

MASTER THESIS

Incident validation and remote

monitoring tools for a bioleaching

plant.

Master in Natural Resources Engineering
2022/2023

Author: Rubén del Olmo Arjona.

Director: Marta Isabel Tarres Puertas.

Co Director: Albert Comerma Montells.

October 5th, 2023.

2

Acknowledgements

Special thanks to Jose Antonio Caro for providing technical support in areas where my
expertise was limited but crucial to the project's success.

Abstract

An overview of the development process of a web application designed to facilitate
remote monitoring and control of a bioleaching chemical plant is presented in this
master's thesis. Copper is recovered from electrical devices by exposing them to
oxidizing bacteria in this plant. The application was designed to meet the specific needs
of plant technicians and managers, who wanted remote access to sensor data, control
of actuators, and alerts for any process anomalies.

This system consists of a web application that can be accessed from any web browser,
ensuring accessibility and flexibility across multiple platforms. An application
programming interface (API) powered by Spring Boot (Java) serves as the core of the
system, providing access to this valuable information from multiple user interfaces and
for future applications. Communication is maintained between the server and the
chemical plant controller, which orchestrates chemical processes, activates pumps and
solenoid valves, transmits sensor data, and accepts remote commands. Furthermore,
an intuitive user interface is provided by a React (JavaScript) front-end that enhances
the system's accessibility.

An email notification system was implemented to meet the alerting requirements,
allowing users to enable notifications according to their preferences. A system
notification function was also added.

It is a significant step toward improving the efficiency and reliability of bioleaching
chemical plant operations. In addition to addressing the immediate needs of plant
personnel, this work lays the groundwork for future advancements in remote monitoring
and control.

3

Resum

Aquesta tesi desenvolupa el procés de creació d'una aplicació web dissenyada per

facilitar el seguiment remot i el control d'una planta química de biolixiviats. En aquest

procés químic, el coure es recupera dels dispositius elèctrics mitjançant l’exposició

d’aquests a bacteris oxidants. L'aplicació a set dissenyada per satisfer les necessitats

específiques dels tècnics i gestors de plantes, que volien accés remot a les dades dels

sensors, control dels actuadors i rebut d’alertes per a certes anomalies del procés.

Aquest sistema consisteix en una aplicació web a la qual es pot accedir des de qualsevol

navegador web, garantint l'accessibilitat i la flexibilitat a través de múltiples plataformes.

Una interfície de programació d'aplicacions (API) alimentada per Spring Boot (Java)

serveix com el nucli del sistema, proporcionant una visió de l’estat de la planta des de

múltiples interfícies d'usuari. La comunicació es manté entre el servidor, l’ API i el

controlador de la planta química. L’aplicació permet activar bombes i vàlvules de

solenoides, rebre i transmetre dades al sensor. A més, una interfície d'usuari intuïtiva és

proporcionada per React (JavaScript), millorant l'accessibilitat del sistema.

Tanmateix, s’ha implementat un sistema de notificació per correu electrònic per complir

els requisits d'alerta, permetent als usuaris habilitar notificacions segons les seves

preferències.

Es tracta d'un pas significatiu cap a la millora de l'eficiència i fiabilitat de les operacions

de la planta química. A més d'abordar les necessitats immediates del personal de les

plantes, aquest treball estableix les bases per a futurs avanços en la vigilància i control

remots.

4

Table of Contents
Acknowledgements ... 2

Abstract ... 2

Resum .. 3

1. Introduction .. 8

2. Objectives .. 8

3. State of the art .. 9

4. Case Study ... 12

Plant Overview .. 12

Plant Stations .. 13

Bioreactor .. 13

Leaching... 13

Electrowinning ... 13

Station Components .. 13

Plant Existing Software .. 14

5. Methodology ... 16

Requirements Specification .. 17

Technologies and Tools ... 17

Front End ... 19

Back End .. 21

Tools versions and browser specifications .. 22

System Architecture Design .. 24

System Architecture Schema .. 24

System Architecture Overview .. 25

Development and Implementation ... 34

Development Methodology .. 34

Database Implementation ... 34

User Interface (UI) Implementation .. 36

Functionality Implementation ... 37

Deployment ... 44

Hosting Considerations ... 44

6. Results and discussion ... 45

Sign In .. 46

Main Page .. 47

5

Registers Panel .. 50

Alerts Panel ... 51

Alerts Notifications .. 52

Notifications panel .. 53

Command Dashboard ... 54

Admin views .. 55

User Dashboard ... 55

Component Dashboard ... 56

7. Conclusion ... 57

8. References ... 58

Appendix ... 62

A. Source Code .. 62

B. Plant Components ... 70

Database ER... 88

C. Developer’s Manual .. 89

Front End React ... 89

Back End Spring Boot .. 95

6

Table of Figures

Figure 1: Plant overview. Own Source. ... 12

Figure 2: Methodology process. Own Source. ... 16

Figure 3: System architecture schema. Own Source. .. 24

Figure 4: Sign In window (mobile viewport) .. 46

Figure 5: Plant overview, home window (desktop viewport) .. 47

Figure 6: Station selection and Bioreactor view, home window (mobile viewport) 48

Figure 7: Bioreactor view, home window (desktop viewport) ... 49

Figure 8: Temperature registers, registers window (desktop viewport) 50

Figure 9: Alert notification, (desktop viewport) .. 52

Figure 10: Notifications window (mobile viewport) .. 53

Figure 11: Command window (desktop viewport) .. 54

Figure 12: User window (desktop viewport) ... 56

Figure 13: Component window (mobile viewport) .. 57

Figure 14 B:. Database ER schema. Own Source. .. 88

Table 1: User roles permissions .. 39

7

Part I.

THESIS

8

1. Introduction

As a transformative force in today's industrial landscape, cutting-edge information
technologies have been integrated into traditional processes. Autonomous systems have
become an important component of industrial progress as they strive for increased
productivity, operational efficiency, and comprehensive control.

Developing an autonomous digital system is the focus of this master's thesis, which
explores a technological frontier. We explore the development of a bioleaching plant, a
dynamic entity that undergoes continuous improvement. Metals are cyclically extracted
through biological processes and microorganisms, a more environmentally friendly
method than conventional methods. In contrast to traditional methods, it operates at
ambient temperatures, avoiding energy-intensive furnaces.

To bridge the information gap between laboratory technicians and bioleaching plant
personnel, our digitalization effort is urgent. As a result of this challenge, this project
develops a web application that will allow technicians to monitor the plant remotely
through a web application. These professionals require real-time insights and
comprehensive control over the chemical process.

This endeavor represents a prime example of a Cyber-Physical System (CPS), where
the synergy of digital technologies and physical processes becomes apparent. As the
basis of the system, a virtual model of the bioleaching plant is created. In addition to
seamlessly communicating with a server, this digital twin also provides a versatile user
interface. Additionally, it allows the server to transmit information and directives
continuously to the chemical plant, enabling real-time monitoring and proactive
intervention.

In addition to being a real-world application, this project is poised to redefine the
trajectory of bioleaching plants. Laboratory technicians are motivated to pursue this
pursuit to gain timely and comprehensive insight into the chemical process. This digital
tool allows them to manage bioleaching operations more efficiently and with
unprecedented control.

2. Objectives

The objectives aim to address the specific needs and concerns raised by lab technicians.
A comprehensive digital solution will be built within the plant's operating framework to
enhance user experience and informed decision-making while extending control
management. To optimize plant performance and to ensure its safe and efficient
operation, these objectives focus on secure access, real-time data monitoring, proactive
event management, and data visualization.

The following is a detailed breakdown of each objective:

1. Improve Control Management: Develop and implement a comprehensive digital
solution that extends the capabilities of a chemical plant's control management. Pump
and solenoid valve control management will be improved, data will be securely stored,
notifications of critical plant events will be sent out, and administrators with specific
control privileges will be able to manage users.

9

2. User-Centric Secure Access: Develop a user-friendly web application that ensures
secure and private access to plant management functions via user accounts. The plant's
operational elements will be accessible to all users, but administrators will be able to take
specific actions.

3. Informed Decision-Making: Facilitate real-time data monitoring by implementing a
control mechanism that records data at one-minute intervals. A variety of data formats
are captured, including real numbers (such as pH and temperature readings) and
integers (such as color sensor values). Informed decisions can be made based on the
performance of the plant with the help of this feature.

4. Proactive Event Management: Establish a system that proactively identifies and
responds to potential emergency situations within the plant, such as high tank levels,
out-of-range pH values or extended high-level sensor activation. In this way, the
chemical process can be operated safely and efficiently.

5. Comprehensive Visualization: Enable users to visualize critical plant parameters for
each station, including the bioreactor, leaching stage, and electrowinning stage. pH,
redox, voltage, current, tank levels, pressure levels, color indicators, temperature, pump
and solenoid valve operation status, and pressure sensor indicators will be displayed by
the application. To improve plant oversight, all sensor data will be presented with
graphical trends.

6. Data Accessibility: Empower users to download and share the stored information
from the database in easily readable formats, such as spreadsheet files compatible with
programs like Microsoft Excel or LibreOffice Calc. Data accessibility and collaboration
are enhanced by this feature.

7. Enhanced Visualization: Utilize a variety of graphical resources within the application
to enhance the visualization of the plant's status. Through intuitive graphics, users can
interpret solenoid valve statuses, pump statuses, and color sensor values, improving
their understanding of plant operations.

3. State of the art

Information and communication technology (ICT) is currently undergoing rapid

development. Many disruptive technologies, such as cloud computing, Internet of Things

(IoT), big data analytics, and artificial intelligence, have emerged. These technologies

are permeating the manufacturing industry and make it smart and capable of addressing

current challenges, such as increasingly customized requirements, improved quality, and

reduced time to market [1]. An increasing number of sensors are being used in

equipment to enable this equipment to self-sense, self-act, and communicate with one

another [2].

Regarding information and communication technology, researchers are attracted to IoT

[3]. By adopting this essential technology, companies have become smarter, more

competitive, automated, and sustainable in the global supply chain. In today’s

competitive marketplace, supply chains are struggling as they compete with each other.

Therefore, IoT devices are an effective way to authenticate, monitor, and track products

using GPS and many technologies [4,5]. Industry 4.0 stands for the fourth industrial

10

revolution (IR 4.0) in the digital age, it is associated with virtualizing real-world scenarios

of production and processing without human intervention. This virtual world is linked to

IoT devices,allowing the creation of cyber–physical systems (CPS) to communicate and

cooperate [6,7].

Generally speaking, CPS is referred to as the system that can efficiently integrate

both cyber and physical components through the integration of the modern

computing and communication technologies [8, 9], aiming to changing the method

of interaction among the human, cyber and physical worlds. CPS emphasizes the

interactions between cyber and physical components and has a goal of making

the monitoring and control of physical components secure, efficient, and intelligent by

leveraging cyber components [10]. In CPS, “cyber” means using the modern sensing,

computing, and communication technologies to effectively monitor and control the

physical components, while “physical” means the physical components in the real world,

and “system” reflects complexity and diversity. Based on the clarification, we can

see that a CPS consists of multiple heterogeneous distributed subsystems [11].

Similar to the development of IoT, CPS has been developed in numerous areas

[11, 12, 13], including smart grid, smart transportation, etc. As shown in [14], the CPS

is the integration of physical components, sensors, actuators, communication

networks, and control centers, in which sensors are deployed to measure and

monitor the status of physical components, actuators are deployed to ensure the

desirable operations on physical components, and communication networks are

used to deliver measured data and feedback comments among sensors, actuators,

and control centers. The control centers are used to analyze measured data

and send feedback commands to actuators, ensuring the system operates in

desired states [14, 15].

As mentioned above, the essence of CPS is the system, and the main objective of CPS

is to measure the state information of physical devices and ensure the secure, efficient,

and intelligent operation on physical devices. In CPS, the sensor/actuator layer,

communication layer, and application (control) layer are present. The sensor/actuator

layer is used to collect real time data and execute commands, the communication layer

is used to deliver data to the upper layer and commands to the lower layer, and

application (control) layer is used to analyze data and make decisions. In contrast,

IoT is a networking infrastructure to connect a massive number of devices and to monitor

and control devices by using modern technologies in cyber space. Thus, the key

of IoT is “interconnection.” The main objective of IoT is to interconnect various

networks so that the data collection, resource sharing, analysis, and management

can be carried out across heterogeneous networks. By doing so, reliable, efficient, and

secure services can be provided. Thus, IoT is a horizontal architecture, which

should integrate communication layers of all CPS applications to achieve

interconnection.

CPS systems are key elements in the implementation of the fourth industrial revolution

(IR 4.0) [16]. Industry 4.0 is the network-enabled entity that automates the whole process

of manufacturing, connecting business and processes. Market demands and the

advancements in new technologies are transforming manufacturing firms’ business

operations into smart factories and warehouses. Due to this automation, IoT devices are

producing a massive amount of data daily, known as big data [17,28]. Statistics show

that, at the end of 2021, there were more than 10 billion active IoT devices globally [19].

By 2030, the number of active IoT devices is expected to exceed 10 billion to 25.4 billion.

By 2025, the data created by IoT devices will reach 73.1 ZB (zetta bytes) [20]. In 2020,

11

the IoT industry was predicted to generate more than USD 450 billion, including

hardware, software, systems integration, and data services. By the end of 2021, it

reached USD 520 billion. The IoT industry is predicted to grow to more than USD 2

trillion by 2027 [21,22]. The increasing number of devices and the usage by humans

shows the importance of IoT devices; moreover, the industry is growing and gaining

revenue.

In the context of Industry 4.0, the integration of Cyber-Physical Systems (CPS) and the

Internet of Things (IoT) has far-reaching implications, not only for manufacturing

processes but also for enhancing the user experience (UX) during product development

[23]. ISO 9241-210 defines UX as "a person’s perceptions and responses resulting from

the use and/or anticipated use of a product, system, or service." Within Industry 4.0, two

notable trends emerge: First, customers are actively involved in co-creating personalized

products, emphasizing improved UX and satisfaction—a phenomenon known as mass

personalization [24]. Second, products themselves become intelligent and capable of

communication throughout their life cycles, aligning with the IoT paradigm [25]. Both of

these aspects converge to enhance UX during product development.

Moreover, monitoring plays a pivotal role in the operation, maintenance, and efficient

scheduling of Industry 4.0 manufacturing systems [26]. The widespread deployment of

sensors enables smart monitoring, providing real-time data on various manufacturing

parameters such as temperature, electricity consumption, vibrations, and speed. These

data are not only visualized graphically but also trigger alerts when anomalies occur in

machines or tools [27, 28]. CPS and IoT technologies are instrumental in facilitating

smart monitoring within Industry 4.0 smart manufacturing systems.

In the broader landscape of Industry 4.0, research spans several key dimensions:

1. Smart Design and Manufacturing: This encompasses areas such as smart design,

prototyping, controllers, and sensors [29, 30]. Real-time control and monitoring are

crucial for realizing smart manufacturing [31]. Supporting technologies include IoT, 3D

printing, industrial robotics, and wireless communication [32], all of which contribute to

the efficient and responsive design and production processes.

