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Abstract: Topic modelling has become a highly popular technique for extracting knowledge from
texts. It encompasses various method families, including Factorial methods, Probabilistic methods,
and Natural Language Processing methods. This paper introduces a unified conceptual framework
for Factorial and Probabilistic methods by identifying shared elements and representing them using
a homogeneous notation. The paper presents 12 different methods within this framework, enabling
easy comparative analysis to assess the flexibility and how realistic the assumptions of each approach
are. This establishes the initial stage of a broader analysis aimed at relating all method families
to this common framework, comprehensively understanding their strengths and weaknesses, and
establishing general application guidelines. Also, an experimental setup reinforces the convenience
of having harmonized notational schema. The paper concludes with a discussion on the presented
methods and outlines future research directions.
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1. Introduction

The analysis of textual data has become one of the hottest topics recently. It is widely
used for (1) semantic document processing through topic extraction and (2) text summa-
rization by associating principal concepts to it. Topic modelling finds many applications,
e.g., enriched document clustering [1], trend identification in topics [2], classification in
high dimensions [3], and dimensionality reduction problems [4].

Despite the amount of available techniques, there are few challenges that need to be
addressed: the semantic structures of texts, i.e., synonymy and polysemy, orthography, and
outlying artifacts, as well as the subjectivity of interpretation.

Topic modelling methods belong to three main families, (1) Factorial, (2) Probabilistic,
and (3) Natural Language Processing (NLP)-based methods. The former consist of a decom-
position over the multivariate so-called design matrix, where a given objective function is
optimized with a set of constraints [5]. These types of techniques are usually supported
by powerful geometrical interpretation capabilities as the original data are projectedover
the factorial space, which is expected to properly summarize relevant patterns in the data.
They also benefit from a wide range of algebraic properties, resulting in theoretically well-
based and robust methods. Some examples of such techniques are Principal Components
Analysis (PCA) [6,7], Latent Semantic Analysis (LSA) [8], Non-negative Matrix Factoriza-
tion (NMF) [9], Canonical Correlation Analysis (CCA), Multiple Correspondence Analysis
(MCA) [10], Correspondence Analysis (CA) [7,10], Archetypal Analysis (AA) [5], the Non-
linear Iterative Partial Least Squares algorithm (NIPALS) [6], BERTopic models successfully
combined with Kernel-PCA [11], and others.

Probabilistic methods are based on a statistical model definition, built from a probabil-
ity model and a parameter space definition. Hence, the parameter estimation is tackled
through the frequentist approach by making use of the Maximum Likelihood function, or
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Bayesian framework, in which the definition of prior distribution and the application of
Bayes theorem to obtain the posterior is needed [12]. Probabilistic methods are valuable
due to their generative nature, and they also provide clear interpretation, flexibility, and
extensibility. Furthermore, additional levels of hierarchy can be introduced to become
Bayesian hierarchical models [13,14]. Probabilistic topic modelling is successfully applied
to multi-document summarization [15,16], text classification [17], automatic extraction of
topics [18] and document topic classification [19]. Despite Bayesian approaches having
gained popularity, factorial methods are still more common as an application, as well as
research-wise.

Additional consideration is made for methods that make use of M-estimators (e.g., like-
lihood functions) for robust estimation of the parameters to prevent the effects of outliers
as well as multicollinearity [20,21].

NLP methods combine language analysis and statistical methods [22], and were pow-
erful in inferring the meaning from text. Linguistic annotations, such as Treebanks [23–26],
were widely used for unsupervised training stages, and were especially useful in part-of-
speech (POS) tagging, morphological analysis, word sense disambiguation [25,27], and
syntactic parsing. Hence, the topic modelling field can benefit from NLP, especially in the
pre-processing stage, which will be shown in the experimental setup.

The goal of this work is to introduce a unified and homogeneous notation over different
techniques, building a bridge between different families of topic modelling methods, espe-
cially Factorial and Bayesian approaches. Moreover, we provide an experimental setup that
highlights the usefulness of this harmonization of the notation, showing that the comparison,
in particular qualitative comparison, of different methods becomes an easier task. Moreover,
both harmonized notation and experimental setups reinforce the need for analysing differ-
ent assumptions of the methods to efficiently derive the right conclusions from extracted
patterns.

The paper is structured as follows. First, a common notation is presented. Then, the
two families analysed in the paper, i.e., factorial and probabilistic methods, follow.

LSA is introduced in Section 3, and its applications and extensions are presented
(Section 3.1), as well as alternative factorization models (Sections 3.1.1 and 3.1.2) in the topic
modelling field. Then, the Principal Component Analysis method and the mixture variation
MPPCA (Section 4.1) is presented as a midpoint between factorial and probabilistic families.
Then, Bayesian mixture models are briefly introduced in Section 4.2, and Latent Dirichlet
Allocation is presented in Section 4.2.5.

Then, the experimental setup and results are presented in Section 5. And, finally,
Sections 6 and 7 are devoted to the discussion, conclusions, and future work.

2. A Standardized Notation for Textual Data Analysis

This section introduces the notation associated with elements of the methods presented
in the following sections.

2.1. Corpus Numerization: Common Notation

This is one of the first and most basic steps in most of the methods (from Factorial
and Probabilistic families). It consists of representing a set of documents through numeric
matrices, where each row corresponds to the words distribution in the document.

It takes into account that:

• A set of documents is represented by D and is of size nD ;
• A set of terms is represented by T and is of size nT .

A document is composed of a sequence of words, such that for each document dj ∈ D
with j = 1 . . . nD , dj = (w1, w2, . . . , wndj

), with ndj
being the number of words in the

document dj and wp ∈ T having p = 1 . . . ndj
.

The numerization of the corpus consists of producing a matrix X of dimensionality
nT × nD (see below), with the rows corresponding to terms t ∈ T (the vocabulary of the
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corpus D), and columns corresponding to documents d ∈ D. The number of rows of X is
the length of the vocabulary (nT ), and the number of columns is nD . Each cell (i, j) contains
nij, i.e., the number of occurrences of the term ti in the document dj.

X =



1 ... nD
1

...
... · · · nij · · ·

...
nT


(1)

where X is the term–document matrix (TDM). Later, other generalizations of it will be
provided.

The vector xi = (ni1, . . . , ninD ) describes the profile of a given term in a corpus, i.e.,
the distribution of the occurrences of term ti in a document belonging to D.

The information retrieval field [28] successfully deployed the TDM structure in search
engines, as well as the tf-idf computation [29].

2.2. Binarization of Documents: Common Notation

The textual corpus can also be represented through the Binarization of documents. In
it, each document dj ∈ D corresponds to a binary matrix, d(j), the terms’ distribution in the
document.

The matrix d(j) has the dimensionality ndj
× nT , and has nT terms in columns and

ndj
rows, with each of those representing the positions of terms inside the document.

p = 1 . . . ndj
is the index (position) of the terms in the document dj.

d(j) =



1 ... nT
1

...
... · · · d(j)

pi · · ·
...

ndj


[
n1j . . . nT j

]
(2)

The definition of the cell, d(j)
pi of the binary matrix, d(j), is as follows:

d(j)
pi =

{
1, if term ti appears at position p of the document dj

0, otherwise
(3)

The i-th column vector of the matrix d(j) has a 1 at each position of dj that contains term

ti ∈ T . And the marginal of the i-th column of matrix d(j) corresponds to nij = ∑p=1...ndj
d(j)
pi ,

and coincides with cell (i, j) of matrix X.
The row marginal of the d(j) matrix, [n1j . . . nT j], coincides with the j-th column of

matrix X, and represents the profile of document dj by indicating the distribution of terms
in the document.

The set of these binary matrices is denoted by D = {d(1), d(2), . . . , denotedd(nD)}, and
D is the binary representation of a set of documents D in a corpus.

3. Latent Semantic Analysis and Extensions

LSA [8] infers the semantic structures of the terms in documents, and serves as the
basis for the extraction of relevant textual patterns.
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LSA is based on two-way factorial analysis, which uses Singular Value Decomposition
(SVD). The term ’two’ is due to the fact that terms and documents can be represented in the
same latent (factorial) space. This allows us to analyse the relationships between them.

Given a set of documents D, the first step is the numerization of the corpus, as
described in Section 2.1 (i.e., building the X matrix).

