
id178924

TOWARDS CACHE-COHERENT CHIPLET-
BASED ARCHITECTURES WITH WIRELESS

INTERCONNECTS

NITISH ARYA

Thesis supervisor: SERGI ABADAL CAVALLÉ (Department of Computer Architecture)

Thesis co-supervisor: ABHIJIT DAS

Degree: Master Degree in Innovation and Research in Informatics (High Performance Computing)

Thesis report

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

29/06/2023

Acknowledgement

I would like to express my sincere gratitude and appreciation to all those who
have supported me throughout the completion of this master’s thesis.First
and foremost, I am grateful to my family for their unwavering love, encour-
agement, and belief in my abilities. Their constant support and motivation
have been the driving force behind my accomplishments.

I am deeply grateful to my supervisor, Dr. Sergi Abadal, and co-supervisor,
Dr. Abhijit Das, for their invaluable guidance, encouragement, and expertise
throughout this research journey. Their insightful feedback and continuous
support have been instrumental in shaping this thesis. I would also like to
extend my thanks to NaNoNetworking Center in Catalunya at UPC, for pro-
viding the resources and support without which this thesis would not have
been done.

I would like to express my appreciation to my friends and colleagues
who have provided me with assistance, encouragement, and stimulating dis-
cussions. Their support has helped me overcome challenges and kept me
motivated during the thesis writing process.

In conclusion, I am grateful to everyone who has played a part, big or
small, in the successful completion of this master’s thesis. Their support
and encouragement have been invaluable, and I am truly humbled by their
contributions.

1

Abstract

Cache-coherent chiplet-based architectures have gained significant attention
due to their potential for scalability and improved performance in modern
computing systems. However, the interconnects in such architectures of-
ten results in increased latency and energy consumption. Due to physical
limitations such as increasing wire resistance due to thinning of wires adds
latency, increasing power consumption of the network and the multicast and
broadcast traffic from coherence severely affect the interconnect performance.
Researchers have worked to suggest other alternatives for inter-chiplet inter-
connection such as silicon photonics and 3D ICs but they pose challenges
of their own. Further, the need to design a coherence protocol for such
alternatives is a complex task. Another alternative on the rise is wireless
interconnects which constitutes of placing antennas on the package for inter-
chiplet communication. This thesis focuses on exploring the feasibility and
advantages of integrating wireless interconnects into cache-coherent chiplet-
based architectures. Although there is a stack of layers to integrate wireless
on the package, we focus our work on the communication stack which deals
with packet latencies and performance. We suggest multi-chiplet architec-
tures where 16 cores are segmented in 4 chiplets and 64 cores are segmented
in 4 and 8 chiplets and baseline systems which are monolithic and contains
16 and 64 cores. Through extensive full system simulations of these systems
with multiple inter-chiplet latencies we debugged and obtained traffic data.
This data is analysed in terms of spatial, temporal and time variance. Our
analysis shows the traffic is highly bursty for inter-chiplet communications.
We observed that chiplet scaling degrades performance for all applications
considered. The inter-chiplet communication through wireless medium for
Token passing protocol on the traffic obtained from wired simulations is
performed. Hybrid wired and wireless interconnects offer potential perfor-
mance benefits without modifying the coherence protocol. The findings from

2

this research will contribute to the design and optimization of cache-coherent
chiplet-based architectures, shedding light on the practicality and advantages
of utilizing wireless interconnects in future computing systems.

Keywords: Chiplet design, Wireless interconnects, Performance opti-
mization, Latency.

3

Contents

1 Introduction 8
1.1 Background and motivation 9
1.2 Objectives . 12
1.3 Contribution . 14
1.4 Organization . 14

2 Literature Review 16
2.1 Related work . 16
2.2 State of the art . 16

3 Methodology 19
3.1 Design of experiment . 19

3.1.1 Modeling wired interconnects 20
3.1.2 Modeling wireless interconnects 20

3.2 Experimental Setup . 21
3.2.1 Benchmarks . 21
3.2.2 Simulators . 23

3.3 Characterization and Analysis 26
3.3.1 Obtaining Traces . 26
3.3.2 Evaluation metrics . 29

3.4 Conclusion . 31

4 Evaluation 32
4.1 Characterization . 33

4.1.1 Inter chiplet traffic . 33
4.1.2 Spatial and temporal profile 35

4.2 Performance . 38
4.2.1 Speedup or slowdown 38

4

4.2.2 Latency . 39

5 Conclusion 41

5

List of Figures

1.1 Hypothetical monolithic 32-core chip compared to an assembly
of four eight-core chiplets. [28] 10

1.2 Typical NoC architecture in a mesh topology [33] 11
1.3 Monolithic and interposer based multi-chiplet system [25] . . . 11
1.4 Schematic diagram of a hybrid wireless and wired NoC [1] . . 13