2. Smart Decision Making: At the heart of Industry 4.0 lies smart decision making. The

widespread deployment of sensors aims to enable intelligent decision-making through

comprehensive data collection [33]. Achieving this requires real-time information sharing

and collaboration [33]. Technologies like CPS, big data analytics, cloud computing,

modeling, and simulation are pivotal in enabling data-driven decision-making processes,

including data-enabled predictive maintenance and data-driven modeling [34, 35, 36].

The integration of CPS and IoT technologies within Industry 4.0 not only revolutionizes

manufacturing processes but also opens doors to enhanced user experiences during

product development [23]. Moreover, these technologies facilitate real-time monitoring,

smart design and manufacturing [29, 30], and data-driven decision-making [34, 35, 36],

ultimately reshaping the industrial landscape for improved efficiency, productivity, and

sustainability.

The development of a web application at the intersection of Cyber-Physical Systems

(CPS) and the bioleaching plant represents a significant step in enhancing bioleaching

operations. This innovative web app serves as a bridge between the digital and physical

domains, inspired by CPS principles. By seamlessly integrating modern computing and

communication technologies, this application empowers users to efficiently monitor and

control the bioleaching plant's physical components. It acts as a conduit between the

12

digital interface of the web app and the real-world physical components, where

microorganisms, sensors, actuators, and chemical processes operate collaboratively.

Through this integration, the web app enables real-time data collection, analysis, and

decision-making, aligning with the core objectives of CPS while streamlining bioleaching

processes. It demonstrates how the synergy between digital technology and physical

systems can contribute to more effective and intelligent operations in bioleaching.

4. Case Study

There are two main dimensions to our journey through this case study: the physical plant

and the digital infrastructure that enables it. In this section, we will provide a high-level

overview of the bioleaching process, including its stages and critical components. Our

next step will be to look at the existing software technological components that form the

foundation of this operation.

Plant Overview

Figure 1: Plant overview. Own Source.

As part of the project plant, copper is recovered from electronic components using the

catalytic action of oxidizing bacteria through bioleaching. As a foundation for the later

chapters of this thesis, this section provides a high-level overview of the bioleaching

process.

13

Plant Stations

Bioreactor

In the bioleaching process, the bioreactor is responsible for generating and maintaining
the biological leaching agent. Through the use of pumps, solenoid valves, and sensors,
it controls essential parameters, including pH, redox, pressure levels, and temperature.

Leaching

During the leaching stage, copper is dissolved. This is a crucial step in the extraction
process. A color sensor indicates completion of this stage when the leaching agent
changes color from orange to green.

Electrowinning

A color sensor monitors the process in the copper recovery stage, noting that the solution
transforms from light green to dark green as the dissolved copper is reclaimed from the
solution.

After applying low voltage / high current between the electrowinning electrodes, the metal
is deposited, and the process is considered to be finished when a variation in color is
detected. It is also under study if a variation in current could also trigger the end of the
process.

Station Components

The bioreactor station consists of the following components:

● Redox: Redox Level Sensor
● PH: pH Level Sensor
● Temperature: Temperature Level Sensor
● SP: Pressure Sensor
● PB1: Recirculation Pump
● PB2: Supply Pump - pH Base
● PB3: Supply Pump - pH Acid
● PB4: Circulation Pump - Electrowinning Outlet / Bioreactor Inlet
● VB: Solenoid Valve - Bioreactor Reject
● V3: Solenoid Valve - Electrowinning Outlet / Bioreactor Inlet
● V1: Solenoid Valve - Bioreactor Outlet / Leaching Inlet
● VMM: Solenoid Valve - M. Medium

14

The leaching station consists of the following components:

● PH2: pH Level Sensor
● C: Composite number of all colors
● RD1: Red Color
● GR1: Green Color
● BL1: Blue Color
● HL1: High-Level Sensor
● LL1: Low-Level Sensor
● PL1: Recirculation Pump
● PL2: Supply Pump - pH Acid
● V1: Solenoid Valve - Bioreactor Outlet / Leaching Inlet
● V2: Solenoid Valve - Leaching Outlet / Electrowinning Inlet

An electrowinning station consists of the following components:

● PB4: Circulation Pump - Electrowinning Outlet / Bioreactor Inlet
● VE: Recirculation Solenoid Valve
● V2: Solenoid Valve - Leaching Outlet / Electrowinning Inlet
● SP2: Pressure Sensor
● Tension: Voltage Sensor
● Current: Current Sensor
● C2: Composite number of all colors
● RD2: Red Color
● GR2: Green Color
● BL2: Blue Color

The processes of the plant are controlled by authorized users and their designated

controllers. This succinct description sets the stage for a more detailed examination of

the bioleaching process in the following chapters.

Plant Existing Software

1. Server:
● Role: Servers serve as intermediaries between the user and the plant.

They save plant information and provide it to users. They also process
administrative requests.

● Communication Protocol: Communication with the mobile application
occurs via the internet using HTTPS (Hypertext Transfer Protocol
Secure).

● HTTPS Features: HTTPS offers several key features:
1. Encryption: It encrypts information exchanged between clients

and the server, preventing eavesdroppers from understanding the
content.

15

2. Integrity: HTTPS ensures data integrity, preventing unauthorized
modification during transmission.

3. Authentication: Clients verify the server's identity using
certificates, reducing the risk of man-in-the-middle attacks.

● Data Format: The agreed format for information exchange is JavaScript
Object Notation (JSON), a lightweight and easily readable format.

● JSON Structure: JSON is structured around objects and vectors. An
object consists of named sets of values enclosed in braces {}. A vector is
an ordered collection of values enclosed in square brackets [].

2. Plant Control Software Integration:

● Current State: The plant operates with its existing control software,
responsible for collecting data from various sensors and controlling
actuators.

● Independence: The plant's software and the server can operate
independently, allowing the plant's functionality to be maintained while the
project's data can be accessed effectively

● Significance: As a result of this integration, real-time data can be utilized
for decision-making and analysis to achieve project goals.

By enhancing this structure, the plant software, server specifications, and

communication protocols of the existing components are better understood, as are their

critical roles, communication protocols, data format, and server integration.

The current existing server has Ubuntu 20.04 as the foundational layer of the system, a

widely-used, stable operating system ideal for server environments. It provides a secure

and performant foundation for all the other software. Additionally, Python 3.8.10 is used

for certain operational purposes, offering a versatile and powerful programming

language.NGINX, a high-performance web server and reverse proxy, version 1.18.0 its

also part of the existing software and its used to serve static files to the browser efficiently

and adeptly manages incoming HTTP requests, determining whether they should be

handled internally (for static content) or proxied to another server (for dynamic

content/API requests).

In the project architecture, NGINX serves the static HTML, CSS, and JavaScript files

generated by the React build to the user interface, which is the front end library used in

this project. In addition, the current project uses Spring Boot backend as the API server,

Spring Boot manages business logic, database interactions, and other server-side

functionality, simplifying the development of production-grade applications. By

intelligently proxying API requests to Spring Boot's backend, NGINX ensures the

decoupling of static and dynamic content delivery, increasing performance and

scalability. The backend processes API requests, performs computations or data

retrieval, and then sends the responses back through NGINX to the client-side React

application.

Essentially, this architecture combines the rapid and efficient delivery of static files using

NGINX with the dynamic and interactive data processing capabilities of Spring Boot.

Through a unified access point managed by NGINX, the user interacts with a fast-

loading, client-side React application, which communicates seamlessly with the backend

via API requests. Separating concerns and optimizing static from dynamic content not

only enhances the user experience by reducing load times and ensuring responsive

interactions, but also facilitates scalability and maintainability.

16

5. Methodology

Figure 2: Methodology process. Own Source.

To achieve the objectives of this master's thesis, a structured methodology will be
employed, encompassing the following key stages:

1. Requirement Analysis and Specification: The initial phase of the project involves
an in-depth analysis of the requirements for the web application. Detailed insights into
the monitoring and control of bioleaching processes are obtained through consultation
with laboratory technicians and plant managers.

2. Selection of technology stack: The technology stack, including front-end and
back-end frameworks and tools, will be chosen after an assessment of available options
and their alignment with project goals. The front-end will be built with React, the back-
end will be built with Java and Spring Boot, and the design will be built with Bootstrap.

3. System Architecture Design: The architecture of the web application will be
meticulously designed to ensure scalability, efficiency, and reliability. Considering factors
such as real-time data processing, data flow, and security, the system will be divided into
modular components. This phase involves the design of the database and the
architecture of the system.

4. Development and Implementation: The actual development of the web
application will commence following established best practices and coding standards. To
foster collaboration, adaptability to changing requirements, and iterative development,
agile development methodologies will be used. To manage code changes efficiently,
continuous integration and version control will be used.

5. Deployment and Hosting: The web application will be deployed to a hosting
environment that ensures scalability and high availability.

Using this structured methodology, the web application is developed with a systematic
approach, focusing on attaining the project goals while adhering to software engineering
standards and best practices.

17

Requirements Specification

Requirements can be found in chapter 2: Objectives.

These include a wide range of features, such as secure access to data, proactive event
management, real-time data monitoring, comprehensive data visualization, and
enhanced data access. The requirements are meticulously crafted to provide plant
technicians, laboratory professionals, and administrators with an intuitive, efficient, and
user-friendly experience.

It is based on these customer requirements that the web application is developed,
aligned with the core objectives of safety assurance, control management enhancement,
and data enlightenment.

Technologies and Tools

This web application was built using the following technology stack:

● Programming Languages: Java is used for the backend and JavaScript is used

for the frontend.
● Frameworks: Spring Boot on the backend, React and Bootstrap on the frontend.
● Database: SQLite is used for data storage.
● Development Tools: IntelliJ IDEA, Visual Studio Code, and Git for version

control.

After carefully evaluating various development options, the decision was made to

develop this project as a web application that meets the project's goals and requirements.

The web app is cross-platform, so it can be used on Android, iOS, and other devices and

operating systems. By eliminating the need to maintain separate codebases for different

platforms, development complexity and costs are reduced. In addition, web app

development is more cost-effective than native app development, allowing for efficient

resource allocation.

As changes made to the server are immediately visible to users, web apps can be

updated easily. By doing so, updates can be deployed quickly, and users always have

access to the latest version of the application. Moreover, web apps can reach a broader

audience since they can be accessed directly through web browsers without

downloading from app stores.

Performance constraints: Web applications, especially those built using heavy

frameworks or that are not optimized, may experience slower performance than native

applications. Code execution can be less efficient due to the reliance on browsers.

1. Although modern web APIs and frameworks have expanded the capabilities of web
applications, they do not provide the same level of access to device-specific

18

features as native applications do. Advanced camera controls, geofencing, or
seamless background operations can be difficult or cumbersome to implement.

2. Web applications are heavily dependent on browsers for security, which vary in
terms of their robustness and frequency of updates.

3. For applications that require high-end graphics rendering, such as games and 3D
modeling applications, web applications may not provide the same level of
performance and fidelity as native applications.

The development of native mobile or desktop apps was considered as an alternative to

building a web app. With native apps, users have direct access to device-specific

features and could potentially enjoy a smoother experience, but maintaining separate

codebases for different platforms can be time-consuming and costly. Users may need to

install software to use desktop applications, though they provide robust functionality on

specific platforms.

However, considering the project's primary objectives, particularly the requirement for

cross-platform accessibility, the decision to build a web application was made. In

choosing a web application, the project aims to manage development resources

effectively while providing an accessible and versatile solution.

To better understand the inner workings of the web application, we can break it down

into two main components: the front end and the back end:

Front End: It's the part of the web application that the user interacts with directly. The

front end is responsible for presenting information to the user and collecting input from

them. It is the interface that you see and interact with in the browser. It includes elements

such as buttons and forms.

Back End: In contrast, the backend is the part of the web application that users do not

directly see. The backend plays a crucial role in making the front end work.

1. Server Interaction: It connects to an already existing server that manages

requests from the front end and processes them. The server acts as a bridge

between the front end and the various data sources.

So, in simple terms, while the front-end handles what the user sees and interacts with

on the web app, the back-end manages the communication with a server and a

database, ensuring that the correct information is delivered to the front end and any

necessary updates are made behind the scenes. Users benefit from this division of

responsibilities by experiencing a smooth and efficient web experience.

19

Front End

Introduction to React and JavaScript
In addition to its component-based architecture and efficient rendering through the Virtual

DOM, React is a widely recognized JavaScript library for creating user interfaces. It was

developed by Facebook. It is an excellent choice for developing interactive and dynamic

web applications because it enables developers to create reusable UI components.

Web development is based on JavaScript, which runs in browsers and provides client-

side interactivity. It can also be used on the server using technologies like Node.js. In

the development of modern web apps, JavaScript's versatility and React's powerful UI

capabilities make them perfect partners.

Justification for React and Javascript in the Project
Several key advantages justify the use of React in conjunction with JavaScript for this

project:

● Component-Based Development: It is easy to create self-contained UI

components in JavaScript due to React's component-based architecture, which

aligns well with JavaScript's modular nature.
● Efficient Rendering: In addition to reducing direct DOM manipulation, React's

Virtual DOM makes it easier to manage the web page's elements and interactivity

using JavaScript, the web's scripting language.
● Ecosystem Compatibility: The JavaScript ecosystem offers a wide range of

libraries and tools that integrate seamlessly with React. These include routing

solutions like React Router, and data visualization libraries, allowing React to be

used to enhance other applications as well.
● Community Support: Developers can access extensive documentation,

tutorials, and a wealth of knowledge through both React and JavaScript

communities.

Facebook and the open-source community ensure that React remains current and

adaptable to changing web development standards through active maintenance and

updates.

A strong alignment with project objectives, such as cross-platform compatibility, efficient

component management, and real-time data handling, drives the choice of React and

JavaScript. A robust web application for monitoring and controlling plant processes can

be developed with this combination of versatility, performance, and maintainability.

20

Additional Alternatives: Vue.js and Angular
Web applications can also be built using two other notable alternatives:

● Vue.js:
Like React, Vue.js is a progressive JavaScript framework that provides a clear,

concise syntax and allows for component-based development.

● Angular:
It provides powerful features such as two-way data binding and dependency

injection for building web applications. Angular is a comprehensive JavaScript

framework developed by Google. Angular is suitable for large-scale applications

and projects that have complex requirements.

It is our intention to gain proficiency in a widely used framework known for its scalability

and versatility that led us to use React for this project. The choice of React was driven

by the desire to gain hands-on experience with a framework that holds considerable

relevance in the modern web development landscape, regardless of whether it is React,

Vue.js, or Angular.

Introduction to CSS and Bootstrap
The visual and interactive aspects of web applications are shaped by CSS and

Bootstrap. A web page's overall aesthetics, colors, fonts, and layout are defined by CSS,

the web's core styling language. Using it, HTML content can be transformed into

engaging user interfaces that are visually cohesive. On the other hand, Bootstrap is a

popular front-end framework that streamlines and enhances the process of web design

and development. It offers a robust set of pre-designed UI components, responsive grids,

and CSS stylesheets, making it a go-to choice for creating visually appealing and user-

friendly web applications.