Then, using SVD, matrix X can be decomposed as the product of three matrices:

X = V(nT ×K)Λ
1
2
(K×K)(U

′)(K×nD) (4)

where:

• V(nT ×K) is the eigenvectors’ matrix of XX′;
• U(nD×K) is the eigenvectors’ matrix of X′X;
• Λ(K×K) is the diagonal eigenvalues’ matrix;
• K = min{nT , nD} is the rank of X.

The eigenvectors of U identify K rotation directions over original documents that
constitute the factorial space of terms. Each eigenvector is a linear combination of the
original set of “document-variables” (i.e., the columns of X). For the particular case of
TDM, these new artificial factors can be thought of as concepts or topics.

Let uα be one of the eigenvectors of the matrix U(nD×K), i.e., uα = Uα. And, the
projection of X on uα, Ψα = Xuα, is the α-th principal component. The corresponding
eigenvalue λkk measures the information retained by Ψα from the total information in X [30].
In practice, SVD is often used for dimensionality reduction and visualization, such that only
a subset of principal components is retained. Therefore, we will use K as the number of
retained dimensions and K ≤ K.

There exists a rule of thumb to consider K as the number of components that keep
an 80% of original information from X. However, there is no global consensus about the
method to be used to determine the parameter K and, currently, it appears to be one of the
research topics.

Taking only the K columns of U(nD×K) leads to U(nD×K). And

XK = V(nT ×K)Λ
1
2
(K×K)(U

′)(K×nD) (5)

is a lower dimensional representation of original data. ΨK = XU(nD×K) is the projection
of the original cloud of points X to the K-dimensional factorial subspace. The quantity of
information retained in the K-dimensional subspace can be quantified by the sum of the
corresponding K eigenvalues (stored in the diagonal matrix Λ(K×K)).

Both entities (terms and documents) admit joint representation onto a factorial space
based on the transition relations between V and U [31] and the dual analysis of the columns
of X and the rows. Joint representation becomes possible through the rescaling factor or a
biplot representation [7,32].

To determine the meaning of factorial components, the contribution of terms to each
factorial component identifies the subset of terms relevant in that factorial direction. As
a consequence, this elicits the topic associated with the axis. The contribution of each
term to the axis measures the degree of relationship between the term itself and the topic
corresponding to the axis.

Moreover, to ensure that large documents do not distort the analysis, a previous normal-
ization of X may be helpful. However, the quantity of information on a term in a document
is inverse to the occurrence of the term in the corpus [30]. For this reason, a relevant im-
provement was to perform the LSA over a transformation function of X that takes this fact
into consideration. Therefore, the term frequency–inverse document frequency, or tf-idf for
short [33], can be applied to the corpus first, and then the LSA methodology can be applied.

In the textual data analysis, there are three leading issues. The first one is associated
with synonymy. In this way, only a fraction of terms are held by the document, and those
that are searched for by the group of users may not appear in it. Nevertheless, the document
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remains relevant for that query, and should be listed as relevant. The second issue is about
polysemy, which is classically treated with vocabularies and term coordination. The third
obstacle is rare event detection, which means that whenever a pair of words appear together
in very specific situations, their detection is much more effective than when they appear in
almost all other possible scenarios.

The tests on the LSA method report that it is successful in handling synonymy sce-
narios (recall), but not so good with polysemy problems (precision). The third issue is not
covered by LSA method, but is treated in a very elegant way in another factorial method,
called Correspondence Analysis [7,10,34], by using a χ2 metric.

LSA can be applied to different use cases. For instance, in [35], the authors apply LSA
to word sense discrimination. Another example of an LSA application is related to the
characterization of meaning similarities among words and entire passages, which is the
synonymy problem [36].

One of the drawbacks of LSA is the need to periodically update, adding new terms
and documents. Also, the difficulties that the method experiences for polysemy problems
is due to the fact that the word is represented as a single point in the factorial space,
leading to the weighted average of the different meanings it may have, as reported in [8]
and in the LSA synonym test results’ interpretation in [36]. Therefore, adding stemming
as a pre-processing step could be not too meaningful. In addition, it does not consider
any word order dependence and, therefore, both morphosyntactic as well as grammatical
relationships are neglected.

3.1. Extensions of Latent Semantic Analysis

In this section, two extensions of Latent Semantic Analysis are presented, which
overcome several limitations of LSA. The first method introduces the context of the words
in the formulation of original LSA, and the second model takes into account the similarity
among sentences.

3.1.1. Distributional Semantic Model

In order to overcome the context-awareness limitation of LSA, in [37], the authors
present a Distributional Semantic Model. They extend the Vector Space Model represen-
tation by introducing the co-occurrence of the terms matrix, C(nT ×n f )

, in which nT is the
number of terms in a document. Here, a more general view is adopted, and the terms
can be reduced to the following entities, going from less to more elevated semantic or
morphologic elements:

• Word;
• n-gram (a contiguous sequence of n items of text);
• Stem (part of the word to which affixes may be added);
• Lemma (canonical form of the word);
• Compound (lexeme consisting of more than one stem).

T f = {t1, . . . , tn f } ⊆ T , which is an a priori chosen subset of terms used to evaluate
the co-occurrences with document terms. The co-occurrence matrix C is as follows:

C =



1 ... n f

1
...

... · · · cij · · ·
...

nT


(6)

where cij is the number of co-occurrences of terms ti and tj from T f , measured as the
frequency of term ti in the context of term tj. cij is the number of occurrences of ti in context
of tj. The context of tj is a window of a certain number of positions around the term tj, or
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the whole sentence where tj appears. The co-occurrence of ti and tj considers the context of
tj along all of the corpus (all sentences containing tj or all windows around all occurrences
of tj).

The set of indexing features, T f , can be chosen by evaluating the discriminative power
of the terms in the document collection. Then, the corpus matrix, over which the LSA is
applied, is built as X′C. Matrix X is the usual TDM matrix as defined in Section 2.1 (in
this context, it represents the lexical profiles provided, which are that terms must be more
general than words), and the matrix C is the co-occurrences matrix described above in (6).
The following equation is the formulation of the Distributional Semantic Model, where
defined the objective function and a set of constraints are:

max
uα

u′α(X′C)′(X′C)uα s.t. u′αuα = 1 (7)

3.1.2. Archetypal Analysis

In the domain of the multi-document summarization problem, in [5], the authors
present a framework based on a content–graph joint model. It is based on Archetypal
Analysis (AA) [38], which belongs to an optimization problem family similar to LSA/PCA,
k-means, or NMF.

The matrix X(S) is defined as a term–sentence matrix (TSM) over a set S of nS sen-
tences (all sentences from the corpus). The dimensionality of the matrix is nT × nS , and
it is composed of rows, which correspond to terms, and columns, which correspond to
sentences:

X(S) =



1 ... nS
1

...
... · · · n(S)

ij · · ·
...

nT


(8)

where n(S)
ij is the frequency of term ti in the j-th sentence of the whole corpus. The TSM

matrix X(S) uses the term frequency–inverse sentence frequency (tf-isf) [33] weighting
scheme (which is the same as tf-idf, but for sentences).

