 

The focus of this study was to determine if it was possible to create a static binary 

rewriter that can eliminate ROP gadgets from binaries and create a list of instructions to 

eliminate each specific ROP gadget. ROP attacks are still prevalent today and being able to 

hinder them would aid the security of any programs that a user would run. In addition, a list of 

instructions used for the elimination of ROP gadgets could be shared and used in other binary 

rewriters. 

Background of the Study 

Almost all aspects of our lives now interact with some form of application/software.  

This massive integration of technology into people’s lives means that the security of the 

devices, in turn, is also security for people themselves. These protections can come in two 
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main forms. The first form is software security (McGraw, 2004), which aims to add the 

protections to the software itself. The software protections attempt to secure data variables in 

the program or add checks during execution to ensure program integrity. Another method 

attempts to alleviate the problem not on the developer’s side, but on the hardware side of the 

device (Rostami et al., 2014). Enforcing the protections at a hardware level can help hinder 

attackers since, even if a software vulnerability exists, it would be stopped at the hardware 

level. Both protections can help protect end users from malicious attacks. These attacks cost 

the average victim $4,476 dollars on average and 71.1 million users fell victim to these 

attacks in 2021 (Sharif & Mohammed, 2022). The number of attacks and their severity have 

also been on the rise (Sharif & Mohammed, 2022).  

 However, even with these protections, attackers are still constantly trying to find 

vulnerabilities in the programs that we use. Not every protection is fool-proof and it is simply 

a matter of time before an exploit is found. Adversaries can leverage a variety of techniques to 

gain control of systems, leak data from devices, and more. These techniques can lead to actual 

attacks against the programs and thus harm the users that use the applications. Already this 

year, Apple had to release patches to two critical security issues that included seven different 

Apple devices, including iPhones (Gatlan, 2023). Vulnerabilities could allow attackers to steal 

data from the device or allow attackers to put software or data on the device. One example of 

this was in 2022 when a campaign was launched against human rights defenders in Mexico 

using zero-click exploits on iOS versions 15 and 16 (Marczak et al., 2023). Zero-click 

exploits are dangerous because they take advantage of vulnerabilities in software or apps to 

infect users without the user doing anything (Fiscutean, 2022). In one example, a messaging 

app was vulnerable to a zero click and all the attacker had to do was send a message to infect 
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a user (Fiscutean, 2022). Lastly, Android also had to apply two security patches this March 

for certain Android phone versions (Arntz, 2023). The next paragraphs discuss some of these 

types of attacks and review some of the mitigations for them. 

One type of attack that attackers can use is a Buffer Overflow attack (Aleph One, 

n.d.). This type of attack works by taking advantage of improper control of the amount of data 

that can be written to a buffer. A buffer is a location in computer memory that programs use 

to store data. The length of a buffer is sometimes statically sized, which means it will be a 

fixed length. If more data is written to a buffer than the buffer can hold, the memory segments 

that follow the buffer will begin to be overwritten by this overflow of data. A more specific 

example is shown in Figure 1. In this example, there is a buffer located at addresses 0 through 

15. Additionally, there is a variable with the name a found at address 16. If the program 

attempts to store more than 16 characters into the buffer and no checks stop the user from 

adding more than 16 characters, the written data will start to “overflow” from the buffer into 

the variable a. To accomplish this, an attacker could take advantage of vulnerable functions, 

such as scanf, that do not properly compare input length to buffer size (CWE, n.d.). An 

example of filling the buffer up is shown in Figure 1 by writing 16 a’s and then putting 8 b’s 

into the variable a. This overflow can lead to ROP vulnerabilities in programs. What ROP 

vulnerabilities are and their impact will be discussed in detail in the following paragraph. 
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Figure 1 Example buffer overflow 

 

 

A ROP attack can leverage return statements to gain control of the program (Bhat, 

2019). A return statement is an assembly instruction that is mainly found at the end of 

functions in binaries. Functions are a grouping of instructions that can be invoked. The return 

instruction instructs the program what address to resume execution at after the function has 

finished. In some assembly architectures, such as Intel, return instructions can also be created 

by starting execution at specific offsets in memory to cause a “c3” byte in an instruction to be 

treated as a return instruction. A ROP attack modifies what address the program resumes 

execution at after a return instruction is executed. The attacker then chains together small lists 

of instructions followed by another return instruction. These small lists of instructions and 

their returns are referred to as ROP gadgets.  

An example of how ROP attacks work is shown in Figure 2. First, some function is 

called in the main program. The function in the example is called get_input. Inside of this 

function is a buffer that stores input and the length of the input is never checked. Since the 

length is never checked, the function is vulnerable to a buffer overflow. Once the function is 
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called, this vulnerable buffer will be placed on the stack followed by two values. The stack is 

a memory structure that programs use to keep track of certain values and the two values are 

the old RBP value and the return instruction. RBP is a register. Registers hold values that 

programs use during execution. The RBP value can be ignored because it will get overwritten 

in this attack and the return instruction is the address that the program will return execution to 

after the function call ends. Once the return is executed, it will pop/remove the value from the 

top of the stack and return to that address. 

Figure 2 Simple ROP chain 

 

 

Figure 2 shows what a stack could look like at a given time. Removing an item from 

the stack allows for a previously added value on the stack to become the top. So, in Figure 2 

when the return value is popped, the memory value at 24 will become the top of the stack. 

This means if multiple values can be written to the stack during the overflow, the program’s 

execution will be controllable. The example in Figure 2 only puts the value 3 into RAX but 

gives an understanding of how a ROP chain could be built. First, the addresses 100 and 200 

are put onto the stack so the next two returns will go to 100 and 200. Next, the first gadget 
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will put the value 2 into RAX. Then the second gadget will increment the value in RAX 

making it 3. Finally, execution will return to wherever the next value on the stack is. The next 

value can be controlled, but this example does not show this. 

Some mitigation techniques, such as Address Space Layout Randomization (ASLR) , 

stack canaries, and Data Execution Prevention (DEP), have been implemented to try to hinder 

this type of attack (Bierbaumer et al., 2018; Ganz & Peisert, 2017; Marcho, 2019). All these 

protections can be bypassed by a malicious user. The following paragraphs will describe these 

protections and how they can be bypassed. 

The ASLR mitigation shuffles what location certain instructions are located at during 

the runtime of a program. The ASLR mitigation can make it more difficult for the attacker to 

use a buffer exploit to create a ROP gadget chain by shuffling what instructions are at specific 

addresses. This can be shown by analyzing Figure 2 again. With ALSR enabled in the 

program, the location of gadget 1 and gadget 2 would not always be at address 100 and 200. 

This would prevent the attacker from simply writing those two numbers to the stack. The 

attacker would need to find the location of those gadgets during the execution of the program. 

An attacker can leverage memory leak vulnerabilities to determine the locations of the 

gadgets (Planet, 2010). While this prevents hard-coded addresses and makes it more difficult 

to create working ROP gadget chains, the mitigation is not foolproof (Sporici, 2019). 

A stack canary is used to detect buffer overflows. The stack canary mitigation 

dynamically creates a value when a function is called. The value is saved by the calling 

routine and is also placed on the stack before the function’s return statement. The purpose of 

placing the canary value before the return instruction is that if an overflow overwrites the 

return value it will also overwrite the canary value. Once the return is executed, the canary 
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value is checked to ensure that it matches the value when the function was called. If the 

values are not the same, the program will terminate. Memory leaks (Planet, 2010) could leak 

the value of the canary and this could allow an attacker to make a specifically crafted buffer 

overflow that would contain the proper value of the canary in it.  

DEP defines certain sections of a binary as executable and nonexecutable. The 

nonexecutable sections are sections that contain bytes related to data and not instructions. 

Without DEP enabled, these data bytes could be executed leading to additional instructions 

that an attacker could use. However, ROP exploits target executable instructions. So, while it 

may limit the number of gadgets that can be used, ROP is still possible with DEP enabled. 

Statement of the Problem with Motivation 

Binary patching/rewriting takes a compiled binary and modifies it while maintaining 

program integrity without source code access (Wenzl et al., 2019). Binary rewriting is only 

able to be used on compiled languages, such as C, because a conversion of source code to 

machine code is made. Binary rewriting targets this machine code and modifies it without 

needing to perform the compilation step again. 

A wide variety of tools, such as IDA (hex-rays, n.d.), Ghidra (Ghidra Software 

Reverse Engineering Framework, 2019/2023), Radare2 (GitHub, 2012/2023), and Angr 

(GitHub, 2015/2023) all implement some form of binary patching. IDA, Ghidra, and Radare2 

are reverse engineering tools that can disassemble binaries and allow users to insert 

instructions at chosen locations. Angr is a tool that uses static and dynamic symbol analysis 

and can use binary patching to insert functionality at specific locations. Using binary 

rewriting as a method to defend against ROP attacks has been previously researched (Prasad 
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& Chiueh, 2003; Xu et al., 2020; Xu & Wang, 2022). However, none of these examples target 

the ROP gadget themselves and add protections around the ROP gadgets to hinder them. 

In addition to binary rewriting, two other methods involving compiler-based 

(Onarlioglu et al., 2010) and runtime-based (CHENG et al., 2014) approaches have been used. 

However, the compiler-based method either expects the creator of the program to use this 

method or that the end user has access to source code to compile it themselves. Expecting all 

software creators to use a compiler-based method when creating their program is overly 

optimistic. So, putting all users’ security in their hands is not a solid approach. Additionally, 

most vendors will not send source code along with their software for proprietary reasons. This 

means that most end users will never have access to the source code to compile it themselves. 

Because of those reasons, compiler-based methods are not optimal for the end user. The 

runtime-based technique does not modify the binary instructions and thus was not covered in 

this study. 

 The goal of this study was to provide access to some of the compiler-based solutions 

to a binary rewriting technique. This would allow ROP gadgets to be removed from the binary 

statically and without source code rather than trying to add protections around the ROP 

gadgets. The lack of needing source code is extremely beneficial for end-users because most 

programs vendors’ releases do not come with the source code. Not having source code means 

that compiler-based solutions would not be able to be used in many cases. By implementing a 

binary rewriting approach, end-users can implement the security measures without needing 

software vendors to release their programs with source code for recompilation. In addition, 

this newly hardened binary could be integrated with the runtime-based approaches (CHENG 



9 

et al., 2014) or, should the static analysis fail, the ROP gadget section could be integrated with 

existing binary rewriting tools (Schulte et al., 2022).  

Purpose of the Study 

 The purpose of the study was to use a design science research (vom Brocke et al., 

2020) (DSR) approach to generate a tool that was able to statically remove ROP gadgets from 

compiled binaries. Quantitative analysis (Cárdenas, 2019; Sandelowski, 1995) was not chosen 

because there is a heavy emphasis on comparison of variables. While there were comparisons 

in the amount of ROP gadgets, the main goal was developing a method of removing them. 

Qualitative analysis (Sandelowski, 1995) was not chosen due to a lack of open-ended design 

metrics. Since both quantitative and qualitative approaches did not fit this study, the DSR 

method to create the tool was chosen. 

 There were three main reasons for creating a tool that performs these tasks. The first 

reason was to try to shift ROP protection away from compiler-based approaches. Compiler-

based approaches remove the ability of end users to apply the protections themselves. This 

means that end users must inherently trust developers to apply the security patches. The 

second reason was to address new methods of static binary rewriting. Most binary rewriters 

currently attempt to recover basic block information or lift the binary into an intermediate 

language for label creation. However, having to recover more information from a binary or 

needing to lift to the intermediate language also allows more room for error. These errors can 

arise from mislabeling of locations or the inability to recover a control flow graph of the 

binary. The approach aligned in this research attempted to determine if less information is 

needed to provide effective static binary patching techniques. Some of the current tools also 

integrate with additional tools to help either determine control flow or add labels to the lifted 
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intermediate language. By doing this, more onus is put onto end users to install and maintain 

additional software to apply the security.  

The third reason involved the current implementation of ROP protection tools. Current 

protections either use compiler-based, return-based, or runtime-based protections. The issues 

around compiler-based solutions involving the lack of source code for end users or trusting 

vendors to use the compiler-based solution when compiling were previously mentioned. The 

return-based rewriters place protections around identified function return locations or other 

return-based instructions. Issues with this arise since they are only targeting actual return 

statements. Protections are not being added to instructions that contain “bad” bytes. These bad 

bytes could lead to return statements if the instruction is started at a different location with 

languages with variable instruction sizes. This means that specific ROP gadgets would remain 

in the binary and, if newer methods are discovered to bypass the tools protections, the ROP 

gadgets they were protecting could still be used. Runtime-based protections are used during 

the runtime of the program. One method involved implementing a counter for how many 

returns were used in a specific number of instructions. If the counter number exceeds a certain 

amount, the execution of the program halts. However, this method is not extremely efficient 

because runtime-based protections add an overhead to the execution of the program due to the 

need to check for violations to the protections during execution. In contrast, the method 

chosen in this research implemented one static binary rewriting phase and thus has a lower 

overhead during execution because it does not need to perform the runtime checks. 

Significance of the Study 

The goal of this study was to create a static binary rewriting tool that removes ROP 

gadgets that contain the byte “c3”, the return instruction for Intel, in ELF x86-64 binaries. It 
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did not target all instances of that “bad” byte, but instead targeted a subset of instructions that 

contained the “c3” byte and replaced them with bytes that do not lead to return instructions. 

However, while it was not able to fix all ROP gadgets, any ELF x86-64 binaries should be 

able to support the list of instructions used for fixing the ROP gadgets. Also, while the binary 

rewriter itself is not able to target Windows systems, the created instruction list should also 

work on Windows binaries since they currently use the Intel architecture like Linux. In other 

words, the list of safe instructions for specific ROP gadgets should be applicable to any binary 

that uses the Intel architecture. Additionally, the tool does not require the source code of the 

binary for it to be patched. This, combined with the large target space of the tool, helps 

immensely with the security of software. It helps security in three ways. First, it allows users 

to patch systems themselves and not have to wait for vendor updates. Also, it allows for older 

software to be patched without needing it to be recompiled and allows for patching software 

even if the source code is lost. 

For the rewriter side of things, the goal was not to create a “better” rewriter, but to 

simply offer another way of rewriting binaries to be investigated. The goal was to see how 

little extra information is needed to properly patch a large sample size of binaries. At the time 

of this research, the only extra information extracted is header information, section location 

and size, jump information, call information, relocation information and the full list of 

instructions for the binary.  This excludes information such as function boundaries and a 

control flow graph of the binary. By gathering as little data as possible, larger binaries can be 

parsed due to needing to store less information about the binary. 
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Nature of the Study 

The research method used for the study was DSR. The reason for this was that DSR 

attempts to solve a specific problem by creating an artifact that will solve the problem.  The 

goal of the study was to produce two artifacts: 

1. A static binary rewriter 

2. A list of instruction replacements for ROP generating instructions  

These artifacts combined would be used to reduce the amount of ROP gadgets in binaries. 

This also fits into a design problem classification described by Wieringa (Wieringa, 2014). A 

design problem attempts to invoke change by designing a solution to a problem (Wieringa, 

2014). In this study, the change was a reduction of ROP gadgets in binaries to aid in the 

security of users. Additionally, the design for this research was the two artifacts created to 

solve the problem. These reasons show that taking a DSR approach was optimal for this 

study.  

Quantitative (Cárdenas, 2019) and qualitative (Sandelowski, 1995) approaches were 

studied to ensure that a DSR approach was still the best method. Quantitative approaches 

focus mainly on the results of the research (Cárdenas, 2019). They have a heavy focus on the 

comparison of metrics to showcase the research. The goal of this study, however, was to 

highlight methods to remove ROP gadgets from binaries. While numerical metrics will be 

used to prove that the design is sound, they were not the focus of the research. Qualitative 

approaches use open-ended research questions to guide their research (Sandelowski, 1995). 