Justification for CSS and Bootstrap in the Project
Here's why CSS, Bootstrap, and React are crucial to our current project, both for

enhancing the user experience and simplifying development.

● Visual Consistency: By defining a unified style guide for the entire project, CSS

maintains a professional and cohesive appearance across all application

screens.
● Responsive Design: This is especially important for our project, since

Bootstrap's responsive grid system enables users to access and control

bioleaching processes from a wide range of devices.
● Time Efficiency: Using Bootstrap's library of pre-designed UI components, you

can create interactive interfaces much faster thanks to elements such as

navigation bars, forms, buttons, and modals.
● Customization: Use of styles and components with Bootstrap to align with the

branding and design requirements of the project. It is possible to create a unique

and visually pleasing application by balancing out-of-the-box functionality with

customization options.
● Scalability: Bootstrap's modular approach allows application functionality to

grow while maintaining a consistent design, ensuring a smooth user experience.

React, JavaScript, CSS, and Bootstrap together will scale efficiently.

21

Ultimately, the strategic use of CSS and Bootstrap alongside React and JavaScript is

based on the objective of creating an aesthetically attractive, responsive, and user-

friendly web application that monitors and controls bioleaching processes. By combining

these technologies, we can accomplish our project goals efficiently and effectively,

enhancing both the application's visual appeal and functionality.

Back End

Introduction to Java and Spring Boot
For decades, Java has been a cornerstone of software development due to its robust

and versatile programming language. Spring Boot emerges as a powerful and efficient

framework for building web applications when used in conjunction with Java, due to its

portability, security features, and extensive library and framework ecosystem.

Developers can focus on application logic rather than infrastructure concerns with Spring

Boot's streamlined, convention-over-configuration approach.

Justification for Using Java and Spring Boot in this Project
There are several compelling reasons for choosing Java and Spring Boot for this project's

backend development:

● Robustness and Reliability: In a project like this, which involves monitoring and

controlling bioleaching processes, reliability is essential. Java is widely regarded

as one of the most reliable and stable programming languages available.
● Security: To ensure the integrity of an application and safeguard sensitive data,

Java's bytecode verification and runtime security checks are crucial.
● Portability: Because Java is a "write once, run anywhere" platform, it is

accessible and compatible across a wide range of platforms and operating

systems.
● Spring Boot's Efficiency: Through its opinionated approach to application setup

and configuration, Spring Boot simplifies the development process. As a result of

its comprehensive ecosystem of tools and libraries, our project will be delivered

within a reasonable timeframe with a robust backend.
● Community and Ecosystem: It is well known that Java and Spring Boot have

large, active developer communities. This translates into extensive

documentation, support, and a wide range of third-party libraries, which can

accelerate development and enhance functionality.
● Scalability: Its modular and organized architecture allows Spring Boot to scale

well. As our project grows, we may need additional features or to increase

processing capabilities.

22

Additional Alternatives
In addition to Java and Spring Boot, there are other alternatives for backend

development, each with its own strengths:

● Python and Django: Django is a high-level web framework that excels at

projects that require a straightforward and quick backend setup. Python is known

for its simplicity and readability.
● Node.js and Express.js: Using Node.js, you can develop JavaScript-based

applications on the server, while Express.js allows you to create lightweight, real-

time applications.
● Ruby on Rails: Known for its developer-friendly syntax and convention-over-

configuration approach, Ruby on Rails is a popular framework for building web

applications.
● PHP and Laravel: Its elegant syntax and ease of use make Laravel one of the

most popular PHP frameworks for web development.

In the end, Java and Spring Boot were chosen due to their proven track record,

robustness, and suitability for building a backend that can support our complex

requirements.

Tools versions and browser specifications

For the technical justification of the tools used in the project we'll focus on the key
technologies, their versions, browser requirements, and relevant Internet of Things (IoT)
protocols leveraged, as inferred from the provided code snippets.

Front-end Technologies:

React (18.2.0):

Browser Compatibility: The `browserslist` has been configured to support the latest
versions of Chrome, Firefox, and Safari in the development environment, and >0.2% of
all browsers in the production environment, excluding Opera Mini and dead browsers.

In essence, this configuration means that during development, the setup has focused on
a few, most recent browser versions to streamline debugging, whereas during
production, the setup will cater to a much broader and slightly older browser range for a
wider audience. As a result, developer convenience and user accessibility are
maintained at a good balance.

Bootstrap (5.3.0-alpha1) & React-Bootstrap (2.7.2):

Recharts (2.8.0):

Recharts, utilized for crafting intuitive, interactive charts, leverages D3.js under the hood,
offering both power and flexibility in visualizing data while maintaining compatibility with
React’s component architecture.

React-Router-Dom (6.16.0):

23

It allows for dynamic, client-side routing, which enhances user experience by reducing
page reloads and ensuring intuitive navigation throughout the application.

Back-end Technologies:

Spring Boot (3.0.6):

Spring Boot Starter WebSocket:

Using Spring for WebSocket handles message-handling between the server and
subscribed clients in real-time, which is pivotal for IoT applications.

Spring Boot Starter Data JPA:

Spring Data JPA facilitates the implementation of JPA data layers, aiding in the
simplification of data access within the H2 database. It ensures that the repository layer
is easy to create and manipulate, supporting a wide array of database operations without
the necessity for verbose code.

Java (17):

Java offers platform independence, robustness, and ease of use in enterprise
environments, thus providing a stable and secure back-end platform.

JWT-Decode (3.1.2) and Java-JWT (3.18.1):

JSON Web Tokens (JWT) present a compact, URL-safe means of representing claims
to be transferred between two parties. These tools allow for secure, token-based user
authentication, thereby ensuring that users are accurately identified and validated across
requests.

IoT Protocols

STOMP WebSocket:

Simple (or Streaming) Text Orientated Messaging Protocol (STOMP), used alongside
WebSocket, provides a communication standard that allows the front-end and back-end
of the application to communicate via two-way messaging. STOMP over WebSocket for
IoT allows to push messages from the server to the client whenever an event occurs,
thereby ensuring real-time updates and interactive user interfaces that can promptly
reflect changes in underlying data or system state.

24

System Architecture Design

System Architecture Schema

Figure 3: System architecture schema. Own Source.

● Front-End (UI): The user interface, where users interact with the system.
● WebSocket: The server and the user interface communicate in real-time for live

data updates. The server and the plant are also able to communicate in real-time.

Websockets have been implemented to send alerts to the user interface from the

back end, to send commands to the plant, and to receive status values of the

components.
● Back-End (API): Manages components, stations, users, alerts, and registers

using controllers, services, repositories, and models.
● Controllers: Interact with services by handling incoming HTTP requests.
● Services: Develop both interfaces and implementations for the implementation

of business logic and interaction with repositories.

25

● Repositories: Handle database operations. Implement both interfaces and

implementations.
● Security Layer: Secures data transmission by authenticating and authorizing

users.
● Database: User data, component data, alerts, and registrations are stored in a

relational database.

Plant Organization

To understand how data is organized and managed within an application, it is important

to understand the system architecture's hierarchical structure closely similar to the plant's

physical layout and operational hierarchy. In this hierarchy, there are the following

components:

Stations
A station, such as a bioreactor, a leaching tank or an electrowinning tank, is the highest

level of the system.

Components
The system is composed of components that are the smallest units of operation. They

each have their own unique parameters and functions that define their role within the

system as a whole.

Components and Unique IDs
Unique component IDs play a key role in the application. By adopting this strategic

approach, sensors in both bioreactors and leaching areas are associated precisely with

specific components, enabling accurate data assignment and display. For example, pH

sensors are assigned a unique ID, allowing accurate data assignment and display.

In order to ensure effective data management and intuitive user interaction, the web

application's system architecture is hierarchical and component centric.

System Architecture Overview
The Model-View-Controller (MVC) pattern promotes a clean, organized codebase by

separating concerns and ensuring modularity, scalability, and maintainability.

The system architecture comprises modules, services, repositories, and controllers that

work together seamlessly to provide comprehensive control management for chemical

plants.

1. Modules

Within a larger software framework, modules represent self-contained sets of features

and functions.

As building blocks, these modules deliver different aspects of the functionality of the

application. Each module serves a distinct purpose, and together they form the cohesive

structure of the application.

The developer can concentrate on specific aspects of an application by encapsulating

related functions in a module instead of feeling overwhelmed by the whole application.

26

In addition to simplifying development, this isolation enhances code readability and

reduces the likelihood of unintended interactions among application components.

Additionally, modules facilitate the organization of code, allowing specific functionality to

be located and updated more easily. Modularity reduces the risk of introducing bugs and

ensures that changes or enhancements to one part of the application will not disrupt the

whole system.

With its unique purpose and functionality, each module of the web application contributes

to its robustness, scalability, and maintainability. With these components, users can

effectively monitor, manage, and control plant components and data as a cohesive and

efficient framework.

Let's take a closer look at each module individually:

Alert Module: The alert module is responsible for managing alerts within the system.

The alerts can be associated with specific components within a plant or with specific

events within the plant.

Each alert instance includes the following attributes that are included in the Alert entity,

which is the heart of the Alert Module.

● id: A unique identifier for each alert instance.
● date: Time and date when the alert was generated is represented by a

timestamp.
● message: In the notification pop up and/or in the email alert content, this is the

description of the alert that provides insights into its nature.
● componentThing: A relationship is established between this attribute and the

ComponentThing entity to link alerts with specific plant components or events.

This helps provide context about alerts and facilitate targeted responses.

Component Module

Components can include pH, agitation, color, solenoid valves, pumps, and many more.

Furthermore, users with administrative roles can create new components and assign

them seamlessly to existing stations, ensuring plant management flexibility and

adaptability.

The Component Module revolves around the ComponentThing entity, which provides a

structured approach to component management by encapsulating essential component

information.

● id: Each component has a unique identification number that facilitates precise

tracking and identification.
● name: Component names should provide clarity regarding their purpose or

function.
● description: An explanation of the role or characteristics of a component in text

format.
● unit: An attribute specifying the unit of measurement associated with the

component's values, enhancing data consistency.

27

● canAct: This Boolean flag indicates whether the component can be activated or

controlled within the plant.
● valueType: To ensure proper handling of data, a reference to the type of values

associated with the component should be provided.
● maxValue and minValue: Operational thresholds are defined by the maximum

and minimum permissible values for the component.
● stationList: It facilitates the organization and association of components with

specific plant process areas by assigning them to specific stations.
● registers: Historical data tracking and analysis is enabled by a collection of

registers associated with a component.
● alerts: Alerts associated with the component, notifying users of any issues or

anomalies as soon as they arise.

Assigning new components to existing stations can be done by users with administrative

roles, increasing the plant management system's flexibility and adaptability.

Register Module

Managing data registers associated with plant components, stations, or specified time

intervals is the responsibility of the Register Module, which is a critical component of the

web application. This is where the data will be placed and assigned to the component id

in the register entity.

It is the Register entity that is at the core of the Register Module, capturing and managing

critical data register information. It is composed of several attributes that all serve a

particular purpose:

● id: This identifier allows precise tracking and reference of each data register.
● value: A component's status or performance is represented by the value in the

data register.
● date: Tracks and analyzes data chronologically by capturing the timestamp when

it was registered.
● componentThing: Connects data registers with specific plant components

through the ComponentThing entity. This allows each data register to be

attributed to a specific component, providing context to values recorded.

Station Module

The Station Module serves as a fundamental component of the web application,

facilitating the management of various stations within the chemical plant, including the

bioreactor, leaching and electrowinning. Users can efficiently interact with stations with

this module, including retrieving station details, including associated components.

Each station in the chemical plant is represented by an entity called Station, which

includes the following attributes:

28

● id: Each station is identified by a unique identifier, allowing precise identification

and reference.
● name: Describes the location or function of a station within the chemical plant.
● componentList: There are many-to-many relationships between stations and

specific components within the plant, ensuring that each station is linked to a

relevant component. This attribute represents a list of associated components.

With this association, users can understand the components associated with

each station, making monitoring and management more efficient.

User Module

An extensive range of user-related operations is handled by the User Module, which

plays a central role in user management within the web application. With this module,

users are created, roles are assigned, passwords are changed, user notifications are

sent, and emails are managed effectively. A user's privileges and responsibilities are

defined by their role: "admin", "user" or "view".

As the core of the User Module, the User entity provides essential information about

users, including the following attributes:

● username(id): User identifiers are typically used for authentication and user-

specific actions.
● password: The user's login password, securely stored in the database.
● email: Communication and notifications are enabled by a unique email address

associated with each user.
● roles: Each user's permissions and access levels are determined by the Role

attribute, which establishes a many-to-many relationship between the User

attribute and the Role entity.
● listenNotification: Notifications enable users to stay on top of important system

updates and events. This feature can be toggled on and off by the user.

Messaging Module

This module encompasses a range of services that facilitate the sending of email

notifications, especially when critical alerts are triggered. To ensure the existence of a

single instance of the EmailService, the Messaging Module leverages the Singleton

pattern.

It is designed according to the Singleton pattern to ensure that only one instance of the

EmailService exists throughout the application's lifecycle. At the core of the Messaging

Module lies the EmailService. In this way, resource efficiency is increased, and email

notifications are handled consistently.

The module sends email notifications to users when alerts are triggered, keeping them

informed about important events and issues within the bioleaching plant as soon as they

occur.

29

2. Services

Application services perform specific functions within the application, ensuring the

efficient execution of critical functions.

A crucial element of increasing modularity, maintainability, and overall system efficiency

are the services that encapsulate the business logic that drives the various modules and

ultimately enable users to interact with, manage, and monitor the bioleaching plant

seamlessly.

It is evident that services play an important role in centralizing and streamlining

application operations. As a result, each service is crafted to handle a particular set of

tasks, such as handling alerts, managing plant components, processing data registers,

overseeing stations, and managing user information. Services ensure code

maintainability and reuse, facilitating agility for changing application requirements by

compartmentalizing these functionalities.

As a result, services simplify and clarify code by abstracting the complexities of data

manipulation and repository communication. By providing a unified interface for

interaction between the application logic and the underlying data repositories, they act

as intermediaries between them.

By enforcing business rules and validating data, the services ensure that our application

is secure and compliant. They protect sensitive information and ensure that it is

processed and accessed securely.

When conflicts occur or operations are attempted on nonexistent alerts, the service

methods provide meaningful error responses through exception handling. When conflicts

or not found scenarios occur, it throws a ResponseStatusException with a suitable HTTP

status code and message.

Let's examine each service's unique features and capabilities:

Component Service

A wide range of component-related operations are handled by the Component Service,

a critical component within the web application.

