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Abstract: We investigated the performance of cotton fabrics coated with DOPO-HQ and Zr-based
Metal–organic Frameworks when exposed to fire. The chemical structure of the cotton fabrics
before and after the coating was characterized using FTIR spectroscopy, and the surface morphology
of cotton and their combustion residues was probed via scanning electron microscopy. In our
experiments, we used flammability tests and thermogravimetric methods to understand the burning
behavior of the coated fibers, as well as their thermal stability. The cotton fabrics coated with DOPO-
HQ and Zr MOFs exhibited shorter combustion times, had better thermal degradation properties,
promoted the creation of heat-insulating layers, and exhibited improved smoke suppression behavior.

Keywords: DOPO-HQ; Zr-based metal–organic frameworks; fire protection; cotton fabric

1. Introduction

Cotton, a natural hollow fiber with unique properties such as moisture absorption, air
permeability, softness, comfort, and warmth retention, is one of the most used raw materials
in the textile industry [1–3]. Since cotton fibers are inherently flammable and exhibit low
thermal stability, significant efforts have been made to develop additives or coatings that
can improve the properties of cotton when exposed to fire and high temperatures [4].
Several of these efforts have focused on developing halogen- and formaldehyde-free flame
retardants [5–7]. Phosphorus-based flame retardants have proven to be effective coatings
when exposed to fire, as they can generate phosphoric acid, metaphosphoric acid, and other
derivatives that catalyze the dehydration and carbonization of cotton substrates covered
with phosphoric acid derivatives. These coatings can also prevent the transport of oxygen
and heat [8,9].

For the first time since 1972, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
(DOPO) reported by Sanko Chemical Co., Ltd., demonstrated enhanced anti-flammable
properties among other available phosphorus-containing compounds [10]. A variation of
DOPO, with formula 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-xa-10-phosphaphenanthrene-
10-oxide, and known as DOPO-HQ, involves reacting DOPO and p-benzoquinone [11].
DOPO-HQ exhibits better chemical stability and heat resistance than DOPO due to its
rigid aromatic structure and stable P-O-C bond. When DOPO-HQ decomposes at high
temperatures, some of its derivatives, such as phosphoric acid contribute to suppressing
the burning of cotton fibers [12,13].

Metal-organic frameworks (MOFs) [14] are hybrid compounds comprising inorganic
metal nodes and organic ligands. Their controlled structure, unique porosity, and high
specific surface area have offered possibilities for a myriad of applications in gas stor-
age/separation [15], drug delivery [16], electrochemical sensing [17], catalysis [18], and
flame retardant additives [19,20].
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The interaction of MOFs and cellulose-based polymers offers many possibilities as
most MOFs are also reticular structures implying that the crystalline structure can be
maintained regardless of the molecular length of the ligand. This unique property allows
unprecedented control of the porosity of MOF structures. Even better, the porosity and
crystalline structure can be predicted with a greater degree of accuracy.

Cellulose comprises D-glucopyranose units linked by β-1,4-glycosidic bonds, resulting
in three reactive hydroxyl groups per glucose unit. These hydroxyl groups can undergo
several chemical modifications that can enable the grafting of active materials, such as
metal–organic frameworks. For example, some of these chemical modifications include
using a native moiety of the fiber that mimics MOFs’ complexing moieties. Another
approach can exploit modifications to the surface chemistry of the fiber by adding an
organic group mimicking MOFs’ complexing moieties. An additional approach includes
integrating inorganic oxides into the surface of the fiber, so that they can play the role of
inorganic components of a MOF structure.