Additionally, the sentence similarity matrix, A(nS×nS ), is computed for each pair of

sentences using the cosine similarity between sentences. Let X(S)
j be the column of X(S)

corresponding to sentence j. It is a vector containing the distribution of terms in the
sentence. Each cell in matrix A is computed as follows:

aj,j′ = cos(X(S)
j , X(S)

j′ ) =
∑nT

i=1 n(S)
ij · n

(S)
ij′√

∑nT
i=1

(
n(S)

ij
)2
√

∑nT
i=1

(
n(S)

ij′
)2

(9)

Therefore, the content–graph joint model consists of using both matrices, the term–
sentence matrix, X(S), and the sentence similarity matrix, A, to provide the design matrix
J(nT ×nS ) = X(S)A. The idea is to decompose the matrix J in HW ′ J by using the AA
technique. Equation (10) is the formulation of the AA as an optimization problem, where
the objective function and a set of constraints are defined as:

min
H,W

‖J − H(nT ×K)W
′ J‖2

s.t.
K

∑
k

hi
k = 1, hi

k ≥ 0, ∀i ∈ {1 . . . nT }

s.t.
nT

∑
i

wi
k = 1, hi

k ≥ 0, ∀k ∈ {1 . . . K}

(10)



Mathematics 2023, 11, 4375 7 of 27

where Y(nS×K) = J′W is the matrix of archetypes (K columns). Those archetypes are built
as convex combinations of data points or observations. W(nT ×K) is the convex combination
definition of J in a way that the columns of Y are located on the convex hull of the data
point J [38]. Moreover, convex combinations of archetypes are used to approximate the
observations. From J ≈ HY′, it can be seen that the weighting matrix H approximates the
archetypal space into the matrix J. In contrast to NMF [9], AA performs a decomposition
of the matrix J into sparser stochastic matrices. The archetypes (the columns of Y) can be
interpreted as topics. Indeed, each column of Y, yk, is:

yk =
nT

∑
i=1

(ji)′wi
k (11)

where ji is the row profile of the design matrix, J, and hence (ji)′ is the corresponding
vector. The above expression can also be regarded in matrix notation as follows:

yk = J′wk (12)

According to [38], under certain conditions, a Y that minimizes the expression in (10) is
a Y that maximizes Y′ J′ JY. Then, under those conditions, Y can be written as Y = J′VΛ−

1
2 ,

and the columns are the principal directions of the J′ J. Note that in those circumstances, Y
would be U, and J would be the data matrix X in Section 3.

3.1.3. NMF Topic Modelling

The NMF decomposition method [9] imposes the non-negativity constraint of basis
vectors, whereas SVD imposes an orthogonality constraint. Different optimization schemes
can be used to derive the factorial space, such as the minimization of the least squares or
the Kullback–Leibler divergence. In [39], the authors compare Latent Dirichlet Allocation
(LDA), presented further in this work, and NMF, along with a k-means algorithm, to
identify email threads. And for that particular use-case, the NMF method showed better
performance, which suggests this technique occupies a relevant position among leading
topic modelling methods.

3.1.4. Explicit Semantic Analysis

In [40], the authors present a novel approach, Explicit Semantic Analysis (ESA), to
relate different fragments of text with a set of pre-defined Wikipedia-based concepts. As
opposed to LSA, ESA maps each word to a set of pre-defined concepts (Wikipedia articles)
and, by using the tf-idf numerical statistic from [33], builds the semantic interpretation
vector, which provides a measure of relevance of the set of pre-defined concepts to the
given text fragment.

4. Probabilistic Methods for Topic Modelling
4.1. Probabilistic PCA

In this section, a description of the Probabilistic Principal Component Analysis (PPCA)
is presented. It is the probabilistic version of the Latent Semantic Analysis presented in
Section 3.

PCA aims to maximize the projection of the original data space X onto the latent
(factorial) space Ψ. Nevertheless, in the probabilistic setting, the link from factorial space Ψ
to original space X is first established, and then the reverse mapping is derived by using
the posterior distribution, which is achieved with Bayes theorem. PPCA is considered a
linear Gaussian latent variable model [41–43].

The term profile, xi, is defined in ([41]) and it corresponds to the stochastic linear
combination of its projection in the factorial space (see Section 3), namely ψi, which is the
i-th row of matrix Ψ, and a noise term

xi|ψi = µi + εi, εi ∼ N (0, σ2 I), (13)
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where

• Vector ψi is of dimensionality K, usually nD ;
• µi = (µi1, . . . , µinD ), is the expectation of xi|ψi, and it is assumed to be a linear

combination of the latent factors µi = µ + Wψi, where:

– µ is the mean of XnT ×nD , i.e., the centre of gravity of the original data cloud;
– W is the parameter matrix, and it contains the factor loadings. The columns of W

span the principal subspace of data, X, when the log-likelihood is maximized.
The matrix W is defined as follows:

W(nD×nD) = U(nD×nD)(Λ(nD×nD) − σ2 I(nD×nD )
1
2 )R (14)

with U being the matrix of eigenvectors of X′X, as defined in (4).
The diagonal matrix ΛnD×nD , containing the corresponding eigenvalues λk, and
R is an arbitrary orthogonal matrix, which can be eventually found using the
following:

W ′W = R′(Λ− σ2 I)R (15)

where the columns of R′ are the singular vectors of the matrix (W ′W).
In practice, matrix W is estimated through a computing method in an iterative
way, which does not involve matrix R.

• σ2 I(nD×nD) represents the matrix of variance and covariances of the noise, and it is
the diagonal matrix (nD × nD) with the variance of xi|ψi in each document of the
corpus, which is assumed to be constant and equal to σ2 = V(xi|ψi), ∀d ∈ 1 . . . nD for
all documents in the corpus, thus implying a homoschedasticity hypothesis. Also, the
diagonal form of this matrix implies an assumption of independence, which means
that the model assumes independence in the distribution of the word in all documents
of the corpus given the latent variable.

σ2 I(nD×nD) =



1 ... nD
1 σ2 O

. . .
... σ2

O
. . .

nD σ2


(16)

In the general case, it might happen that rank(X) < nD . Let us name K = rank(X),
and

WnD×K = UnD×K(Λ(K×K) − σ2 IK×K)
1
2 R (17)

where K = min{nT , nD}, as defined in expression (4).
In practice, only K < K principal components are retained, and therefore matrix W is

approximated accordingly:

W∗nD×K = UnD×K(ΛK×K − σ2 IK×K)
1
2 R (18)

where matrix W∗ is of dimensionality nD × K with K < K = rank(X), and the diagonal
matrix ΛK×K is first composed of K eigenvalues λk, and UnD×K also contains only the first
K eigen vectors.

Moreover, it can be proven that whenever K < K, then the residual variance σ2 > 0
and the model covariance matrix C = σ2 I +W∗W∗′ is nonsingular (which will be explained
later). W∗ is used to estimate µ̂i, and ψi∗ = (ψi

1, . . . , ψi
K) is used instead.

Under the above conceptual frame, the prior distribution for ψi is defined as pure
white noise:
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ψi ∼ N (0, I) (19)

According to the authors of [41–43], other choices of prior distribution would lead to
probabilistic models equivalent to (21).

The predictive distribution of the data, p(xi), is used to compute the parameters by
maximum likelihood in a closed-form solution. It is defined using the Conditional Probability
Law, and under the previous distributional assumptions, it follows a normal distribution:

p(xi ∩ψi) = p(xi|ψi)p(ψi) (20)

marginalizing xi

p(xi) =
∫

p(xi|ψi)p(ψi)dψi = N (µ, C) (21)

with CnD×nD being a model covariance matrix. Using the fact that, for any random variables
X and Y, this matrix can be derived from the following:

Cov[xi|ψi, xl |ψi] = E[((µ + Wψi + εi)−E[xi|ψi])((µ + Wψi + εl)−E[xl |ψi])]

= E[(Wψi + εi)(Wψi + εl)′]

= E[Wψiψi′W ′] +E[εiεl′]

= WW ′ + σ2 I

(22)

where an assumption has been made that ψi, as well as εi, are independent random variables
(hence are uncorrelated). Then, it follows that CnD×nD = σ2 I + W∗W∗′, since ψi is white
noise and does not add variance to the result.

By using the Bayes Law, the posterior distribution of the latent variables (ψi) is derived
as follows:

p(ψi|xi) = N
(

M−1W ′(xi − µ), σ2M−1) (23)

where the matrix MK×K = σ2 I + W ′W.
And the marginal log-likelihood of X is as follows:

L(µ, σ2, W) =
nT

∑
i=1

log
{

p(xi)
}
= −nT

2
{

nD log(2π) + log |C|+ tr(C−1S)
}

(24)

where S is the empirical covariance matrix of XnT ×nD and π = 3.1415 . . .
The SVD of Ŵ ′Ŵ leads to

Û = ŴR′(Λ̂− σ̂2 I)−
1
2 (25)

Now, the estimates of Û and Λ̂ can be used for the projection of PPCA model. Further-
more, this formulation produces an approximation to the same axes obtained with LSA
or PCA.

Furthermore, there is a mixture component version of PPCA, namely the Mixture
Probabilistic Principal Component Analysis (MPPCA) [42]. This latter method, according
to our experiments with it in the text processing domain, provides a higher degree of flexi-
bility, as the Normality assumption still holds, although for each component individually.
Therefore, it becomes a very interesting approach as a topic modelling technique.