For this study, a potential question could be “Can static binary rewriters remove ROP gadgets 

from binaries?” However, to answer a question such as this, a tool would need to be created to 
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test this research question. Creating such a tool would be more suited to a DSR approach. So, 

it was decided not to use quantitative or qualitative approaches when conducting this study. 

Objectives of the Project 

The objective of the project was to produce a static reassemblable disassembler that 

could remove ROP gadgets without needing access to function or basic block information for 

a given binary. The list of questions that were examined are as follows: 

1. Can a static reassemblable disassembler be created that does not rely on 

determining function or basic block information? 

A tool was developed that attempted to parse a binary while only needing to determine the 

jump, calls, and relocations of the binary. Testing was done on the successful number of 

binaries patched and the integrity of the programs after patching. 

2. Can a list of safe instructions be generated for specific ROP gadgets? 

For a subset of ROP gadgets, a list of instructions for each ROP gadget was created. Every 

instruction list for the ROP gadget must: 

a. Maintain the original instructions functionality. 

b. Remove any bytes that would lead to a potential ROP gadget. 

3. Can these lists of instructions be inserted into a binary using static binary 

rewriting? 

This question had two problems that needed to be addressed. The first was identifying what 

instructions were generating the ROP gadgets. The other was how to handle the insertion of 

the given instructions. In other words, does the instruction get completely removed or simply 

modified with new values?  
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 If the created tool solved the above questions, it would confirm several assumptions. 

First, that a tool can be created that does not rely on function or basic block information. 

Second, ROP gadgets can be directly removed from a binary using static binary patching. 

Lastly, the list of instructions used to eliminate the ROP gadgets could be integrated with 

other static binary rewriting techniques. 

Definitions 

Return-Oriented Programming (ROP): A attack that leverages return statements to 

gain control of a target program (Bhat, 2019). 

ROP Gadget: A small list of instructions that occur before a return statement. 

Static Binary Rewriting: Modifying a binary without needing to run or load the 

binary into memory. 

Trampoline Rewriting: A static binary rewriting technique that changes the binary by 

diverting control flow to the patches being made and then returns control flow to the patch 

location (Schulte et al., 2022). 

Reassemblable Disassembler: A static binary rewriting technique that inserts patches 

directly at the patch location (Schulte et al., 2022). 

Assumptions 

This study had to make a variety of assumptions during its course. Most of the 

assumptions fell upon the tools used during the research. These assumptions start with the 

belief that Capstone properly disassembles the Intel x86-64 architecture (GitHub, 2013/2023). 

The only time that Capstone sometimes failed was if data was hit while parsing executable 

sections in the binary. The assumption was that no data would be encountered in the Coreutils 



15 

binaries. In the same vein, it was assumed that, for instruction generation, Keystone would 

properly translate the new assembly instructions into valid byte code (Keystone, n.d.). The 

next area of assumptions fell under ROP and ROP gadgets. First, it was assumed that the 

Coreutils library would provide a wide range of ROP gadgets to perform adequate testing 

(Coreutils.Git - GNU Coreutils, n.d.). With this test bed, it was assumed that the Ropper tool 

would grab all or most of the ROP gadgets in the target binary (sash, 2014). 

Scope and Limitations 

 The tool only targets ELF Intel x86-64 binaries. Further reducing this, it only targets 

the ELF binaries found in the Coreutils package. This was done because Coreutils is found in 

most Linux distributions and Uroboros, Ramblr, and Ddisasm all used Coreutils in their 

testing (Flores-Montoya & Schulte, 2020; Wang et al., 2017; Wang et al., 2016). Also, since 

there is a large variety of instructions that can cause ROP gadgets, only a subset of ROP 

gadget generating instructions was targeted. For limitations, complete control flow recovery 

is, in the general case, undecidable (Evans et al., 2015). Also, there was a limitation that 

should Capstone encounter data when parsing instructions, it will halt execution. Since the 

main goal was ROP removal, that issue will be overlooked and, should a binary cause this, it 

was simply marked as a failure. 

 All testing for this study was performed in a virtualized Linux environment using 

Windows Subsystem for Linux. The Linux environment was Ubuntu 20.04.6. The installed 

version of Coreutils was 8.30-3ubuntu2. There could be variances with the statistics gathered 

about the Coreutils binaries if done in a different Linux environment and/or with a different 

version of Coreutils. Additionally with artifact #2, the order in which ROP gadgets are 
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removed will vary if not done in the same way as in this study. However, the same result 

should be the same if the same path was taken. 

Chapter Summary 

 This chapter explained the significance of adding protections to ROP based 

vulnerabilities. It also highlighted some of the current methods of static binary rewriting. 

Additionally, this chapter explored techniques in current use to attempt to alleviate ROP 

gadgets in binaries. An examination into whether it was feasible to use static binary rewriting 

to implement compiler-based approaches to remove ROP gadgets in their entirety from a 

binary was made. 

 A design science research approach was used to undertake the question of whether a 

static binary rewriter can be used to remove ROP gadgets from a binary. An artifact that can 

perform static binary rewriting and remove the ROP gadgets was generated. Using the DSR 

method also ensures that the generated artifact was sound and solves the research questions.  

 Chapter two will discuss literature related to this topic. These topics will include 

trampolines, trampoline rewriters, reassemblable disassemblers, ROP, and ROP mitigation 

techniques. It will highlight existing tools in the current space and some areas that they could 

be improved on. 
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CHAPTER 2 

RELATED WORK 

Chapter 2 will explore the topics needed to gain an understanding of the methods of 

binary patching. It will highlight existing tools and the different methods of binary rewriting. 

These methods will include dynamic and static binary rewriting and the multitude of ways to 

handle the rewriting of the instructions (Schulte et al., 2022; Wenzl et al., 2019). 

After those techniques have been discussed, a deeper analysis will be taken on what 

ROP gadgets are and what mitigations have been put into place to hinder ROP gadgets. In 

addition, a look into how compilers and binary rewriting can be used as an aid to reduce the 

severity of ROP gadgets in binaries will be made.  

Additionally, a comparison of the differences between Complex Instruction Set 

Computer (CISC) and Reduced Instruction Set Computer (RISC) will be discussed. The main 

areas that differ that need to be considered are varying length instructions and the sharing of 

bytes in instructions. How these differences affect creating and hindering ROP gadgets will be 

shown in this chapter. 

Reduced Instruction Set Computer Architecture 

In regard to defeating ROP gadgets, one of the most important details about the RISC 

architecture is supporting a fixed instruction length (Fida El-Din & Krad, 2007). Having a 

fixed instruction length can limit the number of techniques for removing ROP gadgets. This 

can be seen in one of the approaches that E9patch (Duck et al., 2020) utilizes that involves 

using instruction punning. Instruction punning involves changing the leading bytes of an 

instruction so that the following bytes will become a new instruction of larger length. This 
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allows E9patch to have a wider range of location targets when creating new jump statements 

(Duck et al., 2020). This approach would not be as feasible in RISC architecture. 

However, one benefit of having a fixed instruction length is that the number of 

potential ROP gadgets that can be generated is minimized. This is because for every potential 

ROP gadget location, the number of potential instructions for that location will be capped 

based on the defined instruction size. Also, when control flow is directed to a location, the 

location needs to be a valid instruction. With a fixed instruction length, the number of bytes 

that need to be correct is potentially less than in CISC.  

The overall focus of the tool created was to target ROP gadgets that were created by 

splitting instructions that contained a “c3” byte in them for Intel. In Arm, a comparable 

instruction would be a branch instruction. One example would be “bx r0” which is made up of 

the bytes “10 ff 2f e1” in 32-bit ARM.  This would mean creating a mid-instruction ROP 

gadget would require four concurrent bytes instead of just one. Additionally, the total amount 

of potential gadgets would be lower because of the fixed instruction size. 

Complex Instruction Set Computer Architecture 

CISC architecture supports variable length instructions. This variable length of 

instructions can help create more ROP gadgets in binaries. The variable length allows for 

potentially more ROP gadgets at every return statement and an increase in valid return 

statements. Figure 3 showcases both problems. The first issue is that in the Intel architecture, 

a CISC architecture, the return statement is the byte “c3”. So, any instruction that contains the 

byte “c3” has the potential to create a return statement. However, a branch instruction in Arm 

32-bit can be made up of the four bytes “10 ff 2f e1”. Only having to match one byte instead 

of four increases the number of potential return statements in a binary. The second issue is the 
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total amount of instructions that can be generated at a return location. The variable length of 

instructions allows for a larger variety of ROP gadgets created at a specific return. In Figure 

3, just by modifying one instruction’s bytes, two ROP gadgets can be created. If control flow 

of the binary can be started at the second “48” in the original instruction “mov RAX, 

0xc3c0ff48”, a “inc RAX; ret” gadget will be created. Additionally, if control flow can be 

started at the “ff” byte in the original instruction, a “inc EAX; ret” gadget will be created. 

Figure 3 CISC ROP gadget creation 

 

  

So, the CISC Intel architecture poses a larger risk than RISC architecture. This is 

because the return statement in Intel is only one byte. This leads to a larger number of return 

statements in binaries. Additionally, the number of ROP gadgets created at these locations in 

Intel has the chance to be higher than a RISC architecture implementation. For both of these 

reasons, the Intel architecture was chosen for this study. 

Static Binary Rewriting 

Static binary rewriting involves making all modifications to the binary without it 

having to be run or loaded into memory. A large number of differing tools have been 
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proposed for static binary rewriting (Schulte et al., 2022; Wenzl et al., 2019). The tools 

investigated can be divided into two categories: 

1. Trampoline Rewriting 

2. Reassemblable Disassembler 

The trampoline rewriters involve adding additional instrumentation when trying to insert 

patch instructions. The reassemblable disassemblers directly replace instructions for their 

insertion method. Due to the nature of removing ROP gadgets directly, taking a reassemblable 

disassembler approach seemed to be the best option.  

Trampoline Rewriting 

Trampolines (Bernat & Miller, 2011; Kang, 2017), in the context of binary patching, 

are a three-step process. First, they require the ability to modify the control flow of the 

program. This usually entails the ability to insert a jump statement at specific locations, but 

any control flow modification technique will suffice. Second, they must be able to insert 

code/instructions at the location the control flow has been redirected to. Lastly, they must be 

able to return to the original location of where the control flow was redirected from. 

The value behind being able to create these trampolines is maintaining the size of a 

section for a given binary. If the size of the section stays the same, section headers and 

locations will not need to be updated. So, if the programmer can create a trampoline in a 

“safe” location, it can avoid the risk of affecting existing sections. Once in this location, a 

large number of instructions can be inserted without the worry of having to modify the 

existing binaries headers and jump tables. 

There are three main reasons why the created tool avoided using trampolines. The first 

had to do with memory fragmentation (Randell, 1969; Soma et al., 2014). Memory 
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fragmentation can be caused due to the nature of how trampolines allow the newly inserted 

instructions to be placed anywhere that is a safe location. This pseudo-randomly assigned 

insertion of instructions can lead to high memory fragmentation (Duck et al., 2020). Secondly, 

looking at trampolines from a ROP removal standpoint, the number of valid bytes when trying 

to construct a trampoline without introducing a new ROP gadget will be reduced. This is due 

to the fact that certain bytes that could be used for control flow redirecting, such as the “c3” 

byte, will need to be avoided. Lastly, trampolines need to add additional instructions for 

insertions for the jump structure. These additional instructions can start adding up if a lot of 

insertions are made. Also, for small insertions or even one-byte insertions the overhead is 

extremely large. 

Safe Memory Location  

One current technique, at the time of this study, for binary patching involves finding 

safe memory locations to insert new code instructions. For most cases, a safe location is one 

not occupied by a trampoline and is not within the .text or .data sections (Duck et al., 2020). 

The .text section contains the original binary code. If the new insertions are not made in the 

.text section, the need to worry about shifting the original control flow instructions will be 

eliminated. The insertions will need to be kept out of the .data section as well so that any 

reference to the data will not need to be altered due to the insertions. A safe location also 

needs to be a valid address and not NULL or a negative one (Duck et al., 2020). Attempting to 

insert at an address that is NULL or negative would not be contained in a binary’s address 

space. If an insertion was made at either a NULL or negative address, the execution of the 

program would fail once the trampoline was reached. If none of these trampoline conditions 

are met, it should mean that instructions can be inserted at that specific address. This allows 
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for the target instruction being patched to be transformed into a jump to the newly found safe 

address. By doing this, the size of the .text section will not be increased, and the offsets 

should not have to be changed. 

Trampoline Rewriters  

Trampoline rewriting involves using some form of control flow diversion to “jump” to 

a location with newly added instructions and then “jump” back to the original patch location 

without needing to shift the original code base (Bernat & Miller, 2011). Four tools, BinPatch 

(Hu et al., 2019), Embroidery (Zhang et al., 2017), E9Patch (Duck et al., 2020), and 

Multiverse (Bauman et al., 2018) were studied to gain an understanding of differing methods 

of current trampoline patchers.  

BinPatch is used to remove vulnerabilities from binaries based on existing patches for 

those vulnerabilities (Hu et al., 2019). BinPatch uses binary comparisons of existing functions 

to determine the locations of vulnerable functions within the binary (Hu et al., 2019). This is 

done to determine where the tool will need to insert trampolines to fix the vulnerabilities in 

the found functions (Hu et al., 2019). An issue with this approach is that all functions that 

may be used for comparisons will need to be stored somewhere or looked up to attempt to 

find a match when searching for vulnerable functions. When a vulnerable function is found, a 

trampoline will be created in the function and will contain the patched instructions based on a 

known fix (Hu et al., 2019). This means that to perform a fix for a vulnerability, there must be 

a known fix for that specific vulnerability. 

Embroidery employs a similar patching method used by BinPatch (Zhang et al., 2017). 

They use the Android Security Bulletin to find vulnerabilities and use pattern matching to find 

vulnerable functions in select binaries that were found in the bulletin (Zhang et al., 2017). 
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This tool has one of the same limitations as BinPatch, which is that a fix for a vulnerable 

function must be known to apply a patch to a binary. Additionally, Embroidery is designed for 

the Android ecosystem (Zhang et al., 2017). This study was designed for Linux distributions. 

So, a large number of modifications would need to be made to even attempt to use this tool 

for ROP gadget removal for a Linux environment.  

Multiverse uses a superset disassembler and creates a new section called .newtext to 

perform trampoline rewriting (Bauman et al., 2018). Multiverse attempts to brute force every 

executable byte offset to determine a superset of the code for patching (Bauman et al., 2018). 

To guarantee safe locations in the binary, the .newtext section is used (Bauman et al., 2018). 

A mapper links the superset to the .newtext section to determine addresses for the trampolines 

(Bauman et al., 2018). It also creates new mappings for user defined functions to attempt to 

further enforce the integrity of the program (Bauman et al., 2018). There were two main 

reasons this approach was not taken for this research. The first was the tool was designed for 

the x86 space and not the x64 space of instructions. The second reason was because of the 

insertion of the new .text section into the binary. Since Multiverse adds the new .text section 

and keeps the old .text section just with added trampolines, the size of the patched binaries is 

greatly increased (Schulte et al., 2022). 