MOFs have been incorporated as finishes into many textile matrices [21–23]. While
undergoing thermal decomposition, the metal oxides generated from MOF particles on
polymer substrate surfaces act as a physical barrier to protect the substrate from further
burning and efficiently adsorb gases and smoke. Non-flammable gases formed by the ther-
mal decomposition of MOFs can also dilute the concentration of flammable compounds [24].
Since their discovery by Lillerud [25], Zr-based MOFs have shown uniquely high thermal
and chemical stability [26]. In particular, UiO-66 (UiO: University of Oslo) Zr-based MOF
has been extensively studied and grown on the surface of cotton fibers [27]. UiO-66-COOH,
which contains free pendant –COOH groups, can be synthesized via a hydrothermal pro-
cedure [28]. Water-based synthesis not only lowers manufacturing costs but also avoids
using toxic solvents. UiO-66-COOH has good compatibility with cotton substrates [29].
The flame-retardant properties of cotton can also be improved after incorporating Zr-MOFs,
as we previously reported [30].

To the best of our knowledge, there have not been public reports on using mixtures
of DOPO-HQ and Zr-based MOFs to improve the flame-retardant properties of cotton.
Therefore, in this article, we explore the structural characteristics and behavior shown by
coated fabrics confronted with fire. We speculate that using sonication may help introduce
DOPO-HQ molecules to the inside of the porous structure of Zr-MOFs. We also found
that the resulting structure does not require additional reagents or co-adjuvants. We also
explored coated fibers’ behavior as a function of the number of DOPO-HQ and Zr-based
MOF layers deposited on the surface of cotton substrates.

2. Experimental Section
2.1. Reagent and Materials

Commercially available bleached 100% cotton twill fabrics with an areal density of
250 g/m2 were used. 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-xa-10-phosphaphenanthrene-
10-oxide (DOPO-HQ) was purchased from Alfa Chemistry Co., Ltd. (Zhengzhou City,
China). Zirconium chloride (ZrCl4) and trimeric acid (H3BTC) were purchased from
Aldrich Chemical Co. (St. Louis, MI, USA). All reagents were employed as received
without additional purification.

2.2. Sample Preparation of DOPO-HQ@Zr-MOF Microcomposites

We completely dissolved 2.4 g (10 mmol) of ZrCl4 in 50 mL of deionized water. Af-
terward, 2.2 g (10 mmol) of H3BTC was dissolved in 50 mL of deionized water using
an UltraTurrax homogenizer (IKA, Staufen Germany) operating at 16,000 rpm. The two
dispersions were mixed and refluxed in a sealed reactor at 100 ◦C for 16 h. We added 6.5 g
(20 mmol) of DOPO-HQ powder to 170 mL of an ethanol/water mixture (1:1), ultrason-
icated the mixture for 15 min, and left it overnight under vigorous magnetic stirring at
room temperature.
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To study the gravitational stability of the DOPO-HQ@Zr-MOF dispersion, the sample
was observed for an extended period of time, as shown in Figure 1. Digital photographs
were used to visualize the evolution of dispersion over time. We observed that at ambient
conditions, the DOPO-HQ@Zr-MOF suspension remained homogeneously dispersed for at
least 8 h.
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2.3. Functionalization of Cotton Substrates with DOPO-HQ@Zr-MOF

Cotton fabrics were exposed to the DOPO-HQ@Zr-MOF dispersion via dipping for
5 min. After dipping, the coated fabrics were dried in an oven for 4 min at 75 ◦C. This
combination of dipping and drying was considered one dip–dry cycle, as illustrated in
Figure 2.
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Figure 2. Graphical representation of one functionalization cycle for cotton fabrics with DOPO-
HQ@Zr-MOF.

Cotton fabrics were labeled as CO/DOPO-HQ@Zr-MOF-1 and CO/DOPO-HQ@Zr-
MOF-10 depending on the number of dipping–drying cycles used (1 or 10). Each sample
was weighed before and after applying the coating.
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The add-on values (wt%) were calculated using Equation (1), and the results are
summarized in Table 1. After depositing 1 layer and 10 multilayers of DOPO-HQ@Zr-MOF,
the cotton fabrics attained weight gains of 2.82 and 12.03 wt%.

Add− on(wt%) =
Last weight of specimen(g)− Initial weight of specimen(g)

Initial weight of specimen(g)
∗ 100 (1)

Table 1. The treatment data of cotton fabrics by DOPO-HQ@Zr-MOF dispersions.

