
École Polytechnique Fédérale de Lausanne

Impact of the weather on Swiss
railway punctuality

Master's Thesis

by Jordi Cluet i Martinell

Data Science Lab (dlab)

SBB CFF FFS

Thesis Supervisor
Prof. Robert West

dlab (EPFL)

Thesis Advisor
Manoel Horta Ribeiro

dlab (EPFL)

Company Supervisor
Pierre Dominguez
SBB FFS FFS

Lausanne, June 2023



This Master's Thesis was carried out by Jordi Cluet i Martinell, under
the supervision of Professor Robert West, from the Data Science Lab (dlab)
at École Polytechnique Fédérale de Lausanne (EPFL). It was advised by Ma-
noel Horta Ribeiro, also from dlab, and Pierre Dominguez, from the Swiss
Federal Railways (SBB-CFF-FFS).

The project took place within an exchange program from the Facultat
d'Informàtica de Barcelona (FIB) of the Universitat Politècnica de Catalunya
(UPC) to the Faculté Informatique et Communications (IC Faculty) of the
École Polytechnique Fédérale de Lausanne (EPFL), as part of the Master in
Data Science.

2



Acknowledgments

I would like to express my sincere gratitude to the Data Science Lab (dlab),
particularly Prof. Robert West and Manoel Horta Ribeiro, for their invalu-
able support, guidance, and belief in me throughout both my last semester's
project and this thesis. Their feedback and supervision have been crucial in
shaping the outcome of my research.

I am also deeply grateful to the SBB team, especially Pierre Dominguez,
for their guidance, insightful discussions, and for proposing this captivating
project that allowed me to explore the fascinating realm of SBB. I take with
me very good memories of this period and I hope to cross paths again in the
future.

Of course, I would also like to thank all my friends for their unconditional
support and encouragement throughout this year. My sincere gratitude to all
of you for your patience, and for always being there for me, from Catalunya,
Lausanne or any other place.

Una menzione speciale va ai miei amici italiani che mi hanno accompa-
gnato in questo percorso. Sono profondamente grato a Giacomo, Lucia e
Barbara per il loro sostegno incrollabile, il feedback costruttivo, e i momenti
di gioia condivisi.

No puc acabar aquesta secció sense fer un agraïment a la meva família. És
gràcies al seu suport que ha estat possible no només fer aquesta tesi de màster,
sinó tota la meva etapa acadèmica. Els estic profundament agraït per la seva
con�ança, el seu suport incondicional, i per haver-me donat l'oportunitat de
viure aquesta experiència a Suïssa.

Lausanne, June 22, 2023 Jordi Cluet i Martinell

3



Abstract

This thesis investigates the impact of meteorological phenomena on train
delays in Switzerland. In particular, it analyses the e�ect of rain, snow,
strong wind, and extreme temperatures on the SBB trains traveling between
Bern and Zurich. The study utilizes open datasets spanning �ve years. The
analyses reveal that all meteorological factors contribute to increased delays,
with special attention on rain, as it is the most common phenomenon. A
clustering method is proposed to identify snowy, sunny, and rainy days and
characterize their expected delay.

The study also �nds that weather-related disruptions persist throughout
the year, with notable delays observed during the fall season, peak hours,
and evenings. This negative impact is observed across all train stops, lines,
and directions, with direct trains traveling westwards experiencing more sig-
ni�cant delays. The analysis also demonstrates that delays occur between
stops, while trains catch up at the stations.

Similar patterns are observed in other railway sections of the same line,
which o�ers promising potential for applying the same methods to other
regions and lines. Train cancellations are not concluded to be a�ected by
weather conditions. The study also concludes that predicting train delays
remains a complex challenge, no matter the predictors, target, or form of the
model. However, meteorological features can help improve the performance
of more complex prediction models.

This quanti�cation of the impact of weather on delays provides relevant
insights to SBB and other rail operators. This will help in the formulation
of strategies to manage these delays e�ectively and ultimately improve the
e�ciency, reliability, and customer satisfaction of Swiss public transport.
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Résumé

Cette thèse étudie l'impact des phénomènes météorologiques sur les retards
des trains en Suisse. En particulier, elle analyse l'e�et de la pluie, de la neige,
des vents forts et des températures extrêmes sur les trains des CFF circulant
entre Berne et Zurich. L'étude utilise des données ouvertes couvrant cinq
ans. Les analyses révèlent que tous les facteurs météo contribuent à l'aug-
mentation des retards, avec une attention particulière sur la pluie, car c'est
le phénomène le plus courant. Une méthode de `clustering' est proposée pour
identi�er les di�érents types de journées et caractériser leur retard attendu.

L'étude révèle également que les perturbations liées aux conditions mé-
téorologiques persistent tout au long de l'année, avec des retards notables
observés à l'automne, aux heures de pointe et en soirée. Cet impact négatif
est observé sur l'ensemble des arrêts, des lignes et des directions, les trains
directs circulant vers l'ouest subissant des retards plus importants. L'analyse
montre également que les retards se produisent entre les arrêts, tandis que
les trains rattrapent leur retard aux gares.

Des tendances similaires sont observées dans d'autres tronçons ferroviaires
de la même ligne, ce qui o�re un potentiel prometteur pour appliquer les
mêmes méthodes à d'autres régions et lignes. Les annulations de trains ne
sont pas in�uencées par les conditions météorologiques. L'étude conclut éga-
lement que la prévision des retards des trains reste un dé� complexe, quels
que soient les prédicteurs, le `target' ou la forme du modèle. Toutefois, les
caractéristiques météorologiques peuvent contribuer à améliorer les perfor-
mances de modèles de prévision plus complexes.

Cette quanti�cation de l'impact des conditions météorologiques sur les re-
tards fournit des informations précieuses aux CFF et aux autres opérateurs
ferroviaires. Cela permettra de formuler des stratégies pour gérer e�cace-
ment ces retards et, en �n de compte, d'améliorer l'e�cacité, la �abilité et
la satisfaction de la clientèle des transports publics suisses.
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Resum

Aquesta tesi investiga l'impacte dels fenòmens meteorològics en els retards
dels trens a Suïssa. Concretament, analitza l'efecte de la pluja, la neu, el
vent i les temperatures extremes en els trens d'SBB que viatgen entre Berna
i Zúric. L'estudi utilitza dades obertes dels darrers cinc anys. Les anàlisis
revelen que tots els factors meteorològics contribueixen a augmentar els re-
tards, amb especial atenció a la pluja, que és el fenomen més freqüent. Es
proposa un mètode de `clustering' per identi�car els dies de neu, assolellats
i plujosos i caracteritzar el seu retard esperat.

L'estudi també revela que la meteorologia afecta els retards durant tot
l'any, i especialment durant la temporada de tardor, les hores punta i els
vespres. Aquest impacte s'observa a totes les estacions, línies i direccions de
tren. Els trens directes i els que viatgen cap a l'oest del país són els que
pateixen retards més importants. L'anàlisi també demostra que els retards
es produeixen entre parades, mentre que els trens recuperen temps a les es-
tacions.

L'anàlisi en altres trams ferroviaris de la mateixa línia mostra resultats
similars, la qual cosa ofereix un potencial prometedor per aplicar els ma-
teixos mètodes a altres regions i línies suïsses. No hi ha evidència que les
cancel·lacions de trens es vegin afectades per les condicions meteorològiques.
L'estudi també conclou que predir els retards dels trens és un repte complex,
independentment dels predictors, el `target' o el tipus del model. Tanmateix,
les variables meteorològiques poden ajudar a millorar models de predicció
més complexos.

La quanti�cació de l'impacte de la meteorologia en els retards ofereix
conclusions rellevants per a SBB i qualsevol altre operador ferroviari. Això
ajudarà en la formulació d'estratègies per gestionar aquests retards de manera
e�caç i, en última instància, millorar l'e�ciència, �abilitat i satisfacció del
client del transport públic suís.
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Chapter 1

Introduction

Switzerland is renowned for its excellent performing rail network. SBB-CFF-
FFS (Swiss Federal Railways, from now on, �SBB�) is the primary railway
company in the country. SBB prides itself on maintaining a high level of
punctuality, as evidenced by their reported passenger service punctuality
rate of 92.5% in 2022, which measures the percentage of trains arriving at
their destination with less than three minutes' delay.

While these �gures are impressive, achieving consistent punctuality across
all train lines, regions, and types of trains remains a challenge. Various fac-
tors can negatively impact train punctuality, including accidents, construc-
tion works, and the main focus of this study: adverse weather conditions.

Maintaining a reliable and punctual rail network is of paramount im-
portance, not only for the smooth functioning of daily commuting but also
for the broader economic and social well-being. Delays in train services can
disrupt productivity, impact various sectors of the economy, and a�ect cus-
tomer satisfaction. While several factors contributing to train delays have
been explored, the role of weather remains a key yet relatively unexplored
aspect.