4.2. Bayesian Mixture Models

In this section, the main probabilistic approaches in textual data analysis will be dis-
cussed. The main difference from factorial techniques is that the probabilistic models are
based on the probabilistic framework for parameter estimation and provide a complete
distributional output, whereas the former provide an optimal solution in terms of maxi-
mizing a given objective function and, depending on this objective function and a set of
constraints, different types of solutions are derived.
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First, Bayesian mixture models will be presented. Then, LDA is presented as an exten-
sion of the mixture models. Finally, applications and variations of the previous models from
the existing literature are discussed.

First of all, a brief notational framework for Bayesian models will be presented. Es-
sentially, there are a few concepts that have to be represented: a document, a word, and
a topic.

Let Z be a qualitative r.v. that indicates which topic is observed for a document or
other textual unit. Z is a discrete r.v. with values in Z = {z1, . . . , zK}, and its probability
space is:

〈Z ,P(Z), PZ 〉 (26)

whereZ is the sample space (i.e., the set of topics),P(Z) is defined as all subsets ofZ , and PZ
appears to be the probability function ofP(Z). Then, PZ is built on top of pZ = P(Z = zk)
for k = 1 . . . K, given thatP(Z) is a σ-algebra. Thus, pZ is the prior probability distribution
of topics (not to be confused with Bayesian prior parameter distribution).

As said before, a document d ∈ D is defined as a sequence of words, (w1, . . . , wnd) ∈
T nd , where T is the set of possible terms (i.e., the vocabulary), and nd is the length of
document d. The set of terms that can occur in the position p ∈ 1 . . . nd of a document d is
defined as Tp, and it holds that Tp = T , ∀ p ∈ 1 . . . nd. Let Dp be an r.v. that indicates which
term is observed in a position p of the document d. Dp is a discrete r.v. with values in Tp
(= T ), and its probability space is:

〈T ,P(T ), PT 〉 (27)

where T is the sample space (i.e., the possible terms that can appear at any position p of a
document), P(T ) is the σ-algebra of events set (all subsets of T ), and PT is the associated
probability function of P(T ) for observing the different words.

Given that a document d ∈ D of length nd is considered as a sequence of words, it
can now be defined as a random vector D = (D1, . . . , Dp, . . . , Dnd) that considers all the
combinations of words that can appear along an entire document d of length nd, and it is
associated with the following probability space:

〈T nd ,P(T nd), PT nd 〉 (28)

where T nd is the Cartesian product of T , andP(T nd) is the σ-algebra of parts of T nd . PT nd

is built on top of pT nd = P(D = d) with d ∈ D, and it is the probability of observing a
certain document d:

P(D = d) = P(D = (w1, . . . , wnd)) (29)

Many authors [44] have developed this joint probability in the form:

P(D = d) = P(
∧

p=1:nd

Dp = wp) (30)

In the probabilistic mixture models [43,45], the data are generated by one of the mixture
components. For instance, it is proven that a mixture of Gaussians can approximate any
type of continuous distributions, in particular multimodal ones [46]. In this work, each
mixture component will be considered to correspond to a topic.

The probability of a document can be also written in terms of a set of possible topics.
Applying the law of total probabilities and considering a given set of topics Z , the proba-
bility of document can be expressed in terms of conditional probabilities with regard to
topics Z as follows:

P(D = d) =
K

∑
k=1

P(D = d|Z = zk)P(Z = zk) (31)



Mathematics 2023, 11, 4375 11 of 27

Bayesian topic models are generative by nature, and the documents are generated by
a mixture model parameterized by a set of parameters θ. Hence, the probability model of
the document formulated in (31) can be expressed in terms of parameters θ:

P(D = d|θ) =
K

∑
k=1

P(D = d|Z = zk ∧ θ)P(Z = zk|θ) (32)

Now, the term P(D = d|Z = zk ∧ θ) from the expression (32), which corresponds to
the probability of observing a document d given the topic Z = zk and a set of parameters
θ, can be defined on the basis that the document d can be represented as a sequence of nd
words d = (w1, . . . , wnd), by using expression (30):

P(D = d|Z = zk ∧ θ) = P(
∧

p=1:nd

Dp = wp|Z = zk ∧ θ) (33)

where each discrete random variable Dp indicates which word occurs in position p of the
document, and it has its corresponding probability space defined in (27).

Now, taking into account the whole corpus of documents D, and assuming that
documents behave as an iid sample, the likelihood function of θ in the corpus D is derived
as follows:

L(θ) = P(D|θ) =
nD

∏
j=1

P(D = dj|θ) (34)

Now, substituting the expression (33) into (32), and using it in (34), the likelihood
function becomes:

L(θ) =
nD

∏
j=1

K

∑
k=1

P(
∧

p=1:ndj

Dp = wp|Z = zk ∧ θ)P(Z = zk|θ) (35)

4.2.1. Considering the Document Size

In this formulation, the fact that the length of the documents can be modelled as a
random variable as well has been omitted. In [47], the authors consider this scenario and
claim the importance of taking the length of the documents as a random variable into
account, and also conditioning it to the topic.

Let N be a random variable indicating the length of a document d ∈ D, with the values
of N being in [1, ∞), and let us name nd the length of a specific document d, ∀ d ∈ D. In
this way, expression (29) would develop into a different expression:

P(D = d) = P(D = (w1, . . . , wnd) ∧ N = nd) (36)

and, consequently, expression (33) becomes:

P(D = d|Z = zk ∧ θ) = P
(
(
∧

p=1:nd

Dp = wp) ∧ N = nd|Z = zk ∧ θ
)

(37)

In principle, it can be assumed that the size of the document and the sequence of
words are independent, so (37) can be written as:

P(D = d|Z = zk ∧ θ) = P(N = nd|Z = zk ∧ θ)

· P(
∧

p=1:nd

Dp = wp|Z = zk ∧ θ) (38)

Finally, incorporating all the assumptions and notations, the expression of the generic
likelihood function can be rewritten from (35) as follows:
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L(θ) =
nD

∏
j=1

K

∑
k=1

(
P(N = ndj

|Z = zk ∧ θ)

· P(
∧

p=1:ndj

Dp = wp|Z = zk ∧ θ)

· P(Z = zk|θ)
)

(39)

4.2.2. Generative Model

In [19], the authors develop expression (39) under the assumption of the independence
of word occurrences in several positions of a document. This means to assume that the
probability of the occurrence of a word in a document is constant with regard to the position
in the document. This type of model corresponds to a family of n-gram models described
in [44], specifically to the 1-gram model. The joint probability term from the expression (39)
for a given document d ∈ D has the following form:

P(
∧

p=1:nd

Dp = wp|Z = zk ∧ θ) =
nd

∏
p=1

P(Dp = wp|Z = zk ∧ θ) (40)

where Dp is the discrete random variable defined earlier, with its corresponding probability
space (27). Variable Dp follows a Categorical distribution:

Dp ∼ Cat(π1dp, . . . πnT dp) (41)

where πidp is the probability that term ti ∈ T appears in position p ∈ [1 . . . nd] of document
d ∈ D. When the topic is known:

Dp|Z = zk ∼ Cat(π1dpk, . . . πnT dpk) (42)

Thus, expression (39) becomes

L(θ) =
nD

∏
j=1

K

∑
k=1

(
P(N = ndj

|Z = zk ∧ θ)

· ∏
p=1:ndj

P(Dp = wp|Z = zk ∧ θ)

· P(Z = zk|θ)
) (43)

πidpk is the probability of a term ti appearing in position p of document d, given topic
Z = zk

L(θ) =
nD

∏
j=1

K

∑
k=1

(
P(N = ndj

|Z = zk ∧ θ)

·
(

∏
p=1:ndj

πidpk

)
· P(Z = zk|θ)

) (44)

The authors assume that the probability of a word stays constant for all documents, and
is also independent of the words at other positions of the document. Also, it is independent
of the position where the word is observed (conditioned on the topic and parameters [19]).
Hence,

πidpk = πik ∀d, p
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where the subindices d and p have been removed by conditioning the variable Dp only on
topic Z = zk and θ. So, definition (42) takes the following form:

Dp|Z = zk ∧ θ ∼ Cat(π1k, . . . πnT k) (45)

where πik is the probability of the occurrence of term ti ∈ T (given the topic Z = zk).
Likewise, the likelihood function in (39) can be rewritten as:

L(θ) =
nD

∏
j=1

K

∑
k=1

(
P(N = ndj

|Z = zk ∧ θ)

·
( nT

∏
i=1

π
nij
ik

)
· P(Z = zk|θ)

) (46)

where nij is the number of occurrences of term ti in document dj. Therefore, the probability
of a certain sequence of terms is the product of their corresponding probabilities (πik), and
terms repeat for all positions p containing the same term, so that they can be factorized in
term π

nij
ik , and the product moves to iterate over the vocabulary, instead of iterating over

the positions of the document.