E9Patch allows for control of the instructions being inserted rather than basing them 

off an existing patch. E9Patch leverages the ability of Intel (Turley, 2014) instruction punning 

(Chamith et al., 2017) to create trampolines (Duck et al., 2020). Unlike RISC architecture 

(Patterson & Sequin, 1981), Intel supports variable size instructions. This means that each 

instruction is not the same length. This will be a key factor when attempting to insert 

instructions into a binary or modify it because a modified instruction could change its length 
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after a patching attempt. Instruction punning allows for the same bytes to be used for multiple 

instructions. This can be used to save memory in the program if instructions are allowed to 

share those same bytes. The ability to use instruction punning allows for a greater set of 

possible valid trampoline targets. In addition, E9Patch also uses the variable instruction length 

to create the first of their three patching tactics: Padded Jumps (Duck et al., 2020). This 

method considers if the instruction being modified is not five bytes in length, which is the size 

of larger jumps. If it is not five bytes, it will need to be padded out to reach those 5 bytes.  

The other two techniques they offer, Successor and Neighbor Eviction, involve adding 

near-by instructions into the patch location and using them to create mini trampolines as 

needed (Duck et al., 2020). The main issue with reusing bytes of the original instructions for 

creating trampolines for ROP gadget removal is it further reduces the valid number of bytes 

that can be used. In this study, only the “c3” byte was targeted for ROP gadget removal. This 

would mean that the “c3” byte would not be able to be used to create new trampolines. 

However, there are other bytes that can generate ROP gadgets and each one that is added 

would also constrict the number of bytes that could be used.  

While trampoline rewriting is generally more successful for implementing patches, 

they tend to increase the runtime of the binary more than reassemblable disassemblers 

(Schulte et al., 2022). Another issue caused by trampoline rewriting is high physical and 

virtual memory fragmentation (Duck et al., 2020). Also, should a ROP mitigation technique 

be implemented, it would reduce the number of bytes that are able to be used when trying to 

find a safe location when creating the trampoline. Because of all of these considerations, it 

seemed that taking a reassemblable disassembler approach was better for removing ROP 

gadgets from existing binaries. 
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Reassemblable Disassemblers  

 Unlike the trampoline rewriters, reassemblable disassemblers insert the patches 

directly into the instruction set rather than using trampolines (Wang et al., 2016). This, in 

theory, should mean that the binary size increase from insertions should be less because the 

trampoline instructions do not have to be added. It should also not run the risk of needing a 

“safe” location for the trampoline locations. Four tools were analyzed for this: Uroboros 

(Wang et al., 2016), Ramblr (Wang et al., 2017), Ddisasm (Flores-Montoya & Schulte, 2020), 

and RetroWrite (Dinesh et al., 2020). 

 Uroboros was one of the original reassemblable disassemblers created (Wang et al., 

2016). Uroboros implemented an advanced linear sweep method called BinCFI (Wang et al., 

2016). BinCFI uses a standard linear sweep approach for the first pass of a binary, but checks 

for errors or gaps in the produced output (Zhang & Sekar, 2013). Errors are defined as 

instructions that contain invalid opcodes, direct control transfers outside the current module, 

and direct control transfers to the middle of an instruction (Zhang & Sekar, 2013). The errors 

are caused by gaps in the program which are found by locating improperly disassembled 

instructions (Zhang & Sekar, 2013). To determine the size of the gap, a backwards search for 

the nearest unconditional control-flow transfer is made (Zhang & Sekar, 2013). Once every 

gap has been marked, another disassembly pass will be made over the entire binary ignoring 

any gap locations (Zhang & Sekar, 2013). The entire process of marking gaps and fully 

disassembling the binary will be repeated until no errors and gaps occur (Zhang & Sekar, 

2013).  

This study implemented a linear sweep algorithm but used less error checking than 

BinCFI when pulling out instructions. Additionally, the binary was only disassembled one 
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time rather than multiple times. Also, the only time in this study a backwards propagation 

method was used was when attempting to fix jump table instructions.  

Uroboros leverages BinCFI to attempt to build out basic block information and 

function information during its disassembly phase and stores the results for rewriting later 

(Wang et al., 2016). The results are also used to build out the control flow graph for the target 

binary (Wang et al., 2016). However, the tool does not perform well compared to newer 

disassembler rewriters so other tools were analyzed (Schulte et al., 2022). 

 Ramblr improved upon Uroboros’ basic block detection. It uses Angr (GitHub, 

2015/2023) and recursive traversal (Kinder, 2010) to build out the entire control flow graph of 

the target binary. Angr is a tool that uses both static and dynamic symbolic execution (King, 

1976) for analysis of programs (GitHub, 2015/2023). Ramblr builds upon the symbolic 

execution provided by Angr and uses recursive traversal methods to ensure that the control 

flow graph is complete (Wang et al., 2017). Ramblr also uses multiple techniques to attempt 

to classify what type the value actually represents (Wang et al., 2017). Some of those types 

include primitives, strings, jump tables, and arrays of primitives (Wang et al., 2017). Since 

Ramblr uses Angr, the user is also required to have Angr as a dependency. It also means that 

if Angr cannot parse the control graph of the target binary, Ramblr will fail to function.  

One of the goals of this study was to create a static binary rewriter that did not need to 

symbolize the binary or build out basic block information. This was done to try to decrease 

the amount of overhead the tool needed to function. Since Ramblr is built upon Angr, that is 

already additional overhead. Furthermore, it builds out the entire control flow graph, which is 

what this research was trying to avoid. 
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 Unlike Ramblr, RetroWrite uses a linear sweep method to determine the control flow 

graph of the target binary (Dinesh et al., 2020). The most notable part of RetroWrite is the 

symbolization that it performs against the target binary. The symbolization process is broken 

into three different steps. The first step of the symbolization process is the control flow 

symbolization (Dinesh et al., 2020). In this step, control flow instructions are converted to 

assembler labels (Dinesh et al., 2020). The tool created in this study stores additional data 

related to control flow instructions but does not build out a label for the reference. The second 

step is converting PC-relative addresses (Dinesh et al., 2020). During this step, instructions 

using offsets with the RIP register will have their location converted to a assembler label 

(Dinesh et al., 2020). Additionally, the instruction will use this label as its new reference 

location instead of using just RIP and an offset amount (Dinesh et al., 2020). These types of 

instructions were handled in a similar fashion in this study. The difference was only the offset 

amount was saved and used for calculations during the rebuilding process. No labels were 

made for the location of the target address. The third step was data relocations (Dinesh et al., 

2020). In this step, any data reference had the bytes that were being targeted converted to an 

assembler label that would be referenced by the original data location (Dinesh et al., 2020). 

After this final step, all the symbolizations for the binary should be completed (Dinesh et al., 

2020). 

Once all the symbols have been gathered, RetroWrite will write back to an assembly 

file adding all of the symbols to this temporary assembly file (Dinesh et al., 2020). This 

allows other tools to make modifications to the temporary assembly file should they require 

the labels. To determine the disassembly to make this temporary assembly file, RetroWrite 

uses Capstone to parse the assembly instructions from the byte code (Dinesh et al., 2020). 
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This approach was similar to the approach used for this study, except the goal was to do this 

without needing to make new labels and simply keeping a list of all relocations. Additionally, 

the tool created for this study does not lift the binary into a temporary assembly file like 

RetroWrite. 

 Ddisasm is one of the best performing binary rewriters (Schulte et al., 2022). It 

leverages Capstone (GitHub, 2013/2023) to generate the instruction set. One unique feature is 

that it uses the Datalog language (Margaret, 2015). Ddisasm uses a linear sweep method with 

Capstone until it reaches an invalid instruction that Capstone cannot handle (Flores-Montoya 

& Schulte, 2020). Should that situation happen, Ddisasm will employ a backward propagation 

technique and a forward traversal technique to attempt to resolve the instruction (Flores-

Montoya & Schulte, 2020). Similar to Ramblr and Uroboros, Ddisasm attempts to build code 

blocks after parsing the instruction set (Flores-Montoya & Schulte, 2020). However, Ddisasm 

employs a more advanced code block detection strategy that also attempts to solve block 

conflicts if they are encountered when being built (Flores-Montoya & Schulte, 2020). Since 

Ddisasm had one of the best success rates of the static binary rewriters, the goal of the 

research was to attempt to get as close as possible to the same success rate. However, this 

would be done without building out the basic block information that Ddisasm uses to perform 

its static binary rewriting. 

Generating ROP Gadgets 

The Intel architecture allows for a variety of methods to determine how the bytes in 

the binary are used. They can be shared with instruction punning and the starting point of an 

instruction can be changed with a control flow operation. This allows an attacker to create 

ROP gadgets even if there was originally no return in the instruction set of the binary 
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(Shacham, 2007). This method involves searching for “bad” bytes such as a “c3” byte, which 

is the op code for a return instruction in Intel. Since instructions can share bytes in the Intel 

architecture, this reuse of bytes can be used to create ROP gadgets that were not created by a 

standard return. This is done by taking an instruction that contains a bad byte in it and then 

converting control flow to start at an address that will treat that bad byte as a type of return 

instruction. So, if the malicious user has control of the execution of the program, new ROP 

gadgets can be generated from instructions that originally contained no ROP gadgets. 

ROP Mitigation Methods 

There have been previous studies on how to mitigate the impact of ROP gadgets in a 

given binary. The methods can be classified into the following approaches: compiler-based 

mitigations, return-based mitigations, and dynamic-based mitigations (Ruan et al., 2016). 

These methods and tools for them will be described in the following paragraphs.  

 One technique used to try to reduce the impact of ROP gadgets for a program is to try 

to remove instructions that result in potential ROP gadgets during compilation time. One such 

tool that does this is G-Free (Onarlioglu et al., 2010). G-Free attempts to identify bad 

instructions when a program is being compiled. These mitigations involve shifting jumps, 

changing what registers are used, and adding cookies to new return instructions (Onarlioglu et 

al., 2010). 

 Some problems with compiler-based approaches are: 

1. Some compilers will not analyze assembling instructions and simply link them 

(Newline, 2021). 

2. Requirement of the creator of the executable binary to have used the compiler 

mitigation. 
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3. If the creator did not use the mitigation, the creator must provide the user source code 

with the binary to allow the user to perform the mitigations themselves. 

The first issue means that if any in-line assembly is used, G-Free will not be able to detect it 

because it will never be seen. This issue can be exasperated if a library function that programs 

use contain in-line assembly. The second issue forces the requirement of using G-Free onto 

the developers of programs. This is burdensome to the developer and puts all the 

responsibilities onto the developer. Additionally, end users would not be able to patch 

compiled programs and must rely fully on the developer to secure the program. For the last 

issue, most publishers of applications will not supply source code along with their products. 

This means that users would not be able to use the complier-based approach at all. Because of 

these concerns, taking a compiler approach is not optimal for end-users. However, this study 

did attempt to integrate some of the techniques showcased in G-Free in a binary rewriting 

approach. The techniques implemented involved the removal of instructions causing gadgets 

and replacing them with instructions that were equivalent but did not contain the “c3” byte. 

 Another technique to hinder ROP gadgets is to use binary rewriting to insert additional 

instructions or canaries around functions and their returns. Three tools that do this to some 

degree are RAD rewriting (Prasad & Chiueh, 2003), AT-ROP (Xu et al., 2020), and ret_ROP 

(Xu & Wang, 2022). All these tools involve some method of adding instructions around a 

potential ROP gadget. One issue with these tools is that they look for standard return 

statements and not the ones generated from created ROP gadgets. 

 RAD rewriting adds RAD (Chiueh & Hsu, 2001) code at the beginning and end of 

specific functions to hinder ROP (Prasad & Chiueh, 2003). To accomplish this, RAD 

rewriting attempts to disassemble a binary and detect function boundaries (Prasad & Chiueh, 
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2003). Only functions deemed as “interesting”, which is described as functions that use stack 

frame allocation and deallocation of local variables, are targeted by RAD rewriting (Prasad & 

Chiueh, 2003). Each interesting function will need to have additional code assigned to their 

prologues and epilogues (Prasad & Chiueh, 2003). The prologue will gain additional code that 

saves a copy of the return address in the return address repository and the epilogue will gain 

additional code that will check the value in the return address repository when the function 

attempts to return (Prasad & Chiueh, 2003). If the two return values do not match, the 

program will terminate execution (Prasad & Chiueh, 2003). To allow space for the additional 

code, a new section will be appended to the end of the original binary (Prasad & Chiueh, 

2003). Each function will have jump instructions to the correlating RAD instructions in the 

new section (Prasad & Chiueh, 2003).  

One issue with this approach is the need to define each function when attempting to 

disassemble the binary. If a function is not found, a potential vulnerability could remain in the 

program. Another issue is that adding an entirely new section increases the size of the binary. 

Regarding this study, the tool created does not define function boundaries and could not 

implement this technique. Also, RAD rewriting would not fix ROP gadgets caused from 

instruction splitting. The tool created in this study specifically is designed to fix the mid-

instruction ROP gadgets. 

 AT-ROP attempts to hinder ROP gadgets by clearing function parameters before 

function returns (Xu et al., 2020). To accomplish this, AT-ROP builds a control flow graph of 

the target binary during a disassembly phase and defines function boundaries (Xu et al., 

2020). For each function, AT-ROP marks ret_blocks that contain the instructions leading up 

to the return and the return statement (Xu et al., 2020). The ret_block will be converted to a 
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trampoline that changes control to a new section that AT-ROP creates that contains ori_data 

and clear_data (Xu et al., 2020). ori_data contains the original instructions in the ret_block 

and clear_data contains the instructions: “xor rdi, rdi; xor rsi, rsi; xor rcx, rcx; retn” (Xu et al., 

2020). These commands will clear out the first, second and fourth parameters of the function 

(Xu et al., 2020). Clearing the registers can help stop ROP gadgets that perform operations 

such as “pop rdi; ret” (Xu et al., 2020). This method requires the determination of function 

boundaries, which is something that the tool created in this study is not able to do because of 

the constraint of no symbolization. Also, having to create a new section as valid trampoline 

targets introduces additional overhead that a reassemblable disassembler does not have. In 

addition, AT-ROP’s mitigations do not target instructions that generate ROP gadgets by 

starting the instruction at a different offset. The tool created in this study was designed 

exclusively to target those types of instructions. 

 ret_ROP adds instructions that will clear function parameters before function returns 

(Xu & Wang, 2022). The instructions are added using static binary rewriting (Xu & Wang, 

2022). To determine function boundaries, a control flow graph is built with the aid of Angr 

(Xu & Wang, 2022). Similar to AT-ROP, ret_ROP defines a ret_node as a sequence of 

instructions at the end of a function that end with a ret instruction (Xu & Wang, 2022). The 

size of ret_node will be checked to ensure that the total length is at least a size of five bytes 

(Xu & Wang, 2022). The length is checked because a trampoline will be inserted at the 

ret_node and the size needed to construct a far jump is five bytes (Xu & Wang, 2022). The 

trampoline target will be in a new program segment that ret_ROP adds (Xu & Wang, 2022). 

The instructions inserted at the trampoline target will be the original ret_node instructions 

plus the addition of three instructions that will clear the first, second, and fourth parameters of 
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the function (Xu & Wang, 2022). Like AT-ROP, the addition of new segments increases the 

size of the binary, but the tool created in this study does not. Also, ret_ROP’s method of 

patching involves building out a control flow graph of the target binary. The tool created for 

this research does not build out a control flow graph and thus could not implement this type of 

ROP defense. Additionally, the approach taken in ret_ROP would also not hinder ROP 

gadgets that are created from mid-instruction bad bytes. 

 The final method is trying to detect ROP gadgets being chained during runtime. One 

such tool that does this is ROPecker (CHENG et al., 2014). ROPecker implements a sliding 

window that keeps a tally of how many potential ROP gadgets have been executed recently 

and, should too many be detected, the program will stop execution (CHENG et al., 2014). 

This effectively will disallow an attacker to build successful chains with this implementation. 

The main issue with taking a runtime-based approach is the additional overhead of having to 

check instructions during the runtime of the program. The goal of the tool was to eliminate 

ROP gadgets so that runtime checks would not be needed. 

