
TYPE Mini Review
PUBLISHED 04 January 2024
DOI 10.3389/fpsyg.2023.1289816

OPEN ACCESS

EDITED BY

Frank A. Russo,
Toronto Metropolitan University, Canada

REVIEWED BY

Monica Leba,
Universitatea Din Petrosani, Romania
Francesca Gasparini,
University of Milano-Bicocca, Italy

*CORRESPONDENCE

Zhihui Zhang
zhihui.zhang@upc.edu

RECEIVED 07 September 2023
ACCEPTED 11 December 2023
PUBLISHED 04 January 2024

CITATION

Zhang Z, Fort JM and Giménez Mateu L (2024)
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Mini review: Challenges in EEG
emotion recognition

Zhihui Zhang*, Josep M. Fort and Lluis Giménez Mateu

Escola Tècnica Superior d’Arquitectura de Barcelona, Universitat Politècnica de Catalunya,
Barcelona, Spain

Electroencephalography (EEG) stands as a pioneering tool at the intersection
of neuroscience and technology, o�ering unprecedented insights into human
emotions. Through this comprehensive review, we explore the challenges and
opportunities associated with EEG-based emotion recognition. While recent
literature suggests promising high accuracy rates, these claims necessitate critical
scrutiny for their authenticity and applicability. The article highlights the significant
challenges in generalizing findings from a multitude of EEG devices and data
sources, as well as the di�culties in data collection. Furthermore, the disparity
between controlled laboratory settings and genuine emotional experiences
presents a paradox within the paradigm of emotion research. We advocate
for a balanced approach, emphasizing the importance of critical evaluation,
methodological standardization, and acknowledging the dynamism of emotions
for a more holistic understanding of the human emotional landscape.
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Introduction

In the rapidly evolving field of neuroscience and technological integration,

Electroencephalography (EEG) has emerged as a pivotal tool, offering profound insights

into human brain functions, especially in the study of emotional responses. Emotions, as

complex amalgamations of physiological and cognitive reactions, deeply influence our daily

interactions, decision-making processes, and even our experiences within architectural

settings (Brunner-Sperdin et al., 2012; Nummenmaa et al., 2012; Lehman et al., 2015; Zhang

et al., 2022). Emotions play a significant role in shaping human perception and interaction.

This makes the study of emotional responses important in various fields, including

healthcare and architecture. Understanding these responses is not just academically

intriguing; it also has practical implications in these sectors.

Although EEG is increasingly favored due to its non-invasiveness and high temporal

resolution, the in-depth analysis of the data it generates is particularly crucial. Numerous

studies have underscored the methods of using EEG in emotional research (Chen et al.,

2015; Christensen and Abdullah, 2018; Suhaimi et al., 2020; Dadebayev et al., 2021; Li et al.,

2022). However, discussions around the quality of EEG emotional measurements are less

prominent. While a careful review acknowledges the contributions of these studies, it also

unveils oversights, particularly in addressing the intricacies and challenges of EEG data

quality. For instance, Cohen et al. (2023) highlights the need for rigorous validation of EEG

data in emotional research. These concerns suggest that the allure of high success rates and

groundbreaking discoveries might sometimes overshadow the inherent complexities and

limitations of EEG, necessitating a more critical examination of its use in emotional studies.
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This article explores the complex aspects of emotion research

using EEG. It critically examines the claims of high accuracy in

the field and discusses the fundamental nature of emotions. The

objective is to offer a comprehensive analysis that encompasses

the technical challenges associated with EEG data, the impact of

equipment and data source variability on application, and the

paradoxes faced in conducting emotion research in controlled

settings. The paper aims to contribute to a detailed and nuanced

understanding of emotional science exploration.

Methodology

To gain a comprehensive understanding of the challenges and

dilemmas in EEG emotion measurement, we embarked on an in-

depth literature review in August 2023, focusing our efforts on

three pivotal academic databases: Web of Science, Scopus, and

ProQuest. These databases were chosen for their extensive coverage

in neuroscience and psychological research. Using the keyword

combination of “EEG” and “emotion”, we aimed to collate core

research papers central to our topic. This initial search spanning

the years 2022 to 2023 yielded a significant count of 3,741 articles.