Sample Dip-Dry (Cycles) W0 (g) W1 (g) Add. wt (%)

CO/DOPO-HQ@Zr-MOF-1 1 5.68 5.84 2.82
CO/DOPO-HQ@Zr-MOF-10 10 5.82 6.52 12.03

2.4. Characterization

UV-vis absorption measurements of DOPO-HQ, Zr-MOF, and DOPO-HQ@Zr-MOF
specimens were performed using a UV-2401 PC spectrophotometer (Shimadzu, Kyoto,
Japan). The UV experiments were performed at room temperature covering a wavelength
range from 700 to 190 nm. The Fourier Transform Infrared (FTIR) spectra of the specimens
were acquired with a Nicolet iS10 FTIR spectrometer (Thermo Fisher, Walham, MA, USA)
in the 4000–500 cm−1 range with a spectral resolution of 4 cm−1.

Flammability tests were performed to investigate the burning behavior of the treated
fabrics using a customized flame testing apparatus inspired by the norm ASTM D6413
standard. Textile samples, measuring 280 × 75 mm, were fixed and exposed to a vertical
flame for 10 s. The burning process for each sample was video recorded.

To observe the surface morphology of the cotton fibers and the carbonized residues
after the burning experiments, scanning electron microscopy (SEM), JSM-5610 (JEOL,
Akishima, Japan) installed at the imaging platform center of the Polytechnic University of
Catalonia (UPC) was used. Prior to SEM imaging, the specimens were coated with 10 nm
of Au.

The thermal properties of specimens were evaluated using the Thermal Analysis
System TGA 2 STARe (Mettler-Toledo, Columbus, OH, USA). All samples were loaded into
an alumina holder and heated from 30 to 800 ◦C at a heating rate of 10 ◦C·min−1 under
an airflow of 50 mL·min−1. Thermograms of weight, as a function of temperature, and
the derivative of those thermograms (DTG) were used to obtain the thermal properties of
coated and uncoated cotton fabric specimens.

3. Results and Discussion
3.1. UV-VIS Spectroscopy

To confirm that an immiscible DOPO-HQ compound was mixed with the Zr-MOF
structures, we used ultraviolet–visible absorption spectroscopy, as shown in Figure 3.

Strong absorption bands in the region below 260 nm confirm the π→π* excitation of
the trimesic acid linker in the Zr-based MOF. These bands are in quantitative agreement
with previous reports [31]. The maximum UV-visible absorption peak for Zr-MOF is found
to be around 322 nm. The absorption peak for DOPO-HQ@Zr-MOF displayed a small
red shift compared to previous reports [32]. The maximum absorption peak for Zr-MOF
was located at 213.5 nm, yet it shifted to 211 nm in the spectrum of DOPO-HQ@Zr-MOF.
The red shifting effect can be attributed to interactions between the MOF structure and
DOPO-HQ that form a new complex structure. The adsorbed molecules are expected to
modify radiation’s capability to be absorbed freely by the MOF structure, hence reducing
the three possible excitation states to a combination of them.
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3.2. FT-IR Characterization

Figure 4 shows the FTIR spectra for the specimens.
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The FTIR absorbance spectra of the cotton specimens, before and after coating with
DOPO-HQ@Zr-MOF, provide further confirmation of the chemical interaction between the
coating and the cotton substrate. Peaks at 1025 cm−1, 1315 cm−1, 1363 cm−1, 1430 cm−1,
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and 2889 cm−1 in the untreated cotton specimen were associated with (CO) and (OH)
stretching, C-O bending, C-H bending, CH2 bending, and C-H stretching vibrations [33].
The broad band around 3300 cm−1 was commonly assigned to the –OH groups and, as
expected, it significantly weakened after applying the coating [34,35]. The peak observed at
1710 cm−1 was assigned to C=O stretching in the DOPO-HQ@Zr-MOF coating. The peaks
at 748 cm−1, 1191 cm−1, and 1563 cm−1 were ascribed to P-C stretching, P=O vibration,
and P-Ph stretching of DOPO-HQ [13,36,37]. The evolution of the peaks in the highlighted
bands below 2000 cm−1 is a clear indication of the influence of the coating cycle number.
This parameter can be used as a reliable metric if this process is eventually scaled up. All
the spectra in Figure 4 are in quantitative agreement with previous literature reports [38].