 Most of the current methods introduced some form of additional overhead, whether 

that is a size increase from needing to add additional sections or segments like AT-ROP and 

ret_ROP or from performance overhead from runtime checks from ROPecker. Also, 

compiler-based methods require source code which most end users will not have available to 

them. The tool created for this research attempted to use a reassemblable disassembler 

approach to not have to add additional sections unless necessary. Additionally, if enough ROP 

gadgets were removed, the amount of feasible ROP chains should be reduced, and no runtime 

checks should need to be made. Lastly, the need for source code is not needed for the 

approach taken in this study. 
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CHAPTER 3 

RESEARCH METHODS 

Chapter 2 discussed current literature related to the topic area of this research. It 

highlighted current methods of performing static binary rewriting and different tools that were 

designed to perform those different methods. Additionally, it explained what ROP was and 

the impact ROP gadgets have. Lastly, it showcased ROP mitigation techniques and how they 

could be linked to static binary rewriting. Chapter 3 will detail the research methods that were 

used for this research. This chapter will explain why DSR was used for this study and how it 

abides by the research guidelines of both Hevner and Wieringa (Hevner et al., 2004) 

(Wieringa, 2014). 

As stated in Chapter 1, this research attempted to design a tool that could integrate 

ROP gadget removal with a static binary rewriting method. The ROP gadgets that were 

targeted were ones created from address splitting and not standard return instructions. The 

ROP gadgets were chosen to fill the gap of research of only targeting ROP gadgets in 

standard functions with static binary rewriting. 

Research Methods 

Design science methodology was employed for this research and the artifact created, 

the static binary rewriter, answers the research question. Quantitative analysis (Cárdenas, 

2019) places a large emphasis on the comparison of values and metrics defined for the 

research. While there are metric comparisons when testing the results of the tool, the process 

and design of the tool created was the emphasis of the research, not the metrics. Qualitative 

analysis (Sandelowski, 1995) uses open-ended questions for performing research. The 
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designed tool has defined metrics and a design process for creating a tool. There are no open-

ended questions for this study. All these reasons show that both quantitative and qualitative 

approaches were not well suited for this study. 

For the DSR approach, both Hevner’s guidelines (Hevner et al., 2004) and Wieringa’s 

methods (Wieringa, 2014) were followed. Hevner’s work was used because of the range of 

impact his work has had on the design science space. However, his work falls under 

Information Science rather than under software development. Since the created tool lives 

under the software development and software security fields, Wieringa’s approach was also 

followed. This was because Wieringa’s approach was created with software engineering in 

mind (Wieringa, 2014). In addition to belonging to the software development space, 

Wieringa’s approach is a highly technical way of performing DSR (Wieringa, 2014). Due to 

this technical nature, it is more applicable when dealing with specialized problems, such as 

removing ROP gadgets at the assembly level, than Hevner’s work. Because of these reasons, 

Wieringa’s methods were more suited to this research. 

To abide by Wieringa’s approach, the artifact created must be designed to improve the 

space it is being designed for (Wieringa, 2014). Two important distinctions are derived from 

this requirement. First, it allows the researcher freedom to develop a tool in a flexible manner 

to meet those improvements. Secondly, however, it also means that the improvements that 

were made must be clearly defined and can be properly validated. Wieringa states that design 

and validation are part of an iterative cycle (Wieringa, 2014). The design phase entails 

specifying the requirements of the proposed treatment and determining if those requirements 

will solve the goals of the research (Wieringa, 2014). The validation phase ensures that the 
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requirements were met and had the desired effects (Wieringa, 2014). These two phases will be 

included to ensure clearly defined improvements and proper validation. 

Since the end goal was to develop a tool that could answer the research questions, 

Hevner’s guidelines served as strong guides. This was because Hevner states that DSR is, at 

its core, a problem-solving method (vom Brocke et al., 2020). Following his guidance allowed 

for a strong artifact to be created that was developed specifically for the problem that was 

stated. So, by following both Wieringa’s and Hevner’s work, the strongest possible artifact 

was created. 

Hevner’s Guidelines 

Hevner defined seven guidelines to be followed when performing design science 

research (Hevner et al., 2004). The seven guidelines are as follows: 

I. Design as an Artifact – Design science research must produce a viable artifact 

in the form of a construct, a model, a method, or an instantiation. 

II. Problem Relevance – The objective of design science research is to develop 

technology-based solutions to important and relevant business problems. 

III. Design Evaluation – The utility, quality, and efficacy of a design artifact must 

be rigorously demonstrated via well-executed evaluation methods. 

IV. Research Contributions – Effective design science research must provide clear 

and verifiable contributions in the areas of the design artifact, design 

foundations, and/or design methodologies. 

V. Research Rigor – Design science research relies upon the application of 

rigorous methods in both the construction and evaluation of the design artifact. 
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VI. Design as a Search Process – The search for an effective artifact requires 

utilizing available means to reach desired ends while satisfying laws in the 

problem environment. 

VII. Communication of Research – Design science research must be presented 

effectively both to technology-oriented as well as management-oriented 

audiences. 

The following paragraphs will detail how the static binary rewriter abided by these 

seven guidelines. Also, as mentioned previously, some slight liberties were taken when 

examining them from a software design and software security viewpoint rather than an 

information science viewpoint.  

To meet the first guideline, some implementation of a solution must be created. To 

meet this guideline, this study created a tool that implements the solutions outlined 

previously. The tool can be found at GitHub under the Neptunia repository created by 

DSUHansVerhoeven. This tool satisfies the requirement of creating a deliverable artifact and 

implementing an instantiation of the artifact. 

When addressing the second guideline, the first liberty was taken. The guideline states 

that the technological solution must be designed for a relevant business problem. In the 

context of this study, this was shifted from a relevant business problem to a relevant cyber 

security problem. One of the most commonly exploited vulnerabilities in 2021 involved the 

use of ROP (Cybersecurity & Infrastructure Security Agency, 2021). Since it is still used in 

common vulnerabilities, the goal of trying to reduce the ability for ROP exploits to function is 

still an important problem. This can be seen as a fair conversion because the goal of design 

science is to address critical problems and should not solely be limited to the business scope. 
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Additionally, the first part of the guideline states that the objective is to create a technology-

based solution. This is quite easy to abide by because the artifact is a Python based tool that 

integrates with current software tools. 

The third guideline addresses the soundness of the evaluation of the model. As stated, 

it must be demonstrated using well-executed evaluation methods. The methods used for 

testing in this study were chosen based on what previous tools in this area of research used. 

For determining the success of the static binary rewriting functionality, the Coreutils test suite 

was used. Three current reassemblable disassemblers, Uroboros, Ramblr, and Ddisasm, all 

used this suite in their testing metrics (Flores-Montoya & Schulte, 2020; Wang et al., 2017). 

These tools were created and published in peer-reviewed works. Due to that, Coreutils can be 

deemed as a proper execution metric. Ddisasm also implemented a method of testing that 

involved inserting NOPs every certain number of instructions found in the target binary. This 

was done to highlight the ability to apply patches in any spot of the binary. This study also 

implemented this approach to demonstrate the capabilities of the created static binary rewriter. 

One of the survey papers also used increase of the binary size as a defining metric in the 

capabilities of the static binary rewriters (Schulte et al., 2022). The size of the binaries was 

checked before and after running the static binary rewriter. This allowed for only the static 

binary rewriter to have affected the size of the binary during testing. Additionally, the size of 

the binary was measured using built-in Linux tools. These native tools have provided core 

functionality to the Linux system and are open source for peer review (Coreutils.Git - GNU 

Coreutils, n.d.). Because of those reasons, they can be assumed to be valid.  

For demonstrating effectiveness of the ROP removal portion of the artifact, a tool 

called Ropper (sash, 2014) was used.  Ropper was chosen because it comes native on Kali 
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Linux and it is one of the more highly regarded ROP tools (Kali Linux Tools, n.d.; ROP 

Emporium, n.d.) This tool grabs the bytes of the binary and returns potential ROP gadgets. In 

this study, a measurement of the amount of ROP gadgets in the binary was taken before and 

after the tool was run against the binary. This returns the amount of ROP gadget reduction in 

the binary. By using all these methods, the artifact created properly followed the guidelines 

for design evaluation. 

Hevner’s fourth guideline states that the artifact created must have relevant 

contributions toward the targeted research space. The contributions of this research were 

threefold. First, it provided another look into the amount of information needed for applying 

static binary rewriting. Secondly, it provided methods for end users to secure their software 

without needing the developers to secure it beforehand. Lastly, it supplied a list of instructions 

that can be used to replace ROP gadgets to remove them from a binary. So, if better methods 

of patching are discovered or if a user wants to use a different binary rewriter, the list 

generated can still be used in those tools for replacements. This allows the artifact to affect all 

other binary rewriting techniques regarding removal of ROP gadgets. These three 

contributions mean that the created tool has made relevant contributions to the static binary 

rewriting and ROP defense spaces. 

The fifth guideline defines the research rigor and its need. To achieve rigor, one must 

properly employ existing methodologies and basis (Hevner et al., 2004). This study followed 

a rigorous approach by abiding by Hevner’s guidelines (Hevner et al., 2004) and Wieringa’s 

approaches (Wieringa, 2014) and by using existing tools throughout the research. This rigor is 

needed not only in the construction of the artifact, but also in its testing (Hevner et al., 2004). 

For testing rigor, previously used tools and notable tools were used for testing. The rigor for 
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construction comes from the highly module design of the tool’s construction and design 

research. This modular design allows for the tool to adapt to any needs to create a working 

artifact. A working artifact for the test space implies that proper research rigor was used in the 

creation and testing of the artifact. 

The sixth guideline discusses the need to use existing methods and to satisfy any legal 

requirements in the problem space. Addressing the existing methods, the artifact used test 

cases and tools that current tools were using. The methods these tools use was also examined. 

Both of these factors address the utilizing available means section of this guideline. The 

legality of the problem space falls under the modification of binaries that have been supplied 

to end users. For the test corpus of Coreutils, these binaries are able to be modified without 

worry due to their open-source nature. Problems could arise when using the artifact on 

binaries that are not a part of this binary suite. Some vendors have licensing agreements on 

what users are allowed to modify about the program. The created tool makes assumptions 

about instructions and indiscriminately modifies them. This has the potential to violate the 

previously mentioned licensing agreements. However, this is outside the scope of the artifact 

and thus the artifact should satisfy the legality section of the guideline. With both sections 

satisfied, the artifact should meet Hevner’s sixth guideline. 

The last guideline involves the ability to communicate the findings to technologically 

and non-technologically oriented people. The artifact should satisfy both due to the nature of 

the results. The evaluation metrics are before and after results, which means that they can be 

produced in metric charts, which all people should be able to understand regardless of their 

technological background. The release of the list of instructions, while the instructions 
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themselves might not be understood by all, still showcases what was changed in the binary to 

an understanding of all.  

This means that the artifact should meet all Hevner’s guidelines for performing design 

science research. It also shows that even without being in an information science space, this 

research still abides by all the guidelines. In the following section, an introduction to the 

design science methods, introduced by Wieringa, employed to develop the artifact will be 

given.  

Wieringa’s Methods 

Wieringa splits design science problems into two different categories: design problems 

and knowledge questions (Wieringa, 2014). Design problems attempt to solve problems by 

creating a design that has direct impacts on the space (Wieringa, 2014). Knowledge questions 

involve trying to determine an answer about a question for the chosen space (Wieringa, 2014). 

Since the nature of the artifact created was to design a tool to perform static binary analysis, it 

will fall under the category of a design problem.  

Now, with the problem type decided, we can move to what Wierenga considers the 

design cycle or part II of design research problems. For design problems, he splits part II into 

three parts: problem investigation, treatment design, and treatment validation (Wieringa, 

2014). The following sections will explain how each of these parts was used in this study. 

Since the problem was classified as a design problem, the tool needed to complete all 

three sections in the design cycle. The first section to be addressed was the problem 

investigation step. During this step, the determination of whether the task can be completed, 

can an artifact be designed for the space, and will there be an impact on the space should the 

artifact be created needed to be decided. (Wieringa, 2014). Due to tools being created for 
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similar tasks in this space, it was reasonable to assume that the task should be able to be 

completed. In addition, the ways that the tasks have already been solved through the use of 

created tools means that the designed artifact is able to be generated for this space. Also, since 

ROP removal tools exist and more securities are being developed for ROP, in general, the 

artifact made has an impact on the space. This means that the design should completely abide 

by the problem investigation step. 

The second step is treatment design. This step involves the methods used to solve the 

problems identified (Wieringa, 2014). As mentioned in earlier chapters, the treatments used 

are similar methods that existing tools use, but specific aspects of them were changed. This 

means that the artifact should still be able to solve the problem in the chosen space but do so 

in a different manner than existing solutions. 

The last step is treatment validation. Validation is ensuring that the design will solve 

the problem it was created for (Wieringa, 2014). For this step, the artifact generated must be 

validated and it must be ensured to have solved the problem (Wieringa, 2014). To perform 

this task, the before and after approach mentioned earlier in chapter 3 was used. This involved 

a before and after testing phase of target binaries with the tool run against them. The tools 

used for analysis and the methods have been used by existing tools previously, so they are 

technically sound metrics. Once the metrics were gathered, the results were analyzed to see if 

the treatment of the problem space was met. These results will be discussed in a later chapter. 

These sections described what Wieringa’s methods were and how this study followed 

those methods. This means that this research followed not only Wieringa’s methods, but also 

Hevner’s guidelines, indicating that this study followed a proper design science research 

approach.  
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Base Design of the Tool 

The core design of the tool did not start from scratch. The base tool had previously 

been designed in conjunction with Logan Stratton, a staff member at Dakota State University. 

The tool originally investigated was designed to be a GCC plugin for removing ROP gadgets. 

However, there were some issues that were found. The issues were mainly from preassembled 

instructions not being targeted by the plugin. This changed the approach to a beta version of 

this tool. He, however, stepped away from the tool during the creation, but this study still used 

material he provided. The materials he provided will be detailed below. 

The first area he provided code for was the definition of classes for specific sections 

and the call and relocation structures. These classes are used throughout the tool when 

rewriting the calls and relocations. He also provided functionality for determining the section 

an instruction belonged to and if the section was executable when parsing. The largest 

contribution he made was handling the reassembly of the target sections based on the 

modified instruction set that was generated during the runtime of the tool. 

However, some modifications needed to be made to his code base. First, his logic for 

shifting the calls and relocations was incorrect in some cases. These cases involved the 

improper use of negative relocations. His methods were improperly grabbing negative values 

for relocations. So, his logic for shifting relocations was only designed properly for positive 

values. This issue was solved by rectifying the issue of not grabbing negative values properly 

and then adding proper logic for negative values. In addition to this, when a two-byte jump is 

shifted to a five-byte jump due to insertions, he was not shifting the calls and relocations by 

this increase, which caused the created binary to fail. No issues have been encountered with 

his reassembly of the binary thus far and his work is extremely appreciated. 
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Chapter Summary 

This chapter has discussed how a design science research methodology was proper for 

this study. It described what Hevner’s guidelines and Wieringa’s methods were. Additionally, 

it detailed how this study abided by Hevner’s guidelines and Wieringa’s methods on design 

science. Further information about the details of the population and the sample of the study 

was also provided. Lastly, information about the how the tools being used in this study also 

abide by the guidelines and methods for design science was given. 