Recognizing the voluminous nature of our initial pool and the

need for stringent quality control, we employed the MMAT (Mixed

Methods Appraisal Tool) (Hong et al., 2018) to assess and sieve

these articles. The MMAT, renowned for its capability to critically

assess mixed methods research, served as a foundational filter in

our process.

The subsequent phase of our methodology centered on

refining our selection based on the robustness of experimental

results. We pivoted our attention toward articles that reported

an emotion recognition accuracy rate exceeding 90%, a threshold

we deemed crucial as it represents a benchmark in EEG-based

emotion recognition that suggests robust and replicable findings.

This rigorous criterion distilled our initial list down to 22

quintessential articles poised for an in-depth analysis. To further

elevate the quality of our review and to draw comprehensive

insights, we employed the bibliometrix packages in R studio

for data visualization analysis (Aria and Cuccurullo, 2017). This

sophisticated analytical tool enabled us to intricately map co-

citation relationships, track research keywords, and intuitively

navigate the intricate web of research relationships and emergent

themes in the domain, all of which is exemplified in Figure 1.

The reality behind high EEG accuracy
rates

Recent EEG-based emotion recognition research claims

strikingly high accuracy rates of 90–99% (see Table 1). These

figures are particularly remarkable when juxtaposed with the 75–

80% accuracy rate achieved by current facial emotion recognition

technology (Naga et al., 2023). However, the majority of these

EEG studies employ binary (Valence, Arousal) or ternary (Positive,

Negative, Neutral) emotional models, which inherently simplify

the classification task and can lead to inflated accuracy rates. For

instance, Zhong et al. (2019) reported a drop in accuracy from

79.14–91.67% to 68.26–80.14%when their binarymodel of emotion

was expanded to include four dimensions. This is particularly

telling considering that standardmodels of basic emotions are often

based on six or seven categories, suggesting that a more nuanced

approach might yield significantly different accuracy rates.

In discussions of EEG-based emotion recognition accuracy, it

becomes evident that models relying on subject-dependent data

often report higher accuracy rates. This is because when a model

is trained and tested on data from the same participant, it can

more effectively capture specific characteristics of that individual,

leading to increased accuracy. For instance, the BiDANN model

by Li et al. (2022) demonstrated an accuracy range of 86.15–

96.89% on the SEED dataset (Zheng and Lu, 2015) in a subject-

dependent scenario, while the accuracy dropped to 74.52–91.04%

in subject-independent settings. Similarly, the BiDCNN model

by Huang et al. (2021) achieved emotion recognition accuracy

rates of 94.38–94.72% using subject-dependent strategies, which

significantly declined to 68.14–63.94% under subject-independent

conditions. This phenomenon highlights the substantial reduction

in overall accuracy rates when shifting from subject-dependent

to subject-independent validation strategies. Independent subject

validation poses a greater challenge as it requires the model to

generalize to data from unseen participants. This generalization

often reveals limitations of the model, as it must capture broader

and more universal emotional features rather than merely adapting

to specific training data. Therefore, when assessing the true

performance of EEG emotion recognition technologies, special

attention should be paid to the accuracy rates reported under

subject-independent conditions.

The choice of k-value in cross-validation significantly impacts

the model’s generalization ability and accuracy. Although most

studies employ 10- or 15-fold cross-validation, which helps to

reduce the risk of overfitting to specific data splits, there are

situations, such as the use of 5-fold cross-validation, especially

when data splits are not sufficiently random or the dataset size

is small, where the model may still face the risks of overfitting

and artificially inflated accuracy rates. Moreover, the use of

windowing and segmentation as data augmentation strategies

warrants attention in these studies. When data is augmented

through windowing and segmentation, the model may become

overly proficient at recognizing repetitive or similar data segments,

leading to seemingly improved performance during testing. While

this data augmentation strategy can enhance model performance

in some cases, it may also lead to poor generalization on new,

unseen data, thereby significantly compromising accuracy in

practical applications.

Therefore, while it seems that EEG emotion analysis has

made significant progress due to deep learning, the high accuracy

rates often overshadow the selective presentation of results by

researchers under publication pressures.