Component Service Methods:

● getAllComponent(): This method retrieves a list of all components stored in the

data repository, providing users with comprehensive access to component

information.
● getComponentByName(String name): When called, this method retrieves a

component by its name. It includes validation to ensure that the name provided

is not empty.
● insertComponent(ComponentThingDTO componentThingDTO): This

method inserts a new component into the data repository, including necessary

validation checks. It also associates the component with a specific station.
● updateComponent(ComponentThing componentThing):

30

● deleteComponent(Long id): Components can be removed from the data

repository based on their ID. They can also be removed from associated stations

and disassociated from registers using this method.
● changeComponentName(Long id, String name): Allows users to change the

name of a component identified by its ID.
● changeComponentUnit(Long id, String unit): This method enables users to

modify the unit associated with a component.
● changeComponentMinValue(Long id, Float minValue): Facilitates the

modification of a component's minimum value.
● changeComponentMaxValue(Long id, Float maxValue): Allows users to

adjust the maximum value associated with a component.
● pumpCommand(Long id, boolean value): This method handles enabling or

disabling components for action, particularly for pumping.
● getAllComponentsWithLatestRegisterByStationId(Long id): Provides real-

time monitoring and reporting capabilities by retrieving a list of all components

associated with a specified station.

Register Service

The Register Service retrieves data registers and inserts new registers.

Register Service Methods:

● getAllRegister(): As part of this method, all registers in the repository are

retrieved, as well as the raw register data is transformed into a more accessible

format represented by RegisterDTO objects.
● getRegisterByStationId(Long id): This method retrieves registers associated

with a specific station based on the station's ID. After obtaining the station from

the repository, it retrieves all components linked to the station. In order to

increase accessibility, it iterates through these components to retrieve registers.

As with the previous method, the data is transformed into RegisterDTO objects.
● insertRegister(Register register): Ensures there is not already a register with

the same ID in the data repository, preventing duplication by inserting a new

register.

In order to transform raw register data into a more consumable format, the service

methods use Data Transfer Objects (DTOs), specifically RegisterDTO, which

encapsulates ID, value, date, component ID, component name, and component unit.

Station Service

Station Services support the efficient operation and administration of various stations

within the bioleaching plant by managing station-related operations within the web

application.

Station Service Methods:

● getAllStation(): Using this method, you can retrieve a list of all data stations

stored in the repository. You can also access the ID and name of each station.

31

● updateStation(Station station): This function updates station details, such as

the added new components. It verifies the existence of the station based on its

ID before updating it.

● getStationById(Long id): The ResponseStatusException throws a

ResponseStatusException with an appropriate HTTP status code and message

if the requested station does not exist.

User Service

User Service manages user-related tasks such as user creation, role assignment,

password changes, email retrieval, role changes, email updates, and user deletion.

User Service Methods:

● loadUserByUsername(String username): It constructs a collection of

SimpleGrantedAuthority objects from the user's roles and returns user details for

authentication based on the provided username.
● saveUser(User user): Securely stores user information, including passwords, in

the data repository.
● saveRole(Role role): Allows for the creation or saving of user roles into the data

repository.
● addRoleToUser(String username, String roleName): The function assigns a

specific role to a user by retrieving the user by their username and the role by its

name.
● getUser(String username): Based on the username provided, retrieves user

details.
● getUsers(): Lists all users stored in the data repository.
● getEmail(String username): This method returns a user's email address based

on their username. If the user cannot be found, the method throws a

ResponseStatusException.
● changePassword(String username, String password): Encodes the new

password and updates it in the data repository securely.
● changeRole(String username, String role): Changes a user's role based on

whether the user and role exist.
● changeEmail(String username, String email): Provides a means of updating a

user's email address in the data repository.
● deleteUser(String username): Removes a user account based on their

username.
● changeUserReceiveNotications(String username, boolean value): Provides

users with the ability to set their notification preferences (listening or not listening

to notifications).

Messaging Service

Messaging Service sends notifications to users, interacting with Email Service to do so.

Service Method:

32

● sendEmailForTheAlert(ComponentThing componentThing, String

messageText, User user): This method is used to send an email notification for

a specific alert. It takes three main parameters:

o componentThing: The component associated with the alert.
o messageText: The text of the alert message.
o user: The user who will receive the email notification.

As a result of the method, the following steps are performed:

1. To ensure that email notifications are only sent to users with valid email

addresses, it checks if the user has an email address (user.getEmail() != null).

2. Using the JavaMailSender, it creates a MimeMessage object.

3. Configures the email message by setting the sender, recipient, subject, and

content.

4. The MessageFormatterImpl is used to create a formatted message, combining

the component information with the message text.

5. The email message is then sent using the emailSender.

3. Repositories

In the present web application's architectural framework, the Repository Chapter plays a

pivotal role in database management. This chapter contains a collection of repositories,

each meticulously tailored to handle specific domain entities. With these repositories, we

can perform CRUD operations on our application's critical data with ease; Create, Read,

Update, and Delete.

Streamlined CRUD Operations:

It is crucial to the design of an application repository that CRUD operations are executed

seamlessly. In addition to creating new records, retrieving existing ones, updating their

attributes, and removing records as necessary, these operations cover the entire

spectrum of data interaction. A repository orchestrates these operations efficiently and

precisely.

Stereotype Annotations:

Spring stereotype annotations, including @Repository, serve as markers for these

repositories, signaling to Spring that they serve as repositories. Spring, in turn, detects

and manages these repositories seamlessly within the application context.

Essentially, well-crafted repositories ensure data integrity, maintain consistency, and

guarantee accessibility across the entire application. Our web application is resilient and

dependable because each repository chapter caters to the unique needs of its

corresponding domain entity.

Taking a closer look at each repository chapter, let's examine its specific usage:

33

Component Repository: Managing components, critical elements in the application,

such as pH levels, colors, and pumps, is the focus of this repository chapter. In this way,

these essential elements are accurately and efficiently managed. It provides a

comprehensive suite of methods to create, read, update, and delete component data.

Register Repository: In addition to storing historical data, the Register Repository also

manages data registers associated with components, stations, or specific time intervals.

The system ensures that registers can be retrieved, inserted, updated, and deleted

seamlessly, while maintaining an exhaustive history.

Station Repository: In the chemical plant application, stations are integral components.

The Station Repository manages station-related database operations. It allows us to

retrieve station information, update station names, and manage associated components

efficiently.

User Repository: In addition to creating users, assigning roles, changing passwords,

managing email addresses, and deleting users, the User Repository is the cornerstone

of our user management system, handling a wide range of user-related tasks.

4. Controllers

In our application's architectural framework, the Controller Chapter takes the reins when

it comes to handling HTTP requests from the front-end or external clients. Each controller

in this chapter is designed to cater to a different aspect of the application's functionality.

To fulfill requests effectively, these controllers act as intermediaries, seamlessly

receiving and processing HTTP requests.

Specialized Controllers:

● Component Controller: To provide a comprehensive set of operations for HTTP

requests related to components, this controller interfaces with the Component

Service.
● Register Controller: Data registers are managed by this controller, which

manages HTTP requests for data retrieval, updates, and more. It communicates

with the Register Service to ensure data integrity.
● Station Controller: This controller is at the forefront of all station-related

operations. It receives HTTP requests and collaborates with the Station Service

to process them.
● User Controller: Managing user actions is the core responsibility of this

controller. It works in conjunction with the User Service to fulfill user-related

requests.
● Messaging Controller: In addition to providing WebSocket functionality, it

enables real-time messaging and notifications within the application. This feature

significantly enhances the user experience by providing instant notifications and

critical alert notifications in real time.

34

● PlantWebSocketController: Provides websocket functionality for plant

communication. It provides the logic to handle user commands and plant

component status, together with register creation.

Development and Implementation

This chapter delves into the development and implementation of the web application. It

explores the methodologies and challenges encountered during the development

process. Additionally, it details the architecture, database design, user interface, and

core functionalities of the application, providing an in-depth view of its construction.

Development Methodology

Projects were broken down into manageable sprints using agile practices such as Scrum.

Managing source code efficiently, tracking changes, and collaborating smoothly was

made possible by Git, a distributed version control system. Git enabled Agile

development. In addition to maintaining code integrity, Git branching and merging

capabilities allowed features and bug fixes to be developed simultaneously.

Git repositories, hosted on GitHub, provided a centralized location for code storage and

version history.

Database Implementation

A normalized schema was carefully crafted consisting of tables for users, components,

stations, registers, and roles. The schema reflects the logical structure of our

application's data as part of the initial and critical phase of database implementation. The

schema consisted of several tables that served a specific purpose in the application. The

major tables included:

● Users: Managing user-related information such as usernames, passwords, email

addresses, and roles.
● Components: Information about plant components, such as names,

descriptions, units, and operational thresholds.
● Stations: Data collection related to the chemical plant's various stations,

including station names and components.
● Registers: Historical data records, including values, timestamps, and component

associations.

35

A key measure within the database ensures data integrity and consistency:

● Foreign Key Constraints: The application uses foreign key constraints to

establish relationships between tables. For instance, the 'Registers' table had

foreign key references to both the 'Components' and the 'Stations' tables. As a

result, data anomalies were prevented because registers were always associated

with valid components and stations.

SQLITE Database
The app relies on SQLite database to store its data. The application properties file

(application.properties) contains the configuration parameters for connecting to the

database. As part of these configurations, Spring Boot applications are able to access

and control SQLite databases and send emails using Gmail, providing connectivity to

SQLite databases. In production-grade applications, be sure to secure sensitive data

adequately.

Here are the configuration parameters to match the application backend with the server’s

database:

spring.jpa.database-platform=org.hibernate.community.dialect.SQLiteDialect

Specifies the dialect for Hibernate, indicating that SQLite will be used, and helps
Hibernate generate SQL optimized for the SQLite database. This is necessary because
spring boot does not support sqlite.

spring.jpa.hibernate.ddl-auto=update

Configures Hibernate’s behavior with regards to database schema updates. Here,

`update` means that Hibernate will update the schema whenever it finds a discrepancy.

spring.datasource.url = jdbc:sqlite:****

Specifies the JDBC URL for the SQLite database.

spring.datasource.driver-class-name = org.sqlite.JDBC

Specifies the JDBC driver to be used for connecting to SQLite.

spring.datasource.initialization-mode=never

Spring.datasource.initialization-mode can be used in the following ways:

● always: Useful in development or testing environments, where you want to start
with a known database state each time the application starts. This could include
creating the schema, initializing or re-initializing data, etc.

● never: More common in production environments to avoid any risk of changing
the schema or data unintentionally on application restart.

● embedded: Only initialize the database if an embedded database is used (like
H2). This is often the default setting in development setups.

36

User Interface (UI) Implementation

User experience (UX) principles were incorporated to optimize navigation and minimize

cognitive load in the user interface. UI components were built using React and Bootstrap

Authentication and Landing Page
As explained earlier, authentication is token-based, and users are directed to a landing

page after successfully logging in.

Navigation
NavBar component is used to visually represent navigation within the application. An

"Admin" dropdown menu provides additional options for administrators in the NavBar.

Users with “user” and “view” roles do not see this dropdown, which ensures that they

aren't presented with administrative functions. This menu provides access to admin-

specific views for managing users and components. Admins and users can access the

command view from the home page. Notifications and registers are also accessible from

the home page.

In the NavSide, a list of station names is retrieved and displayed as buttons in a functional

component. When a button is clicked, the component updates which station is

considered “selected” and may trigger a dynamically named callback function from its

props. CSS class styling is also used to determine the component's visual appearance.

All User Views
There is a schematic representation of the entire plant layout on the landing page, giving

users a high-level understanding of the plant's structure.

A dropdown menu allows users to select specific stations. Each station-specific view

displays:

● The station's schema.
● Data from its components.

Users can gain an overview of key metrics across the plant, and they can navigate to

specific components using the station dropdown menu. In addition, they can access a

detailed view of a component by clicking on its value. This view includes an interactive

graph displaying historical data for that component.

Notifications Panel

On this panel, users can manage personal settings, such as:

● Changing their password.
● Modifying email notification preferences.
● Enabling or disabling email notifications for alerts.

Registers Panel

This panel is crucial for monitoring the plant's status and performance. In addition to

displaying the registers with the latest component status obtained from the plant, it

provides a variety of filtering, sorting, exporting, and visualizing functionality.

37

Alerts Panel

This panel orchestrates the management and display of alert messages within a user

interface, as well as providing functionality for filtering, sorting, and exporting them.

It catches the alert received through websockets and saves it in an indexedDB - a low

level API for client-side storage. There is a cleanup operation, where alerts that are older

than one month are deleted during each cleanup operation. In this way, the application

is able to manage and discard stale data on a regular basis while minimizing the burden

on resources by scheduling the cleanup operation.

Administrator Views

User Dashboard

Users can be managed via dedicated views for administrators. From here, administrators

can:

● View existing user accounts.
● Create new user accounts.
● Delete user accounts.
● Manage user roles.
● Configure email settings for users.

Component Dashboard

Station Management and Component Management enable administrators to oversee the

assigned components and stations of the plant. Here, they can:

● Assign or remove components from stations.
● Delete components

● Adjust component parameters, including min/max values and canAct properties.

Command Dashboard

Administrators can control pumps and solenoid valves using the "Commands

dashboard”.

Functionality Implementation

User Registration and Login
Registration and login functionality are implemented using Spring Security for

authentication and JWT (JSON Web Tokens) for session management. Passwords are

hashed before storage.

In order to ensure that authorized individuals can access and interact with the application

securely, user registration and login are fundamental components. Towards this goal,

we used Spring Security, a Java application security framework that provides

comprehensive security features.

The data users provide when they register on our platform, including their usernames,

e-mail addresses, and passwords, is securely stored in the SQLite database. Passwords

38

are hashed before storage for enhanced security, which makes accessing user

credentials extremely difficult.

JSON Web Tokens (JWT)

Our application uses JSON Web Tokens (JWTs) for session management and

authorization. In addition to carrying information about the user, JWTs are digitally signed

to ensure their integrity. JWTs are compact and self-contained tokens that provide

information about the user.

Security configurations for the web-based application are meticulously defined across

three key Java classes.

The CustomAuthenticationFilter class, which extends

`UsernamePasswordAuthenticationFilter`, interfaces with the `AuthenticationManager`

to authenticate a user based on provided username and password. Upon successful

authentication, it employs the `com.auth0.jwt` library to generate a HMAC256 encoded

JWT that includes user details, roles, and a set expiration time. This token is then

returned in a JSON format as part of the HTTP response.

In tandem, the `CustomAuthorizationFilter` class, derived from

`OncePerRequestFilter`, oversees the authorization of users attempting to access API

endpoints. This filter checks for a "Bearer" token in the request headers, decodes the

JWT if present, retrieves associated user roles, and sets them within the Spring

Security context.

Finally, the `SecurityConfig` class integrates these filters into the application's security

flow. It employs a `DelegatingPasswordEncoder` for password encryption and

establishes a stateless session management policy. HTTP request routes are mapped

to specific user roles ensuring granular access control. Through the fusion of these

classes, a robust JWT-based authentication and authorization mechanism is

established, ensuring secure user access.

Secure Password Storage

Secure password storage practices were implemented to protect users data:

Password Hashing

The user passwords are hashed before being stored in the database. Hashing

transforms the password into an irreversible string of characters, making it

extremely difficult for attackers to retrieve the original password.

Roles and Permissions

User roles and permissions are included in JWTs. This allows us to control access to

various parts of the application, ensuring that only the functionalities that are authorized

to use are accessible. There are three roles that users can be assigned to users: Admin,

User, View. The rights access for each role are as follows:

39

User
Roles

User
dashboard

Component
dashboard

Command
dashboard

Notifications
panel

Registers
panel

Alerts
panel

Admin

User

View

Table 1: User roles permissions

In chapter 6, Results and Discussions, the different dashboards and panels are

explained in detail.

