
Citation: Acho, L.; Pujol-Vázquez, G.

Enhancing Vibration Control in

Cable–Tip–Mass Systems Using

Asymmetric Peak Detector Boundary

Control. Actuators 2023, 12, 463.

https://doi.org/10.3390/

act12120463

Academic Editor: Guang-Hong

Yang

Received: 16 November 2023

Revised: 29 November 2023

Accepted: 6 December 2023

Published: 11 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Enhancing Vibration Control in Cable–Tip–Mass Systems
Using Asymmetric Peak Detector Boundary Control
Leonardo Acho † and Gisela Pujol-Vázquez *,†

Department of Mathematics, Universitat Politècnica de Catalunya-BarcelonaTech (ESEIAAT),
08222 Terrassa, Spain; leonardo.acho@upc.edu
* Correspondence: gisela.pujol@upc.edu; Tel.: +34-9373-98159
† These authors contributed equally to this work.

Abstract: In this study, a boundary controller based on a peak detector system has been designed
to reduce vibrations in the cable–tip–mass system. The control procedure is built upon a recent
modification of the controller, incorporating a non-symmetric peak detector mechanism to enhance
the robustness of the control design. The crucial element lies in the identification of peaks within
the boundary input signal, which are then utilized to formulate the control law. Its mathematical
representation relies on just two tunable parameters. Numerical experiments have been conducted
to assess the performance of this novel approach, demonstrating superior efficacy compared to the
boundary damper control, which has been included for comparative purposes.

Keywords: boundary control; flexible cable; partial differential equation; control design; peak
detector model

1. Introduction

In numerous industrial applications, systems are often represented by partial dif-
ferential equations (PDEs), where the targeted physical quantity relies on both position
and time, as noted by Morris [1]. There are two primary PDE control settings depending
on the nature of control actuation; it can either be distributed throughout the system’s
domain, or the actuation and sensing are confined solely to the boundary conditions [2–5].
Boundary control is regarded as more physically realistic due to the non-intrusive nature of
the actuation and sensing, as emphasized by Kao and Stark [6]. In fact, the design of bound-
ary control for cable-based systems presents a significant challenge and finds relevance
in various control engineering applications, such as floating platforms for offshore wind
turbines [7,8], overhead cranes equipped with flexible cable mechanisms [9–11], conveyor
belt devices [12], oil-drilling actuators [13], and so on [14–22]. See Figures 1 and 2 for
examples of these applications.

These applications are prominent due to the favorable attributes of cables, such as
their relatively low weight, flexibility, strength, and ease of storage, as noted by de Oliveira
and Cajueiro [23]. However, if the induced vibrations are not effectively filtered out in the
cable system, they can significantly deteriorate system performance and eventually lead to
critical failures. In the existing literature, various control strategies have been proposed to
address this issue. Therefore, boundary vibration control remains a crucial area of focus
in these applications. For an in-depth review on this topic, see Zhao et al. [21] and the
references therein. To achieve a state-of-the-art understanding of vibration control applied
to cable mechanical systems, the cable–tip–mass model serves as a reference challenge.
Additionally, in [24], the author reduce riser vibration through stochastic control methods,
while Zou et al. [25] present an adaptive control system with backlash. Furthermore, Koshal
et al. [26] and Zhang et al. [27] propose an observer-based boundary control approach, as
in [28]. In [29], the authors present an active disturbance rejection controller, where the
energy system converges to equilibrium with an exponential manner. Adaptive control
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methods, as described in [30], are applied, but despite not relying on the measurement or
estimation of system states, the energy consumption is found to be excessive.

Figure 1. Floating platform for offshore wind turbines (cleantechnica.com); oil-drilling actuators
(EnggCyclopedia.com).

Belt

Fixed Guard

1

Figure 2. Conveyor belt device (scheme); overhead crane with flexible cable mechanisms.