The next chapter will explain the design plan used to create both artifacts for this 

study. Additional information about how data was collected and analyzed will also be 

mentioned. Finally, the next chapter will also define the scope and metrics that were used for 

this research. 
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CHAPTER 4 

DESIGN AND IMPLEMENTATION 

Chapter 3 listed how the artifacts being designed would abide by Hevner’s guidelines 

and Wieringa’s methods. Chapter 4 will give a description of what the overall objectives for 

the artifacts are and how the artifacts were designed. Information about the population and 

sample chosen for this study will be provided in this chapter. Also, the reliability and validity 

of both the data collected and the tools used will be discussed. Lastly, how the data was 

analyzed to provide the metrics for the results is provided in this chapter. 

Artifact Objectives 

The goals of the artifact were split into two areas. The first area involves the goals for 

the static binary rewriting techniques and the second is the goals for the ROP gadget removal 

methods. The goals for the static binary rewriting techniques are as follows: 

I. The static binary rewriter will only parse the following information: 

a. The sections of the binary. 

b. The status of each section. 

c. The jumps located in the executable sections. 

d. The calls located in the executable sections. 

e. The relocations located in the executable sections. 

f. Each instruction located in the executable sections. 

II. Information involving the above requirements will be stored in separate 

classes. 

The goals for the ROP removal portion of the static binary rewriter are as follows: 
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III. All targeted ROP gadgets will be linked to the instruction that caused them. 

IV. If the instruction causing the ROP gadget belongs to the subset of instructions 

being targeted, it will be replaced with the instruction list to destroy the ROP 

gadget. 

V. A list of instructions generated for the ROP gadget removal will be released. 

All five of these requirements must be met for the artifacts to be deemed successful.  

Implementation 

 Since there are two artifacts being created, two design cycles were needed to create 

both artifacts. The first design cycle, shown in Figure 4, involved the creation of the static 

binary rewriter. The second design cycle, shown in Figure 5, involved modifying the artifact 

created from the first design cycle to remove ROP gadgets from the target binary. 

 For the first step in the first design cycle, the binary must be loaded into the artifact so 

parsing may occur. Once the artifact has been loaded, the sections of the binary will be 

located using pyelftools (Bendersky, 2013/2023). After the sections have been located, the 

flags each section contains will be used to determine if the section is executable or not. Each 

of these executable sections will have their instructions parsed using Capstone. In addition, 

the instructions containing jumps, calls, or relocations will also be stored in subsequent data 

structures. Once all this information about the binary has been gathered and stored, the 

insertion process can begin. The insertion process is a multistep process that is shown in 

Figure 6.  



47 

Figure 4. First design cycle 

 
 

Figure 5. Second design cycle 
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Figure 6. Insertion process 

  

 

 The insertion process begins with the insertion of a NOP instruction every fifteen 

instructions. Fifteen was the chosen amount to balance successful patches while still 

showcasing patcher strength. When the count was lowered, less binaries were able to be 

patched. If the count was increased, more binaries were able to be patched, but less insertions 

were made. If fewer insertions are made, the creditability of the patcher is reduced. So, fifteen 

was chosen as it was still a relatively small number and had a decent patch rate. Any 

instruction below this in the same section will be shifted by one byte to compensate for the 

insertion. Additionally, the jumps, calls, and relocations must be checked to see if any 

modifications to them need to be made. If there are modifications and those modifications 
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cause the control flow instructions to increase in size, then the instructions must be shifted 

down further. This process repeats until all the NOPs have been inserted. 

 The second design cycle starts with using the first artifact as the base with the 

insertion of NOPs being removed from its functionality. The second artifact will first gather 

all the ROP gadgets for the target binary. After this, it will check the address of the ROP 

gadget and see if it lands in the middle of an instruction. If it does, the address will be 

decreased by one until the address is correlated to the instruction that is causing it. This is 

done until all the ROP generating instructions have been marked. After this, each instruction 

will have a list of instructions created that will remove the ROP gadget. These lists of 

instructions will be inserted directly below each ROP generating instruction using the 

functionality of the first artifact. Additionally, the original ROP generating instruction will be 

replaced with NOPs if needed. Once all the insertions have been completed, the binary will be 

rebuilt using artifact #1’s capabilities. This whole process will need to be done multiple times 

due to the fact that new ROP generating instructions can be created with the shifting of 

instructions. 

Population 

The population for the research is Intel x64 ELF binaries. These were chosen because 

ELF has a more simplistic binary format than EXE binaries do. ELF has three header 

structures while EXE has eleven header structures that need to be tracked (Saleh, 2020). Also, 

while Linux is not as widespread as Windows, it still has enough reach to warrant research 

into. Intel is also extremely widely used and allows for variable length instructions. This 

variable length instruction set is what allows for the increase in ROP gadgets in binaries and 

thus was chosen as the language of choice. 
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Sample 

Sampling in design research defines the connection between the sample and 

population and how the sample can be generalized to reflect the population as a whole (Cash 

et al., 2022). The sample chosen must reflect the chosen population to a great enough degree 

for the testing of the artifact to be considered valid. 

The sample chosen for this study was the Coreutils package. This package was chosen 

for a variety of reasons. The first being that it should come innately with all Linux 

distributions (Coreutils.Git - GNU Coreutils, n.d.). This would mean that should the artifact 

work on this package, it should work on all Linux distributions. For sample size concerns, 

Coreutils contains over 100 binaries. In addition, the binaries are also Intel x64 ELF binaries. 

So, should the tool be able remove the ROP gadgets from these binaries, it should be able to 

be expanded to other Intel x64 ELF binaries. Intel x86 ELF binaries were not tested during 

this study. However, most of the variances between the two architectures involve register size. 

Since the same register sizes were supported for x64 binaries, there is a strong likelihood that 

x86 binaries should work as well. 

Data Collection and Instrumentation 

The tools used for data collection and instrumentation are either standard Linux 

utilities or tools used in other studies in similar fields. The data collected involves the size of 

the binaries, number of ROP gadgets, and performance change. Each of these metrics has 

their own list of tools needed to collect this data. 

The environment that testing was performed in was a virtualized Linux environment. 

The environment was virtualized using the Windows Subsystem for Linux on a Windows 11 
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computer. The chosen Linux environment was Ubuntu version Ubuntu 20.04.6. The installed 

version of Coreutils was 8.30-3ubuntu2. 

To handle instrumentation and data collection of the size of the binaries, the du 

command in Linux was used. This command returns the size of the file that the command is 

run against. This command was run before and after the static binary rewriter was run against 

the tool. This shows the impact the tool has on the size of the binary that is being rewritten. 

To determine the number of ROP gadgets, the Ropper tool was used. This tool reads 

through the byte code of the binary and returns any potential ROP gadgets it finds. The 

number of ROP gadgets was recorded by using Ropper against the target binary. After that 

information was stored, the tool was run against the binary to try to eliminate any ROP 

gadgets that the tool was targeting. Ropper was then run against the binary again and the 

amount of ROP gadgets was recorded a second time.  

For the measuring of time, another built-in Linux utility was used. The utility in 

question is the time utility. Time gives a detailed report about the execution time of the binary 

it is run with. Similar to the other data collection metrics, this utility was run against the target 

binary both before and after the tool was ran against it. This provides data for the before and 

after state of the binary after the tool has been run against it. 

All these data points should be valid for a variety of reasons. First, the tools in 

question are either built directly into certain distributions of Linux and peer-reviewed or have 

been used in studies similar to mine (Coreutils.Git - GNU Coreutils, n.d.; Flores-Montoya & 

Schulte, 2020; sash, 2014; Wang et al., 2017) . Secondly, the collection of data happens 

before and directly after the tool has been used. This means that no outside sources should be 
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able to modify the file and the only item being measured should be the impact the tool is 

having on the binary. 

Reliability and Validity 

The reliability of the instruments used and the validity of the data collected must be 

certified. Reliability of the instruments ensures that metrics gathered will always be the same. 

Validity ensures that the data collected from the tools is accurate. Both reliability and validity 

are needed to guarantee proper research. Also, the validity of expanding the results from the 

sample to the rest of the population must be verified as well. To prove these factors, a look at 

the tools used and the data collected was performed. 

The du and time commands were designed for all Linux distributions. This means that 

the results from the du command and the time command should be the same no matter what 

Linux distribution it was used on. Additionally, these tools were created to perform specific 

tasks. The du command was created to determine the size of the files on Linux systems.  The 

time command was created to measure the time a binary takes to run from start of execution to 

finish. Both commands measure metrics that were being studied and were native to Linux 

systems. Because of these reasons, these commands were chosen. 

 Capstone was used for at least three other reassemblable disassemblers (Flores-

Montoya & Schulte, 2020; R. Wang et al., 2017; Wang et al., 2016). Since Capstone was used 

in peer-reviewed papers, there was a consensus on the reliability and validity of this tool. 

Keystone was a sister project to Capstone and is used in a variety of emulation platforms 

(Keystone, n.d.). The tool was presented at Blackhat, which is a large security conference in 

the U.S.A. (Keystone, n.d.). Since Keystone is used in a wide variety of emulation platforms 

and was approved to be presented at Blackhat, it should be able to be considered reliable and 
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valid. Ropper is a package that is supported by the Kali Linux distribution (Ropper | Kali 

Linux Tools, n.d.). It is also recommended for use as a ROP gadget finder. (ROP Emporium, 

n.d.). Since it is native on Kali Linux and is highly regarded, Ropper can be deemed a reliable 

and valid tool. So, Capstone, Keystone, and Ropper should be deemed reliable and valid tools 

and were chosen for this research because of that. 

In terms of data, two areas need to be proven as valid. The first area is that the data 

collected is valid. The previous sections outlined how the tools used were both reliable and 

valid. This ensures that the data collected from them should also be reliable and valid. In 

addition, the only modifications that the binary undergoes are the modifications that the tool 

makes. This would mean that any data collected from the binary would come from either the 

tool or reliable instruments, thus meaning the data collected is directly related to the tool. The 

other area to address is expanding the sample’s validity to the entire population. Firstly, the 

Intel x64 instruction set does not change from one binary to another. So, if the instructions 

can be changed, they should work for most binaries with similar compilations. Secondly, the 

ELF architecture also does not change from distribution to distribution. This would mean that 

if the sample can modify the binary, it should also work for all other ELF binaries. 

This section addressed the concerns of reliability and validity of the study. The 

reasoning on why the tools used in this study are reliable and valid was given. Additionally, 

the methods taken to ensure that the data collected was solely related to the artifacts were 

shown. Also, methods of showing that the chosen sample set can be used to prove the 

population were examined. Because of this, this study can be marked as reliable and valid. 
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Data Analysis 

The data for this study was analyzed by storing the information run from the tools and 

doing comparisons on them. The data gathered was collected both before and after the tool 

ran. The data before and after was needed to determine what effects the artifacts were having 

on the patched binaries. Only the artifacts modified the binaries, so any changes were directly 

related to the artifacts. The output of the statistics tools for the before and after results were 

stored in separate tables. The data analysis compared those tables to ensure that the results 

were what were to be expected as the output of the artifact. 

Further information about the details of the population and the sample of the study 

was also provided. Additionally, information about the tools used for this study and why they 

were valid was also supplied. The validity of the data collected and the validity of expanding 

the sample to the entire population was verified. 

The next chapter will present the findings and go into more technical detail about how 

the artifacts were created. It will also describe the limitations of each of the artifacts that were 

created during this study. Additionally, all the gathered metrics for each of the artifacts will be 

shown. Lastly, a summary of all the findings will be given along with the impact those 

findings have on the results of this research. 
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CHAPTER 5 

RESULTS AND APPROACH 

Introduction 

This chapter will explain in more detail the technical aspects of the implementation of 

the artifacts. It will also highlight the findings of the artifacts in terms of success rate, binary 

size increase, and execution size. A conversation will be had about what these findings mean 

about the artifacts and the overall results. In addition, the limitations of the artifacts will be 

noted. 

Overview of Artifacts 

Both artifacts were created using Python with an object-oriented approach. Table 1 

lists the names of the classes and gives a brief description of those classes. All the classes 

except for Gamindustri are used almost exclusively for data classification and storage for 

specific items. All data being used or stored is in relation to the binary that is being modified. 

For classes, the only difference between artifact #1 and artifact #2 will be in the Gamindustri 

class. 

The key difference between artifact #1’s Gamindustri and artifact #2’s Gamindustri is 

the determination of where to insert instructions and what instructions to insert. Artifact #1 

takes a simple approach of inserting a singular NOP below every fifteen instructions in the 

binary. In contrast, artifact #2 needs to dynamically discover the ROP generating instructions’ 

addresses and create a list of instructions to remove the ROP generating instructions. 
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Table 1. Base Classes of the Artifacts 

Class Name Description 

Elf_Header Contains information about the ELF header 

Section Contains information about the sections 

Segment Contains information about the segments 

Symtab Contains information of the static symbol table 

Dynamic Contains information of the dynamic symbol table 

Relocation Contains information about the relocation table 

GotPlt Contains information about the Procedure Linkage 

Table of the Global Offset Table 

RelaPlt Contains information about the Procedure Linkage 

Table of the relocation table 

Instruction Contains information about each instruction 

Gameindustri Driver class for each artifact 

 

Both of the artifacts have a variety of imports needed for functionality. Table 2 covers 

what those imports are and gives a brief description of why they are needed. The ropper and 

operator imports are solely for artifact #2. 
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Table 2. Imports of the Artifacts 

Import Name Description 

elftools.elf.elffile Allows for the loading and parsing of ELF files 

elftools.elf.enums Mappings of enum names to values 

elftools.elf.relocation Parses the relocation section of the ELF file 

capstone Disassembles instructions 

keystone Reassembles instructions 

struct Used for packing and unpacking byte arrays 

re Allows for the use of regular expressions 

ropper  Finds ROP gadgets for a loaded binary 

sys Allows for the parsing of command line arguments 

operator Helps with sorting the gadget address from ropper 

 

Each test for every binary in the Coreutils package varied based on what the binary 

was designed for. In other words, the ls binary is used to list directories in the system and thus 

was tested by using its various options in different directories. Also, the nl binary interacts 

with files and was fed multiple files for testing. All the binaries tested followed this approach. 

The results of these tests will be shown later in this chapter. 

The following sections will highlight how the created Gamindustri driver class is used 

for both of the created artifacts.  The steps the artifacts used to achieve their functionality will 
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be outlined. Also, the limitations and issues for each of the artifacts will be discussed. Lastly, 

the results of both the artifacts will be shown and analyzed. 

Artifact #1 

The first artifact was designed to determine the feasibility of creating a static binary 

rewriter that did not rely on symbolizing during the patching process. To prove this, the 

inserting of NOPs into the binaries in Coreutils packages was performed. The following 

sections will outline the design process and decisions taken in creating artifact #1 in more 

technical detail. It will also outline the proper procedures on how the artifact is run and 

expected output. In addition, a description of how the testing was conducted will be noted. 

Also, current limitations with the artifact and how they impact the overall performance and 

results will be discussed. Lastly, the results of the current implementation will be shown. 

Main Procedure and Running of Artifact #1  

To run artifact #1, the name of the binary being patched and the name of the newly 

patched binary must be provided. An example is given in Figure 7. The execution of the 

artifact will halt if either the name of the binary being patched, or the new name for the 

patched binary was not supplied. 

Figure 7. Command to run artifact #1 
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Once the artifact has been started, the Gamindustri class will ingest the name of the 

target binary and perform each step needed for determining ELF characteristics and 

instruction information for the binary. These steps will be listed in the upcoming sections. 

After this, the create_insert_list method of the Gamindustri instance will be called. This 

method will handle the insertion of NOPs every fifteen instructions. Lastly, the build method 

is called and will attempt to write the patched version of the binary with the name supplied in 

the command line argument. If everything was successful, the string “done” should print out 

in the terminal. 