Route-based Navigation

It is imperative that modern web applications guide users seamlessly according to their

roles and authentication status, ensuring both security and optimal user experiences.

Essentially, route-based navigation employs specialized components, each designed to

manage and dictate access based on user roles or authentication states.

By implementing user rights navigation, we ensure that users can only access the

functionalities they are authorized to use, enhancing security and user experience.

PublicRoute

The PublicRoute component is designed to manage unauthenticated users' access to

certain routes. Users who are already authenticated are automatically redirected to the

home page. As a result, users who are already logged in do not need to re-login

repeatedly. However, users who are not authenticated are allowed to access the

intended route.

PrivateRoute

PrivateRoute is responsible for handling routes that require authentication. When a user

tries to access such a route, the system checks if they are authenticated. In this way,

unauthorized access to sensitive parts of the application is prevented by redirecting them

to the login page.

AdminRoute

The AdminRoute component caters specifically to administrators. It checks if the user is

both authenticated and has the role of 'ADMIN'. If the user doesn't meet these criteria,

they are redirected to the login page. This route is dedicated to administrators and grants

them access to exclusive features and views tailored to their role.

Using this role-based navigation methodology, users are presented with an optimized

set of options relevant to their roles, which enhances security as well as optimizes the

user experience. By doing so, it ensures that the application is interacting with each user

in accordance with their permissions and responsibilities.

UserRoute

Users and administrators are served by the UserRoute component. It checks if the user

is both authenticated and has the role of 'ADMIN' or 'USER'. If these criteria are not met,

40

the user will be redirected to the login page. Using this route, they gain access to

exclusive features and views that are tailored to their roles.

CRUD Operations
In web application development, CRUD stands for Create, Read, Update, and Delete,

which are fundamental operations for managing data in a web application. CRUD

operations correspond to the following actions:

● Create: Adding new data records or entities.
● Read: Retrieving and viewing data.
● Update: Modifying existing data.
● Delete: Removing data.

CRUD operations serve as the core functionality of our web application. These

operations manage components, stations, registers, and alerts. CRUD is critical to our

project for the following reasons:

1. Data Management: Users can manage the application's data through CRUD

operations, such as creating new components, reading station details,

updating component names, or deleting alerts.

2. User Interaction: A CRUD operation enables users to interact with the

system, allowing them to input, retrieve, and modify data, which is essential

for the application's functionality and usability.

3. Data Integrity: In order to maintain data integrity, CRUD operations provide

controlled ways to modify data, which minimizes the risk of accidental or

unauthorized data modifications.

4. Consistency: As part of CRUD operations, data management is

standardized to ensure consistency.

Let's look at some examples from our API implementation in the api.js file:

fetchComponentsWithLatestRegisterByStationId(id): This function corresponds to

the "Read" operation. It retrieves components with their latest registers by station ID.

fetchAllRegisters(): This function is an example of the "Read" operation, fetching all

registers.

changeRole(username, newRole): This function represents the "Update" operation,

allowing the modification of a user's role.

insertComponent(): Here, we have an example of the "Create" operation, which

inserts a new component into the system.

deleteComponent(componentId): This function demonstrates the "Delete" operation,

enabling the removal of a component.

With these CRUD operations, our web application enables users to manage data

efficiently, ensure data integrity, and deliver a seamless user experience.

In our project, CRUD operations enable users to interact with the application's features

and ensure data reliability and consistency.

41

Real-time Messaging
With WebSocket technology, a communication protocol enabling real-time, bidirectional

data exchange, this module empowers users to send and receive messages, which

serve as a means of delivering alert notifications and commands as well as to receive

updated component statuses from the plant. It uses

Key Components

1. Email Service for Alerts: In the event of an alert triggering in our system, the

Email Service is responsible for sending email notifications to users. As a result,

users receive timely notifications via email containing essential information about

the alert, such as the component's name and the associated message.

2. Message Formatter: The Message Formatter has been implemented to ensure

consistency and readability in alert messages. It takes the information about the

alerted component and the associated message and creates a standardized

message based on the information. The formatter ensures that alerts are

presented in a clear and uniform manner by including information such as the

component's name, the timestamp, and the message itself.

3. WebSocket Controller: The WebSocket Controller manages the real-time

messaging functionality. It listens for messages sent by the API / plant and, when

received, broadcasts them to all connected WebSocket clients. In addition, it also

sends commands to the server side, where the plant is listening. This approach

allows the web application to send alerts to the user by browser notifications,

send commands from the user interface to the server side where the plant is

listening and also receive the objects coming from the plant in order to create the

registers with the latest component status.

4. WebSocket Configuration: A WebSocket endpoint and a message broker have

been configured in the application to enable WebSocket support. A WebSocket

Configuration class identifies the endpoint of WebSocket connections and

specifies which destinations should be enabled for message broadcasting. Using

this configuration, WebSocket communication is seamless and efficient.

The WebSocketConfiguration class provides a structured approach to implementing

WebSocket communication within Spring applications, focusing primarily on STOMP

messaging. With STOMP (Simple Text Oriented Messaging Protocol), WebSockets are

enhanced by a simple, lightweight messaging protocol, allowing message exchanges

between client and server. This protocol is neatly integrated with a robust framework to

manage subscriptions and message broadcasts.The configuration class designates

"/ws/" as a WebSocket endpoint through which clients can establish WebSocket

connections to servers.

The Message Broker ensures that messages destined for application-level handling are

routed appropriately by setting "/ws" as the application destination prefix via

.setApplicationDestinationPrefixes("/ws").

With .enableSimpleBroker("/message", "/info"), it activates a memory-based message

broker for managing subscriber subscriptions and broadcasting messages across

specified destination prefixes to subscribers.

42

In order to streamline the organization of messages within defined channels and facilitate

topic-based subscriptions from clients, the selected prefixes ("/message", "/info")

implicitly define the overarching topics or destinations that the broker will manage.

The prefix "/message" is used for alert notifications. The user is listening to the API for

an alert message.

The prefix “/info” is used for plant communication. The user sends commands to that

direction where the plant is listening. Moreover, the plant sends component status and

the API listens and generates a register based on the component id and value it receives.

With the temporized last register values fetchers present in the command and register

components, the application automatically updates.

The used format is JSON:

• Plant to server:

[

{

"id" : [COMPONENT ID],

"value" : [COMPONENT VALUE]

}

, (...)

]

• Server to plant:

{

"id" :[COMPONENT ID],

"command" : [COMMAND VALUE]

}

Email Notification System

The EmailService class, which adheres to the singleton design pattern, ensures that only

one instance of the email service is instantiated and utilized throughout the application

lifecycle, maintaining centralized control and utilization. In this context, adopting a

singleton pattern is motivated by the desire to centralize email dispatching, ensuring that

all email-related operations are funneled through a single, unified object, possibly

enhancing manageability and control. SendEmailForTheAlert encapsulates the

functionality of writing and dispatching an email, if the user's email address is not null.

43

Using JavaMailSender, it crafts an email containing various parameters, such as the

sender's email, the recipient's email, the subject, and the body.

As a message composer, the MessageFormatorImpl class uses its pivotal

createStandardMessage method to create standardized email messages by combining

static text with dynamic data - component names and current timestamps, along with a

custom message.

Moreover, email dispatching isn't just a function of the email service and formatter but is

also substantially influenced by the parameterization done via application properties,

such as those specified for email (e.g., spring.mail.host, spring.mail.username, etc.). As

a result of these parameters, email dispatching is not only secured by credential usage

but also adheres to SMTP configurations that enhance reliability and security of email

communication. The email server (smtp.gmail.com), authentication credentials, and

various SMTP configurations are used to ensure email dispatching is secure and reliable.

Here are some email settings of the backend application.properties:

spring.mail.host=smtp.gmail.com

spring.mail.port=587

spring.mail.username=biometallumapp@gmail.com

spring.mail.password=****

spring.mail.properties.mail.smtp.auth=true

spring.mail.properties.mail.smtp.starttls.enable=true

Here's what each property means:

● spring.mail.host and spring.mail.port: Specify the hostname and port the
SMTP server. For instance, Gmail's SMTP server.

● spring.mail.username and spring.mail.password: Email address and
password of the account that will be used to send notifications.

● spring.mail.properties.mail.smtp.starttls.enable=true: It will use SMTP
authentication when sending emails through the configured SMTP server.

● spring.mail.properties.mail.smtp.starttls.enable: Enable TLS for secure
email transmission.

Scalability and Future Enhancements
The microservices architecture of the web application allows this application to be

horizontally scaled to handle increasing user loads. Moreover, the application has a

scalable management system, adeptly enabling dynamic interactions and management

of various entities and operational settings. Different components associated with

different stations can be dynamically interacted with and modified using this system. In

addition to altering settings (such as min and max values), this platform allows for

mailto:biometallumapp@gmail.com

44

tailoring operational thresholds and triggering alerts in accordance with differing

requirements without modifying the code itself. Thus, it lays down a comprehensive,

user-adaptable framework that can efficiently cater to an array of component

management needs.

A notable characteristic of this system is its ability to seamlessly adapt and manage

various component types, such as pumps and solenoid valves, ensuring that it can

seamlessly integrate and manage new components. By auto-detection and displaying

new components alongside existing ones, the system creates an environment for

dynamic, real-time management.

However, there is a limitation regarding the visual representation of new components

within existing imagery, which could pose challenges in terms of user experience and

operational monitoring. Despite this, the system enables interactive and real-time

modification of component settings, demonstrating an attentive approach to user

engagement and operability.

A modular development approach might also be beneficial, considering the scalability

and maintainability of the system in the future. A system can be more maintainable and

scalable if it is broken down into smaller, more manageable components and

functionalities. While the system stands out for its flexibility and interactive user interface,

future developments could enhance its utility and user experience by improving state

management, code modularity, and visual representation.

Deployment

Hosting Considerations

Connecting to the Backend
In the front-end application, it is specified the URL for connecting to the backend API. It

must be correctly configured to point to the server where the application will be hosted:

const API_URL = 'http://biometallum.epsem.upc.edu/api';

Nginx.config
As explained in the plant existing software chapter, Nginx is used as a reverse proxy.

Here is the basic scenario:

● React Front end is served as static files by NGINX.

● Spring boot backend is the API server to which NGINX proxies API requests.

45

Location proxy should be updated to the localhost where the application will be running:

● With this setup, when users navigate to the site, they are directly served the static files

generated by the React app.

location / {

proxy_pass http://localhost:...

}

● With this setup, any request that starts with `/api/` is forwarded to the Spring Boot

application.

location /api/ {

proxy_pass http://localhost:...

}

By segregating API routes from frontend routes, it's possible to neatly separate the handling of

static files and API calls.

Different Needs: Frontend (React) and backend (Spring Boot) have different requirements:

● Frontend: Only needs to serve static files (HTML, CSS, JS) and does not need to access

the backend server unless it calls an API.

● Backend: Manages data processing, API requests, etc., and is not concerned with

serving static frontend files.

API Calls: The API calls in the React app hits the /api/ endpoint to proxy to the Spring Boot

application.

Tomcat Server
To host the Spring Boot web application, it is needed to install a Tomcat server on the

hosting server.

6. Results and discussion

The images of this chapter illustrate the user interface as it is seen by the user across

the app's functionalities. In previous sections, we have discussed the fact that the web

app boasts a responsive design, meaning its appearance and layout will change

depending on the device on which it is viewed, whether it is a mobile device, tablet, or

computer screen. The set of images presented correspond to different viewports,

providing a better understanding of the app's varied display options. The captions for

each image will indicate the size of the display pixels.

http://localhost/
http://localhost/
http://localhost/

46

Sign In

The sign in view allows users with the right credentials to log into the application.

Figure 4: Sign In window (mobile viewport)

Data is traditionally passed from parent component to child component by means of
properties, or "props.". By using the Context system, data can be distributed throughout
the component tree without having to pass props manually at each level of the nested
component tree.

This web application is using AuthContext, which serves as a centralized repository to
convey authentication status, user roles, and associated methods to any part of the
application that requires them.

In response to user commands, the login asynchronously communicates with the
backend. Upon a successful response, this function not only updates the local storage
with crucial data such as the access_token and roles, but it also sends the user's
username and password via a GET request, eagerly awaiting confirmation. Additionally,
it updates the authState to reflect the user's current authentication status, ensuring the
entire application is in sync.

47

Once the user has successfully logged in, the logout function is activated by clicking a
button located in the navbar. This function clears user roles and data from the
application's memory and authentication state. By doing so, it ensures that once a user
logs out, their data will not be lingering around.

Main Page
The "Plant overview" component of the home page is displayed once the user

successfully logs in.

A navigation component is available on the home page to facilitate user app navigation.

“NavBar” and “NavSide” components are both present on the home page. The navbar

component allows the user to return to the previous window, display a dropdown menu,

or log off.

Figure 5: Plant overview, home window (desktop viewport)

On the other hand, `NavSide` component is only present in the home view and it shows

the name of the active station and has a dropdown menu that allows a station selection.

Depending on the active station, different `Station` components are rendered, each with

a unique `stationId` and corresponding image.

48

Clicking on any of these stations buttons in the dropdown will involve the station

component and reveal a detailed image of the chosen station alongside a table

containing the latest records of components assigned to that station. Component data is

fetched using the `fetchComponentsWithLatestRegisterByStationId` API call. This

populates the `components` state with the components' latest register values.

Figure 6: Station selection and Bioreactor view, home window (mobile viewport)

49

Figure 7: Bioreactor view, home window (desktop viewport)

Components for the station are listed here. If a component can act (`component.canAct`),

a visual pump icon is displayed, with a gradient effect based on the component's latest

register value.

For each component, there's a value display. Clicking on any record will redirect the user

to the registers view, where a table displaying the total records of that component will

appear, along with a graph. The `navigate` function from `react-router-dom` is used for

this purpose.

50

Registers Panel

Figure 8: Temperature registers, registers window (desktop viewport)

By clicking on the register value in the station dropdown menu, the registers panel is

accessed. This access displays a graphic of the selected component. Alternatively, the

register button is accessible from the home dropdown menu.

The graphic is displayed due to the RegistersGraphics component, which utilizes the

recharts library to visually plot register data. Data is either fetched for all stations or for

a specific station depending on the station chosen by the user. This dynamism ensures

efficient data retrieval, minimizing unnecessary data transfer. A user can also filter the

data according to a component's name or date range. With react-datepicker, users can

fine-tune the date range for the data they wish to view. This ensures that only the data

relevant to their query is displayed.

A user can view and filter records by station or component, view graphs, and export data

to Excel using the Registers panel. The function generates an Excel-friendly format from

filteredRegisters and initiates the download by using the xlsx library. In addition to

visualizing, users can export the presented data.

Registers Panel integrates data fetching, filtering, visualization, and exportation, while

maintaining a responsive and user-friendly interface.