4.2.3. Multinomial Model

Finally, in [47], the authors consider another possibility based on the Multinomial
model, which assumes that the words in the document follow a Multinomial distribution,
and it can be formalized as follows.

This model takes into account the number of times the term ti appears in the document,
still disregarding the positions where the term ti appears, as it is assumed in the Generative
model presented in Section 4.2.2. For each term ti ∈ T , a random variable Qi is defined
as the number of occurrences of term ti in document d. The realization of this variable
is related to the matrix defined in Section 2.2 as a possible representation of a document
through a binary matrix, and Qi = ∑nd

p=1 dpi = ni, as introduced in Section 2.1. In fact, by
construction, Qi ∼ Bin(nd, πid), where πid is the probability of occurrence of term ti in the
document d. Conditioning the variable Qi to the topic Z = zk and a set of parameters θ, its
distribution changes to Qi|Z = zk ∧ θ ∼ Bin(nd, πidk). One of the assumptions is that the
probability πidk stays constant and independent of the words that occur on other positions
(and documents), given that the variable Qi is conditioned on topic Z = zk and parameter
θ [19]. This leads to a redefinition of Qi, such that Qi|Z = zk ∧ θ ∼ Bin(nd, πik). A spectral
representation of the document takes the occurrences of all possible words into account.
Hence, the random vector Q = (Q1, Q2, . . . , QnT ) describes the distribution of words of
a given document, and Q|Z = zk ∧ θ ∼ Mult(nd, π1k, . . . πnT k) follows a Multinomial
distribution. Therefore, the term P(D = d|Z = zk ∧ θ) can be formulated in terms of Q,
and expression (38) becomes:

P(D = d|Z = zk ∧ θ) = P(N = nd|Z = zk ∧ θ)

· P(Q = (n1d, . . . , nT d)|Z = zk ∧ θ)
(47)

According to the Multinomial distribution, the term P(Q = (n1d, . . . , nT d)|Z = zk ∧ θ)
from expression (47) can be rewritten as

P(Q = (n1d, . . . , nT d)|Z = zk ∧ θ) =
nd!

∏nT
i=1 nid!

nT

∏
i=1

P(Qi = nid|Z = zk ∧ θ) (48)

Now, using the assumptions and definition of Multinomial distribution, the expression
(48) is transformed into:

P(Q = (n1d, . . . , nT d)|Z = zk ∧ θ) =
nd!

∏nT
i=1 nid!

nT

∏
i=1

π
nid
ik (49)
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One of the drawbacks of this model is that sentences with same words in different
sequences account for the same spectral vector. For example, the sentence white cat in the
car would be the same event as cat in the white car.

Finally, considering all the assumptions presented above, and also using (35) and (49),
the likelihood of the Multinomial model would be as follows:

L(θ) =
nD

∏
j=1

K

∑
k=1

[
P(N = ndj

|Z = zk ∧ θ)

·
ndj

!

∏nT
i=1 nij!

nT

∏
i=1

π
nij
ik

· P(Z = zk|θ)
]

(50)

4.2.4. Multivariate Bernoulli Model

The Multivariate Bernoulli model [47] only considers whether the term ti actually
appears in the document, without taking into account the number of occurrences. Therefore,
this model does not incorporate the length of the document into its formulation. The
Bernoulli random variable Xi

d ∼ Bern(πid) indicates whether term ti appears in a document
d. xi

j ∈ {0, 1} is the realization of the variable Xi
j for a given document dj, and it states

whether term ti is present or not in the document dj.
The likelihood function of the Multivariate Bernoulli model is:

L(θ) =
nD

∏
j=1

K

∑
k=1

[( nT

∏
i=1

(
xi

jπik + (1− xi
j)(1− πik)

))
P(Z = zk|θ)

]
(51)

4.2.5. Latent Dirichlet Allocation

LDA is a Bayesian hierarchical model [13] based on the bag-of-words assumption or,
more formally, the exchangeability assumption [48]. Exchangeability means that the order
of words can be neglected, i.e., they can be permuted inside the document. Therefore,
it means that the random variables representing the words in a document (Dp) are as-
sumed to be conditionally (with respect to an underlying latent parameter) independent
and identically distributed, and are supposed to be exchangeable. This implies that the
conditional distribution, conditioned on some latent parameter, can be factorized easily;
however, the marginal distribution over this latent parameter may be quite involved. This
model has been proven to provide very appealing results. For instance, it was applied
to the customer care/call-centre use case and compared to other methods, such as NMF,
Neural-LDA and Contextualized Topic Modelling [49], and also in the fields of language
analysis/therapy [50] and financial markets [51].

Unlike the models presented in Section 4.2, where it was assumed that the document
is associated with one topic at a time (i.e., the probability distribution of the document
is conditioned on topic Z = zk), in LDA, the authors do not make this assumption and
provide additional flexibility to the model by allowing the documents to be associated with
multiple topics simultaneously [13]. In (26), the probability space related with the topic of
a document was introduced as follows:

〈Z ,P(Z), PZ 〉 (52)

Following the approach presented by [13], a different topic can be observed on each
position of a given document.

Also, all previous approaches presented in this work assume a traditional categorical
probability distribution for Z . In the LDA approach, the topics are considered random
variables distributed as z ∼ Cat(ζ), and ζ is considered a random variable in turn, following
a Dirichlet distribution of parameter α (in the original work, the authors use θ, which we
transform into ζ in this work, to avoid notation conflicts with the rest of the paper).
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In the following, we will try to refer the LDA approach to the general notation used in
our work.

Let Zp be a discrete r.v. that indicates which topic is observed on position p of document
d. In the LDA approach, it is assumed that a different probability space Zp is associated
with each position p of the document, provided that the probability space of all Zp is a copy
of the one defined in expression (26).

Now, for a given document d ∈ D of length nd, a random vector

Z = (Z1, . . . , Zp, . . . , Znd)

can be associated with the document, considering all the possible sequences of topics that
can occur along the sequence of words of an entire document d of length nd. The probability
space of the multiple topics observed in a document can be modelled in the following
probability space:

〈Znd ,P(Znd), PZnd 〉 (53)

where Znd is the Cartesian product of Z , andP(Znd) is the σ-algebra of parts of Znd . PZnd

is built on top of pZ = P(Z = (z1, z2, ....znd)), which is the probability of observing a certain
sequence of topics, of length nd, for a given document d ∈ D.

It is worth mentioning that the authors consider the length of a document, the variable
N = nd but, in general, they ignore its randomness in their developments [13].

The model is presented as a joint probability of the joint occurrence of the random
vector D (the sequence of words in the document), and the random vector Z (defined in
(53)), the sequence of topics of the document:

P(D = d ∧Z = (z1, z2, . . . , znd)) = P(
∧

p=1:nd

(Dp = wp ∧ Zp = zp)) (54)

In expression (54), the authors make an independence assumption that the pairs, word,
and topic are independent from the words and topics observed in other positions. Then,
expression (54) is transformed as follows:

P(D = d ∧Z = (z1, z2, . . . , znd)) =
nd

∏
p=1

P(Dp = wp ∧ Zp = zp) (55)

The value zp corresponds to the topic observed in position p of the document. This
topic is one of the possible elements of Zp. Since all Zp are copies of Z , all of them take
values of z1, . . . , zK. Thus, the probability of observing a concrete word wp in a certain
position p is

P(Dp = wp) = P(Dp = wp ∧ (
K∨

k=1

Zp = zk)) = P(
K∨

k=1

(Dp = wp ∧ Zp = zk)) (56)

Assuming that topics do not interact among them,

P(Dp = wp) = P(
K∨

k=1

(Dp = wp ∧ Zp = zk)) =
K

∑
k=1

P(Dp = wp ∧ Zp = zk) (57)

Substituting expression (57) into (55), and marginalizing with respect to topics:

P(D = d) =
nd

∏
p=1

K

∑
k=1

P(Dp = wp ∧ Zp = zk) (58)

which corresponds to marginalization with respect to all possible topics that can occur in a
position of the document.
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Applying the properties of conditional probability (55) becomes:

P(D = d) =
nd

∏
p=1

K

∑
k=1

P(Dp = wp|Zp = zk)P(Zp = zk) (59)

where P(Dp = wp|Zp = zk) is a Categorical probability distribution for the word in position
p, considering the topics observable in position p, although the authors refer to it as a
Multinomial distribution [13].