Determining ELF and Instruction Information 

When the Gamindustri class is first initialized, information about the binary being 

patched must be parsed. The first step is to iterate through each segment of the binary and 

store them in a list of Segment class types. Additionally, if the flags of the segment were 5 or 

2, they will also be stored in another list of Segment class types or a list of Dynamic class 

types respectively. 

After the parsing of segments has been completed, the next step is to iterate over the 

sections. The printed name of each section will be checked for a variety of options and be 

stored in one or more lists of Symtab, Relocation, GotPlt, or RelaPlt class types. Additionally, 

if a section’s flags are marked as executable, the instructions of that section will be gathered 

using the get_instruction_list method. 

get_instruction_list loops through each section’s data and converts the data to each 

instruction using Capstone. To determine when it has parsed every instruction, a counter starts 

at zero and is increased by the size of every instruction until the size matches the section’s 

size. During each section pass, every Capstone instruction will be converted to an Instruction 
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object. Table 3 shows each of the values that the instruction will set when the object is 

created. Each instruction will also be passed into the creator method. 

Table 3. Instruction Class Variables 

Variable Name Description 

mnemonic Stores the mnemonic of the instruction 

op_str Stores the operation string of the instruction 

address Stores the current address of the instruction 

bytes Stores the byte representation of the instruction 

old_address Stores the original address of the instruction 

inserted Keeps track of whether the instruction was inserted or 

was an original instruction 

section Stores the section that the instruction is found in 

data Check for if the instruction is data 

 

The creator method is the function that will store each instruction passed into it in a 

list called instructions. This list will store every instruction in the binary in address order. The 

creator method also sets the section variable for each instruction to the proper section. After 

an instruction is added into the instructions list, the creator method will check to see if the 

instruction needs to be additionally stored in jmp_list or call_list, which store all the jumps 

and calls of the binary respectively. Lastly, the creator method will pass the instruction into 

the get_additional_inst_info method. 
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The purpose of the get_additional_inst_info method is to check if the instruction 

passed in matches specific types of instructions. If it matches one of them, extra information 

will be attached to the instruction and used when it is added to the instructions list in creator. 

Additionally, all passed in instructions will be stored in the inst_dict for use later in the 

artifact. The specific types of instructions are RIP offset instructions and jump instructions. 

For the RIP offset instructions, the target address is calculated by adding the instruction’s 

address, size, and offset amount. If the target address is not located in the .text section, the 

address of the target address and RIP offset instruction will be stored in the relatives list. If 

the target address is in the .text section, the RIP offset instruction will be stored in the 

text_relatives list. As for the jump related instructions, the size of the jump instruction is 

calculated to determine what bytes of the instruction are related to the offset. The bytes can 

then be used to calculate the offset.  Once the offset is determined, the address of the 

instruction, size of the instruction, and the offset will be used to calculate the target jump 

location. This target location and RIP offset will be stored in the current instruction variable. 

After all these functions are finished, all information needed to perform the insertion 

of instructions should be gathered. This includes storing general ELF information, sections 

and their instructions, and any additional instruction information related to changing control 

flow. The next step artifact #1 performs is the insertion of NOPs into the binary. 

Insertion of NOPs 

With all the needed binary information gathered and stored, the insertion of NOPs into 

the binary can begin. This will involve cycling through the binary and finding every fifteenth 

instruction and storing those in a list called bad_insts. Then, a NOP will be inserted below 

each of these fifteenth instructions. Each of these insertions will also check if any control flow 
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instruction, such as jumps and calls, will need to be shifted or updated because of the size 

increase of the binary. To perform these operations, the create_insert_list method will be 

called. 

The create_insert_list method works by cycling through each of the instructions in the 

instructions list and storing each of the fifteenth instructions into a separate bad_insts list. 

After the instructions list has been fully traversed, each instruction and instruction address in 

the bad_insts list will be passed to the create_insertion method one at a time to further the 

insertion process. 

The create_insertion method uses Keystone to generate the op code for the NOP 

instruction. The address passed into the function, along with the Keystone op code, will be 

used to create an Instruction object. The created NOP’s address will be at the same address as 

the passed in address after creation. To account for this, the address will be shifted by the 

passed in instruction’s size to insert the NOP directly below it. The next series of methods 

will be dedicated to shifting instructions based on the insertion and the modifying of control 

flow instructions. 

The following three methods involve the shifting of basic instructions and control flow 

instructions within the binary: insert_and_shift, jmp_conversion_shift, and 

create_jmp_conversion. insert_and_shift is the main driver of the three methods. The first 

task of insert_and_shift is to cycle through each instruction in the instruction list and mark the 

index of where in the list the insertion address resides. Once marked, each instruction with a 

higher index in the list will have its address shifted by the insertion amount. The instruction 

being inserted will then be added to the instruction list at the marked offset. The next step is 

to handle the shifting of the jumps within the binary. 
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Before the shifting of the jumps can occur, there are multiple variations of jumps that 

need to be taken into consideration. The first of these variations is whether the offset of the 

jump is positive or negative. This study will refer to positive offsets as forward jumps and 

negative offsets as backwards jumps. There are six variations of these forwards and 

backwards jumps in relation to the inserted instruction that are possible in a binary. Figure 8 

shows the variations for a forward jump. The backwards jumps are similar, except the jump 

target and jump instruction will be flipped. In addition to the insertion location, the other 

consideration that must be made is the size of the jump instruction. In most cases, the size of a 

jump instruction will be two or five bytes. However, the size of a jump can change from two 

to five bytes based on the size of the offset. All these variations of jumps will be handled 

differently by the insertion_and_shift method. 

To handle the shifting of jumps, a pass will be made through the jmp_list list. During 

this pass, a variety of actions for each jump will be taken. First, which type of the six jumps 

the jump belongs to will be determined. Next, each jump instruction will have either or both 

of its jmp_addr or rip_offset modified depending on what type of jump it is. Additionally, if it 

is one of the types of jumps that will increase or lower the rip_offset size, the 

jmp_conversion_shift method will be called to check to see if the size of the jump needs to 

change. This method will be covered in a later paragraph. The insert_and_shift method keeps 

a running total of the insertion size of the original instruction and the size increase added from 

jumps converting from two bytes to five bytes. After this initial pass is done, a continuous 

pass over the jmp_list list will be made until no jump conversions are needed. 

Once the continuous passes are done, the instructions in call_list and text_relatives 

will be shifted in a similar fashion to the jumps. However, both call_list and text_relatives 
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will use the total size of the insertion plus the increase of converted jumps to determine the 

amount they will be shifted by. Also, since they should not have variable length versions, 

there should be no need to check for size conversions. Once all this is done, the last step is to 

rebuild the binary. 

Figure 8. Types of forward jumps in a binary 

 

 

The jmp_conversion_shift method will determine if the instructions in a binary need to 

be shifted by an additional amount if a jump instruction needs to be increased in size. To 

accomplish this, it will analyze each jump instruction’s size and rip_offset during the passes of 

the jmp_list list in insert_and_shift. If the size is two and the rip_offset is greater than 127 or 

less than -128, the jump will need to be converted to a five-byte jump instruction. This will 

require a multi-step process. This process will involve using the create_jmp_conversion 

method, which uses Keystone and the current jump instruction’s values to create a new 

Instruction object. The five steps for this process are shown below: 

1. Find the index after the current jump instruction. 
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2. Create a new jump instruction with the create_jmp_conversion method. 

3. Replace the old jump instruction’s mnemonic and bytes with NOPs. 

4. Remove the old jump instruction from jmp_list and replace it with the new 

one. 

5. Add the new jump instruction to instructions at the index in step 1. 

6. Make a pass over jmp_list, call_list, and text_relatives and shift them if needed 

from the size increase. 

Rebuilding of Binary 

 The first step of rebuilding the binary is checking if any of the entries in some of the 

binary tables, such as the global offset table or symbol table, need to be shifted. This is done 

by checking if an instruction.old_address is contained in the structure. If one is found, that 

relocation will be converted to the new instruction. Only instructions that were not added will 

need to be checked for these modifications.  

 After an initial shift of all the binary tables, the second step is to check the size of the 

text segment. If the size of the text segment exceeds its built-in padding size, it will need to be 

shifted by an offset amount of some factor of 0x1000. This increase will require each 

segment’s offset, virtual_address, and physical address to be shifted by that amount. 

Additionally, each section will need to have its offset and address increased by that same 

amount. Lastly, each of the previous binary tables will need to have their entries shifted to 

accommodate the shift of locations of the instructions. 

 The third step is to fix the entry point of the binary and the bounds of the sections. The 

header.entry will be updated with the value in entry.address. This allows for the binary to 

know where the new entry point will be after all the shifting occurs. Next, a pass will be made 
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through the instructions list and the first and last instruction will be found for every given 

section. The section.size, section.offset, and section.address will be updated using the first and 

last instructions that were found. 

 The next step is to handle further shifting of the relatives list and an experimental fix 

to jump tables. The shift for relatives checks to see if the section the relative belongs to had its 

offset shifted. If it was, the relocation amount will need to be increased by the offset shift 

amount. To attempt to fix the jump tables, there is a multistep process: 

1. Find a relocation in relatives that has a lea mnemonic. 

2. Check if the relocation is in a read-only section. 

3. Do a backwards search of a maximum of 20 instructions to look for the first 

found jump instruction. 

4. Do another backwards search of 20 instructions starting at the found jump 

looking for an add instruction with the same operation string as the jump 

instruction. 

5. Do one final backwards search from the add instruction for a lea instruction 

with a RIP register in the instruction. 

6. Ensure that the instruction at the index of the last found instruction matches the 

relocation in step one. 

7. Create a new Jump_Table object based on the previous steps information. 

One final pass will be made through the tables in the binary to ensure that none of the 

previous modifications impacted them. After this, each segment and section will be packed 

and stored. Additionally, a byte string will continuously have segment, relocation, and section 
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information appended to it. Lastly, an attempt to add the information from the jump tables to 

the byte string will be made. This byte string will be used to rebuild the ELF binary. 

Limitations 

The limitations of the first artifact can be broken down into three different categories. 

The three categories are architectural limitations, symbolization limitations, and rebuilding 

limitations. Regarding architectural limitations, the artifact will only work for ELF x64 

binaries. It should be able to be converted to ELF x86 binaries with some modifications, but 

Windows based binaries will not work. The issues with symbolization limitations mainly 

involve jump table or indirect jump concerns. For jump tables, sometimes the triple 

backwards search will add entries that are not actually jump tables. This will cause relocations 

to be incorrect and the patching process will halt. Indirect jumps, such as notrack jumps, were 

not grabbed because they use a register value as the offset. With the current implementation 

of artifact #1, there is no way to guarantee what that register value should be and, if one is 

encountered during execution of the patched binary, a segmentation fault is most likely. The 

binaries patched by the artifact, if there is no segment shift that occurred, will normally be 

seven bytes smaller than the original binary. This is caused during the build method when the 

segments are being aligned. This alignment seems to be misaligned in the last LOAD program 

header. This misalignment will strip, on average, seven bytes of padding from this LOAD 

program header. This should not be a large issue unless the padding in it is already completely 

used and actual data bytes are removed. All these limitations lead to a reduced accuracy of 

correctly patched programs. The limitations will also bleed into the effectiveness of the 

second artifact because it is built on top of the first artifact. 
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Findings 

This section will detail the success rate of patching the Coreutils binaries and the 

metrics gathered from each successful patch. Table 4 lists all the successful patched binaries 

and the metrics for each of them. A binary was marked as successful if the default execution 

of the binary and multiple options ran without any errors. For example, if the ls binary worked 

in multiple directories and was able to use the -a, -l, and -al flags, it would be marked as 

successful. Each binary had separate test cases based on the utility provided by the binary. 

Once all the successfully patched binaries had been gathered, the following metrics were 

grabbed from them: runtime of the unpatched binary in hundreds of a second, runtime of the 

binary after patching in hundreds of a second, original size of the binary in bytes, and size of 

the binary after patching in bytes. The runtime was gathered by using the time command on 

each binary 100 times both before and after patching. The average of these 100 runs was used 

to calculate the run time. The size of the binaries was gathered using the du -b command to 

get the size of the binary in bytes.  

Approximately 43% of the Coreutils binaries were able to be patched with artifact #1. 

The ones that were unable to be patched failed during the reassembly of the binary or failed 

during the runtime of the patched binary. Most of the failures happened during the 

experimental fix for the jump tables. The binaries that failed during execution were mostly 

related to the control flow instructions that were not targeted by the artifact, such as jmp 

<reg>. This issue can be shown by analyzing Figure 9. In Figure 9, the assumed distance of 

the jump is 100 away based on the value loaded in RAX. However, if an insertion is made in 

between the jump and the target, the distance will be incorrect. This can lead to control 

resuming at odd locations, which could lead to runtime errors. Both the jump table fixing fails 
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and control flow instruction issues were known limitations and will be addressed in future 

modifications to the artifact. 

Figure 9. Example Jump Issue 

 

 

While no testing was performed on binaries outside of the Coreutils binaries, any ELF 

x64 binary of similar sizes should be expected to produce similar results. There are two 

possible outliers in which differing results could be expected. The first is if a binary has a 

large number of indirect jumps. Since these types of jumps are not being tracked, the 

likelihood of an incorrect rebuild would be increased. The second case would be large 

binaries such as the Chrome browser. These large binaries require more inserts and thus there 

is a higher chance of a problematic insert. However, neither of these types of binaries were 

tested so the impact these would have is unclear. 
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The runtime of the binaries was not consistently faster or slower after being patched. 

This was due to the time command logging the overall runtime of the binary, which means 

that each binary will be affected by the overall Linux system. Each binary was run in the same 

state in the virtualized Ubuntu environment. This was done to attempt to limit these 

differences. However, with the differences being minor and with the patched runtime 

sometimes being faster, the patch execution speed seems to have a very minor effect and the 

system has more of an effect on the runtime of the artifact. 

The patched size of the binary normally stayed the same, except for the seven bytes 

being removed as stated in the limitation’s section, after the patch. This was due to each 

segment normally having enough padding, so they did not need to be shifted. For the ones that 

did need to be shifted, the size increase was around 4000 bytes. 

Table 4. Test results for artifact #1 

Binary Name Original 

Runtime 

Patched Runtime Original Size Patched Size 

b2sum 2.18 2.3 59768 63857 

base32 2.14 1.93 43352 43345 

base64 2.1 1.94 43352 43345 

basename 1.21 1.45 39256 39249 

cat 2.3 2.17 43416 43409 

cksum 1.89 2.05 39256 39249 

dircolors 1.39 1.61 47456 47449 

echo 1.5 1.21 39256 39249 

env 1.6 1.55 43352 43345 

expand 2.3 2.06 43384 43377 

expr 1.49 1.73 55640 55633 
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factor 1.9 1.88 80248 84337 

false  1.24 1.24 39256 39249 

fmt 2.16 1.92 47448 47441 

fold 2.06 1.94 43352 43345 

groups 1.32 1.35 39256 39249 

hostid 1.55 1.44 39256 39249 

id 1.71 1.74 47480 47473 

link 1.52 1.7 39256 39249 

Table 4, continued. 