51

Alerts Panel

Alerts component allows to display and handle alert messages interactively. It offers a

combination of asynchronous data retrieval, structured data processing, user-driven

filtering, and exporting the alert data directly into an Excel file, leveraging the xlsx

library.

A variety of controls are available in the user interface, such as a Dropdown for station-

based filtering, DatePickers for setting date and time bounds for visible alerts, and

buttons providing quick access to predefined time-ranges, such as the last 12, 24, or

48 hours. In addition, the alerts are sorted by date and time, once they have been

parsed and filtered, and presented in a table that neatly displays the aforementioned

attributes (station, alert content, date, and time).

It engages multiple useEffect hooks to retrieve alerts from indexedDB storage, add any

new unique alerts to the context, and make them globally accessible across the

component tree after initialization. Additionally, it performs a regular cleanup of alerts,

ensuring a regulated and non-redundant data flow through intervals of approximately

one hour, as well as obtaining station data which can be utilized to filter alerts.

52

Alerts Notifications

Figure 9: Alert notification, (desktop viewport)

In the case of previously established components reaching the previously set limit value,

alerts can be sent to the user using websocket communication between the user

interface and the backend API.

ScheduleRegisterAlert component incorporates scheduled tasks, especially with the

checkAlertWithTheLastRegister() method, to check for alert conditions across various

the generated registers every 1 minute. The component navigates through various alert

check methods, each adapted to specific alert scenarios, such as pH levels, high/low

activity levels, and prolonged high activity scenarios in the Bioreactor and Leaching

stations. Each alert type has its own method, which results in a structured and organized

approach to handling different alerts. PHAlertCheck(User user), HL1AlertCheck(User

user), and other methods scrutinize the respective parameters to determine if they violate

predefined safety or operational thresholds.

In addition to detecting alert conditions, the component ensures that these alerts are

communicated to the user in a timely and effective manner. WebSockets are used by

messageController to dispatch alert messages to the user interface, enabling real-time

notifications without requiring user action or refresh. In addition, the component

integrates email notifications via emailServiceInterface, enhancing the notification

channels and keeping users informed even when they're not actively using the interface.

The alert throttling mechanism uses a map (lastAlertTime) to keep track of when the last

alert for a particular component was issued. The interval time has been setted to 12

hours to avoid notification fatigue and ensure that users aren't inundated with

notifications for the same issue repeatedly.

53

Notifications panel

Additionally, the home panel's dropdown menu allows users to access the notifications

panel, which is designed to provide users with account information, notification

preferences, and password management features.

Figure 10: Notifications window (mobile viewport)

The useEffect hook allows the component to retrieve the user's data upon mounting. It

retrieves the user's email and notification preference and updates the local state

accordingly. Through useAuthContext, the component extracts user information from a

shared context, including roles and usernames. To manage backend interactions,

several functions (changePassword, receiveNotification, getUser) are imported. GetUser

obtains the user's preference regarding enabling email notifications, which is used as the

default value in the switch selector.

54

Command Dashboard
Users with admin and user rights can also access the Command Dashboard via the

dropdown menu located in the Navbar. Users with view rights have no access to it and

cannot access it.

Users can activate or deactivate pumps and solenoid valves in the Commands

Dashboard.

Figure 11: Command window (desktop viewport)

A useEffect hook retrieves station and component data on initial load, including whether

certain components are actionable (canAct).

55

Consequently, all the components which appear in the user interface are pumps and

solenoid valves. If the user sends a command with the associated id of the component,

it will be an actionable component.

A WebSocket connection allows users to send commands to the plant. In the case of

pumps, it updates the local state, inputValues, whenever the input field changes. Since

solenoid valves only have open and close positions, it toggles the status of the

component (from 0 to 1 or vice versa) and sends the command via websocket.

However, the status button does not change to the command value if the command is

successfully sent via websocket. Rather than that, it displays a message warning that

the plant may not have listened to the new register even if the command was successfully

sent. The plant will appear on screen when it sends the new register. To doi that, an

interval of 30 seconds is set up to automatically fetch register values of certain

components at a specific interval, which is crucial for real-time communication.

Admin views
Administrators will see a dropdown menu in the navbar with links that are only accessible

to them. A link to the user management page allows the admin to create or delete users,

modify roles, passwords, and emails. Another link takes the admin to the component

control page.

User Dashboard
Users can be created or deleted. In addition, roles, passwords, and emails can be

modified in the user management screen.

56

Figure 12: User window (desktop viewport)

Administrators can create user accounts and edit their information on the UserPanel.

using a variety of methods from the API. Passwords are always encoded using the

passwordEncoder bean to ensure their security.

Component Dashboard

Another administrator-only dashboard is the component control screen, which displays

the components assigned to each station in a table. New components can be created,

assigned to the chosen station, deleted, or modified. For instance, an administrator can

change the name of the PH component to PH_Bioreactor.

57

Figure 13: Component window (mobile viewport)

The app's scalability relies heavily on this screen. Future station components can be

added directly from the app if needed. Once a component is created, its ID is auto-

generated and can be given to the sensor technician who will map the component id with

the sensor, making all new sensor data visible and allowing activation and deactivation

of canAct components. When introducing a new pump or solenoid valve, the "canAct ''

attribute should be set to true after the new component has been created.

As of now, only the display images are not scalable. The schematic image can only be

updated by someone familiar with the app code.

7. Conclusion

As a result of this project, a Web application for monitoring a bioleaching plant has been

developed successfully. To meet the project's objectives and specifications, a robust

application was developed that provides detailed insights into the plant's status and

development. To achieve these goals, well-considered decisions were made that

ensured efficient and secure communication.

The user interface design stands as a testament to our commitment to delivering real-

time, user-friendly information. It offers extensive functionality for interaction and data

retrieval from the plant's database, all while respecting each user's specific permissions.

58

The collected information is easily accessible and is presented intuitively with visual aids

that enhance the user experience.

These tools created throughout the project will continue to play a pivotal role in the

ongoing development phases of the plant, assisting in its monitoring and data recording.

8. References

1. Rittinghouse J W, Ransome J F. Cloud Computing: Implementation,Management, and

Security. Boca Raton: CRC Press, 2016.

2. Zhang Y F, Zhang G, Wang J Q, et al. Real-time information capturing and integration

framework of the internet of manufactur-ing things. International Journal of Computer

Integrated Manufac-turing, 2015, 28(8): 811–822.

3. Farsi, M.; Daneshkhah, A.; Hosseinian-Far, A.; Jahankhani, H. (Eds.)Digital

Twin Technologies and Smart Cities; Springer:Berlin/Heidelberg, Germany, 2020.

4. Majeed, M.A.A.; Rupasinghe, T.D. Internet of things (IoT) embedded future supply

chains for Industry 4.0: An assessment froman ERP-based fashion apparel and footwear

industry.Int. J. Supply Chain. Manag.2017,6, 25–40.

5. Oliff, H.; Liu, Y. Towards Industry 4.0 Utilizing Data-Mining Techniques: A Case Study

on Quality Improvement.Procedia CIRP2017,63, 167–172.

6. Ovsthus, A.A.K.S.K.; Kristensen, L.M. An Industrial Perspective on Wireless Sensor

Networks—A Survey of Requirements,Protocols, and Challenges.IEEE Commun. Surv.

Tutor.2014,16, 1391–1412.

7. Muneeba, N.; Javed, A.R.; Tariq, M.A.; Asim, M.; Baker, T. Feature engineering and

deep learning-based intrusion detectionframework for securing edge IoT.J. Super

Comput.2022, 1–15.

8. S. H. Ahmed, G. Kim, and D. Kim, “Cyber physical system:Architecture,

applications and research challenges,” inProc. IFIPWireless Days (WD), Valencia,

Spain, Nov. 2013, pp. 1–5.

9. F.-J. Wu, Y.-F. Kao, and Y.-C. Tseng, “Review: From wireless sensornetworks

towards cyber physical systems,”Pervasive Mobile Comput.,vol. 7, no. 4, pp. 397–413,

Aug. 2011.

10. A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towardssurvivable

cyber-physical systems,” inProc. 28th Int. Conf. Distrib.Comput. Syst. Workshops,

Beijing, China, Jun. 2008, pp. 495–500.

11. R. G. Helps and S. J. Pack, “Cyber-physical system concepts forIT students,”

inProc. 14th Annu. ACM SIGITE Conf. Inf. Technol.Educ. (SIGITE), Orlando, FL,

USA, Oct. 2013, pp. 7–12.

12. J. Lin, W. Yu, X. Yang, G. Xu, and W. Zhao, “On false data injec-tion attacks

against distributed energy routing in smart grid,” inProc.IEEE/ACM 3rd Int. Conf. Cyber-

Phys. Syst. (ICCPS), Beijing, China,Apr. 2012, pp. 183–192.

59

13. J. Linet al., “A novel dynamic en-route decision real-time routeguidance scheme

in intelligent transportation systems,” inProc. IEEE35th Int. Conf. Distrib. Comput. Syst.

(ICDCS), Columbus, OH, USA,Jun. 2015, pp. 61–72.

14. A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towardssurvivable

cyber-physical systems,” inProc. 28th Int. Conf. Distrib.Comput. Syst. Workshops,

Beijing, China, Jun. 2008, pp. 495–500.

15. X. Yanget al., “A novel en-route filtering scheme against false datainjection

attacks in cyber-physical networked systems,”IEEE Trans.Comput., vol. 64, no. 1, pp.

4–18, Jan. 2015.

16. Devesh, M.; Kant, A.K.; Suchit, Y.R.; Tanuja, P.; Kumar, S.N. Fruition of CPS and

IoT in Context of Industry 4.0. InIntelligentCommunication, Control and Devices;

Springer: Singapore, 2020; pp. 367–375.

17. Saniuk, S.; Grabowska, S.; Gajdzik, B. Social expectations and market changes in

the context of developing the Industry 4.0concept.J. Sustain.2020,12, 1362.

18. Deepa, N.; Pham, Q.V.; Nguyen, D.C.; Bhattacharya, S.; Prabadevi, B.; Gadekallu,

T.R.; Pathirana, P.N. A survey on blockchain forbig data: Approaches, opportunities, and

future directions.Future Gener. Comput. Syst.2022,131, 209–226.

19. Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to 2030.

2021. Available online: https://www.statista.com/statistics/1183457/iot-connected-

devices-worldwide/ (accessed on 20 July 2023).

20. Jovanovi ć, B. Key IoT Statistics. 2021. Available online:

Https://dataprot.net/statistics/iot-statistics/ (accessed on 10 July 2023).

21. AI Multiple.30 Internet of Things—IoT Stats from Reputable Sources in 2021.

Available online: https://research.aimultiple.com/iot-stats/ (accessed on 04 July 2023).

22. O’Dea, S. Wide-Area and Short-Range IoT Devices Installed Base Worldwide

2014–2026.2021.Available online:Https://www.statista.com/statistics/1016276/wide-

area-and-short-range-iot-device-installed-base-worldwide/ (accessed on 20 July 2023).

23. DIS. ISO. 9241-210: 2010. Ergonomics of human system interac-tion-Part 210:

Human-centred design for interactive systems.International Standardization

Organization (ISO), 2009.

24. Tseng M M, Jiao R J, Wang C. Design for mass personalization.CIRP Annals-

Manufacturing Technology, 2010, 59(1): 175–178.

25. Schmidt R, Möhring M, Härting R C, et al. Industry 4.0—Potentialsfor creating smart

products: Empirical research results. In:International Conference on Business

Information Systems. 2015,16–27.

26. Janak L, Hadas Z. Machine tool health and usage monitoringsystem: An intitial

analyses. MM Science Journal, 2015, 2015(4):794–798.

27. Qiu X, Luo H, Xu G Y, et al. Physical assets and service sharing for IoT-enabled

supply hub in industrial park (SHIP). InternationalJournal of Production Economics,

2015, 159: 4–15.

28. Wang M L, Qu T, Zhong R Y, et al. A radio frequencyidentification-enabled real-time

manufacturing execution systemfor one-of-a-kind production manufacturing: A case

60

study in mouldindustry. International Journal of Computer Integrated Manufactur-ing,

2012, 25(1): 20–34.

29. Rajalingam S, Malathi V. HEM algorithm based smart controller forhome power

management system. Energy and Building, 2016, 131:184–192.

30. Javed A, Larijani H, Ahmadinia A, et al. Smart random neuralnetwork controller for

HVAC using cloud computing technology.IEEE Transactions on Industrial Informatics,

2016, (99): 1–11.

31. Zhong R Y, Huang G Q, Lan S, et al. A two-level advancedproduction planning and

scheduling model for RFID-enabledubiquitous manufacturing. Advanced Engineering

Informatics,2015, 29(4): 799–812.

32. Wang X V, Xu X W. A collaborative product data exchangeenvironment based on

STEP. International Journal of ComputerIntegrated Manufacturing, 2015, 28(1): 75–86.

33. Zhong R Y, Li Z, Pang A L Y, et al. RFID-enabled real-timeadvanced planning and

scheduling shell for production decision-making. International Journal of Computer

Integrated Manufactur-ing, 2013, 26(7): 649–662.

34. Zhong R Y, Newman S T, Huang G Q, et al. Big data for supplychain management

in the service and manufacturing sectors:Challenges, opportunities, and future

perspectives. Computers & Industrial Engineering, 2016, 101: 572–591.

35. Zhang L, Luo Y, Tao F, et al. Cloud manufacturing: A newmanufacturing paradigm.

Enterprise Information Systems, 2014, 8(2): 167–187.

36. Zhong R Y, Huang G Q, Lan S L, et al. A big data approach forlogistics trajectory

discovery from RFID-enabled production data.International Journal of Production

Economics, 2015, 165: 260–272.

61

Part II.

APPENDIX

62

Appendix

A. Source Code

The file Biometallum_APP.zip contains the source code files. The Developer Manual C

describes some of these files.