In this approach, the authors of [13] assume that the topics are characterized by a
distribution over words. Each topic Zp follows a Categorical distribution with parameter
ζ. The parameter ζ, in turn, is considered a random variable that follows a Dirichlet
distribution of parameter α, (ζ ∼ Dir(α)), the so-called hyper-parameters in the Bayesian
setting (because they are the parameters of parameters).

The joint probability of observing the document D = d and a certain mixture of topics
determined by parameters ζ can be written as follows:

P(D = d ∧ ζ) = P(ζ)
nd

∏
p=1

K

∑
k=1

P(Dp = wp|Zp = zk ∧ ζ)P(Zp = zk|ζ) (60)

ζ can be omitted from first multiplication term in the summation, provided that
the probabilities of words are not affected by them. Moreover, conditioning the previous
expression (60) to the distributional parameters (α and θ) gives:

P(D = d ∧ ζ|α ∧ θ) = P(ζ|α)
nd

∏
p=1

K

∑
k=1

P(Dp = wp|Zp = zk ∧ θ)P(Zp = zk|ζ) (61)

The marginal distribution of a document can be obtained by integrating expression
(61) over ζ gives:

P(D = d|α ∧ θ) =∫
P(ζ|α)

( nd

∏
p=1

K

∑
k=1

P(Dp = wp|Zp = zk ∧ θ)P(Zp = zk|ζ)
)

dζ
(62)

Assuming that the documents are an iid sample, the probability of a whole corpus D,
i.e., the likelihood of the parameters α and θ in the corpus D, can written as follows:

L(α, θ) =
nD

∏
j=1

P(D = dj|α ∧ θ)

=
nD

∏
j=1

∫
P(ζ j|α)

( ndj

∏
p=1

K

∑
k=1

P(Dp = wp|Zp = zk ∧ θ)P(Zp = zk|ζ j)

)
dζ j

(63)

So, (63) is very difficult to compute [13] and, for this reason, the approach adopted
in [13] is to use the variational inference method. It consists of finding the lower bound
of the log-likelihood function (logarithm of expression (63)), and then this lower bound is
maximized with respect to parameters α and θ. This is done iteratively, using the Expectation
Maximization method. This procedure is called the empirical Bayes parameter estimation.

4.3. Robust Estimators

For the methods presented above, in particular those that involve M-estimator (i.e., the
likelihood function in this case, or its equivalent), it is convenient to consider the need to
efficiently and robustly estimate the parameters. This is due to the fact that the breakdown
point of some methods is low, which leads to poor generalization, given that with a small
amount of outlying observations, the estimated parameters can be completely invalid.
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For instance, in [20], the authors propose an optimization algorithm with the LASSO
penalization schema [52] and with the least trimmed squares model [53]. They apply their
method to medical data with promising results in terms of MSE. In [21], the authors go one
step beyond and propose two mixed-integer nonlinear optimization models to deal with
outliers, as well as multicollinearity at the same time.

5. Experiments

In order to effectively compare the two families of methods, factorial and probabilistic,
in this work, the experimental setup is composed of two steps. First, data preprocessing,
and second, model fitting and the gathering of the results to later extract insights and
compare different methods’ families.

The pre-processing consists of the following steps:

1. Morphosyntactic analysis and lemmatization;
2. Word Sense Disambiguation (WSD) with Part-Of-Speech (POS) tagging;
3. Filtering by words composed of alphanumeric characters and at least length 3;
4. Stopwords filtering;
5. Filtering of word categories: Nouns, Verbs and Adjectives;
6. Filtering of terms that at least appear 4 times in the set of documents.

Steps 1, 2, and 5 were accomplished with the help of the Freeling tool [54]. Moreover, by
introducing the first two steps in the pre-processing stage, the model fitting process showed
much more consistent and robust results, leading the different methods to effectively extract
meaningful patterns; e.g., in the factorial methods, the inertia captured by the factorial axes
was observed to be much more uniform due to elimination of undesired artefacts (highly
frequent irrelevant words) or polysemy effects, which were removed with WSD treatment.

Regarding the data, the experiments are based on the Reuters-21578 R8 database [55].
It consists of 7674 news documents of eight different classes. The data are split into two
files, one for the training set and the other for the testing set. Each file contains documents
in rows, with the first string being the class of the document, and the rest of the line
corresponding to the document itself. The lines are of variable length, and the mean length
of the article is 102 words with standard deviation of 118, given that 75% of documents do
not surpass 113 words and the maximum is 964.

This dataset is very interesting due to its widely accepted benchmark status, lexical va-
riety, complete sentences, grammatical richness and, hence, its suitability for the application
of Natural Language Processing elements, the availability of exhaustive documentation
and sample size. Additionally, the documents are already labelled, which may be very
useful even in exploratory tasks.

In this first experimentation phase, 12 documents of the 3 classes have been randomly
selected, which are crude, money-fx, and trade. This is because at this point the goal is
purely exploratory, and to compare different methods, not benchmarking.

In order to extract meaningful results and simplicity in interpretation, only a few terms
would have been selected by Equation (64).

U = X′VΛ−
1
2 (64)

where X = VΛ
1
2 U′ is an SVD of matrix X, U ∈ Rd, and U′U = I. Therefore, each column j

of matrix VΛ−
1
2 is the contribution of terms on principal direction uj.

Similarly, for probabilistic methods, terms’ distribution for each topic is used to select
most relevant terms.

Results

In this section, will analyse the patterns that have been found by different meth-
ods from different families, which will also be compared in both quantitative as well as
qualitative ways.

In Figure 1, the projection of the synsets (terms) onto the LSA latent space is repre-
sented. The fact that we were working with synsets instead of words by leveraging WSD
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allowed us to capture more meaningful statistical information from the data, as many words
were mapped to only one synset taking the canonical form of the word (lemmatization).
Also, the polysemy effect was removed, which helped LSA to derive the latent space more
accurately (see Section 3).

Figure 1. Scores of the first two principal components of the LSA model. Some of the synsets were
omitted due to overlap.

Now, in order to more clearly see the terms projected over first two principal axes, in
Figure 2, we show wordclouds for each axis. In this way, it is easy to see what terms are
relevant for each component. In this case, we used the term “contribution” instead of the
term “frequency”. This actually connects very well with the qualitative analysis below.

(a) (b)
Figure 2. Wordclouds of the terms by their contribution to the first two principal components of
LSA model. (a) Wordcloud of the first principal component. (b) Wordcloud of the second principal
component.

In Table 1, we can see the quantitative comparison between MPPCA and LSA. It is
clear that since MPPCA uses mixture components to better capture the shape of the cloud
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of points, the weighted average inertia of the first two principal components is higher than
for the LSA method by 30 percentual points. Each of the mixture components is capable of
capturing the inertia in a very efficient way.

Table 1. Evaluation and comparison of the performance between LSA and MPPCA.

PC 1 PC 2
Total (%)

Model EM comp. λ1 λ1 (%) λ2 λ2 (%)

MPPCA

1 4.96 42.89 3.57 30.83 73.72
2 7.28 31.34 6.88 29.59 60.93
3 7.08 41.89 5.49 32.46 74.35

W. Avg. - 38.70 - 30.96 69.66

LSA - 22.38 16.08 38.46

In Figure 3, it becomes clear that the Normality assumption made by PPCA method
does not hold, as the data points have a conic shape around zero, showing the shape of
Zipf’s law distribution (most of the words with very low frequency and long tail). Nev-
ertheless, it is also worthy noticing that thanks to the introduction of mixture component
modelling in the PPCA (i.e., becoming MPPCA), the Normality assumption is leveraged by
the flexibility that brings mixture modelling.