3.1 Chiplet based architectures for 16 and 64 core systems 19
3.2 Simulation flow . 22
3.3 Life cycle of a Coherence Message [18] 27
3.4 Trace output format from gem5 28

4.1 Traffic in intervals of 1000 cycles for freqmine and dedup . . . 34
4.2 Message type characterization for inter-chiplet traffic 35
4.3 16-4 chiplets . 36
4.4 64-4 chiplets . 36
4.5 64-8 chiplets . 37
4.6 Hurst exponent for all applications accross multiple systems . 37
4.7 Slowdown of applications accross multiple systems 38
4.8 Average packet latencies of applications accross multiple systems 39

6

List of Tables

3.1 System Configurations . 20
3.2 Simulated Benchmarks . 23
3.3 Fixed System Parameters . 24

4.1 Average packet latencies for inter-chiplet data(cores) 40

7

Chapter 1

Introduction

As technology continues to advance, the demand for high-performance com-
puting systems has grown exponentially. Traditional monolithic processors
are facing limitations in terms of scalability and power efficiency. In response
to these challenges, chiplet-based architectures have emerged as a promising
solution [29]. Chiplet-based architectures involve integrating multiple smaller
chips, known as chiplets, onto a single package, enabling better scalability
and customization.

One critical aspect of chiplet-based architectures is the interconnect net-
work that facilitates communication and data exchange between chiplets.
The network-on-chip(NoC) have shown to mitigate the problems because
of scalability and high-bandwidth requirement of the many core chips [8].
However, the growth in number of components is accompanied by increased
latency and power consumption [30]. Integration of heterogeneous processing
elements further adds to interconnection performance due to diverse traffic
patterns of different architecture and their interactions [23].

To address these challenges, researchers have explored optimizing inter-
connects in terms of topologies, physical characteristics and routing. While
metallic inter-chip interconnects present scaling problems, recent research
have brought to light emerging alternative such as wireless interconnects[34].
By utilizing wireless communication, it is possible to potentially reduce the
overhead associated with traditional wired interconnects in terms of latency
for distant communication. This approach offers the potential for improved
performance, reduced latency, and increased energy efficiency [2][34].

This thesis aims to investigate the feasibility and advantages of integrat-
ing wireless interconnects into cache-coherent chiplet-based architectures.

8

The goal is to characterize wired chiplet based communication traffic and ex-
plore the potential performance benefits offered by wireless communication.
Through simulations, analysis, and evaluation of wireless protocols for chiplet
traffic, the research will contribute to the development of cache-coherent
chiplet-based architectures, providing valuable insights into the practicality
and advantages of utilizing wireless interconnects in future computing sys-
tems.

1.1 Background and motivation

Chiplets

In the past, enhancing the performance of computing systems involved in-
creasing the number of transistors and the frequency of integrated circuits
(IC). To fulfill the demands for greater computing power, energy efficiency,
and lower costs in diverse applications, researchers have proposed architec-
tural innovation and technology scaling as means to achieve these objectives.
Computing systems have evolved from single-core to multi-core, including
both homogeneous and heterogeneous multi-core designs. However, tradi-
tional approach faces several challenges:

• escalating costs

• a rapid rise in leakage power

• degradation of scalability

• increased complexity in system design, which hampers improvements
in computing systems

To address these issues, Chiplet, a small-scale hard IP with high yield
and reusability [27] [28], has emerged as a promising solution for computing
system architectures [7,8]. By leveraging Chiplet, computing system designs
combine the benefits of technology scaling, three-dimensional (3D) integra-
tion technology, and novel devices to construct high-performance computing
systems, offering several advantages:

• reduced design costs through smaller area requirements and higher yield
Figure 1.1

9

• shortened design cycles through Chiplet reuse

• enhanced system scalability through flexible Chiplet combinations [29]

Figure 1.1: Hypothetical monolithic 32-core chip compared to an assembly
of four eight-core chiplets. [28]

While the chiplet approach has a lot of advantages, it comes with its own
complexities. More engineering, correct partitioning of the die and most im-
portantly a new inter-chiplet communication path are some of the challenges
associated with chiplets [28] [30].