FRONTEND

 index.js

\components

 api.js

 App.css

 App.js

 \mainComponents

 \alerts

 Alerts.css

 Alerts.js

 \dashboard

 CommandPanel.css

 CommandPanel.js

 ComponentPanel.js

 Panel.css

 UserPanel.js

 \images

 add_component.svg

 add_user.svg

 Bioreactor.png

 delete_user.svg

 edit_user.svg

 Electrowinning.png

63

 Leaching.png

 \footer

 Footer.js

 \navs

 NavBar.css

 NavBar.js

 NavSide.css

 NavSide.js

 \icons

 back_arrow.svg

 control_icon.svg

 list_icon.svg

 logout_icon.svg

 reload.svg

 \notifications

 Notifications.css

 Notifications.js

 \egisters

 Registers.css

 Registers.js

 RegistersGraphics.js

 \Stations

 DisplayComponent.css

 PlantOverview.js

 Station.js

64

 \images

 bioreactor_squema.jpg

 electrowinning_squema.jpg

 leaching_squema.jpg

 logo.jpg

 logovector.svg

 logo_epsem.png

 plant_squema.jpg

 plant_squema_obsolete.jpg

 ruler.svg

 \router

 AdminRoute.js

 PrivateRoute.js

 PublicRoute.js

 UserRoute.js

 \views

 \Admin

 CommandDashboard.js

 ComponentDashboard.js

 UserDashboard.js

 \AlertsPanel

 AlertsPanel.css

 AlertsPanel.js

 \Home

 Home.css

 Home.js

65

 \NotificationsPanel

 NotificationsPanel.css

 NotificationsPanel.js

 \RegistersPanel

 RegistersPanel.css

 RegistersPanel.js

 \UserLogs

 SignIn.css

 SignIn.js

\config

 \router

 paths.js

\contexts

 alertContext.js

 authContext.js

\utils

 indexedDB.js

66

BACKEND

\server

 ServerApplication.java

 \config

 PlantWebSocketController.java

 WebSocketConfiguration.java

 WebSocketResponse.java

 \controllers

 \impl

 AlertController.java

 ComponentController.java

 MessageController.java

 RegisterController.java

 RoleController.java

 StationController.java

 UserController.java

 \interfaces

 AlertControllerInterface.java

 ComponentControllerInterface.java

 MessageControllerInterface.java

 RegisterControllerInterface.java

 RoleControllerInterface.java

 StationControllerInterface.java

 UserControllerInterface.java

 \dtos

 ComponentThingDTO.java

67

 PlantCommandDTO.java

 PlantDataDTO.java

 RegisterDTO.java

 RoleToUserDTO.java

 UserDTO.java

 \filters

 CustomAuthenticationFilter.java

 CustomAuthorizationFilter.java

 \models

 Alert.java

 ComponentThing.java

 Register.java

 Role.java

 Station.java

 User.java

 \repositories

 AlertRepository.java

 ComponentRepository.java

 RegisterRepository.java

 RoleRepository.java

 StationRepository.java

 UserRepository.java

 \security

 CorsConfiguration.java

 SecurityConfig.java

 \services

68

 \impl

 AlertService.java

 ComponentService.java

 RegisterService.java

 StationService.java

 UserService.java

 \interfaces

 AlertServiceInterface.java

 ComponentServiceInterface.java

 RegisterServiceInterface.java

 StationServiceInterface.java

 UserServiceInterface.java

 \ utils

 email

 \impl

 EmailService.java

 \interfaces

 EmailServiceInterface.java

 message_formatter

 MessageFormatterImpl.java

 MessageFormatterInterface.java

 \schedule

 \impl

 ScheduleRegisterAlert.java

 \interfaces

 ScheduleRegisterAlertInterface.java

69

70

B. Plant Components

Bioreactor Components:

● Redox

● PH

● Temperatura

● SP

● PB1

● PB2

● PB3

● PB4

● VB

● V3

● V1

● VMM

Redox

○ id: 4

○ name: Redox

○ description: Sensor Nivell Redox - Bioreactor

○ unit: null

○ canAct: false

○ valueType: 1

○ maxValue: null

○ minValue: null

71

● PH

○ id: 3

○ name: pH

○ description: Sensor Nivell pH - Bioreactor

○ unit: null

○ canAct: false

○ valueType: 1

○ maxValue: 1.8

○ minValue: 1.6

● Temperatura

○ id: 6

○ name: Temperatura

○ description: Sensor Nivell Temperatura - Bioreactor

○ unit: ºC

○ canAct: false

○ valueType: 1

○ maxValue: null

○ minValue: null

72

● SP

○ id: 200

○ name: SP

○ description: Sensor Pressió - Bioreactor

○ unit: null

○ canAct: false

○ valueType: 3

○ maxValue: null

○ minValue: null

● PB1

○ id: 9

○ name: PB1

○ description: Bomba de Recirculació - Bioreactor

○ unit: %

○ canAct: true

○ valueType: 2

○ maxValue: 100

○ minValue: 0

73

● PB2

○ id: 10

○ name: PB2

○ description: Bomba de Subministrament - pH Base Bioreactor

○ unit: %

○ canAct: true

○ valueType: 2

○ maxValue: 100

○ minValue: 0

● PB3

○ id: 11

○ name: PB3

○ description: Bomba de Subministrament - pH Acid Bioreactor

○ unit: %

○ canAct: true

○ valueType: 2

○ maxValue: 100

○ minValue: 0

74

● PB4

○ id: 117

○ name: PB4

○ description: Bomba de Circulació - Sortida Electroobtenció / Entrada

 Bioreactor

○ unit: %

○ canAct: true

○ valueType: 2

○ maxValue: 100

○ minValue: 0

● VB

○ id: 112

○ name: VB

○ description: Electrovàlvula - Rebuig Bioreactor

○ unit: null

○ canAct: true

○ valueType: 2

○ maxValue: 1

○ minValue: 0

75

● V3

○ id: 116

○ name: V3

○ description: Electrovàlvula - Sortida Electroobtenció / Entrada

Bioreactor

○ unit: null

○ canAct: true

○ valueType: 2

○ maxValue: 1

○ minValue: 0

● V1

○ id: 113

○ name: V1

○ description: Electrovàlvula - Sortida Bioreactor / Entrada Lixiviacio

○ unit: %null

○ canAct: true

○ valueType: 2

○ maxValue: 1

○ minValue: 0

76

● VMM

○ id: 111

○ name: VMM

○ description: Electrovàlvula - Medi M. Bioreactor

○ unit: null

○ canAct: true

○ valueType: 2

○ maxValue: 1

○ minValue: 0

Leaching Components:

● PH2

● C

● RD1

● GR1

● BL1

● HL1

● LL1

● PL1

● PL2

● V1

● V2

77

● PH2

○ id: 12

○ name: PH2

○ description: Sensor Nivell pH - Lixiviació

○ unit: null

○ canAct: No

○ valueType: 1

○ maxValue: 1.8

○ minValue: 1.6

● C

○ id: 13

○ name: C

○ description: Número compost de tots els colors - Lixiviació

○ unit: null

○ canAct: No

○ valueType: 1

○ maxValue: null

○ minValue: null

78

● RD1

○ id: 36

○ name: RD1

○ description: Color Vermell - Lixiviació

○ unit: null

○ canAct: No

○ valueType: 1

○ maxValue: null

○ minValue: null

● GR1

○ id: 37

○ name: GR1

○ description: Color Verd - Lixiviació

○ unit: null

○ canAct: No

○ valueType: 1

○ maxValue: null

○ minValue: null

79

● BL1

○ id: 38

○ name: BL1

○ description: Color Blau - Lixiviació

○ unit: null

○ canAct: No

○ valueType: 1

○ maxValue: null

○ minValue: null

● HL1

○ id: 14

○ name: HL

○ description: Sensor de Nivell Alt - Lixiviació

○ unit: null

○ canAct: No

○ valueType: 3

○ maxValue: null

○ minValue: null

80

● LL1

○ id: 15

○ name: LL

○ description: Sensor de Nivell Baix - Lixiviació

○ unit: null

○ canAct: No

○ valueType: 3

○ maxValue: null

○ minValue: null

● PL1

○ id: 16

○ name: PL1

○ description: Bomba de Recirculació - Lixiviació

○ unit: %

○ canAct: Sí

○ valueType: 2

○ maxValue: 100

○ minValue: 0

81

● PL2

○ id: 17

○ name: PL2

○ description: Bomba de Subministrament - pH Acid Lixiviació

○ unit: %

○ canAct: Sí

○ valueType: 2

○ maxValue: 100

○ minValue: 0

● V1

○

id: 113

○ name: V1

○ description: Electrovàlvula - Sortida Bioreactor / Entrada Lixiviacio

○ unit: null

○ canAct: Sí

○ valueType: 2

○ maxValue: 1

○ minValue: 0

82

● V2

○ id: 114

○ name: V2

○ description: Electrovàlvula - Sortida Lixiviació / Entrada

Electroobtenció

○ unit: null

○ canAct: Sí

○ valueType: 2

○ maxValue: 1

○ minValue: 0

Electrowinning Components:

● PB4

● VE

● V2

● SP2

● Tension

● Current

● C2

● RD2

● GR

● BL2

83

● PB4

○ id: 117

○ name: PB4

○ description: Bomba de Circulació - Sortida Electroobtenció / Entrada

Bioreactor

○ unit: %

○ canAct: true

○ valueType: 2

○ maxValue: 100

○ minValue: 0

● VE

○ id: 115

○ name: VE

○ description: Electrovàlvula de Recirculació - Electroobtenció

○ unit: null

○ canAct: true

○ valueType: 2

○ maxValue: 1

○ minValue: 0

84

● V2

○ id: 114

○ name: V2

○ description: Electrovàlvula - Sortida Lixiviació / Entrada

 Electroobtenció

○ unit: null

○ canAct: true

○ valueType: 2

○ maxValue: 1

○ minValue: 0

● SP2

○ id: 201

○ name: SP2

○ description: Sensor Pressió - Electroobtenció

○ unit: null

○ canAct: false

○ valueType: 3

○ maxValue: null

○ minValue: null

85

● Tension

○ id: 22

○ name: Tension

○ description: Sensor de Tensió - Electroobtenció

○ unit: null

○ canAct: false

○ valueType: 1

○ maxValue: null

○ minValue: null

● Current

○ id: 21

○ name: Current

○ description: Sensor de Corrent - Electroobtenció

○ unit: null

○ canAct: false

○ valueType: 1

○ maxValue: null

○ minValue: null

86

● C2

○ id: 23

○ name: C2

○ description: Número compost de tots els colors - Electroobtenció

○ unit: null

○ canAct: false

○ valueType: 1

○ maxValue: null

○ minValue: null

● RD2

○ id: 39

○ name: RD2

○ description: Color Vermell - Electroobtenció

○ unit: null

○ canAct: false

○ valueType: 1

○ maxValue: null

○ minValue: null

87

● GR2

○ id: 40

○ name: GR2

○ description: Color Verd - Electroobtenció

○ unit: null

○ canAct: false

○ valueType: 1

○ maxValue: null

○ minValue: null

● BL2

○ id: 41

○ name: BL2

○ description: Color Blau - Electroobtenció

○ unit: null

○ canAct: false

○ valueType: 1

○ maxValue: null

○ minValue: null

88

Database ER

Figure 14 B:. Database ER schema. Own Source.

89

C. Developer’s Manual

The manual contains descriptions of the different modules of the project as well as instructions

for maintaining them.

Front End React

The important directories for front end development are listed.

Biometallum_APP\FrontEnd\src\components\views\UserLogs\SignIn.js

SignIn uses React's useState hook to manage its local state. To control user input, toggle

password visibility, display messages, and set alert types, states for username, password,

showPassword, message, and alertVariant are managed, respectively.

In response to form submission, controlled by the handleSubmit function, the component

attempts to authenticate the user. Authentication is accomplished by using the login function,

extracted from the authentication context of the application, with the user's username and

password entered. The setMessage function displays an error message if the login attempt

fails, and it is automatically cleared after a predefined period of time.

1. User Input: Collects username and password via text inputs.

2. Password Visibility Toggle: Uses a clickable icon to toggle password visibility.

3. Alert Notification: Displays alert messages for authentication issues (e.g., invalid

credentials) using React Bootstrap’s Alert component.

4. Form Submission: On form submission (handleSubmit):

○ Prevents default form submission behavior.

○ Attempts user authentication using login.

○ Sets an error message for failed authentication, which disappears after 6

seconds.

○ Displays appropriate messages and alters UI states as needed.

Biometallum_APP\FrontEnd\src\components\views\Home\Home.js

The home view utilizes a websocket connection to handle and manage real-time alerts,

ensuring that users are notified instantly when important messages or alerts are received.

Through the websocketConnexion function and the useEffect hook, these functions establish

a websocket connection and set up a message handler to receive incoming alerts upon

component mounting. In addition to being displayed in the user interface through addAlert,

the received alerts are also stored in indexedDB through storeAlert, ensuring that they are

accessible even when offline.

useEffect(() => {

90

 websocketConnexion((message) => {

 const alertMessage = message.body;

 addAlert(alertMessage);

 const alertData = {

 timestamp: Date.now(),

 message: alertMessage

 };

 storeAlert(alertData);

 });

}, [addAlert]);

Upon component mounting, a WebSocket connection is established using

websocketConnection. When a message is received over the WebSocket, it extracts the

message body, sends it to be displayed as an alert using addAlert, and stores the alert data

(presumably for future reference or display) using storeAlert which is not defined in the

provided code.

This component manages the state and persistence of the "active" station (e.g., Bioreactor,

Leaching, Electrowinning) using the useState hook and localStorage. The activeStation state

determines which station is currently selected and displayed to the user. The

handleStationClick function enables users to select a station, and this choice is subsequently

stored to localStorage, thereby preserving their selection regardless of whether they navigate

away from the page or refresh it, improving the user experience by maintaining a consistent

state across sessions.

As the activeStation state changes, the Home component renders different Station

components conditionally. The station component is rendered with the appropriate stationId

and image properties according to whether the activeStation is set to 'Bioreactor', 'Leaching',

or 'Electrowinning'. Through this dynamic display, users can interactively select and view

details related to different stations without having to navigate to different pages or routes,

ensuring a streamlined and intuitive user experience.

91

Biometallum_APP\FrontEnd\src\components\mainComponents\registers\Registers.js

A number of useEffect hooks manage the fetching, filtering, and updating of register data,

including re-fetching data at regular intervals and dynamically updating available filters:

useEffect(() => {

 // Fetching data...

 const intervalId = setInterval(() => {

 // Re-fetching data...

 }, 60000);

 return () => {

 clearInterval(intervalId);

 };

}, [stationFilter, componentFilter]);

When the component is unmounted, the cleanup function clears the interval, preventing

possible memory leaks.

Data retrieval is orchestrated via API calls (such as fetchAllRegisters and

fetchRegistersByStationId), and the results are stored in component state (rawRegisters). Data

is re-fetched every minute by setting an interval, ensuring data remains up-to-date without

the need for manual updating.

Using the exportToExcel function, users can export the filtered data to Excel, maintaining a

desirable format and providing offline access and usability of the captured data. In addition to

improving usability and facilitating rapid access to common views, several quick-access buttons

allow users to specify predefined date ranges for data filtering. As a result of the selected

component filters, either a detailed or summarized view is displayed based on the graphical

display (via RegistersGraphics) and tabular data.