Switzerland experiences diverse and changeable weather, making it cru-
cial for SBB to gain insights into the meteorological factors that a�ect train
delays and the extent of their impact. Moreover, climate change is causing
extreme weather events to become more frequent and severe, posing addi-
tional challenges to maintaining punctuality in the future.
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Therefore, this project aimed to analyze the e�ect of adverse weather
conditions on the punctuality of Swiss passenger train services, in order to
provide valuable insights to SBB's punctuality team. The results show that
rain and snow have a signi�cant (negative) impact on train delays, while
strong wind and extreme temperatures were not concluded to have a sub-
stantial e�ect. Rain is of particular interest, as it is much more frequent
than the other phenomena (50% of days against less than 10% of days). This
e�ect exists for all trains, all stops, all lines, and both train directions in the
considered railway section, with di�erences in its magnitude.

Despite the apparent correlation between adverse weather conditions and
train delays, weather parameters alone were not found to be reliable predic-
tors of train delays. However, they could serve as valuable features when
incorporated into more sophisticated models. Additionally, weather condi-
tions did not demonstrate a signi�cant impact on train cancellations.

These results allow SBB to con�rm the intuition regarding the negative
impact of meteorology on railway punctuality. This way, the team can focus
on the most important factors in future work and continue the research to
identify e�ective measures to mitigate such impact. Additionally, the �nd-
ings of this study can contribute to the development of predictive models
that leverage weather forecasts to anticipate and mitigate future delays, en-
abling more e�ective communication with customers and proactive measures
to minimize this impact.

Furthermore, this thesis has broader implications beyond the scope of
SBB and Switzerland. Its �ndings can be valuable to rail operators in other
regions and countries willing to improve the punctuality and reliability of
their services. Moreover, the methodology and tools used in this project can
be applied to other railway networks and weather datasets, enabling further
research in this �eld.

The thesis is organized as follows. Chapter 2 provides an overview of the
data used in the project. Chapter 3 presents the analysis of this data and
discusses the impact of weather on train punctuality. Chapter 4 describes the
e�orts to predict train delays given the weather forecast. Chapter 5 summa-
rizes the �ndings and concludes the project. Finally, Chapter 6 discusses the
limitations encountered during the research and outlines potential avenues
for future work. The Appendices provide supplementary information that
complements the main text.

10



1.1 Causality

Since this project aims to analyze the e�ect of weather on train punctuality,
it is important to understand the di�erent variables that could a�ect train
delays and account for possible confounders. The causal graph in Figure 1.1
presents a simpli�ed representation of the situation. The main question is
whether any common factors cause adverse meteorological conditions and
train delays.

Seasonality Climate change Human activity

Meteorological factorsExternal factors

... ... ...

... ... ...

Delays

Figure 1.1: Causal graph (simpli�ed version)

Referring to weather as the short-term atmospheric conditions in a spe-
ci�c region, we can generally consider it as an independent actor una�ected
by other phenomena. However, some factors must be taken into account.
First, seasonality clearly a�ects meteorological conditions (e.g., it only snows
in winter) but can also a�ect delays through other phenomena (e.g., more
people moving for vacation in summer). Therefore, it will be important to
stratify the analysis by season. Second, climate change is included in the
graph with a dashed line to indicate that it can in�uence long-term weather
patterns (e.g., increasing temperatures and frequency of hurricanes) rather
than immediate, unpredictable changes in weather. Human activity can also
a�ect meteorology in the long term through climate change, or in the mid-
term through activities like deforestation, pollution, or urbanization.
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Seasonality

Climate change

Human activity

Meteorology

Snowfall Rainfall Extreme temperatures Strong winds

More a�uence
during summer

Wet tracks

Flooded tracks

...

More a�uence

Heat-related issues

...

...

Mechanical failures Signal failuresAccidents

Technical issues Previous delays

...

Delays

Figure 1.2: Causal graph (extended version)
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However, it can only directly impact short-term weather in extreme events
(e.g., a nuclear plant explosion), so I also use a dashed line. For these rea-
sons, although climate change and human activity could potentially act as a
confounder by a�ecting both weather and delays through other factors, I do
not consider them in this project.

It is evident that there exists a complex chain of factors between meteo-
rological conditions and train delays. These unobserved factors, represented
by ellipsis in Figure 1.1, may interact with each other and be in�uenced by
external factors unrelated to weather. All these factors can contribute to
delays in various ways. For instance, meteorological conditions can lead to
rainfall, which in turn can cause both �ooding and more passengers board-
ing the train, subsequently resulting in more train delays. External factors
such as previous delays on the same line, delays of trains coming from other
countries, accidents, or technical issues (e.g., a broken door) may or may
not be in�uenced by weather, and can also impact delays. The extended
causal graph in Figure 1.2 provides this broader perspective, although it is
not intended to be exhaustive.

In summary, a complex causal chain exists between weather and train de-
lays, involving numerous intermediate factors. However, the key point is that
weather and train delays are not simultaneously a�ected by other phenom-
ena, except for seasonality. Therefore, we can focus on studying the e�ect of
weather on train delays without the concern of other confounders that could
impact both variables. From here onwards, I use the words `impact', `e�ect',
`in�uence', and `relation' interchangeably to refer to the relationship between
weather and train delays, subject to the assumptions in this section.

1.2 Previous work

Before this project, the punctuality team at SBB already had the intuition
that bad weather conditions (such as rain, snow, or strong wind) negatively
impact their train punctuality. However, only a few studies had been at-
tempted until now, which failed to get any clear conclusions. To the best of
the author's knowledge, no study had previously been done in Switzerland
related to this subject outside of the team that commissioned it. However,
there exist several previous projects in other countries aiming for the same
goal.
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[1] explored the factors that impacted the punctuality of trains in Sweden
in 2015, including but not limited to weather variables (rain, snow, wind, and
temperature). The authors found that punctuality drops with extremely hot
or cold temperatures. They also observed that temperature variation during
the journey negatively a�ects punctuality, as well as high wind speeds, rain-
fall, and snowfall. They used daily and hourly measurements. [2] studied
the impact of weather on train delays in Norway from 2007 to 2016. They
also used rain, snow, wind, and temperature as the weather variables on a
daily and weekly basis. They found that extreme cold temperatures and
snow depth are the most signi�cant weather-related factors. [3] analyzed
the impact of weather on train delays in the Greater Dublin Area (GDA) in
eastern Ireland. They concluded that rain is the principal cause of observed
delays, together with wind and temperature. They also observed a signi�-
cant interaction between meteorological measurements. [4] show the negative
impact of wind gusts, extreme temperatures, precipitation, snow, and leaves
on Dutch passenger train punctuality and cancellation rate. The study dis-
tinguishes between the direct e�ects of weather conditions and the indirect
e�ects through disruptions in the railway infrastructure. Snow, leaves, and
high temperatures are found to almost only a�ect delays indirectly, while the
other variables do also a�ect them directly. [5] employed a gradient-boosted
regression tree predictive model for estimating train arrival delays at indi-
vidual stations in a Chinese railway system, leveraging weather observations
as a contributing factor. The model managed to predict the trend in delays
but failed to predict its speci�c values accurately.

Based on these previous studies, it is evident that rain, snow, wind, and
temperature are crucial weather factors to consider when examining their
impact on train punctuality. Although the extent of their in�uence varies,
all studies consistently demonstrate a negative impact. Daily measurements
show promising potential, while hourly values o�er additional granularity.
While predicting train delays solely based on weather conditions is an in-
surmountable task, it can aid in trend prediction or be incorporated into
more comprehensive models. Lastly, the interaction between weather vari-
ables should also be acknowledged as a signi�cant factor to contemplate when
analyzing the e�ect of weather on train delays.
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1.3 Scope of the project

The Swiss railway network is vast and complex. It contains many di�erent
regions, lines, types of transport, operators. . . Together with the SBB team,
we decided to focus on passenger trains traveling from Bern to Zurich (or vice
versa) to simplify the analysis and concentrate it on one of the most critical
railway sections of the country, which is of great interest to the company.

Therefore, the study comprises all passenger trains that traverse both
cities in any direction. They may start their journey before and end it after
this section; the only condition is that they go through Bern and Zurich at
some point. For example, an InterCity 1 (IC1) traveling from Bern to Zurich
originally comes from Geneva, and the same train traveling from Zurich to
Bern comes from St. Gallen (see Figure 1.3).

Figure 1.3: Map of the InterCity1 (IC1) trajectory

Regarding the time scope, I worked on the last �ve years (2018 to 2022,
inclusive) since it aligns with the available open data for train delays and
weather measurements (see section 2.1).

MeteoSwiss has an important number of measuring networks, stations,
and parameters, so manyptions were considered. Following the previous
works in other countries, I focused on rain, snow, wind, and temperature.
However, I also included other parameters (e.g., humidity, pressure) in some
parts of the analysis (e.g., section 3.6).
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As for the measuring networks, after a thorough comparative study, I used
data from the Swiss National Basic Climatological Network (Swiss NBCN).
This network is a subset of the Automatic Measurement Network and con-
nects the major ground-based stations within the MeteoSwiss monitoring
system. The di�erent MeteoSwiss networks and parameters can be compared
in this interactive map.

Since I focused on the Bern�Zurich section, I used the data from its
two main stations: Bern/Zollikofen (BER) and Zürich/Fluntern (SMA) (see
Figure 1.4). They both measure all the chosen weather parameters during
the whole study period.