The challenge of application

In the field of EEG-based emotion recognition, although there

are technical challenges such as physiological disturbances to

brain signals from sources like body movement, muscle electrical

interference, eye movements, and heartbeats (Fatourechi et al.,

2004), the greater challenge lies in applying these techniques

Frontiers in Psychology 02 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1289816
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Zhang et al. 10.3389/fpsyg.2023.1289816

FIGURE 1

Visual representation of EEG emotion research: co-citation and keyword relationships.

to practical scenarios. Unlike facial emotion recognition,

which primarily uses images, the data sources for EEG-based

emotion detection are more intricate and varied. A notable

observation is that most EEG-based emotion recognition

studies rely on pre-existing datasets [such as SEED, DEAP

(Koelstra et al., 2011), DREAMER (Katsigiannis and Ramzan,

2017)] rather than collecting data independently (Kumari et al.,

2022). Furthermore, there seems to be a scarcity of research

in applying self-designed and trained models to real-world

emotion measurement experiments. Several reasons contribute to

this scenario:

• Lack of standardization in EEG devices: While image-

based facial recognition technologies can often normalize

variations through advanced processing, EEG data faces

greater challenges in standardization due to the lack of

consistent device standards. EEG products can be classified

based on the number of electrodes: more than 32 electrodes

(high-density systems), 8–32 electrodes (medium-density

systems), and fewer than eight electrodes (low-density

systems). Additionally, the type of electrode—be it wet, dry,

or specialized—adds to the complexity (Hernandez-Pavon

et al., 2023). While wet electrodes using conductive gels or

saline might offer better signal quality, they can be more

cumbersome and intrusive, potentially affecting the emotional

state of the participant. On the other hand, consumer-grade

EEG devices, typically designed more for entertainment than

research, often use fewer electrodes (1–16) and may not be

suitable for rigorous scientific study.

• Challenges in data collection: Collecting EEG data presents

a unique set of challenges, primarily due to the need for

specialized knowledge and high-quality capture techniques

(Boudewyn et al., 2023). Unlike more accessible fields like

video tracking or facial emotion recognition, EEG data

collection demands specialized expertise and sophisticated

equipment. Here, “regular researchers” refers to those who

might not specialize in neuroscientific methods or lack access

to advanced EEG data collection facilities. These general

researchers, typically found in broader disciplines without a

focus on neurology or bioengineering, often face challenges

in acquiring and processing EEG data due to limited facilities

or expertise. Such limitations in data gathering can impede

the development of robust machine learning models, affecting

their generalizability and effectiveness.

Given these challenges, it’s clear that emotion recognition based

on EEG is not just a matter of recognition technique but also

involves the availability of data and equipment. The fragmented

nature of data sources, combined with the diversity of EEG devices

and the complexities of data collection, poses significant obstacles

to the advancement and generalization of EEG-based emotion

recognition research.

The paradox of emotional research

The disconnect between laboratory environments and genuine

emotional experiences is a key issue in emotion studies. Laboratory

settings may be too rigid and artificial, failing to reflect real

emotional experiences in daily life (Russell, 1994). Limitations

of laboratory-based emotional research include the simulation

of real-life scenarios and individual differences in emotional

experience (Rottenberg and Gross, 2007). We need to balance
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TABLE 1 Recent EEG emotion recognition studies with an accuracy rate exceeding 90%.

References Data set Model
abbreviation

Model
description

Signal
processing

Emotion
type

Dependence
accuracy

Independence
accuracy

Dependence
strategy

Independence
strategy

Li et al. (2018) SEED BiDANN Bi-hemispheres

domain adversarial

neural network

1D to 2D PNN 86.15–96.89% 74.52–91.04% TT: 9–6 15-fold C-V

Yang et al. (2018) DEAPKoelstra et al.