Interconnect

Connecting increasing number of cores in a scalable way is achieved through
networks-on-chip. In recent years, packet switched NoCs have replaced the
traditional bus-based and crossbar-based interconnects providing a scalable
communication fabric between multiple cores on a single chip. NoCs are com-
posed of a topology of routers which are connected with each other through
point-to-point links. Routers use buffers to store flits which are division of
packets and their size is defined by the network link width [10]. The topol-
ogy defines how routers are connected; a typical NoC architecture is shown
in Figure 1.2 with a mesh topology.

Chiplet interconnect is another aspect of interconnecting. It involves het-
erogeneous integration that integrate multiple homogeneous dies. An impor-
tant problem in integrating chiplets is to establish efficient communication
which determines the performance and functionality of the entire chip. The

10

Figure 1.2: Typical NoC architecture in a mesh topology [33]

interconnection Hence designing protocols for this purpose is complex[25].
Figure 1.3 shows inter-chiplet interconnect established through Network-on-
Interposer fabric.

Figure 1.3: Monolithic and interposer based multi-chiplet system [25]

The wired approach of connecting routers in any topology has its chal-
lenges. Physical characteristics such as increasing wire resistance due to
thinning of wires adds latency, increasing power consumption of the network
and the multicast and broadcast traffic from coherence severely affect the
interconnect performance. Since better performance achievement is a limi-

11

tation with the traditional interconnect systems other alternatives are being
constantly researched. These include inter-chip photonics [37], vertically in-
tegrated 3D ICs [32] or silicon interposers [24] and wireless interconnects [3,
26, 16, 17].

Although the alternatives listed provide a way out, they have specific
technology challanges. Integrating inter-chip photonics with existing elec-
tronic systems is challenging due to fabrication processes. Also they suffer
from signal losses and are sensitive to temperature. Similar fabrication com-
plexity, thermal sensitivity and power overhead issues arise in 3D stacking
and RF circuit implementation [1].

Motivation

The motivation behind the thesis lies in addressing the challenges associated
with interconnects in chiplet-based architectures. Communication within
components is crucial for component scalability while keeping power, area
and latency optimal and traditional wired inter-chip interconnects will not
keep up with these demands.

Each of the solution discussed in previous subsection for NoC hybridiza-
tion has its own benefits and challenges. A promising candidate is wireless
interconnects due to its several advantages such as transmission distance in-
dependence, reconfigurability in design process, logical topology modification
without touching the physical topology and improved scalability in terms of
latency throughput and energy consumption. A hypothetical representation
of a hybrid wireless and wired interconnect is shown in Figure 1.4.

The wireless interconnects build the inquisitiveness to explore the fea-
sibility and potential advantages of incorporating them into cache-coherent
chiplet-based architectures. By leveraging wireless communication, it is ex-
pected that the overhead associated with wired interconnects, specifically for
communications between distant components can be reduced.

1.2 Objectives

Driven by the outcome of research conducted in the paper [17] that latency,
and not bandwidth, is the primary performance constraint, through simula-
tions and analysis, the research seeks to characterize the traffic in chiplet-
based architectures and study the impact of wireless interconnects to assess

12

Figure 1.4: Schematic diagram of a hybrid wireless and wired NoC [1]

their potential performance benefits.
The objectives for the thesis are:

1. Characterize Wired Interconnect Traffic: Analyze and characterize the
interconnect traffic in chiplet-based architectures with wired intercon-
nects. Study packet distribution patterns, latency, and burstiness to
guide the path for both wired and wireless interconnects.

2. Investigate Wireless Interconnect Feasibility: Explore the feasibility of
integrating wireless interconnects into cache-coherent chiplet-based ar-
chitectures and study the potential advantages and challenges of using
wireless communication for inter-chiplet communication.