Figure 1.4: Possible train routes from Bern to Zurich and location of the
Bern/Zollikofen (BER) and Zürich/Fluntern (SMA) meteorological stations
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Chapter 2

Data

2.1 Data sources

Two main sets of data were used in this project: train (or railway) punctuality
data and weather (or meteorological) data.

Railway data

Most of SBB's data is open and can be found in their online portals. All
railway data that was used was obtained from the SBB's Open Data Portal
(data.sbb.ch) or the Swiss Mobility Open Data Platform (opentransport-
data.swiss). Both of them are o�cially supported by SBB.

In particular, the primary dataset that was used to assess punctuality is
the �Actual Data� dataset, which contains the target and actual departure
and arrival times for all transports in Switzerland (including, but not limited,
to all SBB's passenger trains). This data has been collected by SBB at least
since 2018.
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Meteorological data

SBB has its own weather stations spread all over the country. However, for
this project, we decided to use the data provided by MeteoSwiss, the Federal
O�ce of Meteorology and Climatology, as it is considered the o�cial and
most accurate source of meteorological data in the country.

MeteoSwiss provides part of its data in the Swiss Open Data portal. In
particular, it provides metadata about their measuring networks, current
(live) measurements, and daily records for several parameters. However,
it does not provide more granular data for all the stations or the whole
measuring period. Similarly, on its website, it only provides metadata about
the measuring stations and weather data for the past few days.

Therefore, hourly data was obtained from their IDAWeb portal, which
provides access to their complete records of data. This portal is private and
only accessible under request and permission, but it is open for research
purposes for students and teachers.

2.2 Data processing

Even if this section is relatively short, a signi�cant part of the project's time
consisted in �nding, obtaining and preprocessing the data.

Railway data

As explained in section 2.1, train punctuality was computed from the Ac-
tual Data open dataset. This dataset contains the target (scheduled) and
actual (real) arrival and departure times of each public transport vehicle in
Switzerland, including buses, tramways, cargo trains, cable cars, and more.

Since the focus was on passenger trains from Bern to Zurich (or vice versa)
(see section 1.3), important data �ltering and preprocessing were needed. No
API is provided for the whole Actual Data Archive (which ranges from 2018
to 2023), so the nearly 2000 zip �les (one for each day) had to be downloaded,
extracted, �ltered, processed and joined one by one. All this was done using
Python and bash scripts in remote servers.

18

https://opendata.swiss/en/organization/bundesamt-fur-meteorologie-und-klimatologie-meteoschweiz
https://www.meteoswiss.admin.ch/
https://gate.meteoswiss.ch/idaweb/login.do
https://gate.meteoswiss.ch/idaweb/more.do
https://gate.meteoswiss.ch/idaweb/more.do


This �rst processing resulted in a single uni�ed dataset with over 250.000
trains from Bern to Zurich (or vice versa) from 2018 to 2023 (both included),
containing around 0,5% of the whole data in the IstDaten Archive.

Then, a second processing was made to clean the dataset. I removed all
additional trains (that is, extra trains that are added on special occasions)
and all canceled trains (that is, trains that did not run or that stopped
halfway). See section 3.8 for a dedicated analysis of the relationship between
weather conditions and train cancellations.

Moreover, each departure and arrival time is accompanied by a status
that indicates if that value was measured, was just a prediction, or is missing
or unknown. I removed all trains that did not have complete 'real' times
since they could provide wrong delay values.

The �nal result of the processing was a dataset with nearly 200.000 trains
and around 775.000 stops, accounting for 80% of the uncleaned dataset.

Meteorological data

As explained in section 2.1, I used both daily measurements for the NBCN
network available in the Swiss Open Data portal and hourly measurements
from the IDAWeb portal. They are all provided in CSV format, so I down-
loaded and parsed them using Python scripts and notebooks.

2.3 Data exploration

This section shows a separate analysis of the railway punctuality and me-
teorological data. This is important to be able to understand the posterior
combined analyses better. For conciseness, it is attached in Appendix A.

The following processing and analyses were mainly carried out using
Python scripts, Pandas, and Jupyter Notebooks. For plotting, matplotlib,
seaborn, plotly, and folium were used. For models, statsmodels and
scikit-learn were used.
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Chapter 3

Analysis

This chapter presents the analysis the e�ect of weather conditions on train
delays, by merging both data sets. This makes it possible to obtain concrete
numbers about this impact and show them in a graphical and intuitive way.
This analytical part is already of great value to SBB, as it allows us to know
where, when, and how to put e�orts into reducing this impact or whether it
exists at all.

I �rst carried out a separate analysis for each weather variable (rain, snow,
temperature, and wind). The idea was to check for a signi�cant di�erence in
train delays between, for example, rainy and non-rainy days. Both daily and
hourly weather values were used. The results are summarized in section 3.5.

Following some intuitions from the SBB team, I extended the analysis
of rain to account for the e�ect of consecutive rainy or dry days (subsec-
tion 3.1.1) or the lag e�ect of recent rain (subsection 3.1.2).

Then, I ran di�erent clustering models to �nd groups of days with simi-
lar weather conditions (see section 3.6). This allowed to check how di�erent
kinds of days (e.g., rainy, windy, sunny days) a�ect train delays instead of
checking variable per variable, and account for the relationship and interac-
tion between them.

Finally, I checked if the conclusions drawn from the Bern-Zurich section
can also apply to other railway sections (see section 3.7), and whether the
cancellation of trains is a�ected by weather conditions (see section 3.8).
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3.1 Rain

Does rain a�ect delays? Where and when?

Figure A.15 showed how often each situation (no rain, rain only in Bern,
rain only in Zurich, and rain in both cities) occurs. For each situation, one
can compute the percentage of delayed trains (i.e., those arriving at their
destination three or more minutes later than planned), as shown in Figure 3.1.
Figure 3.1a shows the percentage of delayed trains for each situation, for all
trains arriving at all stops. The percentage of delayed trains is higher when
it rains in both cities than when it rains only in Bern, which in turn is higher
than when it does not rain at all. Surprisingly, the lowest delay occurs when
it only rains in Zurich. This might be because it does not rain much when
it just rains in one of the two cities (see Figure A.18), and this situation
is relatively uncommon (see Figure A.15). As written in Figure 3.1a, the
absolute increase between the �rst and last bars is 3.8%, and the relative
increase is 36.5%. This already indicates a (negative) e�ect of rain on train
delays. The di�erence is more pronounced if we account only for arrivals at
the destination (i.e., arrival to Bern or Zurich), and not at every intermediate
stop (see Figure 3.1b).

If we separate between indirect and direct trains, we can observe that
direct trains su�er from more delays in all situations (see Figure 3.1c and
Figure 3.1d). This is expected, as indirect trains have more slack time in
their schedule and thus are more likely to be able to recover from delays.
Furthermore, if we separate by direction, we can observe that all delays are
higher for trains traveling from Zurich to Bern than the other way around
(see Figure 3.1e and Figure 3.1f). In the next subsection, I address the fact
that trains already carry a certain delay when departing from Bern or Zurich,
and, of course, this delay at origin depends on the direction. In any case,
the relative e�ect of rain is similar for both directions, regardless of where it
rains, which might be counterintuitive.

The same plots can be produced for the average arrival delay or the travel
time di�erence (instead of the percentage of delayed trains). The conclusions
remain the same, so for the sake of brevity, I do not include them in this
report.
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Figure 3.1: Percentage of delayed trains for each situation (no rain, rain
only in Bern, rain only in Zurich, and rain in both cities), for di�erent

subsets of data.
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E�ect of rain during the journey

Accounting only for the delay at the destination could be misleading since
trains may already carry a certain delay when departing from Bern or Zurich.
Returning to the example in Figure 1.3, an InterCity 1 (IC1) traveling from
Bern to Zurich actually comes from Geneva. In contrast, the same train
traveling from Zurich to Bern comes from St. Gallen (which is much closer).
Therefore, depending on the direction and line, one could expect di�erent
delays at the origin.

First, Figure 3.2a shows the percentage of delayed trains in each location
of the journey for all indirect trains. While trains manage to make up some
of the delays at the stations (by reducing their scheduled dwell time), they
incur delays between origin and destination. For example, an IC1 arriving
late to Bern from Geneva may manage to leave Bern on time but not arrive
at Zurich on time.

The negative impact of rain is clear here: the percentage of delays is
higher in all journey locations. Moreover, the steeper slope in the middle
tells that more trains get delayed during the travel time when it rains than
when it does not rain.

Second, Figure 3.2b shows the percentage of delayed trains in each lo-
cation of the journey for all direct trains. In this case, the delays at the
origin are much lower than for indirect trains. This is expected, as direct
trains usually stop for more time and thus are more likely to be able to re-
cover from previous delays. However, the average delay at the destination is
higher than for indirect trains. This is also expected, as direct trains do not
stop in between and thus are more likely to be delayed during the journey.
Here, the e�ect of rain during the journey is even more pronounced than for
indirect trains (see the steeper slope in the middle).

Figure 3.2c and Figure 3.2d show the same plots separated by direction.
Even if fewer trains are delayed when departing from Zurich than from Bern,
more trains are delayed when arriving at Bern than at Zurich. In other words,
the central slope is much steeper for the Zurich-Bern direction than for the
other. Again, the e�ect of rain is clear in both directions.