Moreover, the application of the asymmetric peak detector mechanism has demon-
strated its utility in reducing vibrations in flexible structures, as highlighted in Pujol’s
work [31]. The conventional peak detector system identifies peak values within the input
signal, as mentioned by Meng [32]. The current modification introduces two parameters to
regulate the behavior of the input signal, resulting in the development of a non-symmetric
controller configuration. The primary goal is to derive a modified control input that en-
hances vibration attenuation. We implement this approach for a cable–tip–mass system,
considering a modification of a standard boundary controller for comparative analysis.
According to numerical experiments, the performance of this modified approach surpasses
that of the damper controller case [23,33,34]. Specifically, we effectively adapt the peak
detector algorithm to our boundary control design for attenuating vibrations along the
cable or string in our mechanical cable–tip–mass device. Additionally, we provide a formal

cleantechnica.com
EnggCyclopedia.com
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proof of this assertion using Lyapunov theory. This paper represents an enhanced version
of our prior work presented in [5]. The primary contribution of this paper lies in validating
a seemingly unrelated technique, such as the peak detector model, when applied to the
cable–tip–mass system. This paper offers several key contributions:

• Introduction of a boundary strategy centered on detecting peak vibration values and
subsequent proof of its bounded-input bounded-output (BIBO) stability.

• Proposal of two design parameters aimed at enhancing the flexibility of peak detection.
Their values can be determined using specific performance indices.

• Conducting simulations that compare the performance of this approach with a classic
boundary controller, demonstrating its efficacy.

Furthermore, the practical implementation of the control algorithm presents a con-
siderable challenge in technological progress. Reference [35] provides a detailed account
of particular mechanical configurations within the mechatronic stiffness concept, offering
insights into its traits, behavior, and the achieved control outcomes.

The remaining sections of the paper are organized as follows. Section 2 outlines the
mathematical model of the cable–tip–mass system employed for our purposes, along with
the pertinent assumptions relevant to real-world applications. It also introduces the novel
asymmetric peak detector model, with its stability established in terms of Lyapunov theory.
Section 3 comprises several numerical simulations that demonstrate the effectiveness of
the proposed control design, discussed in Section 4. Finally, Section 5 presents the key
conclusions derived from this study.

2. Materials and Methods
2.1. Cable–Tip–Mass System

The system illustrated in Figure 3 depicts the boundary-actuated cable–tip–mass
system, which can be mathematically represented by [23]:

ρutt(x, t) − Touxx(x, t) = 0, (1)

u(0, t) = 0, t ≥ 0, (2)

mutt(L, t) + Toux(L, t) = f (t), t ≥ 0, (3)

where ρ denotes the mass per unit length of the cable, m is the mass of the actuator located
at the free boundary space, To is the applied tension to the cable, L is the cable length,
and x ∈ [0, L] represents the independent position variable. Variable u(x, t) represents the
transverse position at the x-position for a t-time, and f (t) denotes the boundary control
force. Finally, with regards to notation, the provided subscripts denote the corresponding
partial derivatives, as is customary [23]. To establish a practical control framework, two
assumptions must be introduced [21]:

(i) The amplitude of u(x, t) is very small.
(ii) To is constant all along the cable.

In summary, the aim of the boundary control is to determine a controller f (t) that
decreases the intensity of cable vibrations. It can be stated in terms of bounded-input
bounded-output (BIBO) stability; |u(x, t)| ∈ L∞ if f (t) is bounded too. To conclude this
section, we observe that the open-loop response (with f (t) = 0) of this system is undamped.

The implementation of the control algorithm, schematically represented in Figure 3,
is a challenging issue of technological development. Reference [35] describes selected
mechanical arrangement of the mechatronic stiffness concept, its features, behavior, and
control results.
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Figure 3. A simplified cable–tip–mass system, with local coordinates and boundary conditions. One
end of the string is pinned while the other end is linked to an actuator f (t). Our assumption accounts
for uniform tension along the entire length of the string.

2.2. Asymmetric Peak Detector Model

In electronics [32], a peak detector system is applied to estimate the peak voltage value
of a given signal. In this section, we present the mathematical model of the asymmetric
peak detector system, proving its BIBO stability.