3. Assess Advantages and Trade-offs: Analyze the benefits and trade-offs
of using wireless interconnects in cache-coherent chiplet-based architec-
tures. Identify scenarios where wireless interconnects provide perfor-
mance advantages over wired interconnects and understand the limita-
tions or challenges associated with wireless communication.

By addressing these objectives, the thesis aims to contribute to the un-
derstanding and optimization of cache-coherent chiplet-based architectures,
and provide insights into the feasibility and advantages of utilizing wireless
interconnects to enhance system performance.

13

1.3 Contribution

The contribution of this work is listed in this section. We design the ex-
periment for conducting traffic analysis of chiplet-based architectures. For
this we design configurations for 16 and 64 core systems. The designs are
explained thoroughly in chapter 3.

Following this design, we performed full system simulations to obtain traf-
fic and other output. We conduct traffic analysis for the inter-chiplet com-
munication for all the configurations and from various statistical operations
obtain and explain the results obtained. These results would help under-
stand the nature of inter-chiplet traffic in terms of temporal variation,spatial
variation and type.

The plots in chapter 4 are representative of the traffic flow in all the
system configurations designed. Temporal variance is depicted through his-
tograms of the application execution which provides a intuitive visual sense
of the variation. Statistically the temporal variation across all applications is
shown and inference from the values is explained. Spatial variation is shown
through heatmaps which again gives a visual sense of inter-chiplet traffic
across all designs for all applications.

Apart from the traffic analysis general performance and latency compar-
ison across designs is also presented. The full system simulation output is
presented to help understand the application performance and latency for
various inter-chiplet designs. The scaling trend of applications from 16 to 64
cores in monolithic and chiplet based fashion is represented through plots.

1.4 Organization

This section describes the organization of this work in this report. The next
chapter 2 presents the review of literature research done for this work. It
highlights research which is in line to the work of this study. It also describes
the state of the art in chiplet-based interconnects and explains how this works
adds to the given field.

chapter 3 is the backbone of this research. In a detailed view it presents
the procedure followed for conducting the research. It starts explaining from
designing the experiment, the benchmarks and simulators used, the eval-
uation methodology and statistical parameters considered. With sensible
figures, tables and output descriptions it gives a comprehensive overview of

14

this work.
The evaluations of this work are presented in chapter 4. Characteriza-

tion of the communication traffic in terms of spatial, temporal and variance
profile is presented with plots. The performance evaluation is done for each
benchmark in terms of running time inside the simulation. The designed
experiments are evaluated in terms of average packet latencies.

Finally the chapter 5 ties the outputs of this work together. It describes
the experiment performed in brief. Then it summarizes the main takeaways
from the evaluations part. It then explains the feasibility of the topic ad-
dressed and provides arguments in its support. It also points the direction
for future work and better experimentation design.

15

Chapter 2

Literature Review

2.1 Related work

[17] is one of the works which lies closely in line with the work of this the-
sis. Their work is very broad and tries to cover every aspect from wired
to wireless including physical layer to network layer, of the wireless inter-
connect. It presents a hybrid inter-chip system where both CPU and GPU
are considered. However it focuses more on the physical layer and traffic
characterization is not a part of it.

[9] is an interesting work presenting a write-update coherence protocol for
future chiplet based systems. It provides a good solution for interconnecting
the chiplets through a new coherence protocol. When compared with the
wireless part, our work does not modify the coherence protocol which is an
advantage as the incorporation into chiplet-based systems would be relatively
easy. [31] presents the statistical model of characterizing the traffic for any
communication and is an important source of this work. Several analysis
techniques were derived from this work to support our characterizing for the
future wireless systems.

2.2 State of the art

Both chiplets and chiplet interconnects are currently emerging areas of re-
search. There is extensive research being done on chiplet-based architectures
both in industry and academia. The state of the art in chiplet-based archi-
tectures is still evolving[20][4][23], but there are a number of companies that

16

are developing and using this technology. Some of the leading companies in
this space include AMD[28], Google[11], and Nvidia[13].