Selecting other subsets of data only provides the same conclusion: trains
catch up delays at stations but incur delays during the journey, and rain has
a negative impact on train delays.

23



The same plots can be produced with the average or median delay (in
minutes) at each location (instead of the percentage of delayed trains). The
conclusions remain the same, so for the sake of brevity, I do not include them
in this report.
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Figure 3.2: Percentage of delayed trains along the journey on rainy and
non-raniy days, for di�erent subsets of data.

Major delays

Another interesting question is how rain a�ects major delays, say, delays
of more than 10 minutes. Figure 3.3 shows the percentage of trains with a
delay greater than a certain threshold. As expected, the higher the delay
threshold, the lower the percentage of trains with that delay. The proportion
of delayed trains is always higher when it rains.

To see how this delay increase is related to the base (yellow) delay, Fig-
ure 3.4 shows the relative increase from non-rainy to rainy days (i.e., `the
di�erence between lines divided by the yellow line'). Rain always causes an
increase of delays (between 30% and 60%), no matter the chosen threshold.
The greatest delays (more than 20 minutes) notably increase when it rains.
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Figure 3.3: Percentage of direct
trains with a delay greater than a
certain threshold, when it rains
and when it does not rain.
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The same plots can be produced with other subsets of trains, but the
conclusions remain the same. The conclusions remain the same, so for the
sake of brevity, I do not include them in this report.

Amount of rain

Until here, I checked the impact of rain as a binary variable (i.e., it
rained or it did not rain that day). However, another intuition is that the
more it rains, the more delays should occur. This section uses the variable's
continuous (and not the binary) version to check this.

Figure 3.5 shows the percentage of delayed trains per day according to
rain. The �tted linear regression model indicates an increasing trend but
is far from a perfect linear relationship. The correlation coe�cient (0.23)
suggests a weak positive linear association between the average daily rainfall
and the percentage of delayed trains. However, the relatively low correlation
indicates that the relationship is not very strong. The model's predictions ex-
hibit signi�cant error levels, as indicated by the Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE). Additionally, the R-squared score of
0.05 indicates that only 5% of the variation in the percentage of delayed
trains can be attributed to the average daily rainfall. Consequently, the data
does not �t well with the model. However, it is important to note that this
analysis solely considers rainfall and its right-tailed distribution, as depicted
in Figure A.16.
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Binning the rain in di�erent categories and computing the average delay
shows an increasing trend again (see Figure 3.6), but the con�dence intervals
are too large to draw clear conclusions. These results suggest that it is more
critical whether it rains or not rather than how much it rains.
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Figure 3.5: Percentage of delayed
trains according to rain.
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Figure 3.6: Average percentage of
delayed trains according to rain.

E�ect per stop and line

It might also be interesting to check whether the impact of rain exists
equally in all train stops or lines. Figure 3.7 shows the percentage of delayed
trains per stop according to rain. The (negative) e�ect of rain is similar in
all stops, except for Turgi and Wynigen (where the CIs overlap), although
they are also the less visited stops (see Figure A.12). Figure 3.8 shows the
same plot per line. Again, there is no doubt about the negative e�ect of
rain, which exists in all lines, and especially in the InterCity services, as
commented above.

E�ect throughout time

As explained in section 1.1, it is important to account for seasonality in
the analysis. To clarify, one must check if the delay increase exists in all
months or seasons to con�rm the negative e�ect of rain on train delays (and
not a mere correlation with other seasonality-related factors).

Figure 3.9 shows the e�ect of rain throughout the year (i.e., the per-
centage of delayed trains per month according to rain). Rain indeed a�ects
delays throughout the whole year, especially in fall, which is also when there
are more base delays. This shows that, although there is indeed certain
seasonality in the delays, the impact of rain is always present.
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Figure 3.9: E�ect of rain throughout the year

Figure 3.10 shows the e�ect of rain throughout the week. Weekends have
signi�cantly fewer delays than weekdays, both when it rains and when it
does not. Surprisingly, the relative e�ect of rain seems to increase during the
weekdays, starting at 20% on Mondays and ending at nearly 50% on Fridays,
just to decrease again during the weekend.
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Figure 3.10: E�ect of rain throughout the week

Finally, Figure 3.11 shows the percentage of delayed trains throughout the
day, when it rains and when it does not. The delays vary considerably during
the day: there are more delays at peak times (morning and late afternoon),
and especially at night (from 21h). The absolute e�ect of rain is always
similar (around 10% more delays).
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Figure 3.11: Percentage of delayed trains per hour according to rain.
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3.1.1 Consecutive rain

The preceding analyses have shown that rain impacts train delays. A further
intuition given by the SBB team is that consecutive rainy days (e.g., four days
in a row) might have a di�erent impact than isolated rain. Symmetrically,
several consecutive �dry� (non-rainy) days may also have a cumulative e�ect
(because the tracks get dirty or greasy, for example). Figure 3.12 shows
the consecutive rainy days throughout the �ve years. Figure 3.13 shows the
distribution of the length of the rainy and dry periods, respectively.
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Figure 3.12: Series of consecutive rainy days over the �ve years.

29



1 2 3 4 5 6 7 8 9 10 11
length of rainy period (days)

0

20

40

60

80

100

120

nu
m

be
r o

f o
cc

ur
re

nc
es

102

71

36
21 25

6 7 3 1 1 1

(a) Rainy periods.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 21 24 27
length of dry period (days)

0

20

40

60

80

100

120

nu
m

be
r o

f o
cc

ur
re

nc
es

84

50

32
25

18
9 15 11 5 5 3 2 3 1 4 1 2 1 1 1 1
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Figure 3.13: Distribution of the length of rainy and dry periods.

Figure 3.14 shows the average delay on the day previous to the rain,
during the rainy period, and on the following day; for each period length.
The only clear pattern is that the average delay during rainy days is higher
than the day before and the day after (despite the overlapping con�dence
intervals). However, there is no apparent di�erence between the day before
and after. Indeed, the independent two-sample t-test between the previous
and the following day always resulted in a p-value over 0.05, while the test
between the day before (or the day after) and during the rainy period always
gave a p-value below 0.05. This suggests that the number of consecutive
rainy days does not a�ect the posterior delays.
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Figure 3.14: Average delay before, during, and after a rainy period.
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Figure 3.15 shows the average delay on the �rst and last day of the period.
Again, the plot and corresponding tests indicated no signi�cant di�erence
between both days. This suggests that the e�ect of rain is not cumulative.
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Figure 3.15: Average delay on the �rst and last day of the rainy period.

Symmetrically, Figure 3.16 replicates Figure 3.14 but for dry periods (lim-
ited to length 10). The average delay on the day before and after the dry
period is similar, and the average delay during the dry period is lower than
the day before and after, as expected.
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Figure 3.16: Average delay before, during, and after a dry period.
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Finally, Figure 3.17 shows the average delay on the �rst and last day
of the dry period. Again, the plot and corresponding t-tests indicated no
signi�cant di�erence between both days. This suggests that the number of
consecutive dry days does not a�ect the delays either.
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Figure 3.17: Average delay on the �rst and last day of the dry period.

3.1.2 Recent rain

Another intuition is that rain might have a lagged e�ect, meaning that rain
in the previous days can also a�ect current delays, either positively or neg-
atively. In fact, the SBB team had the intuition that rain causes delays
(as previously shown), but it can also help clean the tracks, which might
ultimately help reduce delays.

Figure 3.18 shows the percentage of delayed trains according to the most
recent rain in the previous week. It can be clearly observed that there is no
carryover e�ect, at least on a daily basis, as all delays are similar except for
when it rains the same day.

To check this e�ect in a shorter term (hourly granularity), Figure 3.19
shows the e�ect of recent rain over the last 24 hours. In this case, one can
observe that train delays are especially a�ected by very recent rain. The
apparent increase from 10 to 21 hours ago is not statistically signi�cant (In-
dependence TTest p-value: 0.20), but there is indeed a signi�cant di�erence
between rain during the trip and rain 10 hours before (p-value: 1.59e-18).
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Figure 3.18: Percentage of delayed trains according to most recent rain in
the previous week.
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Figure 3.19: Percentage of delayed trains according to most recent rain in
the last 24 hours.

To quantify this e�ect more precisely, Figure 3.20 shows the average delay
for the last 6 hours, compared to the base delay (no rain in the last 24 hours).
Only 6 hours are needed to `go back to normality' (go back to the base delay).
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Figure 3.20: Percentage of delayed trains according to most recent rain in
the last 6 hours.

3.2 Snow

This section reproduces a similar analysis to that of section 3.1, but for
snow. To account for the fact that snow occurs only in winter months (see
section A.2), the following plots are limited to December, January, and Febru-
ary. For the sake of brevity and to avoid redundancy, only the most relevant
plots are included here.

Figure A.20 showed how often each situation (no snow, snow only in
Bern, snow only in Zurich, and snow in both cities) occurs. Analogously to
Figure 3.1, Figure 3.21 shows the percentage of delayed trains for each of
these situations. Again, delays are higher when it snows in at least one city
than when it does not snow, and direct trains are more a�ected than non-
direct ones. The relative e�ect of snow is almost the same in both directions.
Surprisingly, trains are especially delayed when it snows in Bern (and not in
both cities simultaneously), no matter the direction. The relative impact of
snow is higher than for rain in all cases: up to 60% between no snow and
snow in Bern.