2.2.1. Definition and Characterization

Essentially, a standard peak detector system is implemented by utilizing a diode (D), a
capacitor (C), and a resistor (R), as depicted in Figure 4. In this configuration, the input
signal vi(t) is fed into the peak detector system, and subsequently, the output signal y(t)
provides an estimate of the peak voltage value of vi(t). The retention duration for storing
the peak value of vi(t) in the capacitor is regulated by the specific values of R and C.

	

Peak	
Detector	

Vi(t)	 V0(t)	

vi(t)	
	 y(t)

)	
C	 R	

D	

_	_	

+	 +	

Figure 4. Simplified electronic circuit of the peak detector system. y(t) displays the peak information
on the input signal vi(t). The memory time to keep the peak value of vi(t) stored in the capacitor is
controlled through the values of R and C.

By applying Kirchhoff laws to the electronic circuit, we derive the differential equation
governing this system:

ẏ(t) =
α

2

(
(vi(t)− y(t))(sign(vi(t)− y(t)) + 1) + y(t)(sign(vi(t)− y(t))− 1)

)
, (4)

where α = 1
RC .

To introduce a degree of adaptability into the system, we propose a modification of
the peak detector model (4), outlined as follows:

ẏ(t) =
α1

2
(vi(t)− y(t))

(
sign(vi(t)− y(t)) + 1

)
+

α2

2
y(t)

(
sign(vi(t)− y(t))− 1

)
, (5)

where the parameter α in (4) is decomposed into two design parameters α1 and α2. Nu-
merical simulations are conducted to validate our proposed peak detector system. To
demonstrate the robustness of our approach, we subject the system to various classes of
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external disturbances. For instance, refer to Figure 5, which illustrates the input signal vi(t)
and the peak detector signal y(t), as described in (5). Based on these simulations, it can be
inferred that the parameters α1 and α2 govern the memory dynamics of y(t). When α1 is
significantly smaller than α2, as observed in Figure 5a,d,g, the peak value is not reached.
Conversely, in Figure 5b,e,h, the peak value is achieved, but the response behaves slowly
and does not precisely align the input but the dynamics of v(t) is remembered. Finally, in
Figure 5c,f,i, we obtain the non-modified system. The main idea of the asymmetric peak
detector system is to activate the control when a peak value is detected, or almost detected,
as desired.

Hence, by tuning adequately the values of parameters α1 and α2, we can modulate
different outputs, capturing the input desired values. The asymmetry comes from the
decoupled parameter, allowing us to detect a desired value.
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Figure 5. Simulation results of the asymmetric peak detector system (5), when different classes of
input vi(t) are considered; in blue: input vi(t); in red: output y(t). Three cases of parameters α1 and
α2 values in (5) are considered for each input function, to expose the performance of the proposal.
We obtain a positive response, with different input values detected. The designer needs to determine
the preferred scenario for their system.
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2.2.2. Bounded-Input Bounded-Output Analysis

According to Figure 5, it appears that our system is Bounded-Input Bounded-Output
(BIBO)-stable; if the system input is bounded, that is, if there exits K > 0 such that
|vi(t)| ≤ K, then y(t) is bounded [36]. Let us prove this mathematical hypothesis. Observe
that system (5) is equivalent to:

ẏ(t) =

{
α1(vi(t)− y(t)) if vi(t) ≥ y(t)
−α2y(t) if vi(t) < y(t)

, (6)

By solving the corresponding ordinary differential Equation (6), we obtain:

• If vi(t) ≥ y(t), then |y(t)| ≤ |vi(t)| ≤ K. In fact, we can obtain:

|y(t)| ≤ Ke−α1t0 .

• If vi(t) < y(t), then |y(t)| ≤ |y0|e−α2(t−t0), for t ≥ t0 with y(t0) = y0.

Therefore, the system is exponentially stable, and a Lyapunov function Va(t) can
be stated.

Note that considering α1 >> α2, there exists t0 such that |y(t)| ≤ K|y0|e−α2(t−t0), for
all t ≥ t0.