(2011)

CFCNN Channel-frequency

convolutional

neural network

1D to 2D VA 90.80–91.03% Null 10-fold C-V Null

Ma et al. (2019) DEAP Res-LSTM Multimodal

residual LSTM

classifier

Downsampling

Filtering

VA 92.87–92.30% Null 5-fold C-V Null

Li et al. (2022) SEED LSTM-based Hierarchical

spatio-temporal

neural network

model based on

LSTM

Filtering

normalization

PNN 89.05–95.48% 79.73–90.05% TT: 9-6 15-fold C-V

Zhang et al. (2019) SEED Riemannian

Network

Riemannian

Network

Segmentation PNN 86.40–91.55% Null 10-fold C-V Null

Cho and Hwang

(2020)

DEAP 3D-CNN 2 types of 3D-CNN

models

Segmentation VA 99.74–99.73% Null 5-fold C-V Null

Zhong et al. (2019) SEED RGNN Regularized GNN

model

Filtering

Normalization

NSFH

(VA)

71.85–91.92%

(90.04–97.60%)

68.26–80.14%

(79.14–91.67%)

15-fold C-V 15-fold C-V

Zhang et al. (2020) SEED, MPED

Song et al. (2019)

VPR Heuristic

variational pathway

reasoning

Filtering PNN 93.21–95.67% (SD)

61.61–80.95% (MD)

Null TT: 9-6 Null

Cui et al. (2020) DEAP, DREAMER

Katsigiannis and Ramzan

(2017)

RACNN End-to-end

regional-

asymmetric

CNN

Segmentation VA 96.65–97.11% (DP)

95.55–97.01% (DR)

Null 10-fold C-V Null

Wang et al. (2020) SEED, DEAP EFDMs+STFT Electrode-

frequency

distribution maps

with short-time

Segmentation PNN 88–93% (SD)

79–86% (DP)

Null TT: 9–6 (SD)

TT: 4–1 (DP)

Null

Tao et al. (2023) DEAP, DREAMER ACRNN Attention-based

convolutional

recurrent neural

network

Segmentation VA 93.38–93.72% (DP)

97.78–98.23% (DR)

Null 10-fold C-V Null

(Continued)
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TABLE 1 (Continued)

References Data set Model
abbreviation

Model
description

Signal
processing

Emotion
type

Dependence
accuracy

Independence
accuracy

Dependence
strategy

Independence
strategy

Luo et al. (2020) SEED, DEAP VAE + GAN Variational

autoencoder and

generative

adversarial network

Filtering PNN 87.5–93.5% Null 5-fold C-V Null

Cheng et al. (2021) DEAP, DREAMER GcForest Multi-grained

cascade Forest

model

Segmentation VA 97.69–97.53% (DP)

89.03–90.41% (DR)

Null 10-fold C-V Null

Liu et al. (2020) DEAP, DREAMER MLF-CapsNe Effective multi-level

features guided

capsule network

1D to 2D VA 97.97–98.31% (DP)

94.59–95.26% (DR)

Null 10-fold C-V Null

He et al. (2020) LabEdata, DEAP Firefly optimization A novel firefly

integrated

optimization

algorithm

Filtering VA 84.21–96.77% (DP)

91–99% (LabEdata)

Null TT: 3-1 Null

Huang et al. (2021) DEAP BiDCNN Bi-hemisphere

discrepancy

convolutional

neural network

Segmentation VA 94.38–94.72% 68.14–63.94% 10-fold C-V 32-fold C-V

Yin et al. (2021) DEAP ECGGCNN GCNN-LSTM

hybrid model

1D to 2D VA 90.45–90.60 84.81–85.27% 5-fold C-V 3*5-fold C-V

Zhang and Etemad

(2023)

SEED LSTM-Capsule Long short-term

memory capsule

network

Filtering

Segmentation

VA 0.9107± 0.0763 Null 5-fold C-V Null

Fdez et al. (2021) SEED CNN Convolutional

neural network

Filtering

Normalization

PN\PNN Null 91.6% (PN)

79.6% (PNN)

Null 15-fold C-V

Zhu et al. (2022) SEED ECN-AF Emotion

classification

network based on

attention fusion

Filtering

Segmentation

PNN 95.87–96.45% Null 5-fold C-V Null

PNN, positive, negative, neutral; PN, positive, negative; VA, valence, arousal; C-V, cross-validation; TT, train:test; SD, SEED; MD, MPED; DP, DEAP; DR, DREAMER; Null, not mentioned in the article.
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laboratory setups and real-life emotional experiences (Healey et al.,

2010).