As for the e�ect throughout the journey, Figure 3.22 shows a very similar
result to that in Figure 3.2. The conclusions are the same as for rain: delays
are higher in all journey locations when it snows, and trains get delayed
during the travel time while they catch up at the stations.
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Figure 3.21: Percentage of delayed trains for each situation (no snow, snow
in Bern, snow in Zurich, and snow in both cities).

Regarding the major delays, Figure 3.23 shows the percentage of trains
with a delay greater than a certain threshold. As for rain, the percentage of
delayed trains is always higher when it snows. Figure 3.24 shows that snow
always causes an increase in delays, up to more than double with respect to
non-snow delays. Again, the greatest the delay, the more is a�ected by snow.
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(d) Direct trains from Zurich to Bern

Figure 3.22: Percentage of delayed trains along the journey on snowy and
non-snowy days, for di�erent subsets of data.
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Figure 3.23: Percentage of direct
trains with a delay greater than a
threshold, with and without snow
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Figure 3.24: Relative increase of
delayed trains on snowy days
with respect to non-snowy days

The analysis of consecutive days does not apply to snow, as having two
snowy days in a row is very unlikely. Likewise, no hourly analysis (including
the lag e�ect) can be done, as snow measurements are only provided daily.
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3.3 Temperature

Previous works claim that extremely hot or cold temperatures can cause
delays (see section 1.2). In addition, they suggest that the temperature dif-
ference experimented on by a train can have an impact. First, Figure 3.25
shows the percentage of delayed trains with respect to the temperature. As
expected, there are more delays when it is extremely cold (below -5ºC) or ex-
tremely hot (above 30ºC). However, as the con�dence intervals are too large,
it is hard to draw clear conclusions. Moreover, these extreme temperatures
are rare (see Figure A.23).
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Figure 3.25: Percentage of delayed trains per temperature bin.

Figure 3.26 shows the average proportion of delayed trains on cold, mild,
and hot days (using -5ºc and 30ºC as thresholds). In both directions, the
average delay is indeed higher when it is cold or hot. This can be explained,
for example, because rails can get deformed by very high temperatures or
passengers might prefer to take public transport instead of cycling when
it freezes. However, given the con�dence intervals, extreme temperatures
cannot be considered signi�cantly di�erent from mild temperatures.

Regarding the temperature di�erence, Figure 3.27 shows that there is
indeed a positive correlation between the temperature di�erence and the
average delay. However, note that the e�ect is not symmetrical: the delays
increase when there is a positive temperature di�erence (computed as the
temperature in Bern minus the one in Zurich) but not when there is a negative
one, no matter the direction of the train. This is probably because Zurich is
usually warmer, so a higher temperature in Bern might be related to a cold
front or another type of weather phenomenon that could cause delays.
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Figure 3.26: Percentage of delayed trains according to temperature.
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Figure 3.27: Delays with respect to temperature di�erence.
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3.4 Wind

Wind can also be a factor in train delays. For example, strong winds can
cause trees to fall on the tracks or make breaking harder. Figure 3.28 shows
the average percentage of delayed trains according to wind speed. Its value
is computed as the maximum 10-minute average wind registered during the
train journey.

The average delay is higher when the wind speed is higher, suggesting that
wind negatively impacts train delays. The di�erence is especially pronounced
for very strong winds (over 50 km/h). However, the wide con�dence intervals
indicate notable variability, so as in the case of temperature, a signi�cant
e�ect cannot be concluded. The same pattern as rain and snow can be
observed: direct trains are more a�ected than indirect ones, especially if
they travel from Zurich to Bern.
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Figure 3.28: Percentage of delayed trains according to wind speed, for
di�erent subsets of data.
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Wind speed alone might not be accurate enough if its direction is not
considered. For example, if the wind blows in the same direction as the
train, it might speed it up, while if it blows in the opposite direction, it could
slow it down. Crossed wind could also a�ect the train's stability.

Figure 3.29 shows the average percentage of delayed trains for each wind
direction, separated by train direction. There is no observable di�erence
between both train directions apart from the above-commented magnitude
of delays.

Apparently, the wind does not help if it blows in the same direction as
the train or hinders if it blows in the opposite direction. However, there are
di�erences between wind directions. The wind blowing from the southeast
(i.e., from the Alps) is correlated to more delays than the wind blowing from
the northwest (i.e., from the Jura mountains), although the strongest winds
come from the west and north (see Figure A.29). It is hard to tell if these
are mere correlations or if there is a causality relationship, as wind direction
can be directly related to other weather variables (e.g., rain or temperature)
and, as said, su�ers from high variability.
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Figure 3.29: Percentage of delayed trains for each wind direction.
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3.5 Summary of results

The following tables summarize the results presented in the previous subsec-
tions. They show the absolute and relative increase in delays for each weather
variable. Table 3.1 shows the results for all direct trains, while Table 3.2 and
Table 3.3 show the results for direct trains going from Bern to Zurich and
from Zurich to Bern, respectively.

The values are taken from the preceding bar plots. For rain and snow,
they indicate the increase between non-rainy (non-snowy) and rainy (snowy)
days. For temperature, they indicate the increase between mild days and
extremely cold (-5ºC) or hot (>30ºC) days. For wind, they indicate the
increase between no wind and strong wind (>60km/h).

Wind stands as the (a priori) most signi�cant factor, with an increase of
more than 100% in delays. However, the con�dence intervals are too large to
draw clear conclusions. Even if the trends in the corresponding section look
clear, the variability is too high to be con�dent about the results.

Snow is the second most signi�cant factor, with a relative increase of
nearly 60% in both directions. The corresponding con�dence intervals are
also relatively large, but its impact is unquestionable.

In the third place, rain provokes a relative increase of delays of around
45%. In this case, the con�dence intervals are relatively small. This is prob-
ably the most interesting variable since it is the most common phenomenon
(50% of days), while the other phenomena (snow, strong wind, extreme tem-
peratures) occur in less than 10% of days.

Finally, temperature is the least signi�cant factor, with a relative increase
of less than 40% in both directions. Note that the increase during hot days
is much higher than during cold days. However, as in the case of wind, the
con�dence intervals are too large to con�dently draw conclusions.

This aligns partially with previous studies (see section 1.2), as rain and
snow are indeed found to be signi�cant factors, but wind and temperature are
not. However, one must note that the previous studies were based in other
countries (mostly Northern European countries), where weather conditions
and railway systems probably have di�erent characteristics.
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Variable Abs. increase (%) Rel. increase (%)

Rain 6.2± 1.0 43.8± 7.1
Snow 8.9± 4.0 58.9± 26.3

Temperature
Cold 2.0± 8.1 11.9± 48.6
Hot 5.5± 5.8 33.1± 34.7

Wind 16.3± 28.5 100.5± 175.6

Table 3.1: Absolute and relative delay increase for each weather variable,
for all direct trains

Variable Abs. increase (%) Rel. increase (%)

Rain 4.9± 1.4 40.2± 11.1
Snow 7.7± 5.2 60.3± 41.1

Temperature
Cold 1.5± 10.8 10.3± 76.5
Hot 3.9± 7.4 27.7± 52.2

Wind 8.3± 37.7 59.5± 270.3

Table 3.2: Absolute and relative delay increase for each weather variable,
for direct trains going from Bern to Zurich

Variable Abs. increase (%) Rel. increase (%)

Rain 7.5± 1.5 46.3± 9.3
Snow 10.0± 5.9 58.1± 34.0

Temperature
Cold 2.4± 11.8 12.7± 62.4
Hot 7.6± 8.9 39.9± 46.9

Wind 22.6± 40.3 123.4± 220.0

Table 3.3: Absolute and relative delay increase for each weather variable,
for direct trains going from Zurich to Bern
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3.6 Clustering

Weather variables are not independent of each other. As an intuitive ex-
ample, rain is negatively correlated with sunshine but positively correlated
with humidity, and they might interact with each other. Therefore, another
valuable analysis is to check how di�erent kinds of days (e.g., rainy, windy,
or sunny days) a�ect train delays instead of checking variable per variable.

To do so, I run di�erent clustering models to �nd groups of days with
similar weather conditions. I used all the available daily weather parameters,
including but not limited to the ones analyzed before. Figure 3.30 shows the
relation between the measurements in Bern and Zurich. All of them are
highly correlated (more than 0.8) except for rain and snow. I used the mean
of both cities for the former, while I kept both the measurements from Zurich
and Bern for the two latter.
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Figure 3.30: Correlation between the measurements in Bern and Zurich.