2.3. Asymmetric Peak Detector Boundary Controller

First, let us introduce the boundary damper controller, previously employed for the
vibration control of a cable–tip–mass cable mechanism (refer, for instance, to [23,33,34]):

fd(t) = −kdut(L, t), (7)

where kd > 0 is the control gain defined by the designer, and ut(L, t) is the corresponding
feedback signal. The performance of the previous boundary damper controller is com-
parable, for instance, to the one based on model reference technique design [23]. So, the
standard boundary control input in (3) is f (t) = fd(t).

In our design, the controller f (t) in (3) is constructed, modifying this standard con-
troller fd(t), as follows. The signal fd(t) generated by (7) is supplied to our peak detector
algorithm (6), i.e., vi(t) = fd(t). Then, we define the asymmetric peak detector controller as
f (t) = y(t), to be supplied to our cable–tip–mass system (1)–(3). The mathematical model
of the asymmetric peak detector controller is then:

ẏ(t) =

{
α1( fd(t)− y(t)) if fd(t) ≥ y(t)
−α2y(t) if fd(t) < y(t)

, (8)

where α1 and α2 are positive constant parameters, and fd(t) is its input signal. The response
y(t) is piecewise continuous and it is available for a given boundary damper controller.
Moreover, as said in Section 2.2.2, for any piecewise continuous and bounded signal fd(t),
y(t) is bounded, with α1 >> α2. Indeed, there exists a Lyapunov function Va(t) = Va(y(t))
such that V̇a(t) ≤ 0. Hence, we can state the following stability statement:

The closed-loop system (1)–(3) with control input f (t) = y(t) defined in (7) and (8),
and with α1 >> α2, is BIBO-stable.

The proof is as follows. Consider the following energy-kinetic-like Lyapunov
function ([23,33] but the last term):

V(t) =
1
2

ρ
∫ L

0
u2

t (x, t)dx +
1
2

To

∫ L

0
u2

x(x, t)dx +
1
2

mu2
t (L, t) + Va(t). (9)
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Then, it is straightforward to obtain (for simplicity, in some functions, their arguments
are intentionally omitted):

V̇(t) = ρ
∫ L

0
ututtdx + To

∫ L

0
uxuxtdx + mut(L, t)utt(L, t) + V̇a(t). (10)

Taking into account that V̇a ≤ 0, by invoking (1) and (3), we have:

V̇(t) ≤ To

∫ L

0
utuxxdx + To

∫ L

0
uxdut + ut(L, t)[−Toux(L, t) + f (t)]. (11)

Then, after employing integration by parts and some algebraic simplifications, we
arrive to

V̇(t) ≤ y(t)ut(L, t). (12)

From (8), we have to consider two cases:

(a) If fd(t) ≥ y(t), then V̇(t) ≤ −kdut(L, t)ut(L, t) = −kdu2
t (L, t) ≤ 0.

(b) If fd(t) < y(t), then −y(t) < − fd(t). Moreover, from (7) we induce that ut(L, t) =

− 1
kd

fd(t). So, V̇(t) ≤ y(t)ut(L, t) = −y(t) 1
kd

fd(t) < − 1
kd

f 2
d (t) ≤ 0.

We can affirm that V̇(t) ≤ 0, which means that V(t) is bounded, thus concluding our
main proof.

We are using the fact that, in real physical systems, if the energy of the systems is
bounded, then all surrounding dynamic signals of the closed-loop system are bounded
too [23].

3. Results

To analyze the proposed controller design of f (t) as applied to the cable–tip–mass
(1)–(3), we prepare two control cases for comparison:

(i) Standard boundary controller: f (t) = fd(t) (7);
(ii) Asymmetric peak detector controller: f (t) = y(t) (7)-(8).