Biometallum_APP\FrontEnd\src\config\router\paths.js

The project route paths become a single source of truth when they are defined as constants

(HOME, LOGIN, etc.). The result is that if it is needed to update a path, the app only has to do

so in one place rather than finding and replacing it throughout the entire codebase, which

reduces the risk of error. Here are all the project paths:

export const HOME = '/';

export const LOGIN = '/login'

92

export const LOGOUT = '/logout'

export const USERSDASHBOARD = '/users'

export const COMPONENTDASHBOARD = '/components'

export const COMMANDDASHBOARD = '/commands'

export const REGISTERS = '/registers'

export const NOTIFICATIONS = '/notifications'

export const ALERTS = '/alerts'

In order to define the navigation of the application, paths and components are used within a

router:

<AuthProvider>

 <AlertsProvider>

 <BrowserRouter>

 <Routes>

 <Route path={LOGIN} element = {<PublicRoute />}>

 <Route path={LOGIN} element={<SignIn/>} />

 </Route>

 <Route path={HOME} element = {<PrivateRoute />}>

 <Route path={HOME} element={<Home/>} />

 </Route>

 <Route path={USERSDASHBOARD} element = {<AdminRoute />}>

 <Route path={USERSDASHBOARD} element={<UserDashboard />} />

 </Route>

 <Route path={COMPONENTDASHBOARD} element={<AdminRoute />}>

 <Route path={COMPONENTDASHBOARD} element={<ComponentDashboard/>} />

 </Route>

 <Route path={COMMANDDASHBOARD} element={<UserRoute/>}>

 <Route path={COMMANDDASHBOARD} element={<CommandDashboard/>} />

 </Route>

 <Route path={REGISTERS} element={<PrivateRoute/>}>

 <Route path={REGISTERS} element={<RegistersPanel/>} />

 </Route>

 <Route path={NOTIFICATIONS} element={<PrivateRoute/>}>

 <Route path={NOTIFICATIONS} element={<NotificationsPanel/>} />

 </Route>

 <Route path={ALERTS} element={<PrivateRoute/>}>

 <Route path={ALERTS} element={<AlertsPanel/>} />

93

 </Route>

 </Routes>

 </BrowserRouter>

 </AlertsProvider>

 </AuthProvider>

Biometallum_APP\FrontEnd\src\components\router\AdminRoute.js

The AdminRoute component is a protective route that validates whether a user is

authenticated and holds the 'ADMIN' role before allowing access to a particular navigational

outlet. By using the useAuthContext custom hook, it is able to retrieve the user's

authentication status and roles.

function AdminRoute() {

 const { isAuthenticated, roles } = useAuthContext();

 if (!isAuthenticated || roles !== 'ADMIN') {

 return <Navigate to={LOGIN} replace />

 }

 return <Outlet/>

}

It ensures that the subsequent rendered child routes or components within the Outlet are

shielded and accessible only to authorized administrators if the user is not authenticated or

does not possess the 'ADMIN' role.

Biometallum_APP\FrontEnd\src\components\router\UserRoute.js

In the UserRoute component, route access is managed using React and useAuthContext. Users

who have authenticated and have a user role of either 'ADMIN' or 'USER' can access the route

corresponding to their role. Otherwise, they are directed to the login page, ensuring limited

access to the specified routes.

function UserRoute() {

 const { isAuthenticated, roles } = useAuthContext();

 if (!isAuthenticated || (roles !== 'ADMIN' && roles !== 'USER')) {

 return <Navigate to={LOGIN} replace />

 }

 return <Outlet/>

}

}

94

Biometallum_APP\FrontEnd\src\components\router\PrivateRoute.js

By using the useAuthContext hook, the PrivateRoute component ensures access is only

granted to authenticated users.

Biometallum_APP\FrontEnd\src\components\router\PublicRoute.js

PublicRoute in React uses the useAuthContext hook to check user authentication and

conditionally redirects authenticated users to the home page, preventing them from accessing

public routes.

Biometallum_APP\FrontEnd\src\contexts\alertContext.js

It is a Context for managing alerts within an application.

● The AlertsContext is created using the createContext() method, which provides access

to alert data and functions throughout the application.

● An AlertsProvider provides alert data and functions to child components at a higher

level in the component tree. It maintains the state of alerts using useState([]), starting

with an empty array.

○ addAlert(newAlert): The function addAlert takes a newAlert as an argument,

and updates the alerts state by adding the new alert to the beginning of the

previous alerts array, ensuring that the most recent alert is always displayed at

the top of the array. It uses a functional update pattern to ensure that it

always uses the most up-to-date state.

○ Returning a Provider: The AlertsProvider returns an AlertsContext.Provider

that provides the alerts array and addAlert function to any nested child

components.

● useAlertsContext: A custom hook useAlertsContext is defined for consuming the

context conveniently in function components. It utilizes useContext to access the

AlertsContext and will throw an error if it is used outside of an AlertsProvider, ensuring

proper usage of the context.

This structure allows any child component under AlertsProvider to access the current array of

alerts and add a new alert.

Biometallum_APP\FrontEnd\src\contexts\authContext.js

The AuthContext is used to manage authentication and authorization. The AuthProvider

component manages the state regarding user authentication, roles, and usernames, and

provides login and logout functionality.

● Authentication: Asynchronous login functions retrieve data from a login API, set an

access_token and user roles in local storage, and update authState to reflect the user

role and authentication. When login fails, it logs errors and sets isAuthenticated to

false.

95

● Logout: The logout function removes all user data and roles from local storage and

sets isAuthenticated to false in the authState variable.

With the useAuthContext custom hook, child components can access authentication and user

information, as well as login and logout methods, as long as it is used within an AuthProvider.

This implementation is fundamental for restricting/allowing access to various parts of an

application based on user authentication and roles.

Biometallum_APP\FrontEnd\src\utils\indexedDB.js

Alerts are managed using IndexedDB, a low-level API for storing structured data on the client

side. This will allow users to check the alert registers even if they are online.

Here's a brief overview of the functionality within the code:

1. Opening/Creating a Database:

○ dbName and storeName are constants defining the name of the database and

object store respectively.

○ dbOpenPromise: A promise is utilized to manage the opening/creation of an

IndexedDB database and its readiness for transactions. Event handlers manage

success (onsuccess), error (onerror), and upgrade (onupgradeneeded)

scenarios.

2. Storing Alerts:

○ storeAlert(alert): An asynchronous function that stores an alert object in the

IndexedDB once the database is ready. It performs a "readwrite" transaction

on the object store and attempts to add the alert, logging whether the

operation is successful or encounters an error.

3. Fetching Alerts:

○ fetchAlerts(callback): Utilizes the opened database to retrieve all stored

alerts, utilizing a "readonly" transaction. The alerts are fetched via

store.getAll(), and if successful, they are passed to the provided callback

function for further handling.

4. Cleaning Up Old Alerts:

○ cleanupOldAlerts(): This function scans through stored alerts and deletes any

older than one month (calculated as a timestamp in milliseconds). A cursor is

utilized to traverse available records, deleting where applicable and logging

the process and/or any errors.

Back End Spring Boot

biometallum\server\config\WebSocketConfiguration.java

Java class that configures a WebSocket with STOMP (Streaming Text Oriented Messaging

Protocol) protocol support in a Spring application. There are two possible routes:

96

/message:

● API:

○ The API sends a data object (alert message) through the /message endpoint.

● Front End:

○ The Front End listens to the API messages on /message prefixed destinations.

/info:

● Plant DevicesI:

○ Plant devices send an array of objects containing register values and

component ids through the /info endpoint.

● API:

○ The API listens to messages on /info prefixed destinations, acting upon

received data from the plant devices (registers generation).

● Front End:

○ Sends an object to plant devices containing component id and a command

using the /info endpoint.

As a practical implementation for testing, the following code demonstrates how to
establish a WebSocket connection for real-time data communication using a STOMP-
like protocol. By adhering to STOMP's structure, communications can be standardized,
reliable, and organized, resulting in smooth data flow between the server and the client,
particularly in a system that transmits critical or live data, such as a plant information
system.

The script is used to send test messages to ensure that the server is able to
understand and process the JSON format and structure of plant incoming objects,
which will ultimately be used to generate an register.

import websocket
import json

def on_message(ws, message):
 print("Received: {}".format(message))

def on_error(ws, error):
 print("Error: {}".format(str(error)))

def on_close(ws, close_status_code, close_msg):
 print("Closed")

def on_open(ws):
 connect_frame = "CONNECT\naccept-version:1.1,1.0\n\n\x00"
 ws.send(connect_frame)

 subscribe_frame = "SUBSCRIBE\nid:1\ndestination:/ws/info\n\n\x00"
 ws.send(subscribe_frame)

 data_to_send = [
 {"id": 3, "value": 5},
 {"id": 12, "value": 1.5},

97

 {"id": 17, "value": 100}
]

 send_frame = "SEND\ndestination:/ws/info\n\n" + json.dumps(data_to_send) +
"\n\x00"
 ws.send(send_frame)

ws_url = "ws://localhost:8080/ws/"
websocket.enableTrace(True)
ws = websocket.WebSocketApp(ws_url,
 on_message=on_message,
 on_error=on_error,
 on_close=on_close,
 on_open=on_open)

ws.run_forever()

biometallum\server\config\PlantWebSocketController.java

Handles JSON messages related to "Plant" information. The WebSocket protocol provides full-

duplex communication channels over a single TCP connection. Below is a breakdown of the

code snippets provided:

Main Message Handling:

handlePlantMessage(String message)

● Purpose: To receive, deserialize, and handle JSON messages.

● Operations:

○ Deserializes received JSON string messages.

○ Handles messages which can be an array of JSON objects or a single JSON

object.

○ For arrays, it iterates through each object and processes them.

● Error Handling: Logs and prints stack traces of JSON processing errors.

JSON Object Processing:

processJsonObject(JsonNode jsonObject)

● Purpose: To determine the type of JSON object and process it accordingly.

● Operations:

○ Checks if JSON objects have certain properties ("command" or "value") and

directs them to appropriate processing functions.

○ Handles arrays and single objects differently to construct a list of data.

98

Plant Data Processing:

processPlantData(List<PlantDataDTO> incomingDataList)

● Purpose: To process a list of plant data objects and handle them by creating new

registers.

● Operations:

○ Iterates through a list of PlantDataDTO objects, validates data, and manages it

according to business logic.

○ Retrieves ComponentThing objects, validates, creates new Register objects,

and saves them using the registers repository.

Plant Command Processing:

processPlantCommand(PlantCommandDTO command)

● Purpose: To process received commands and send responses back through

WebSocket.

● Operations:

○ Logs the received command.

○ Logic related to command processing is presumed to be implemented.

○ Sends back a JSON response through WebSocket on the “/message/response”

endpoint.

biometallum\server\filters\CustomAuthenticationFilter.java

Custom authentication filter named CustomAuthenticationFilter. This filter extends the

UsernamePasswordAuthenticationFilter class provided by the Spring Security framework and

is tailored to handle user authentication within the application.

-attemptAuthentication

● Retrieves username and password from the HTTP request.

● Generates an UsernamePasswordAuthenticationToken using credentials.

● Calls the authenticate method of authenticationManager to perform the actual

authentication.

-successfulAuthentication

● Generates a JWT (JSON Web Token) with HMAC256 encoding, containing user details

and roles.

● Sets the expiration time for the token.

● Creates a response map containing the token and user roles.

● Specifies the response type as JSON and allows cross-origin requests from a specific

url.

● Writes the token and roles into the response output stream.

99

biometallum\server\filters\CustomAuthorizationFilter.java

CustomAuthorizationFilter, is a custom implementation of a filter within the Spring

framework, designed to handle authorization logic within a Spring Boot application. This filter

extends OncePerRequestFilter, meaning that this filter will be executed once per request.

● Authenticate Requests: Validate JWT (JSON Web Token) tokens sent in HTTP request

headers for secured endpoints.

● Allow Certain Requests: Bypass the filtering for specific endpoints like /api/login. For

other endpoints, it verifies the JWT token. If token verification is successful, retrieves

user details and sets authentication in the security context.

biometallum\server\models\ComponentThing.java

1. Basic Attributes:

○ id: Unique identifier for each ComponentThing.

○ name: A string name of the component.

○ description: A string that holds a description.

○ unit: A string for unit measurement, with a custom column definition allowing

NULLs.

○ canAct: A boolean that perhaps indicates whether the component can perform

an action.

○ valueType: A Long presumably representing a type of value.

○ maxValue and minValue: Float values setting upper and lower limits.

2. Relationships:

○ stationList: A many-to-many relationship with Station.

○ registers: A one-to-many relationship with Register.

○ alerts: A one-to-many relationship with Alert, with cascade type ALL.

3. Non-persisted Attribute:

○ latestRegister: Not stored in the DB, only used in application logic.

biometallum\server\utils\email\impl\EmailService.java

The sendEmailForTheAlert method it's designed to send an email alert based on a

ComponentThing and a message to a User.

1. Email Sender and Helper: Utilizes MimeMessage and MimeMessageHelper to

construct and send an email.

2. Conditional Sending: Emails are sent conditionally if the User object has a non-null

email address.

3. Email Contents: The email’s subject and body are dynamically generated based on the

ComponentThing and messageText parameters.

100

biometallum\server\utils\schedule\impl\ScheduleRegisterAlert.java

The class uses the @Scheduled annotation to periodically perform these checks. Below are

explanations and breakdowns of the different alerts and how they are executed:

checkAlertWithTheLastestRegister Method:

● Functionality: Iterates through all users and performs several alert checks, as defined

by the methods called within the loop (phAlertCheck, hl1AlertCheck, ll1AlertCheck,

spAlertCheck, and sp2AlertCheck).

● Scheduling: Utilizing @Scheduled(fixedRate = 1000 * 60), this method will be

triggered every minute (60,000 milliseconds).

canSendAlert Method:

● Functionality: Determines whether it's permissible to send an alert for a given

component, based on the time of the last alert sent for that component.

● Mechanism: Maintains a Map<Long, LocalDateTime> lastAlertTime that keeps track

of the last time an alert was sent for each component.

phAlertCheck Method:

● Alert Type: pH level checks for two components (Bioreactor and Leaching).

● Functionality: Validates if the pH level recorded in the latest register entry is outside

the defined minimum or maximum limits.

● Criteria: If a pH reading is above maxValue or below minValue, and no alert has been

sent for this component in the last 12 hours, an alert is sent.

hl1AlertCheck Method:

● Alert Type: High-level alert (probably related to a high liquid level or similar) in the

Leaching station.

● Functionality: Validates if the latest reading is above a predetermined level (value is

still to be defined).

● Criteria: If the reading is higher than the predetermined level and it's permissible to

send an alert, an alert is dispatched.

ll1AlertCheck Method:

● Alert Type: Low-level alert in the Leaching station.

● Functionality: Checks if the latest register entry has a value below a certain threshold

(value is still to be defined).

● Criteria: If the reading is below the predetermined level and it's permissible to send an

alert, an alert is dispatched.

101

spAlertCheck and sp2AlertCheck Methods:

● Alert Type: Pressure sensor high-level alert for prolonged periods in the Bioreactor

(spAlertCheck) and Electrowinning (sp2AlertCheck) stations.

● Functionality: Validates if the pressure reading is above a level (value is still to be

defined) and has been in this state for more than 10 minutes.

● Criteria: If the above conditions are true and no alert has been sent for this

component in the last 12 hours, an alert is sent.

Execution Flow:

1. Scheduled Execution: Every minute, checkAlertWithTheLastestRegister is invoked.

2. User Iteration: For each user, different alert check methods are invoked.

3. Alert Checks: Each alert check method will:

○ Retrieve the relevant component(s).

○ Validate if it’s permissible to send an alert (using canSendAlert).

○ Fetch the latest register entries and assess whether alert criteria are met.

4. Sending Alerts: When alert criteria are met, a message may be sent in one of two

ways:

○ Direct messaging via the MessageController.

○ Email notification if the user is configured to receive them.

5. Alert Time Update: After an alert is sent, the time is logged to prevent another alert

within 12 hours of the previous alert.