I tried two di�erent clustering methods: KMeans and a Gaussian Mixture
Model. Regardless of the clustering method, both the Silhouette score and
the Elbow method indicated an optimal number of 3 clusters. Then, I ran
di�erent dimensionality reduction models to observe the clusters in 3D: PCA,
MCA, and Factor Analysis of Mixed Data (FAMD). The latter (which is
the most suitable for mixed data) is shown in Figure 3.31. In practice, all
clustering methods resulted in the same 3 clusters, with just a few di�erences
(<10). Figure 3.32 shows the size of each cluster.
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Figure 3.33: Overview of the weather in each cluster.
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Figure 3.33 shows a boxplot for each cluster and each weather parameter
to characterize each cluster. They can be described as follows:

� Cluster 0 includes cold, snowy days with no sunshine or radiation, very
low temperatures, high humidity, and some rain.

� Cluster 1 includes sunny hot days with no rain or snow, high temper-
atures and pressure, low humidity, and low wind speed.

� Cluster 2 includes rainy (but non-snowy) days, with mid-high temper-
atures, medium humidity, and high wind speed.

For simplicity, from now on I call them snowy, sunny, and rainy, respectively.

Figure 3.34 shows the average percentage of delayed trains for each clus-
ter. As expected from the previous results, snowy days have more delays than
rainy days, which in turn have more delays than sunny days. The same pat-
tern as before can be observed: direct trains are more a�ected than indirect
ones, especially if they travel from Zurich to Bern.

Figure 3.35 shows the average percentage of delayed trains in each location
of the journey for each cluster. The conclusions are the same as for the
previous sections: delays are higher in all journey locations when it snows or
rains, and trains get delayed during the travel time while they catch up at
the stations.

As for major delays, Figure 3.36 shows the percentage of trains with a
delay greater than a certain threshold for each cluster. Again, the percentage
of delayed trains is always higher when it snows or rains, although there is
no signi�cant di�erence between clusters from 10 minutes onwards.

Finally, Figure 3.37 shows that the impact of rain and snow remains
throughout the whole year. However, note that snowy days have an especially
high impact in months where snow is not common (October and March).
The same e�ect can be observed in all stops and all train lines, but the
corresponding plots are not shown for brevity.
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Figure 3.34: Percentage of delayed trains for each cluster, for di�erent
subsets of data.
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Figure 3.36: Percentage of trains with a delay greater than a certain
threshold for each cluster.
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(d) Direct trains from Zurich to Bern

Figure 3.35: Percentage of delayed trains along the journey for each cluster,
for di�erent subsets of data.
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Figure 3.37: Percentage of delayed trains per month, for each cluster.
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3.7 E�ect on other railway sections

All the previous analysis was done on a single section of the railway (Bern-
Zurich). One may wonder if these results and conclusions also apply to other
sections or regions in Switzerland. With the same railway data used for the
previous analysis, and retrieving new weather data, I checked if it could also
be applied to another section of the same line: from Geneva to Lausanne.

Figure 3.38 show the percentage of delayed trains in each situation (no
rain, rain only in Geneva, rain only in Lausanne, and rain in both cities),
separated by direction. Note that this only includes IC1 trains, since they
are the only ones that go through both cities and that were already included
in the railway dataset. The conclusions are the same as in section 3.1: the
percentage of delayed trains is higher when it rains in both cities than when
it rains only in one, which in turn is higher than when it does not rain at all.
Again, the trains going west (from Lausanne to Geneva) are more a�ected
by rain than the other way around, just as in the Bern-Zurich section.
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Figure 3.38: Percentage of delayed IC1 trains according to the location of
rain, separated by direction.

The same results are obtained if this exercise is repeated for the Lausanne-
Bern or the St.Gallen-Zurich section. It is interesting to see that, in all
sections of this line, trains going west (and thus, generally, downwards) get
more delayed on average when it rains. Although this is probably just a
correlation and not a causation, a hypothesis could be that rain wettens the
tracks, thus making it more di�cult for the trains to break, thus making them
go slower and ultimately get more delayed. However, this is just a hypothesis;
more analysis outside this line or region would be needed to con�rm it.
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3.8 Cancellation of trains

Around 9% of trains are canceled either before departure or during their
journey, according to the used data. These trains were not included in the
preceding analysis, as their delay cannot be computed. However, it is also
interesting to know if train cancellation is a�ected by weather conditions.

Figure 3.39 shows the percentage of canceled trains in each cluster pre-
sented in section 3.6. Surprisingly, fewer trains were canceled when it snowed,
while there was the same number of cancellations on rainy and sunny days.
This could be explained by the fact that many cancellations are actually
scheduled, e.g., for maintenance reasons, and thus not a�ected by weather.
Another possible explanation could be that SBB may prepare the network
better before snowy days, knowing in advance that more issues may occur.
Also, keep in mind that snowy days represent a relatively small proportion
of days (see Figure 3.32).

The cancellation of trains is not a�ected by rain, contrary to the e�ect
on delays presented in the previous sections. This could be explained by the
fact that SBB non-scheduled cancellations usually occur because of malfunc-
tioning, human accidents, or other major issues that are not directly related
to weather, at least in the short term. However, it is important to note that
the data used for this analysis does not include the reason for cancellation,
so this is just a hypothesis.
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Figure 3.39: Percentage of canceled trains per day according to weather.
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Chapter 4

Prediction

This chapter describes the e�orts to predict train delays using meteorological
data. First, it is worth mentioning that predicting the delay of a train is a
very complex task. A myriad of factors can have an in�uence, and meteo-
rology is only one of them. Many e�orts have been put in both within and
outside of SBB to predict delays, but it remains challenging even if many
other factors are considered. Therefore, these models do not aim to predict
the delay of a train with high accuracy, but to check if meteorological data
can be used to improve delay prediction models.

Train-level prediction

Minutes of delay

First, some ambitious models were built to predict the minutes of delay for
each train. I built three versions, changing the predictor variables: �rst, one
only with weather variables; second, one only with previous delays (departure
delay of the train, arrival delay of the previous train, and average delay in
the same line during the past 6 hours); and third, one combining both sets of
variables. I tried both a Random Forest Regressor and a Gradient Boosting
Regressor. Table 4.1 shows the metrics obtained with each version and model.

The best-performing model was Gradient Boosting when including both
weather and delay variables, but it was still poor. In the best case, it managed
to explain 40% of the variability of the data.

50



Model Metric W D D&W

Random Forest
MAE 1.81 1.55 1.48
RMSE 3.00 2.46 2.37
R2 0.03 0.31 0.36

Gradient Boosting
MAE 1.67 1.44 1.41
RMSE 2.89 2.35 2.32
R2 0.05 0.37 0.40

Table 4.1: Metrics for the prediction of minutes of delay

Note how the models that only include weather variables are very poor,
and R2 does not exceed 0.05. However, weather features can indeed im-
prove the model's performance if the previous delays are already used. Also,
one must take into consideration that the variables concerning previous de-
lays might already include information about meteorological conditions, so
the weather variables might not be adding their full information in the last
version of the models.

Figure 4.1 shows the results for the best model with only weather. Fig-
ure 4.2 shows the results for the best model with weather and delays.
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Figure 4.1: Results with only weather variables

Figure 4.1b shows that the most important variables are pressure, wind,
and temperature if only weather variables are considered. However, note that
the model is very poor so these results should be taken with caution.
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Figure 4.2: Results with both weather and previous delays

Figure 4.2b shows that, when previous delays are included, the most im-
portant variables are the previous delays, as expected. The weather variables
have a similar (low) importance, but pressure, radiation, wind, and temper-
ature are the best ones.

Delayed or not

In addition, I changed the target of the models to predict whether the
train would be delayed or not. The metrics are shown in Table 4.2. The
models su�ered from a low recall, meaning that they were able to predict the
non-delays but not the delays, even if the model was weighted to account for
the imbalance in the target.

Model Metric W D D&W

Random Forest

Accuracy 0.78 0.83 0.84
Precision 0.33 0.52 0.55
Recall 0.26 0.30 0.34
F1 0.29 0.38 0.42

Gradient Boosting

Accuracy 0.83 0.85 0.86
Precision 0.44 0.74 0.72
Recall 0.04 0.25 0.27
F1 0.07 0.37 0.39

Table 4.2: Metrics for the prediction of whether a train will be delayed or
not
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Again, including both sets of features provided the best results. Both
types of models performed similarly, but Random Forests gave a higher over-
all F1 score. The confusion matrices are shown in Figure 4.3.

not delayed delayed
Predicted label

not delayed

delayed

Tr
ue

 la
be

l

14017 1706

2329 831

2000

4000

6000

8000

10000

12000

14000

(a) Only weather varia

not delayed delayed
Predicted label

not delayed

delayed

Tr
ue

 la
be

l

14847 876

2098 1062

2000

4000

6000

8000

10000

12000

14000

(b) Weather and previous delays data

Figure 4.3: Confusion matrix for delayed trains

A Neural Network and a Long short-term memory (LSTM) were also
tried, but they did not improve the results of the other models. Therefore,
they were discarded due to their complexity.

Day-level prediction

Since predicting the delay for each train is a very challenging task, I sim-
pli�ed the target by aggregating the delays and predicting the line's average
delay (or the percentage of delayed trains) during the day. In this case, I only
used the daily weather prediction. After removing weather and delay out-
liers, several types of models were tried (Linear Regression, Random Forests
Regressor, and Gradient Boosting Regressor), but the results were the same:
the models were incapable of adequately predicting the delays, as one would
expect. Even if all possible combinations of daily weather parameters (and
their derived variables) were tried, the R2 score did not exceed 0.10. The
relation between actual and predicted values is shown in Figure 4.4, both for
the percentage of delayed trains and the average delay. A slightly increasing
trend is indeed found if a regression line is �tted, but the model is not able
to capture the variability of the data.