Binary Name 
Original 

Runtime 
Patched Runtime Original Size Patched Size 

ln 2.4 2.34 76160 76153 

logname 1.15 1.13 39256 39249 

mknod 1.58 1.78 72024 76113 

nice 1.27 1.28 43352 43345 

nl 2.13 1.87 43448 43441 

nproc 1.52 1.3 43352 43345 

numfmt 1.66 1.71 67992 67985 

paste 2.04 2.15 43384 43377 

pathchk 1.41 1.33 39256 39249 

pinky 1.39 1.46 43384 43377 

printenv 1.26 1.2 39256 39249 

realpath 1.76 1.61 51576 51569 

shred 1.7 1.92 63864 67953 

split 2.79 2.92 60184 60181 

sync 1.93 1.97 39256 39249 

tail 2.21 2.46 72088 76177 

tee 1.41 1.49 43384 43377 
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true  1.31 1.27 39256 39249 

unexpand 1.9 1.98 43384 43377 

uniq 2.08 1.95 51576 51569 

unlink 1.26 1.11 39256 39249 

uptime 1.11 1.1 14568 14561 

wc 2.19 2.22 47456 47449 

yes 1.37 1.37 39256 39249 
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Artifact #2 

The goal of artifact #2 was to build upon artifact #1 to eliminate ROP gadget causing 

instructions in binaries. The modifications made to artifact #1 are found in the process of 

determining the insertion list, what instructions to insert, and adding the ability to choose 

certain types of instructions to fix. Like artifact #1, the following sections will outline the 

design process and decisions taken in creating artifact #2 in more technical detail. It will also 

outline the proper procedures on how the artifact is run and expected output. In addition, a 

description of how the testing was conducted will be noted. Also, current limitations with the 

artifact and how they impact the overall performance and results will be discussed. Lastly, the 

results of the current implementation will be shown. 

Main Procedure and Running of Artifact #2 

To run artifact #2, the name of the binary being patched and the name of the newly 

patched binary must be provided. An example is provided in Figure 10. The execution of the 

artifact will halt if either the name of the binary being patched or the new name for the 

patched binary was not supplied. Artifact #2 also supports a list of options shown in table 5 

that can be supplied to the artifact. 

Figure 10. Command to run artifact #2 
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Table 5. Options for Artifact #2 

Option Name Description 

check Do not patch and simply display gadget list and gadget 

count information 

reloc Allows for patching of certain relocation instructions 

call Allows for patching of certain call instructions 

jmp Allows for patching of certain jump instructions 

all Enable the reloc, call, and jmp options 

 

The overall execution structure of artifact #2 is the same as artifact #1 with some 

added analysis and parsing. The first addition is the setup of integrating Ropper into the 

binary. This is done by calling RopperService and configuring it to target the binary being 

patched and setting it to find only ROP gadgets for the x86-64 architecture. These found ROP 

gadgets will be used in the create_insert_list method to determine what instructions to modify 

rather than just grabbing every fifteenth instruction. The second addition is a new method 

called get_instruction_information. This method will take a given instruction and will return 

information about the instruction, such as the register sizes being used, for use when trying to 

replace ROP generating instructions. The third addition is the fix_rop_instruction method. 

This method will have multiple sections dedicated to it explaining what ROP generating 

instructions it can fix and how it fixes them. The last addition is the printing of ROP 

information of the binary being patched. This information entails the total amount of ROP 

gadgets, list of potential ROP generating instructions, and total count of potential ROP 

generating instructions. 
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Other than all these additions, artifact #2 will run in the same way as artifact #1. An 

ingested binary will be selected for patching. The needed information will be parsed and 

stored in a Gamindustri object. After this, the create_insert_list method will still determine 

the instruction locations that need to be modified and handle calling the needed methods to fix 

them. The build method will also still handle writing all the changes to a new binary. 

Determining ROP Generating Instructions 

When using Ropper with the options set to ‘rop’, the returned gadgets will not always 

be a standard ret gadget. To determine which gadgets to look for, a pass will be made through 

each gadget Ropper found and check if they contain the “ret” mnemonic in them. If they do 

contain the mnemonic, the address of the gadget, which is supplied by Ropper, will be 

checked against the inst_dict to see if that address is in the dictionary. If the address is in the 

dictionary, it means that it is an actual ret instruction and can be ignored. So, if it is not in the 

dictionary, that means the “c3” byte is in the middle of an instruction. To determine the 

instruction that contains this byte, the address of the gadget will be subtracted by one until the 

current address location matches one in inst_dict. The found instruction will then be added to 

the bad_ints list. Once every gadget from Ropper has been parsed, each instruction in 

bad_insts will be passed to fix_rop_instruction to attempt to remove the “c3” byte from the 

instruction. 

Classification of ROP Generating Instructions 

The first step of the fix_rop_instruction method is to determine what type of ROP 

generating instruction it is. The initial classification can be broken into two types: 

1. Instruction’s operation string contains a “c3” in it. 

2. The bytes that make up the instruction contain the “c3”. 
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These two types are also split into sub-types when trying to be fixed. The first type is 

currently only broken down into one sub-type: 

1. Instruction contains a memory operation with the RIP register. 

The second type is broken down into three sub-types: 

1. Instruction is a register-to-register or register-to-constant operation. 

2. Instruction mnemonic contains a jump. 

3. Instruction mnemonic contains a call. 

Each of these types are solved using different approaches. They will all be given their own 

sections describing how their approaches differ. 

Fixing Memory Operation Instructions 

 For this study, if an assembly instruction involves the use of []’s in its operation string, 

it will be classified as a memory operation instruction. Currently, only a small subset of these 

memory operation instructions is supported. To be marked as a part of the supported subset, 

there are three requirements the instruction must meet: 

1. The “c3” byte must be in the operation string. 

2. The instruction mnemonic must be lea or mov. 

3. The memory access must involve the use of the RIP register. 

If any of these requirements are not met, the instruction will not be selected for patching. 

 Once a memory operation instruction has been selected for patching, a variety of 

operations will be performed to remove the bad bytes. The first step is to determine what 

bytes of the offset have a “c3” in them. This can be done by looping through the last four 

bytes of the instruction and checking to see if any of them equal “c3”. If a byte does equal 

“c3”, a fix variable will have its value increased by 256 raised to a power of the current loop 
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iteration. In other words, if the first byte is “c3”, fix will be increased by one and if the second 

byte is “c3”, fix will be increased by an additional 256. This will result in a value that, when 

subtracted from the original offset, will remove any instances of the “c3” byte from the offset. 

The new variable is set by taking the original offset, subtracting fix from it, and subtracting 

the instruction size from it. The instruction size gets subtracted due to the original instruction 

remaining, which increases the RIP value. With these values, the instructions listed in table 6 

can be inserted below the original instruction and the original instruction can be NOPed out. 

Table 6. Memory operation instruction modifications 

Original Instruction New Instructions 

lea <reg>, [rip +/- <offset>] lea <reg>, [rip +/- <new>] 

lea <reg>, [<reg> + <fix>] 

 

mov <reg>, [rip +/- <offset>] lea <reg>, [rip +/- <new>] 

mov <reg>, [<reg> + <fix>] 

 

 One additional concern when modifying these instructions is the integrity of the 

relocations during the rebuild process. To handle this, when a memory operation is being 

patched, it will be removed from the relatives list. However, the original target of the 

relocation will be saved. This is because when the first new instruction is inserted, it will be 

added to the relatives list with the original offset as its target value. To account for this, the 

insert into the relatives list will also contain the fix value. The fix value will be used to reduce 

the offset value when checks are made against the target address. This ensures that the same 

target address is valid even though the offset value will not align. 
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Fixing General Instructions 

 General instructions are the largest set of instructions that get removed from the 

binary. In this study, they are defined as an assembly instruction that performs a register-to-

register operation or register-to-constant operation. There are some more limitations for the 

current implementation of the tool. These limitations are as follows: 

1. The mnemonic must be mov, add, or sub. 

2. The first register must be a b or r11 register. 

3. If the second operand is a register, it must be either an a or r8 register. 

4. If the second operand is a constant, the mnemonic must be either mov or add. 

With these limitations, it can be assured that a c register is not in use during the instruction. 

This means that the c register can always be used to fix the instruction. The use of the b or r8 

registers with specific operands causes the “c3” byte to be generated. Because of this, a c 

register can be used to remove the register or operand causing the bad byte to be generated. 

To do this, the selected value will be exchanged with the c register, use the c register in the 

original instruction, and then re-exchange the c register with its original value. Table 7 

showcases how this is done. 
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Table 7. General instruction modifications 

Original Instruction New Instructions 

<mnemonic> <b_reg>, <a_reg> xchg <c_reg>, <a_reg> 

<mnemonic> <b_reg>, <c_reg> 

xchg <c_reg>, <a_reg> 

 

<mnemonic> <b_reg>, <r8_reg> xchg <c_reg>, <r8_reg> 

<mnemonic> <b_reg>, <c_reg> 

xchg <c_reg>, <r8_reg> 

<mnemonic> <b_reg>, <constant> xchg <c_reg>, <b_reg> 

<mnemonic> <c_reg>, <constant> 

xchg <c_reg>, <b_reg> 

 

<mnemonic> <r11_reg>, <a_reg> xchg <c_reg>, <a_reg> 

<mnemonic> <r11_reg>, <c_reg> 

xchg <c_reg>, <a_reg> 

 

<mnemonic> <r11_reg>, <r8_reg> xchg <c_reg>, <r8_reg> 

<mnemonic> <r11_reg>, <c_reg> 

xchg <c_reg>, <r8_reg> 

 

<mnemonic> <r11_reg>, <constant> xchg <c_reg>, <r11_reg> 

<mnemonic> <c_reg>, <constant> 

xchg <c_reg>, <r11_reg> 

 

 

The xchg instruction does not modify any flags during execution. This means that 

exchanging with the c register will not affect the integrity of the original program. Also, the c 

register is swapped back to its original value right after the newly added instruction. So, the 

contents of the register will be preserved and will be restored for use later during program 

execution. 
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Fixing Jump Instructions 

The targeted jump instructions are a subset of the types of jumps that x64 permits. The 

only jumps that are targeted are what this study will refer to as standard jumps. These jumps 

include jmp, jnz, jge, etc… They do not include more advanced jumps such as notrack jmp or 

jrcxz. Additionally, the jump must not use a register or memory location to determine the 

target. The target must be located only using an offset. There are two methods to fix these 

standard jumps. The first method will insert a NOP above or below depending on if it is a 

forward or backwards jump. The second method will insert two additional jumps into the 

binary. 

To determine which method to use, the bytes of the instruction related to the offset 

amount will be checked for the “c3” byte. If the bytes contain a “c3” only in the first byte, the 

first method will be used to fix the instruction. If any of the other bytes in the offset bytes 

contain a “c3” in them, the second method will be used to remove the “c3” from the 

instruction. 

The first method works by first checking if the jump instruction is a forward or 

backwards jump. If the instruction is a forward jump, a NOP instruction will be inserted 

below the original jump instruction. Inversely, if the instruction is a backwards jump, a NOP 

instruction will be inserted above the original jump instruction. Since both instructions will be 

modified by the insert_and_shift method, the offset of the jump instruction will be increased 

by one. By doing this, the offset of the jump instruction will no longer contain a “c3” in it. 

The second method, in addition to determining if it is a forward or backwards jump, 

also needs to determine a new offset amount in the same way the fixing relocation instructions 

works. This new offset amount will also be referred to as fix. Once fix is calculated, the offset 

of the original instruction’s offset will be modified by the fix’s value. The new offset will be 



81 

checked to ensure that it does not land in the middle of an instruction. If it does, the offset and 

fix will be modified one byte at a time until it lands at the beginning of an instruction. A jump 

will be inserted at this location to jump over a jump that will be inserted directly below this 

newly added jump. The jump added directly below will have an offset amount of fix’s value. 

Figure 11 showcases the before and after of this process. Both jumps will also be added to 

jmp_list for further modifications if needed.  

Figure 11. Method two of fixing jump instructions 

 

Fixing Call Instructions 

For this study, instructions that contain a call mnemonic and contain an offset value in 

the operation string will be included in the patched call instructions. Any call instruction that 

uses a register or memory location to determine the callee will be excluded from the list of 

patched instructions. All calls will be fixed by inserting a NOP above or below the instruction 
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depending on the location of the callee’s location. If the callee is at a lower address than the 

call instruction’s location, then the NOP will be inserted above the call instruction. Vice versa 

for callees at a higher address. 

Currently, only call instructions with the first byte of the offset bytes being a “c3” will 

be patched. This is because to fix the remaining bytes they would have to be increased by a 

power of 256 to shift the byte to a different value. So, to fix a byte at the 4th slot of the offset 

bytes, 16,777,216 NOP instructions would need to be inserted to fix the offset byte. This was 

deemed not effective, and those call instructions were ignored. 

Limitations 

Artifact #2 shares the same limitations regarding the patching of the binary that 

artifact #1 has. However, artifact #2 also has some limitations for what type of instructions it 

targets. First, artifact #2 only targets ROP gadgets that are created from the “c3” byte. Second, 

only instructions that contain the “c3” in the middle of the instruction will be targeted for 

patching. Standard return statements will not be chosen for patching because of this. Third, 

only the subset of instructions for relocation, general, jump, and call that were mentioned in 

previous sections will be targeted by artifact #2. This means that some ROP generating 

instructions will remain with the current implementation of artifact #2. Lastly, some 

instructions that should be removed cannot be removed because of the limitations introduced 

from artifact #1. 

Artifact #2 poses the chance of introducing additional ROP gadgets into the binary. 

This is due to the fact that the insertions to remove instructions containing the “c3” byte shifts 

the binary. These shifts can cause other gadgets, such as one containing “c2” bytes, to appear. 

These are not targeted and thus will remain in the binary. Additionally, there could be a 
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concern with new vulnerabilities being introduced into the binary as well with the new 

insertions. However, since the instructions added are equivalent to the old instructions, there 

does not seem to be a direct indication that this would be a problem. Also, the jumps added 

are direct jumps and not indirect jumps. Since the jumps added are direct, the concerns of 

helping JOP based attacks is unlikely. 

Findings 

Artifact #2 used the same procedures as artifact #1 to determine the success rate for 

each Coreutils binary. Artifact #2 includes the same metrics as artifact #1 with some 

additional metrics involving ROP gadgets. The additional metrics are the total amount of ROP 

gadgets before patching, the total amount of mid-instruction “c3” gadgets before patching, the 

total amount of ROP gadgets after patching, and the total amount of mid-instruction “c3” 

gadgets after patching. Table 8 lists each successful binary and their metrics. Artifact #2 had a 

higher successful patching rate than artifact #1 with a ~63% patch rate. 

The total ROP gadget count does not directly align with the amount of mid-instruction 

ROP gadgets removed. The misalignment is caused by the shifting of instructions introducing 

or removing ROP gadgets that artifact #2 does not target. Some of the binaries, such as the 

sha binaries, still contain a large number of mid-instruction ROP gadgets. The reason there 

are so many in these binaries is because they have a large number of general instructions that 

the current implementation of artifact #2 does not target. 

The size of the binaries was largely unaffected by the removal of the mid-instruction 

ROP gadgets. Most of the binaries had their size decreased due to the padding being stripped 

because of artifact #1’s build implementation. The size of some of binaries had to be 
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increased due to the segments needing to be shifted. However, these results show that the tool 

had relatively no impact on the size of the binaries that were patched with artifact #2. 

The runtimes of the binaries before and after patching with artifact #2 had larger 

variances than the runtimes from artifact #1. This is probably caused by the fact that more 

complex instructions are being inserted into the binary, rather than just NOP instructions. 

While the runtimes do have a larger variance, there are still a large number of binaries that 

have a faster runtime than the original binaries. So, similar to the binaries patched with 

artifact #1, it would seem that the system variables have more of an impact on the runtimes of 

the binary than the patching itself. 

For most binaries, based on the results, almost all the mid-instruction ROP gadgets 

can be removed from the binary. In some cases, all of them could be removed. The initial 

patch was the one that removed the most ROP gadgets from the binary. Each subsequent 

patch tended to only remove a couple of ROP gadgets. To achieve the exact same results, the 

user would need to use the same flags on each pass. However, similar results will be achieved 

by running multiple passes until the user is satisfied with the results. 