3.3. Flammability Tests

Coated and uncoated fabric specimens were exposed to a flame for 10 s before the
ignition source was removed. The totality of the burning process was video recorded, and
screenshots obtained from those videos are shown in Figure 5.

Figure 5. Digital screenshots of (a) unmodified cotton; (b) sample CO/DOPO-HQ@Zr-MOF-1; and
(c) sample CO/DOPO-HQ@Zr-MOF-10 in the vertical flammability chamber as a function of time
after ignition.
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From the burning experiments, the untreated cotton sample violently burned and was
consumed by the flame without generating residual char. The sample with only a one-
layer deposition of DOPO-HQ@Zr-MOF was endowed with good char-forming properties.
Consequently, the combustion time was shortened. As the cotton substrate was coated
with additional layers of DOPO-HQ@Zr-MOF, there was a noticeable smoke suppression
effect. Also, a denser and thicker carbon layer on the cotton surface was formed to protect
the fibers’ structure. However, the differences between the CO/DOPO-HQ@Zr-MOF-1
and CO/DOPO-HQ@Zr-MOF-10 samples are not significant regarding the inhibition of
flame spreading. The smoke suppression effect is related to the capability of MOFs to act
as sorbents, which can be explained by the increase in layers. Nevertheless, the amount
of DOPO-HQ seems insufficient to strongly modify FR behavior. The presence of char in
the (b) and (c) samples can be attributed to the formation of inorganic oxides that increase
char. This finding is in accordance with the proposal and results of several authors [24,25].
In Figure 5b,c, the retardant effect can be observed in the samples at 10 s. This effect can
be attributed to differences in heat transfer characteristics created by the formed inorganic
oxides [27].

3.4. Morphology Investigation

Figure 6 shows SEM images of the surface morphology of cotton fabrics before and
after combustion.

Figure 6. SEM images of (a) unmodified cotton; (b) sample CO/DOPO-HQ@Zr-MOF-1; and (c) sam-
ple CO/DOPO-HQ@Zr-MOF-10; (d) CO/DOPO-HQ@Zr-MOF-1 residual chars; and (e) CO/DOPO-
HQ@Zr-MOF-10 residual chars.
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The surface of the untreated cotton fibers is initially flat and smooth, which allows for
easy identification of DOPO-HQ@Zr-MOF clusters upon coating. Specimens coated with
10 cycles exhibit a very rough surface containing heat-insulating layers that protect the
cotton substrate during combustion. These thick layers lead to non-flammable carbonized
residuals upon combustion, basically consisting of Zirconium oxides, which can also be seen
in SEM images [39]. It is worth noting that the fibers of the specimen CO/DOPO-HQ@Zr-
MOF-10 appear to maintain some level of structural integrity after burning (Figure 6e),
which agrees with previous reports.

3.5. Thermal Properties

In order to gain a better understanding of the thermal properties of the substrates,
thermogravimetric analysis TGA was used to evaluate the weight loss as a function of
temperature in a controlled atmosphere as shown in Figure 7 and Table 2.
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Table 2. Summary of TGA data for cotton samples under an air atmosphere *.

T10% (◦C)
Stage 1 Stage 2 Residue at 800 ◦C

(wt%)Sample Tmax (◦C) Rmax (wt%/min) Tmax (◦C) Rmax (wt%/min)

Untreated cotton 318.5 341.6 37.6 479 93.4 −1.21
CO/DOPO-HQ@Zr-MOF-1 305.9 321.9 37.8 485 90 0.77
CO/DOPO-HQ@Zr-MOF-10 296.8 320.2 38.8 484.5 76.4 4.85

* The heating rate is fixed by 10 ◦C/min. T10% is the initial decomposition temperature at which 10% of the sample
weight is lost. Tmax is the temperature of the maximum rate of weight loss. Rmax is the weight loss rate at the
maximal peak (Tmax).