AMD was one of the first companies to adopt chiplet-based architectures
with its Zen 2 architecture[27]. This architecture uses a modular design
that allows different chiplets to be combined to create a variety of different
processors. AMD’s EPYC architecture is another attempt to strength its
position in chiplet design approach[28]. Nvidia is also developing chiplet-
based architectures for its GPUs. Its Hopper architecture[13] uses a design
that combines multiple chiplets with different types of processing elements.
This allows Hopper GPUs to offer a significant increase in performance over
previous generations.

State-of-the-art in-package memory techniques, such as 2.5D integration
(where memory is placed on the same substrate or interposer) [38] or 3D in-
tegration (involving vertical stacking of memory over the processing die) [19],
have been developed to address the challenges associated with off-chip mem-
ory communication. These techniques aim to provide low-latency and high-
bandwidth memory access. However, both approaches face certain draw-
backs, including high power/thermal density, limited memory size, and re-
duced reliability and yield caused by factors such as through-silicon vias, thin
wafer sizes, and layer misalignment [22].

Silicon photonics is also a rising contender for connecting chiplets to-
gether. In [21] the authors present a photonic cache coherence network for
chiplet-based manycore systems. [14] also proposes the use of integrated
silicon-photonic interconnects and exploit this fabric for scalable uniform
memory architecture. Integrating silicon photonics in the package substrate
is however a complex problem.

The state of the art in wireless interconnects for chiplet-based architec-
tures is also still evolving. However, there are a number of promising tech-
nologies that are being developed[26][17][3]. Within wireless interconnects,
several works like graphene antenna design[1], MAC protocols for wireless[15],
network-on-chip[34][12] and on the area and scalability of [2] have been done.

The use of chiplet-based architectures and wireless interconnects is still
in its early stages, but it has the potential to revolutionize the semiconductor
industry. By allowing different chiplets to be combined and interconnected
in a variety of ways[16], chiplet-based architectures can offer a significant
increase in performance, flexibility, and power efficiency. Wireless intercon-
nects can further improve performance and flexibility by allowing chiplets to
be interconnected over a wide range of distances.

17

As these technologies continue to develop, we can expect to see them
used in a wider range of applications, from high-performance computing to
consumer electronics.

18

Chapter 3

Methodology

The chapter describes the experimental setup, the process flow and the config-
uration parameters adopted for this work in detail. The design of experiment
describes the terms, models, parameters and their range.

3.1 Design of experiment

We selected two systems with 16 and 64 cores each to simulate many core
systems. To model chiplet based architectures, we segmented the systems
into chiplets as shown in Figure 3.1. For 16 core systems, each chiplet con-
tains 4 cores. For the 64 core systems, there are two architectures: a 4 chiplet
system with 16 cores per chiplet and an 8 chiplet system with 8 cores per
chiplet. As a baseline, we have a single chip version of each 16 and 64 cores.

(a) 16 cores with 4 chiplets (b) 64 cores with 4 chiplets (c) 64 cores with 8 chiplets

Figure 3.1: Chiplet based architectures for 16 and 64 core systems

19

3.1.1 Modeling wired interconnects

All the three architectures are connected in MESH topology and a unit is
represented as a tile. Each tile encapsulates a core, private L1 and L2 cache,
a network interface and a router. The inter-chiplet communication is studied
by choosing a discrete range of latencies for each of the architectures stated
above. Two different latencies were chosen as mentioned in Table 3.1:

• inter-chiplet link latency = 10 times intra-chiplet link latency

• inter-chiplet link latency = 100 times intra-chiplet link latency

This allows us to study the trend of traffic when different components are
chosen for the package as chiplets and not just processor cores.

Table 3.1: System Configurations

Cores Topology Chiplets Latency (inter-
chiplet relative to
intra-chiplet)

16-core
System

Mesh None
Mesh 4 10
Mesh 4 100

64-core
System

Mesh None
Mesh 4 10
Mesh 4 100
Mesh 8 10
Mesh 8 100

3.1.2 Modeling wireless interconnects

Considering the above organization of chiplets, the inter-chiplet links are to
be replaced by a wireless interconnect system. Each chiplet is considered to
possess an antenna for communication with the other chiplets. This is true
for every architecture containing chiplets in some configuration.

We adopt the MAC protocol for wireless communications in long range
for our design. This ensures that the communication is deadlock and collision
free. For now, we only implement Token Passing protocol [35].