We set the following data: m = 1 Kg, To = 1 N, ρ = 0.25 kg/m, and L = 1 m. As initial
conditions, we impose u(x, 0) = 0.01 sin(πx) and ut(x, 0) = 0. The time interval is [0, 120]s.
The value of the control gain kd will be discussed in the next section. In programming, we
use the numerical difference method with dx = 0.1 m and dt = 0.005 s. This discretization
time was also employed for our peak detector system. To evaluate the total system energy
employed by the controller, we consider the following functional energy index:

E( f ) =
1
T

∫ T

0
| f (t)|dt. (13)

The current objective in control design is to determine the design parameters α1 and α2
with the aim of reducing, if possible, this performance index (13). To conclude the study, we
consider the non-perturbed and externally perturbed systems in the following two sections.

3.1. Unperturbed Case Experiments

Consider the system defined in (1)–(3). The asymmetric peak detector parameters
are set as α1 = 1000 and α2 = 100, verifying the BIBO constraint. First, we will discuss
the controller behavior in the function of the value of the control gain kd. We consider the
case when kd = 100 in (7). In this scenario, the conventional boundary controller exhibits
instability. Conversely, the asymmetric peak detector boundary controller demonstrates
strong performance, showcasing BIBO stability. Figure 6 depicts the performance of our
proposed approach, displaying notable vibration attenuation, in contrast to the instability
exhibited by the standard controller, as illustrated in Figure 7. For this experiment, we
obtain that the energy index (13) for the proposed controller is E(y) = 74.9, in front of the
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boundary control energy value of E( fd) = 3432.6.

Figure 6. Simulation results for time interval [0, 120], by using the asymmetric peak detector con-
troller (7) and (8), with kd = 100, α1 = 1000 and α2 = 100. The control objective is reached; the
vibration decreases.

Figure 7. Simulation results for time interval [0, 120], by using the standard boundary damper con-
troller (7), with kd = 100. In contrast to Figure 6, the vibration here does not exhibit bounded behavior.

One alternative for enhancing our performance is to raise the value of the control
gain. We set now kd = 1000 (7). The obtained results are shown in Figures 8–11. Using
the asymmetric peak detector boundary controller, we induce from Figures 8 and 9 that
in twenty seconds, the cable vibration is almost dissipated. On the other hand, under
the standard boundary controller, we need fifty seconds to reach similar performance,
as illustrated in Figures 10 and 11. We can observe that both controllers spend similar
functional energy: E(y) = 49.0 and E( fd) = 43.3. Finally, to exemplify the advantage of
our asymmetric model, we now consider the symmetric case by setting α1 = α2 = 100 in
(8). These values were tuned online, and the simulation result is presented in Figure 12. It
can be inferred that the asymmetric model should be considered.
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Figure 8. Simulation results of u(x, t) by using the asymmetric peak detector controller (7) and (8),
with kd = 1000, α1 = 1000 and α2 = 100.

Figure 9. Simulation of u(L, t) versus t, to appreciate the vibration attenuation time of twenty seconds,
when the asymmetric peak detector controller (7) and (8) is considered. The rapid response of our
controller is attributed to its consideration of peak values.

Figure 10. Simulation results u(x, t) by using the standard boundary damper (7), with kd = 1000.
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Figure 11. Numerical result of u(L, t) versus t, by using the standard boundary damper (7). The
vibration attenuation is reached in fifty seconds.

Figure 12. Numerical experiment using the standard peak detector controller (7) and (8), with
α1 = α2 = 100, and control gain kd = 1000.

3.2. External Disturbance Case Experiments

To evaluate the performance of the asymmetric peak detector controller, we examine
the realistic case by considering external disturbances affecting the cable. These per-
turbations are represented by g(x, t) as the disturbance along the cable, and d(t) as the
perturbation on the related boundary condition. The system equations are then:

ρutt(x, t) − Touxx(x, t) = g(x, t), (14)

u(0, t) = 0, t ≥ 0, (15)

mutt(L, t) + Toux(L, t) = f (t) + d(t),

t ≥ 0. (16)

The corresponding results are presented in Figures 13–16, from which we deduce that
both controllers exhibit similar performance, yet our proposal notably reduces the transient
behavior time. The following specific cases are examined. The first case solely considers
boundary disturbances:

g(x, t) = 0 , d(t) = 0.1 + 0.001 sin(0.2t). (17)

Figures 13–15 illustrate the results. We observe that the asymmetric peak detector
controller diminishes the time response, even though the total energy (13) is higher for
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the peak detector control: E(y) = 64.51 versus E( fd) = 58.15. The thickness band of 0.1
shown in Figure 14 is due to the definition of d(t) (17), where the term 0.1 is considered as
a boundary condition. The cable inclination is illustrated in Figures 13 and 15.