(a) (b)
Figure 3. Representation of mixture components found by MPPCA model over the 3-D LSA factorial
space. (a) Projected terms in factorial space where each colour represents a mixture component.
(b) Zoomed-in and rotated near the vertex.

For the LDA model, each topic is described by the terms’ distribution. In Figure 4, the
terms are sorted in decreasing order by word–topic probability.

Finally, a qualitative comparison has been accomplished by representing the outcomes
of the different methods in Table 2. In order to see which methods provide similar outcomes
and to realize how accurately those estimations represent the data, we show the most
relevant documents and terms to each topic (or the principal component for factorial
methods), and also provide summarized texts of those documents (Table 3) with the help
of ChatGPT [56].



Mathematics 2023, 11, 4375 20 of 27

Figure 4. Terms’ distribution for each of the first two topics in LDA model.

Table 2. Qualitative comparison between MPPCA, LSA, LDA, and AA models.

Topic 1 Topic 2

Model EM comp. doc Top-4 Terms doc Top-4 Terms

MPPCA
1 9 gulf, stock, government, exchange 9 gulf, stock, talk, japanese
2 9 market, trade, official, rate 4 trade, official, market, japan
3 9 say, oil, price, opec 3 will, company, problem, last

LSA - 9 say, market, trade, official 4 trade, official, market, japan

LDA - 6 price, say, oil, opec 9 say, trade, market, official

AA - 9 market, say, gulf, stock 8 say, will, price, crude

Table 3. Documents summarized with help of ChatGPT [56].

Document Summary

3

Sweden’s ruling Social Democratic Party has given the government the power to
impose unilateral trade sanctions on South Africa, prioritizing the fight against
apartheid over traditional UN-backed sanctions. The details of the trade boycott
will be decided later by the government.

4

Japan and the U.S. are entering trade talks amidst mutual frustration. The U.S.
wants Japan to reduce its trade surplus, while Japan faces domestic pressure to
boost its economy. The discussions will address economic issues, including access
to Japan’s supercomputer market. Japan is working to address U.S. concerns
despite objections to parts of the trade bill.

6

OPEC may need to hold an emergency meeting before June to address falling oil
prices caused by excess supply. Initial optimism about their production control
has waned, with doubts about the effectiveness of any emergency meeting.
Demand is expected to rise in the next two months, but some believe OPEC may
have already exceeded its agreed-upon production quota due to increased
demand in the first quarter. The situation remains challenging for OPEC as it tries
to stabilize prices and production.
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Table 3. Cont.

Document Summary

8

Texaco Canada has decreased the price it pays for crude oil to Canadian CTS per
barrel, reducing the posted price for the benchmark grade to Canadian dollars per
barrel. This change is effective immediately, following the last adjustment made
by the company in February.

9

Gulf money markets have grown in the past decade, but bond and stock markets
in the region are underdeveloped and fragmented, according to Gulf International
Bank (GIB). Challenges include a recession from falling oil prices, family firms
avoiding going public, and limited financial awareness among investors. GIB calls
for better financial sophistication, diversified capital market instruments, and
improved disclosure requirements for company accounts. Progress is slow in
establishing formal stock exchanges in Qatar, Oman, and the UAE, despite some
improvements in Bahrain and Saudi Arabia.

For instance, the two purely factorial methods and MPPCA coincide in assigning
document 9 as the representative of the first topic (principal component), which talks about
stock markets, oil prices, recession, and the Gulf Bank. This is also reflected in the Top-4
most contributing terms.

A similar situation happens for the second topic (or principal component), except for
the Archetypal Analysis method, which picks document 8 as the most representative, which
talks about an oil price decrease by Texaco Canada, whereas document 4 (the common
one between MPPCA mixture component 2 and LSA) talks about talks between Japan and
the US, and Japan’s difficulties on economic matters. Also, the Top-4 most relevant terms
somehow reflect those scenarios.

The LDA method is actually pretty much aligned with factorial methods and MPPCA,
as the probability of topic 2 is 0.67. Therefore, if we sort the topics by decreasing probability,
we would see similar outcome to the rest of methods. The only difference would be
document 6 as representative for the less probable topic number 1, which talks about OPEC
intervention in the decrease of oil prices.

From this, it is important to realize that in order to compare factorial methods to
LDA, one needs to be careful of the order of the topics of the latter method, as in factorial
techniques, the principal components are sorted by their inertia by construction.

6. Discussion

Topic modelling is one of the hot research topics nowadays, and there are a number
of approaches in the literature based on different principles. In this paper, 12 different
approaches are presented. An important effort has been made to refer to all of them in a
common notation so that it became suitable to make comparisons and to understand what
the commonalities and particularities of the different techniques are.

Multivariate techniques apply to scenarios where no distributional assumptions are
made (see the Distribution hypotheses column of Table 4), and they are based on factorial
methods applied to TDM; thus, they use projection over the factorial space as a way to
identify the topics. These methods are the first three in Table 5, and they are based on
finding the most conservative (in terms of projected information) projection of the original
TDM (the numerization of the corpus), except in the case if AA, which uses TSM (which
means that it applies the same kind of approach on a higher granularity representation of
the text, where numerization is computed inside sentences instead of documents). Thus,
they provide a clear geometric and algebraic interpretation of the results and inferred
topics, which can be characterized by the set of terms as well as associated documents.
Multivariate techniques provide the projected coordinates of both terms and documents
(sentences, n-grams, etc.), so global factorial maps can show the relationships among all of
them. In standard implementations, these methods use TDM (or TSM) as input data.

In Table 5, the functions optimized by each method are listed, and it is very evident
that those techniques belong to two different families: multivariate techniques on the one
side, and probabilistic models on the other.
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Table 4. Comparison of all topic models presented in this work.

Functional Features Distribution
Hypotheses Assumptions

Model Name Type of
Func.

Word
Context

Exact
Solut. Input Output Doc. Size

Par. Distrib. Word.
Iid

Doc
Iid

Pos.
Iid

Pre-Fixed
K Topics/Doc

Latent Semantic Analysis Max var. no yes TDM Λ, U, V no free no no yes no 1 . . .K

Distributional Semantic Model Max var. yes yes TDM, C Λ, U, V no free no no yes no 1 . . .K

Archetypal Analysis Min SSE no no TSM, A H, W no free no no yes yes 1 . . . K

Probabilistic PCA Max L no no TDM W, µ, σ no Gaussian no yes yes no 1 . . .K

Probabilistic Topic Modelling Max L no no D θ no Parameterized no yes yes yes 1

Bernoulli Model Max L no no D θ no Bernoulli no yes yes yes 1

Probabilistic Topic Modelling (doc. size) Max L no no D θ yes Parameterized no yes yes yes 1

Generative Model Max L no no D θ yes Categorical no yes yes yes 1

Multinomial Model Max L no no D θ yes Multinomial no yes yes yes 1

Latent Dirichlet Allocation Max L no no D θ no Categorical Dirichlet no yes yes yes 1 . . . K
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Table 5. Formulations of the presented methods.

Model Name Function to Optimize

Latent Semantic Analysis max
uα

u′αX′Xuα s.t. u′αuα = 1

Distributional Semantic Model max
uα

u′α(X′C)′(X′C)uα s.t. u′αuα = 1

Archetypal Analysis min
H,W
‖J − H(nT ×K)W ′ J‖2 with convexity constraints

Probabilistic PCA L(µ, σ2, W) = ∑nT
i=1 log

{
p(xi)

}
= − nT

2

{
nD log(2π) + log |C|+ tr(C−1S)

}
Probabilistic Topic Modelling L(θ) = ∏nD

j=1 ∑K
k=1 P(

∧
p=1:ndj

Dp = wp|Z = zk ∧ θ)P(Z = zk |θ)

Probabilistic Topic Modelling
(considering document size) L(θ) = ∏nD

j=1 ∑K
k=1

(
P(N = ndj |Z = zk ∧ θ)P(

∧
p=1:ndj

Dp = wp|Z = zk ∧ θ)P(Z = zk |θ)
)

Probabilistic Topic Modelling: Generative Model L(θ) = ∏nD
j=1 ∑K

k=1

(
P(N = ndj |Z = zk ∧ θ) ·

(
∏nT

i=1 π
nij
ik

)
· P(Z = zk |θ)

)
Probabilistic Topic Modelling: Multinomial Model L(θ) = ∏nD

j=1 ∑K
k=1

[
P(N = ndj |Z = zk ∧ θ) ·

ndj
!