Experimental equipment may interfere with participants’

natural emotional experiences. Advanced devices like virtual reality

present potential value and challenges in emotional research,

including potential interference with participant emotions (Bohil

et al., 2011). Especially with EEG devices, the requirement for

participants to remain still to avoid movement interference may

restrict natural emotional expression (Wilhelm and Grossman,

2010).

The mismatch between the dynamism of emotions and the

fixed nature of experimental design may limit research accuracy

and relevance. Emotions’ fluidity and change have been emphasized

as core parts of research (Kuppens et al., 2010). Time scale issues

in emotional research, especially in capturing dynamic emotional

changes, have been explored (Davidson, 2010). The complexity of

emotional research is revealed with the tension between dynamism

and stillness, suggesting EEG devices might be unsuitable as

emotional measuring tools.

Discussion

The use of EEG in emotion recognition research presents a

host of possibilities and pitfalls. This confluence of neuroscience

and technological integration represents a frontier in our

understanding of human emotional processes, yet as our review

suggests, researchers need to tread cautiously. The lure of

high accuracy rates, the challenges of generalization, and the

inherent paradoxes of emotional research have proven to be

formidable challenges.

There’s no doubt that the temporal resolution of EEG offers a

granular view of neural processes as emotions unfold (MacNamara

et al., 2022). However, as our review suggests, the translation

from granular neural data to accurate emotional recognition is

far from straightforward. A primary concern is the reported

accuracy rates, which in some instances seem too good to be

true. These astonishingly high rates challenge our understanding

of the complexities of both EEG data and the nuanced

nature of human emotion. High accuracy rates, when not

critically examined, can lead to a false sense of progress in

the field.

The challenge of application further exacerbates these concerns.

Emotion, by its nature, is influenced by myriad factors, from the

immediate environment to an individual’s past experiences (Jani

and Han, 2015). Thus, relying on standard datasets, while practical,

may not capture the full gamut of human emotion. The diversity

in EEG devices, data sources, and collection methodologies can

introduce variability that complicates generalization. Additionally,

as mentioned, the lack of standardization in EEG devices makes

the reproducibility of research findings a formidable challenge (Keil

et al., 2014).

Furthermore, the paradoxical nature of emotional research,

especially the gulf between lab conditions and real-world emotional

experiences, cannot be understated. Emotions are not static

entities to be captured in controlled environments but are

dynamically intertwined with our ever-changing contexts (Barrett

et al., 2006; Wilhelm and Grossman, 2010). The very act of

measuring emotion in a lab setting might alter the nature of

the emotion itself, akin to the observer effect in physics (Russell,

2003). The complexities associated with dynamic emotional

changes underline the importance of methodological flexibility

and the need for tools that can capture the rich tapestry of

human emotions.

Conclusion

In this comprehensive review, we have shed light on the

intricacies of EEG-based emotion recognition. While the allure

of high accuracy rates in EEG emotion research paints an

optimistic picture, it is essential to approach these claims

with cautious optimism. The challenges in generalizing these

methods, the inherent discrepancies in laboratory environments,

and the dynamic nature of emotions are significant cautions

for those eager to adopt EEG in emotion recognition. We

must recognize that although EEG holds great potential as a

tool in emotion research, its ability to fully understand human

emotions is not yet perfect and requires further development

and refinement.

Limitations, implications, and further
directions of research

In our comprehensive review of EEG-based emotion

recognition, we identified several key limitations and implications

for the broader scientific community. Our review, concentrated

on literature from 2018 to 2022, may have missed broader

developments in the field. Our focus on high-accuracy studies

could also have overshadowed valuable insights from moderate

or lower-accuracy research. Further, relying on databases like

Web of Science, Scopus, and ProQuest could have led us to

overlook significant work housed in niche repositories. The

highlighted accuracies in studies emphasize the need for a critical

evaluation regarding methodological rigor and the clear divergence

between laboratory and real-world settings, calling for more

standardized and applicable tools and methodologies. Moving

forward, there’s an evident need to expand the scope of the

literature review, hone in on the most effective methodologies,

integrate multiple biometric tools for a more comprehensive

emotion assessment, prioritize studies with higher ecological

validity, and deeply investigate the influence of diverse emotion

theories on EEG data interpretation. As we delve deeper into

this domain, embracing these considerations could lead to a

more nuanced understanding of the human emotional landscape

through EEG research.
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