Doing the same on the hour level was discarded, since there are not enough
trains per hour in this section so as to aggregate them in signi�cant groups.
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Figure 4.4: Prediction of delays with daily weather data

The conclusion is that simplifying the target does not help in predicting
the delays. However, note that this model only includes weather data.

Conclusions

These results con�rm that predicting delays is a challenging task, no matter
the form of the target. The obtained models are very poor even if data from
previous delays (including the departure delay of the train) are included. In
fact, as shown in Figure A.8, a low correlation exists between a train's origin
departure and destination arrival delay. In other words, not even by knowing
the train's delay at a station's departure, it is easy to predict its delay upon
arrival.

Reducing the data to only direct trains, a single direction, a single line,
only during weekdays, or during a single month or season did not improve
the results signi�cantly. Even if the preceding analyses were clear about
meteorological factors' impact on delays, there is too much variability to
accurately use them as predictors. However, meteorology features could be
used to improve the prediction if other factors are considered in more complex
models. This is out of the scope of this thesis and should be explored in future
work.

54



Chapter 5

Conclusion

This thesis aimed to investigate the impact of meteorological phenomena on
train delays in Switzerland. The analyses provide compelling evidence of a
correlation between adverse weather conditions and train delays. Assum-
ing the causal graphs and remarks presented in the introduction, it can be
concluded that there is a causal relationship between weather and delays.

Snow emerges as the most signi�cant contributor to delays. However, rain
can be of greater interest, as it is a much more common phenomenon and
also has a considerable e�ect. Extreme temperatures and strong wind show
a positive correlation with delays and, on average, a negative e�ect on punc-
tuality, but their high variability hinders us from establishing a statistically
signi�cant e�ect. These �ndings emphasize the importance of considering
adverse weather conditions when assessing and managing train operations.

The strength of the results is reinforced by the extensive datasets utilized,
spanning �ve years and encompassing a substantial number of train journeys
and weather measurements. As an added value, it should be noted that all
the work has been done exclusively with open data. The detailed granularity
of the weather data, both daily and hourly, aligns with previous studies and
e�ectively captures the impact of meteorological phenomena on train delays.

The negative impact of adverse weather conditions is observed across all
train stops, lines, and directions, with notable delays for trains traveling from
Zurich to Bern and, generally, westward along the St. Gallen-Lausanne line.
Direct trains are more susceptible to delays due to their limited opportunities
for recovery.
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Weather-related disruptions persist throughout the year, with signi�cant
e�ects observed during the fall season, peak hours, and evenings. Delays of
all magnitudes, ranging from 3 to 30 minutes, are increased. Moreover, the
study reveals that the in�uence of recent rain on train delays can extend
up to 6 hours. In other words, it takes approximately 6 hours for the Swiss
network to recover from rain-related disruptions and go back to normality.

Predicting train delays remains a complex challenge, and solely relying
on weather data for predictions yields limited accuracy, as expected. The
best model, which included both weather and previous delay data, was able
to explain only 40% of the variance in the delays. However, incorporating
meteorology-related factors on more sophisticated models may enhance pre-
dictive capabilities, an avenue worth exploring in future research.

A notable contribution of this thesis is the development of clustering
techniques that allow the classi�cation of days into distinct categories based
on weather predictions. This clustering approach serves as a valuable tool
for the punctuality team at SBB, enabling proactive preparations for days
expected to experience adverse weather conditions.

Furthermore, the outcomes obtained from examining other railway seg-
ments within the same line o�er promising indications of the generalizability
of the �ndings across di�erent regions. This work sets the methods and tools
to extend this analysis in future research.

Finally, the study found no evidence that weather conditions directly
a�ect train cancellations. This aligns with SBB's expectations, as cancella-
tions often result from scheduled adjustments or technical issues unrelated to
weather conditions. Additionally, the analysis did not uncover a signi�cant
impact of consecutive rainy days on delays compared to isolated days.

The �ndings of the study align with previous research. However, it pro-
vides the �rst empirical con�rmation of these e�ects in Switzerland, shedding
light on the unique characteristics of the Swiss railway network.

In conclusion, this thesis contributes to understanding how meteorolog-
ical phenomena in�uence train delays in Switzerland. The demonstrated
correlations, impact quanti�cation, and clustering techniques o�er valuable
insights to inform decision-making and improve punctuality in the face of
adverse weather conditions. By building upon these �ndings, SBB and other
transport operators can develop more robust strategies for reducing weather-
related disruptions and improving their networks' e�ciency and reliability.
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Chapter 6

Limitations and future work

This thesis has provided valuable into the relationship between meteorologi-
cal conditions and disruptions in the railway system. However, it is important
to acknowledge the limitations of this study and identify potential areas for
future research.

To begin with, future work could extend the analysis to include other
Swiss lines or regions. By broadening the scope, a more comprehensive un-
derstanding of how weather in�uences train delays in Switzerland could be
achieved. Examining di�erent lines or regions would allow for a comparison
of the e�ects of weather on diverse railway networks, accounting for varia-
tions in geographical and climatic factors. The present thesis is a valuable
foundation for such extensions, as the code and methodologies employed can
be readily replicated or adapted to incorporate new data.

Moreover, studying the interaction of trains, including accumulated de-
lays and other complex factors, could provide valuable insights into the dy-
namics of disruptions in the railway system. Although this thesis focused on
the direct impact of weather on train delays, exploring the broader intricacies
of delays and their propagation throughout the network could enhance our
understanding of the overall system's resilience and vulnerability.

One limitation of this study was the absence of data regarding the num-
ber of passengers on each train, as it is not open. Including this information
in future research would enable a more comprehensive investigation into the
connection between weather-induced delays and their implications for com-
muters. Exploring the interaction between passenger volume and weather-
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related disruptions can provide insights for developing strategies to minimize
the impact on individuals and improve overall system performance.

Similarly, future studies could aim to include data on incidents or con-
struction work that may a�ect train operations. Although the acquisition
and analysis of this data present challenges, exploring its in�uence on train
delays could contribute to a more comprehensive understanding of the factors
contributing to disruptions in the railway system. While this study assumed
a uniform impact of incidents or construction work on all trains, future re-
search could delve into the speci�c ways in which these events interact with
weather conditions and a�ect train operations.

In addition, investigating the impact of weather on other modes of trans-
port, such as buses or cars, could provide valuable comparative insights. Un-
derstanding how weather conditions in�uence various transportation systems
would help identify common challenges and develop strategies for improving
overall transportation resilience in the face of adverse weather events.

Finally, it is important to note that this thesis has focused on con�rming
and quantifying the negative e�ect of weather conditions on train delays. Fur-
ther investigation is needed to understand the factors that connect weather
conditions to train delays and gain insights into the underlying processes.
For instance, one hypothesis is that rain prompts passengers to seek shel-
tered areas of the stations, making boarding and alighting from trains more
challenging and resulting in longer stops. Also, rain can wet and slippery the
tracks, potentially a�ecting braking. However, this study does not delve into
these aspects due to a lack of technical knowledge. Gaining a deeper under-
standing of the mechanisms and causal pathways by which weather events
lead to disruptions would inform the development of targeted strategies and
interventions to mitigate the impact of adverse weather on train operations.

By addressing these limitations and pursuing the suggested avenues for
future research, scholars, policymakers, and especially SBB and other public
transport operators in Switzerland can leverage the �ndings of this study.
This will enable them to develop measures for managing weather-related
disruptions, enhancing the railway network reliability, and improving the
commuting experience for passengers.
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Appendix A

Data exploration

A.1 Railway data

General description

As explained in section 2.2, the railway dataset contained nearly 200.000
trains from Bern to Zurich (or vice versa). The same number of trains trav-
eled in each direction. Around half of them were direct (no intermediate
stops), while the other half stopped a variable amount of times between both
cities. The trains stopped in around 775.000 stops (or train stations), giving
an average of 3.9 stops per train (or 2.0 stops per direct train and 5.8 stops
per non-direct train). Figure A.1 shows the distribution of the number of
stops per train.

The trains are part of several lines, grouped into InterCity (IC) and In-
terRegio (IR) services. Note that each line stops at di�erent stations with
di�erent frequencies, and trains of the same line may also stop in di�erent
places. All InterRegio services stop between Bern and Zurich, while most of
the InterCity trains are direct. Figure A.2 shows the percentage of trains
and stops for each line. Regional services stop more than the InterCity ones,
even if they represent a smaller part of the trains.

As explained in section 1.3, not all trains start or end in Zurich or Bern.
Instead, they may start in a previous stop and/or end in a posterior one (see
example in Figure 1.3). Figure A.3 illustrates each possible combination and
shows the corresponding percentage of trains.
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Regarding the time span, the trains were di�erently distributed over time.
Although the considered period was from 2018 to 2022 included (5 years or
1.825 days), some dates were missing (see Figure A.4), leaving around 1700
days with data. This is due to two reasons: �rst, possible changes in the
collection or annotation of the data over time, and second, changes in the
train schedule (including the number of trains) since the SBB timetables
change every year. However, this is not critical for this project since there
is enough data distributed over di�erent years, stations and months so as to
be able to capture the di�erence of the e�ect over these periods.