∏
nT
i=1 nij !

∏nT
i=1 π

nij
ik · P(Z = zk |θ)

]
Probabilistic Topic Modelling: Bernoulli Model L(θ) = ∏nD

j=1 ∑K
k=1

[(
∏nT

i=1

(
xi

jπik + (1− xi
j)(1− πik)

))
P(Z = zk |θ)

]
Probabilistic Topic Modelling:
Latent Dirichlet Allocation L(α, θ) = ∏nD

j=1

∫
P(ζ j|α)

(
∏

ndj
p=1 ∑K

k=1 P(Dp = wp|Zp = zk ∧ θ)P(Zp = zk |ζ j)

)
dζ j

Factorial methods aim to optimize a function relative to the amount of information of the
original data that is retained in the latent space; for instance, AA minimizes the residual sum
of squares, whereas PCA maximizes the projected variance. In general, the solution (i.e., the
optimal projection directions) is derived through diagonalization techniques applied to the
TDM which, in turn, will depend on the method. The results are expressed in terms of rotation
directions (which can be eigen vectors, depending on the method), the quantity of information
retained in the factorial component (sometimes eigen values), and the coordinates of the
original terms of documents in the projected space can be computed as linear combinations of
the columns of TDM weighted by the obtained eigenvectors components. The Distributional
Semantic Model takes the context of the words into account. It calculates co-occurrences of
the terms inside a pre-defined window around some predetermined words. Explicit Semantic
Analysis strongly relies on a pre-defined set of concepts.

On the other hand, the methods that come from the probabilistic modelling theories
strongly rely on distributional assumptions. Nevertheless, they provide a solid basis to
capture uncertainty due to their probabilistic nature.

Unlike multivariate methods, they use the corpus data with the basic unit being the
term as the standard input, except for PPCA, which uses TDM data as input data. However,
the frequencies of the terms in sentences or documents are often used inside the algorithms
as well.

In order to reduce and simplify the estimation of the set of distributional parameters,
probabilistic methods make different kinds of probabilistic assumptions. The words or
terms depend on the topic, but not on the other words or terms that appear in the same
document. Additionally, when conditioning on the topic, the words or terms are identi-
cally distributed across sentences, documents, and the whole corpus. The documents are
assumed to be independent of each other and also identically distributed. In fact, all seven
methods analysed in this paper make the strong assumption of independence, meaning
that the occurrence of a term is independent of the document in the corpus, the position in
the document, and the context. This is, in fact, a quite unrealistic assumption, although
it is more than frequency in probabilistic and Bayesian statistics in general, as unless this
can be assumed, the computation of the joint probability distribution of a document or
that of a corpus becomes unfeasible. Assuming independence allows joint probability
distributions as direct products of their components, which makes the model suitable from
the theoretical point of view.
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All probabilistic methods presented in this paper provide a probabilistic model for
the likelihood of the model parameters, given the observed corpus, as usual in Bayesian
approaches. And, all of them assume a predefined number of topics. Often, setting this
parameter beforehand it is not easy.

Depending of the method, a more or less complex likelihood function, or its logarithm
(see column 2 of Table 4) is maximized to estimate the model parameters. This allows us
to get values for the probabilistic model assumed for the corpus (which can change from
one method to another), so that the probability of a certain topic given a document can be
computed, among others. In most methods, except LDA, it is assumed that a document
belongs to a single topic (the most probable one).

So, the output of probabilistic models is that the entire probabilistic distribution of the
corpus, given different topics among others, has a very different nature than the kind of
outputs provided in factorial methods.

Additional simplifications and assumptions appear in some specific methods, leading
to a different formulations and, therefore, different models arise, as shown in Table 5. For
example, Probabilistic Topic Modelling under the Bernoulli approach can be considered
the most simple method in this family. It only matters whether a specific term occurs or not
in a document, while all six other approaches work with the number of occurrences of the
term in a document.

All other probabilistic methods introduce the size of the document in the model. The
Categorical (generative) model considers the same Categorical distribution of all words
in each position of the document, with an additional assumption of equiprobability of
terms along all positions in document. The Multinomial model introduces the number
of occurrences of terms in a document, and proposes a model based on the multinomial
distribution of these occurrences. It makes the same independence assumptions as the Cat-
egorial model. Both Categorical and Multinomial arrive to the same parameter estimation,
but starting from different distributional assumptions.

LDA seems to be the most complex probabilistic method, as it assumes that the docu-
ment can belong to several topics simultaneously. Although LDA is formulated considering
the document length, in the original paper, the authors omit it for the sake of simplicity [13].

Then, PPCA is in the mid way between probabilistic and multivariate methods. It pro-
vides a probabilistic version of LSA. While PPCA formulates the likelihood to be estimated
as a function related to the quantity of information kept in the projected space, it can be
formulated in terms of a Likelihood function. It requires a distributional assumption for
the counts of the words in the corpus, and it is formulated assuming Gaussian distribution
which, in fact, seems not to fit properly for textual data (see Table 4). Nevertheless, the
MPPCA variant seems to leverage this assumption by introducing mixture ,components
leading to promising results and elegant interpretation.

Finally, from the experimental section and the analyses performed so far, it can be
seen that all methods show interesting and similar behaviour amongst them, at least in this
particular experimental setup. The similar outcome of all the compared methods could be
due to the highly elaborate pre-processing step, which perhaps helped all the methods to
find those signals or patterns and efficiently disregard the noise.

On the other hand, thanks to the common notation framework, it was easier to perform
the analysis, especially for the qualitative comparison, as the calculated contributions and
correlations spoke the same language, having the same or similar notation for concepts that
are closely related.

In particular, this bridge was more notorious between factorial methods and MPPCA,
allowing us to explore the mid point between factorial and probabilistic approaches.

7. Conclusions

This work represents a pioneering effort in unifying the notation for two distinct fami-
lies of topic modelling methods: multivariate and probabilistic topic modelling. Despite
their conceptual differences, the authors demonstrate that employing a shared notation
enables a detailed analysis of commonalities and distinctions between these approaches.
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In the multivariate setting, associations between topics, documents, and terms are
interpreted and visually represented with clarity, facilitating a comprehensive overview of
their interactions.

Conversely, probabilistic methods lack a geometric representation, but offer greater
flexibility in capturing associations among topics, documents, and terms.

Another fundamental difference lies in the assumption made by probabilistic ap-
proaches, where the number of topics is predetermined from the outset. On the other hand,
multivariate methods allow the determination of relevant topics as an output, achieved
by assessing the quantity of information preserved in each topic and retaining the signifi-
cant ones.

Also, all probabilistic approaches, except LDA, assume a single topic per document,
which is a more limited approach, whereas the multivariate approaches show the relation-
ship between each particular document and all the significant topics; so, it is possible to
identify the more realistic situation of documents involved with several topics simulta-
neously. This is also the case of LDA, which provides the probabilities of a document to
belong to all the predetermined set of topics. The fact that two consecutive words may
belong to two completely different topics in LDA does not seem a very realistic assumption.

The PPCA appears to be an appealing approach, combining both probabilistic and
multivariate methods. However, the Normality assumption does not align with the actual
distribution of terms within documents.

On the other hand, multivariate models, despite being simple linear models, present a
more conservative modelling approach, as they do not impose any distributional assump-
tions, making the interpretation of results straightforward.

Nevertheless, this analysis highlights a common characteristic among all the proposed
methods: they offer means to characterize topics based on documents or words that are
representative of the topics. However, the true essence of these topics still relies on the
interpretational abilities of the analyst or domain expert. This indicates a missing final step
in the field of topic modelling research, which is to provide a concept or label for each of
the discovered topics. During the experimental stage, this issue was confirmed becoming
very challenging to describe the topics discovered by different methods. Therefore, this
task becomes arbitrary and has high degree of manual effort.

For this reason, currently, the research is focused on enriching the methodology with
inductive reasoning and ontologies of terms in order to obtain final concepts or labels for
the discovered topics in an automatic way, providing a clear interpretation for the last stage
of the topic modelling task for any type and family of topic modelling technique.
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