Table 8. Test Results for Artifact #2  

Binary 

Name 
Original 

Runtime 

Patched 

Runtime 

Original 

Size 

Patched 

Size 

Total 

ROP 

Split 

ROP 

New 

Total 

ROP 

New 

Split 

ROP 

b2sum 2.18 2.38 59768 63857 296 64 245 9 

base32 2.14 1.81 43352 43345 169 35 143 7 

base64 2.1 1.78 43352 43345 171 35 145 9 

basename 1.21 1.11 39256 39249 125 26 103 5 

cat 2.3 1.68 43416 43409 156 38 121 5 

cksum 1.89 2.25 39256 39249 125 26 100 2 

csplit 4.31 7.53 55672 55665 222 54 192 15 
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cut 2.02 3.62 47480 47473 177 41 144 9 

dir 3.82 2.56 142144 142137 731 158 616 24 

dircolors 1.39 1.21 47456 47449 175 36 143 6 

dirname 1.39 1.05 39256 39249 124 24 102 2 

echo 1.5 1.37 39256 39249 127 22 108 2 

env 1.6 1.63 43352 43345 155 41 120 6 

expand 2.3 2.22 43384 43377 180 39 146 9 

expr 1.49 2.03 55640 55633 209 33 172 2 

factor 1.9 3.41 80248 84337 328 81 269 24 

false 1.24 2.46 39256 39249 120 25 95 1 

fold 2.06 2.32 43352 43345 153 38 130 12 

groups 1.32 1.14 39256 39249 136 29 118 7 

hostid 1.55 1.34 39256 39249 119 22 99 2 

Table 8, continued.  

Binary 

Name 

Original 

Runtime 

Patched 

Runtime 

Original 

Size 

Patched 

Size 

Total 

ROP 

Split 

ROP 

New 

Total 

ROP 

New 

Split 

ROP 

id 1.71 2.81 47480 47473 174 35 143 6 

join 2.49 3.68 55672 55665 196 34 173 5 

link 1.52 2.05 39256 39249 122 26 103 6 

logname 1.15 1.2 39256 39249 120 23 101 2 

ls 6.61 3.25 142144 142137 731 158 614 25 

md5sum 4.82 2.93 47480 47473 216 36 186 7 

mkfifo 4 3.61 67928 67921 322 51 277 8 

mknod 1.58 2.91 72024 76113 355 60 310 12 

mktemp 1.84 2.37 47448 47441 205 53 165 14 

nice 1.27 2.4 43352 43345 131 30 114 11 

nl 2.13 2.67 43448 43441 155 36 119 5 

nohup 1.32 1.28 43352 43345 140 30 122 11 

nproc 1.52 1.26 43352 43345 145 27 122 2 

paste 2.04 2.19 43384 43377 142 34 120 10 

pathchk 1.41 1.41 39256 39249 132 27 106 2 

pinky 1.39 1.33 43384 43377 160 38 134 6 



86 

printenv 1.26 1.02 39256 39249 116 22 96 2 

ptx 2.35 2.23 80280 80273 321 86 260 13 

pwd 2.28 1.04 43352 43345 138 27 113 1 

readlink 1.99 1.96 51544 51537 207 37 174 3 

realpath 2.17 1.78 51576 51569 230 46 191 6 

rm 3.5 3.32 72056 72049 335 55 279 5 

sha1sum 2.4 2.22 51576 51569 249 60 221 30 

sha384sum 2.37 2.88 67960 67953 326 118 267 57 

sha512sum 4.57 5.31 67960 67953 326 118 267 57 

shuf 2.29 2.96 59736 59729 301 69 242 8 

split 2.79 3.5 60184 60181 258 67 222 28 

sum 2.84 4.08 47456 47449 185 45 147 7 

sync 1.93 3.98 39256 39249 126 23 104 2 

 

Table 8, continued.  

Binary 

Name 

Original 

Runtime 

Patched 

Runtime 

Original 

Size 

Patched 

Size 

Total 

ROP 

Split 

ROP 

New 

Total 

ROP 

New 

Split 

ROP 

tac 3.84 3.94 43352 43345 160 35 132 9 

tee 1.41 1.75 43384 43377 147 40 123 11 

timeout 3.38 2.7 43800 43797 164 34 133 3 

true 1.31 2.01 39256 39249 119 24 94 1 

truncate 1.85 1.98 43352 43345 134 28 110 4 

tsort 4.14 3.16 43352 43345 157 38 133 10 

tty 3.55 2.21 39256 39249 118 24 99 2 

unexpand 1.74 2.54 43384 43377 173 27 148 6 

uniq 2.08 2.15 51576 51569 190 41 162 13 

unlink 1.26 1.75 39256 39249 190 41 162 13 

uptime 1.11 1.58 14568 14561 17 3 15 0 

users 1.01 1.2 39256 39249 126 26 104 3 

vdir 8.04 8.22 142144 142137 731 158 616 23 

wc 2.19 2.53 47456 47449 188 41 153 9 

whoami 1.29 1.45 39256 39249 121 23 98 2 
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yes 1.37 1.09 39256 39249 122 25 98 1 

 

Summary of Findings 

Artifact #1 had a successful patch rate of ~43% of the Coreutils binaries while artifact 

#2 had a ~63% successful patch rate. To be marked as successful in this study, the binary had 

to be patched with no errors, the base binary had to run without runtime errors, and multiple 

flags (if the binary had them) had to work without runtime errors. Most of the errors during 

patching time came from the experimental jump table fixing in the build method. The runtime 

errors both for the base option and flags were normally caused when a register was used as the 

offset value for either a relocation or a jump. These types of instructions are not tracked with 

the current implementation of the artifacts.  

The size of the binaries after being patched was normally reduced by a size of seven 

bytes. This held true for both artifact #1 and artifact #2. The cause of this reduction was the 

calculation for the alignment of the segments had an interaction with the last LOAD program 

header that caused some padding to be stripped. The size reduction should have no impact on 

the reliability of the program so long as the bytes being stripped are not data bytes. There 

were some cases where the size of the binary was increased. The increase came from the build 

method needing to shift some segments due to lack of sufficient padding to store all the 

additional instructions. The size increase was relatively small with it being ~4000 bytes. 

The runtimes of the binaries were largely unaffected after being patched from both 

artifacts. Artifact #2 had a slightly larger variance and it is assumed to be caused by the 

complexity of the instructions being greater than just inserting NOPs. However, both artifacts 

had binaries that had faster runtimes than the original binary. Because of this, it seems that the 



88 

system variables have a greater impact on the runtime of the binary compared to being 

patched by both artifacts. 

The number of mid-instruction ROP gadget instructions for almost all the binaries was 

greatly reduced after being patched multiple times by artifact #2. There were some binaries, 

such as the sha family of binaries, that still contained a large amount of mid-instruction ROP 

gadget instructions in them. This was caused by the specific instruction not being targeted by 

artifact #2. The largest decrease in the number of these ROP gadget causing instructions was 

during the first patch of artifact #2. There were diminishing returns after each subsequent pass 

and, in some cases, an increase of ROP gadgets. There is also a disconnect between the total 

ROP gadget count and the mid-instruction ROP gadget count. This is because the shifting of 

instructions can cause offsets to change and various other side effects. 

In regard to other tools, artifact #1 was weaker than the other static binary rewriters. 

This is most likely because they gather more information about the binary than artifact #1. In 

terms of ROP removal, artifact #2 targeted a separate space than most other tools that 

attempted to mitigate ROP using static binary rewriting. Artifact #2 targeted mid-instruction 

ROP gadgets will other tools targeted generic return instructions. So, if the methods from 

artifact #2 can be combined with the methods from other tools most ROP gadgets could be 

neutralized. 
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CHAPTER 6 

CONCLUSION 

The purpose of this study was to determine the feasibility of using static binary 

rewriting to remove ROP gadgets from binaries. When this study was conducted, tools that 

focused on static binary rewriting attempted to symbolize binaries to perform their patching. 

The first artifact created by this study attempted to patch binaries without this symbolization. 

Additionally, at the time of this research, tools that attempted to remove ROP gadgets with 

static binary rewriting focused on the removal of standard return instructions with an 

emphasis on function returns. The second artifact created in this study focused on the removal 

of instructions that could cause ROP gadgets when their bytes were split. 

Both artifacts were developed using DSR. A comparison was made against other 

methods of research for the chosen space of this research and DSR was the most suitable. One 

of the reasons was the flexibility that DSR allowed when designing the artifacts. Additionally, 

Hevner’s guidelines and Wieringa methods were followed to provide a valid DSR approach.  

Discussion of Findings 

There are multiple areas to consider when analyzing the results of the research. These 

areas include successful patch rate, binary size, execution speed, and ROP gadget count. 

Successful patch rate was used as a metric to determine the accuracy of the artifacts and thus 

the overall usefulness of the artifact. Binary size was tracked to see if the artifacts inserting 

additional instructions into the binary created a large increase in size of the binary. Execution 

speed was tracked to see if the runtimes of the binary were increased beyond a reasonable 

level after patching was performed on the binaries. ROP gadget count was tracked to measure 
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and ensure that artifact #2 was able to remove ROP gadgets from the binary using the 

methods employed in this research. Each artifact had differing results in all these areas. 

Based on the results from the study, artifact #1 does not perform well as an overall 

static binary rewriter. This is due to the limitations outlined previously about the inability to 

track specific control flow instructions. Additionally, some of the limitations cannot be solved 

using the simple backwards propagation techniques artifact #1 employs for patching jump 

tables. However, the basis of artifact #1 was useful in creating the more specialized static 

binary rewriter artifact #2. Artifact #2 had a 20% increase in patch rate in comparison to 

artifact #1. The increase was due to the more targeted approach for patching specific 

instructions rather than simply inserting a NOP every fifteen instructions. Patching specific 

instructions helped in three ways. First, the overall number of insertions was less than 

inserting the NOPs. Second, less instruction regions were affected by the insertions. Third, the 

targeted instructions were in areas that typically would not affect specific control structures. 

This means that, without further modifications to the artifacts, they should be used as 

specialized binary rewriters and not generic ones. 

In most cases, neither of the artifacts had a large impact on the size of the binary. 

Except for a small number of cases, due to the alignment algorithm both artifacts employ, 

patching the binary caused the size of the binary to shrink. The padding of the segments 

allowed for new instructions to be inserted without needing to increase the size of the 

segments. In the few cases where they did need to be shifted, the size increase was only 

~4000 bytes. This increase of size is relatively minor compared to the overall size of the 

binary. Additionally, the likelihood of a segment needing to be shifted again after receiving 

the additional 4096 bytes in padding is very low. This means that there would be a finite 
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amount that the size of the binary could be increased based on the insertions. So overall, 

patching using the artifacts had little to no effect on the size of the binaries. 

Neither artifact had a large impact on the execution speed of the binaries after being 

patched. Artifact #1 only inserted NOPs, which have little overhead when being executed. 

Artifact #2 introduced more complex instructions at every insertion location but had fewer 

overall locations to insert instructions. Artifact #2 did have slightly more variability in 

execution speed, but it was not enough to warrant concern. Additionally, some binaries after 

being patched had faster execution times than their original counterparts. This means that the 

variabilities in the system had a greater impact on the runtime of the binaries than both 

artifacts. So, execution speed is not a concern when performing this type of static binary 

rewriting. 

The last metric that was analyzed was ROP gadget count. Artifact #1 did not target 

ROP gadgets and thus the count was not analyzed for artifact #1. Artifact #2 targeted a subset 

of instructions that contained a “c3” byte in them. The subset of instructions was further 

broken down into different types. The types were memory operation instructions, general 

instructions, jump instructions, and call instructions. Each of these types had different ways of 

removing the original instruction that caused the ROP gadget while still maintaining original 

functionality of the binary. Artifact #2 was able to remove a vast majority of these mid-

instruction ROP gadgets from most of the binaries in Coreutils. There were some outlier 

binaries, such as the sha family, that contained a large number of instructions that are not part 

of the targeted instructions for the current implementation of artifact #2. 

Based on all these findings, all the metrics used for the study performed well. Artifact 

#2, which was the main point of this study, was able to achieve a ~63% patch rate, rarely 
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affected the size of the binary, had a minor impact on the execution speed of the binary, and 

was able to remove most, and in one case all, of the mid-instruction ROP gadgets. These 

favorable results showcase the feasibility of using static binary rewriting to remove 

instructions that generate ROP gadgets in binaries. So, static binary rewriting can be used to 

eliminate ROP gadgets from binaries. 

Recommendations for Future Work 

There are two main areas in which the methods could be improved. The first is 

improving the static binary rewriting methods. Currently, artifact #1 has limitations that could 

be improved on. The most pressing issue is the inability to track control flow instructions that 

use register values as their targets. This was because simple backwards propagation is not 

enough to accurately determine what would be in the register at the time of the instruction. A 

more advanced method would need to be developed to properly track these instructions. 

Additionally, a backwards propagation method was introduced for fixing jump tables in the 

binary. However, a large number of failed patches happened during this method of fixing 

jump tables. This method needs to be improved to increase the overall feasibility of using the 

artifacts as generic static binary rewriters.  

The second area for improvement lies in the removal of ROP gadgets. As it stands, 

only a handful of instructions are marked for removal. The amount of instructions artifact #2 

targets would need to be expanded if all mid-instruction ROP gadgets were to be removed 

from the binaries. Also, the current implementation of the removal of call instructions only 

works for call instructions that contain the “c3” byte in the first byte of the offset calculation. 

If both the number of targeted instructions is increased and the call instruction removal 

method is improved, all the Coreutil binaries should be able to have all their “c3” mid-
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instruction ROP gadgets removed. Additionally, the method could be expanded upon to target 

ROP gadgets that do not contain the “c3” byte in them. One such instance would be the “c2” 

byte. This would require some modifications to the current removal method because it will 

introduce “c2” bytes in certain instances. If the “c2” byte is targeted as well, the overall 

amount of ROP gadgets in the binary will be decreased. 

Improvements to both the static binary rewriting methods and the ROP gadget 

methods will increase the accuracy and effectiveness of the tools. Improving the static binary 

rewriting methods will increase the overall accuracy, which will lead to a larger number of 

binaries that are able to be patched. Improvements to the ROP gadget removal methods will 

increase the amount of ROP gadgets that can be removed and thus lower the total count of 

ROP gadgets that remain in the binary. If improvements can be made to either or both areas, 

the effectiveness of the artifacts would be greatly increased. 

Closing 

This study analyzed the effectiveness of using static binary rewriting for ROP gadget 

removal. To do this, a static binary rewriter that did not use symbolization to perform 

rewriting was created. Another artifact was built upon this static binary rewriter to remove 

mid-instruction ROP gadgets that contained the “c3” byte in them. The metrics gathered for 

these artifacts were successful patch rate, binary size, execution speed, and ROP gadget count. 

These metrics were measured and discussed to determine the feasibility of using the created 

artifacts to remove ROP gadgets from binaries. Based on the metrics, it seems that this 

method of static binary rewriting can be used to remove ROP gadgets from binaries 

effectively. 
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Limitations and recommendations for future work were also outlined in this study. 

Both the limitations and recommendations were focused on two main areas. These two areas 

were the ability to perform binary rewriting and the removal of the ROP gadgets. Regarding 

binary rewriting, the lack of symbolization caused issues with tracking instructions that used 

registers in control flow instructions. This issue will need to be resolved going forward. For 

the removal of ROP gadgets, more instructions need to be targeted to remove all the 

instructions that contain the “c3” byte in them. Additionally, improvements need to be made 

to the method that fixes calls that contain the “c3” byte in them. Fixing these areas would be 

of great benefit for removing ROP gadgets with static binary rewriting. 
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