Figure A.4: Number of trains per line and missing dates

Also, note that the number of trains oscillates during the day and that
there are no night trains. Most travel from 6h to 19h (see Figure A.5).
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Figure A.5: Distribution of the start and end hours of the trains
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Departure and arrival delays

Regarding the delays, �rst note that one can compute the departure

delay (that is, the di�erence between the target departure time and the
actual departure time from a station), and the arrival delay (that is, the
di�erence between the target arrival time and the actual arrival time to a
station). Both delays can be computed at each stop, but we usually focus on
the origin departure delay and the destination arrival delay.

Figure A.6 shows a Kernel Density Estimate plot of the origin departure
and destination arrival delays. One can see that the departure delay is rarely
negative (trains do not depart in advance) and is usually very low (under the
3-minute threshold). As for the arrival delay, it is much more widespread,
meaning that trains sometimes arrive in advance, but also arrive quite later
than 3 minutes. Indeed, the median arrival delay is much lower and the
standard deviation much higher than those of the departure delay, even if
the mean is nearly identical.

4 2 0 2 4 6 8 10
Delay (minutes)

0.0

0.2

0.4

0.6

0.8

de
ns

ity

mean: 1.63 min
median: 1.17 min
std: 1.82 min

mean: 1.60 min
median: 0.88 min
std: 3.25 min

origin
departure delay
destination
arrival delay

Delay at origin and destination
only origin and destination

Figure A.6: Origin departure and destination arrival delays

Figure A.7 shows the same but separated by direction. The departure
delay is lower for trains traveling from Zurich to Bern, but the arrival delay
is slightly higher, as con�rmed by the corresponding t-tests.
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Figure A.7: Origin departure and destination arrival delays, by direction

Figure A.8 shows the correlation between arrival and departure delays, at
the origin, during the trip, and destination. Arrival and departure delays at
origin and destination are highly correlated and approach a diagonal shape.
However, the regression lines are lower than the corresponding diagonals,
meaning that the departure delay tends to be lower than the arrival one. In
other words, trains catch up by stopping less than scheduled. The correlation
during the journey, instead, is much lower (below 0.5), meaning that these
delays are very unpredictable, even given the delay at departure.

Figure A.8: Correlation between arrival and departure delays

Table A.1 shows the di�erence between directions, also illustrated in Fig-
ure A.8. Although the trend is similar, trains traveling from Zurich to Bern
have a lower correlation in all cases, meaning they get delayed more easily.
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Direction At origin During the journey At destination
Bern-Zurich 0.78 0.51 0.83
Zurich-Bern 0.61 0.43 0.79

Table A.1: Correlation between arrival and departure delays

Dwell time and travel time

Apart from arrival and departure delays, it may also be interesting to
check the elapsed time at a station (dwell time) and the elapsed time between
two stations (travel time). This way, one can check if a train incurs a delay
while stopped at a station or during the journey, regardless of its previous
delay.

Figure A.9a shows the relation between the target dwell time and the
actual dwell time in a station. The regression line is shown in red, and the
perfect linear relation is shown in gray. They are highly correlated, but the
actual dwell time is slightly higher than scheduled.

Figure A.9b shows a Kernel Density Estimate plot of the dwell time dif-
ference. That is the di�erence between the actual dwell time and the target
dwell time of the train in a given station. Again, one can observe that trains
tend to stop more than scheduled (both median and mean are positive),
although they sometimes stop less than expected, probably to catch up.

(a) Target vs actual dwell time (b) Dwell time di�erence KDE

Figure A.9: Dwell time analysis

Similarly, one can produce the same plots for the travel time. Fig-
ure A.10a shows the relation between the target travel time and the actual
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travel time. Figure A.10b shows a Kernel Density Estimate plot of the travel
time di�erence (the di�erence between the actual travel time and the target
travel time). Both show that the actual travel time tends to be lower than
the target one, but they have an almost perfect linear relationship.

(a) Target vs actual travel time (b) Travel time di�erence KDE

Figure A.10: Travel time analysis

Finally, Figure A.11 shows the relationships between the arrival delay,
dwell time di�erence, and travel time di�erence. Figure A.11a shows that the
arrival delay and the dwell time di�erence are negatively correlated, meaning
that trains stop for a shorter time when they are delayed to catch up and
be on time again. Figure A.11b, instead, shows that the arrival delay and
the travel time di�erence are positively correlated (delay during the journey
provokes an arrival delay at the next stop). Finally, Figure A.11c shows that
travel and dwell time di�erences are negatively correlated, meaning again
that trains stop for less time when they get delayed during the journey.

(a) Arrival delay vs

dwell time di�erence

(b) Arrival delay vs

travel time di�erence

(c) Dwell time di�erence

vs travel time di�erence

Figure A.11: Relation between delays and dwell/travel time di�erences
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Stops

Figure A.12 shows the number of occurrences per stop. All trains stop
in Bern and Zurich, half in Olten, and around a quarter in Aarau and other
intermediate stops. Very few stop in Lenzburg, Wynigen, Turgi and Dietikon.
Figure A.14 shows the average arrival and departure delay for one of them,
by direction (for stops in both directions only). Especially noticeable is how
Bern has a much higher delay than Zurich, no matter the direction. Finally,
Figure A.13 shows the average arrival delay according to the number of stops
between Bern and Zurich. There is not a clear increasing or decreasing
pattern, but the most delayed trains are those that stop between 3 and 5
times. See Figure A.1 for the distribution of the number of stops per train.

Figure A.12: Number of occurrences
per stop Figure A.13: Average arrival delay

per number of stops

Figure A.14: Average arrival and departure delay per stop, by direction
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A.2 Meteorological data

As mentioned, the analysis is focused on four weather parameters: rain, snow,
wind, and temperature. This section shows a quick overview of each one to
understand, for example, how often it rains or snows in Bern and Zurich or
how often there are extreme temperatures or strong wind gusts.

Rain

Rain is a very common weather phenomenon in Switzerland. During the
considered period, it rained once every two days in at least one of the cities,
and almost 40% of days in both (see Figure A.15). In 88% of days, both cities
coincided (either it rained in both or did not rain at all). In fact, the rainfall
measurements in both cities had a 73.65% correlation (see Figure A.17). As
one would expect, rainfall had a right-tailed distribution (see Figure A.16).

Figure A.15: Distribution of rain
locations

Figure A.16: Rainfall histogram,
per city

Figure A.18 shows that the amount of rain is much higher when it rains
in both cities than when it rains only in one. This can be explained by the
fact that rain in both cities is probably related to worse generalized weather
(therefore with more rain) in the whole country.
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Figure A.17: Rainfall in Bern and Zurich

Figure A.18: Average amount of rain in each situation

Snow

As one can guess, snow is rare and only occurs in winter. In Bern and
Zurich, snow is relatively common from December to February and excep-
tional in November, March, and April, as shown in Figure A.19. Over the
last �ve years, it snowed 12% of the days from December to February. Fig-
ure A.20 shows how often it snowed in one or both cities.

Figure A.21 shows the right-tailed distribution of snowfall in both cities.
Even if the mean in Bern is higher, Zurich su�ered from some signi�cant
outliers (more than 20 cm of snow in one day). As in the case of rain,
Figure A.22 shows that the amount of snow is much higher when it snows in
both cities than when it snows only in one.
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Figure A.20: Distribution of snow
locations

Figure A.21: Snowfall histogram,
per city

Figure A.22: Average snowfall in each
situation

Temperature

As for temperature, Figure A.25 shows the expected seasonal behavior.
The correlation between Bern and Zurich measurements was 0.99. Fig-
ure A.23 shows the histogram of temperatures in both cities. Daily aver-
age temperatures range from -10ºC to nearly 30ºC, being slightly higher in
Zurich than in Bern. Temperatures below 0ºC and above 20ºC are relatively
rare. The temperature di�erence on the same day (Bern - Zurich) is usually
negative but can range from -5ºC to 4ºC (see Figure A.24).
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Figure A.25: Temperature evolution in Bern and Zurich

Figure A.23: Temperature
histogram in Bern and Zurich

Figure A.24: Temperature
di�erence histogram

Wind

Finally, Figure A.28 shows the wind speed in Bern and Zurich. The
correlation between both cities was 0.81. Figure A.26 shows the wind speed
histogram in both cities. The daily average is usually below 10 km/h, but
it can reach up to 40 km/h. As for the wind gusts, Figure A.27 shows the
histogram of the maximum wind speed registered daily. Note that wind
speed can reach up to 200km/h, although wind gusts above 50km/h are rare.
Figure A.29 shows the average wind speed for each wind direction. The
strongest winds blow from the west and northwest, while the weakest ones
blow from the south and southeast.
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Figure A.26: Wind speed
histogram in Bern and Zurich

Figure A.27: Maximum wind gust
histogram in Bern and Zurich

Figure A.28: Wind speed in Bern and Zurich
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Figure A.29: Average wind speed per wind direction.
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