Due to the hydrophilic nature of the cellulosic matrix, weight loss around 100 ◦C, can
be attributed to moisture evaporation. The thermal decomposition process of each sample
comprises two main stages. The first stage, the main thermal decomposition step, accounts
for total weight loss. Pristine cotton shows a dehydration of the cellulosic polymeric chains,
which facilitates the formation of char at 318–380 ◦C. The formed char is further oxidized
to produce more gaseous combustible products at higher temperatures in the second stage.

According to the TGA experiments, the initial decomposition temperature (T10%) of
the specimens coated with CO/DOPO-HQ@Zr-MOF-1 and CO/DOPO-HQ@Zr-MOF-10,
was determined at 305.9 ◦C and 296.8 ◦C, respectively. Curiously, both values are lower
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than the decomposition temperature for pure cotton. This discrepancy can be attributed to
the early decomposition of DOPO-HQ@Zr-MOF [40]. A quick glance at the thermograms
indicates that the thermal degradation of cotton fabrics, under an air atmosphere, could
be considered a two-stage process [41]. In the interval of 500–800 ◦C, the untreated cotton
fabric was burned out without leaving any residuals. By contrast, the protective char
formation of samples CO/DOPO-HQ@Zr-MOF-1 and CO/DOPO-HQ@Zr-MOF-10 yielded
0.77 wt% and 4.85 wt%, respectively. In sample CO/DOPO-HQ@Zr-MOF-10, the Tmax
increased from 479 to 484.5 ◦C and Rmax decreased from 93.4 to 76.4 wt%/min compared
to the untreated cotton specimen. These values indicate a noticeable improvement in
the thermal behavior of the cotton samples once they were coated with DOPO-HQ@Zr-
MOF. The stability at lower temperatures, as shown in the TGA results, supports the
flame tests shown in Figure 5. During the first few seconds, samples with MOFs showed
delayed burning behavior due to the quick formation of oxides. The presence of Zr in the
polymeric structure on the textile substrate is known to catalyze carbonization, reduce
heat release, and form C-C bonds during combustion [26,27,42], which helps convert the
polymeric matrix into char (range of temperatures 600–800 ◦C, in Figure 7). This process
has considerable stability (see Figure 5) and improves flame retardancy.

4. Conclusions

We used UV-vis spectroscopy to confirm that DOPO-HQ was adequately incorporated
into porous Zr-MOF for preparing functional composite materials. Differences in chemical
structures identified by FT–IR spectroscopy between pure cotton and the CO/DOPO-
HQ@Zr-MOF-10 sample indicated that DOPO-HQ@Zr-MOF composites were effectively
incorporated and interacted with cotton substrates. SEM images showed that compact
multi-layers of DOPO-HQ@Zr-MOF composites were distributed uniformly on the surface
of cotton fibers, allowing a carbonaceous insulation layer to form while retaining the origi-
nal morphology of substrates during combustion. Flammability tests positively clarified
that treated cotton fabrics with better smoke suppression properties were quite productive
at shortening the combustion period. The results of TGA (DTG) demonstrated that by
incorporating DOPO-HQ@Zr-MOF micro-composites, the thermal degradation of cotton
fabrics was inhibited, and the thermal stability had advantageously improved, especially
at elevated temperatures. Compared to pure cotton, the Tmax of sample CO/DOPO-
HQ@Zr-MOF-10 was increased from 479 to 484.5 ◦C, and the Rmax was decreased from
93.4 to 76.4 wt%/min. Meanwhile, the final char yield at 800 ◦C significantly increase from
−1.21 to 4.85 wt%. Conclusively, depending on the fire performance of pure cotton and
treated samples, DOPO-HQ@Zr-MOF composites were anticipated to work as a poten-
tial flame-retardant for cotton textiles. More importantly, the eco-friendly development
of fire protection for cotton fabrics could substantially reduce fire hazards and extend
evacuation time.
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