The second case involves considering only external perturbations along the cable:

g(x, t) = 0.001 cos(πxt) , d(t) = 0. (18)

This disturbance g(x, t) is taken as a reference input, so the cable tries to maintain this
shape, as can be observed in Figure 16. In this case, the compared behavior is very similar;
the total energy is greater for our proposal (E(y) = 132.16, E( fd) = 99.73), but again the
time response is reduced.

Figure 13. Simulation results by using the standard boundary controller (7), with kd = 1000, of the
boundary perturbed system: g(x, t) = 0 and d(t) in (17).

Figure 14. View of the plane u(x, t) versus t (perspective of Figure 13). The thickness band of 0.1 is
due to d(t) (17).
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Figure 15. Simulation results by using our design (7) and (8), with kd = 1000, when g(x, t) = 0 and
d(t) in (17).

Figure 16. Simulation results by using (8), with kd = 1000, when only disturbance along the cable
is considered: g(x, t) in (18) and d(t) = 0. This external perturbation g(x, t) is taken as a reference
input, so the cable tries to maintain this shape, as can be observed.

The inclusion of the asymmetric peak detector modification in the controller generally
enhances the overall performance of the control design, which might specifically manifest
as an improvement in the system’s response time.

4. Discussion

The present study unveils a modified adaptation of a conventional boundary con-
troller, devised to facilitate a more prompt response while minimizing energy usage in the
management of vibrations in a cable–tip–mass system. This innovative approach involves
a strategic modification of the peak detector system, incorporating the decoupling of a
key design parameter to introduce what we have termed the asymmetric peak detector
boundary control. The comparative analysis of its efficacy with the standard boundary
damper forms a pivotal aspect of this investigation. Based on these simulations, it can be
inferred that the parameters α1 and α2 govern the memory dynamics of the system. Hence,
by tuning adequately the values of peak detector parameters, we can modulate different
outputs, capturing the desired input values. The asymmetry comes from the decoupled
parameter, allowing us to detect a desired value.



Actuators 2023, 12, 463 13 of 15

The results of numerical experiments highlight the effectiveness of the asymmetric
peak detector controller in effectively reducing cable vibration, while operating with
significantly reduced energy consumption. This successful mitigation not only prevents
potential mechanical damage, a common concern associated with the use of unmodified
controllers, but also underscores the substantial efficiency improvements brought about
by this novel control strategy. When external perturbations are present, our approach
may not reduce the total energy, but it significantly reduces the rise time, indicating a
noticeable improvement.

Furthermore, the study highlights the moderate increase in total energy consumption
when aiming for a swifter system response. These findings serve to emphasize the notable
potential of integrating the asymmetric peak detector modification into the controller, thus
offering a promising avenue for augmenting the overall efficacy of the control design.

5. Conclusions

In this paper, we introduce a novel modification of a standard boundary controller
aimed at achieving a faster response with reduced energy consumption for controlling
the vibration of a cable–tip–mass system. To achieve this, we alter the peak detector
system by decoupling a design parameter, defining it as the asymmetric peak detector
boundary control. Its performance is compared with the standard boundary damper.
Numerical experiments indicate that the asymmetric peak detector controller effectively
mitigates cable vibration with lower energy consumption, preventing mechanical damage
that may arise with the unmodified controller. Additionally, when a faster response is
desired, the total energy increase is moderate. The simulations presented in this study
suggest that incorporating the asymmetric peak detector modification into the controller
can significantly enhance the performance of the control design.
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