20

3.2 Experimental Setup

The important parameter to study is the inter-chiplet traffic of real applica-
tions under real hardware. However the time and cost to design and test in
reality is not feasible so we resort to architectural simulators. The design of
the experiment above results in eight different system configurations which
need to be studied. To get the quality of traffic which represents reality we
need simulators which are detailed in architectural simulations. Further, the
interconnection simulated must be accurate and precise at least at the packet
level and should allow to simulate the topologies described in above sections.

To obtain the traffic, the criteria for applications which need to be studied
are: common usage, comparable with other research work and small running
time but effective benchmarking. Small running time is required as the sim-
ulations are quite large and take days to finish but this must not limit the
quality of traffic produced. For simulating wireless communication, a proto-
col oriented and trace compatible with the wired simulator is needed.

To orchestrate the whole experiment a simulation flow is created. Fig-
ure 3.2 shows the process flow diagram followed for the experimentation.
The orange box with dotted line is the simulation infrastructure, i.e. the
simulators used and their compatibility. The incoming arrows in the orange
box are the inputs and input parameters to the simulators and the outgoing
arrows indicate the output produced. The traces produced by the full system
simulation for the wired part are extracted so that only inter-chiplet traffic
is left. This is then fed to the simulator running the wireless part. The
details for each of the simulators and input parameters are explained in the
subsection 3.2.2. The output files, statistics and the Extract block between
the two simulators is thoroughly explained in section 3.3.

3.2.1 Benchmarks

For the purpose of this research, a benchmark would have ideally the following
characteristics:

• Multi-threaded: to stress the chiplet design and get characterization
traffic for a scaling system

• Diverse: applications are diverse in the real world and the benchmark
must accommodate for this diversification through its choice of appli-
cations

21

Gem5 full system
simulation

Fixed
system

parameters

Cores
Topology
Latency

PARSEC application
…

NoC Traces
Extract

Rsim Wireless NoC
Simulator

Inter-chiplet
Traces

Cores
Protocol

Latency
Throughput

Simulation
statistics

Figure 3.2: Simulation flow

• Supports Research: it should be tunable to the needs of the research
and architectural specification

• Communication to computation ratio: our work is focused on the com-
munication part more than the computation part hence a good per-
centage of communication is required in the applications

Keeping in mind the above points several choices are available. The
obvious ones are PARSEC , SPLASH-2 and SPEC CPU2006. SPLASH-
2 [36] is a benchmark suite composed of multi-threaded applications but
is geared towards HPC[6]. SPEC CPU2006 is also a significant collection
of benchmarks but is not intended for studies of parallel architectures[6].
PARSEC was chosen to be our suite of applications and we handpicked the
applications which are listed in Table 3.2 along with the time they took for
simulation in our work. There are total 13 applications in the PARSEC
benchmark suite. However not all of them are considered for full system
simulation in this work, the reason being it was either not communication
intensive or for 64 core system the simulation could not finish due to memory
and timing constraints. However, the selected eight benchmarks tick all the
characteristics listed above.

The PARSEC benchmarks offers six input sets for each benchmark: test,
simdev, simsmall, simmedium, simlarge and native. For studies pertaining to
microarchitectural research simsmall, simmedium and simlarge are suitable.
All the benchmarks for each of the system configurations were run with the

22

Table 3.2: Simulated Benchmarks

Benchmark Simulation time

blackscholes small
bodytrack medium
canneal large
dedup large
ferret medium
fluidanimate large
freqmine medium
vips large

simsmall input set. This size is a good balance between the obtained trace
quality and the simulation running time.

parsecmgmt - The PARSEC management tool is a good option for build-
ing and running applications. Initially when creating the disk-image for
gem5, parsecmgmt is used for building all the packages. Further, when pass-
ing a script to the gem5 running instance it is used to set the test input and
specify the benchmark to run after boot process is finished.

3.2.2 Simulators

To evaluate the proposed chiplet based architecture, we use gem5 [7]. gem5 is
a simulation infrastructure which allows modeling hardware at the cycle level
and has enough fidelity to boot unmodified Linux-based operating systems
and run full applications for multiple architectures. It is dynamically config-
urable through a robust Python based scripting interface. The main feature
for this work was to run unmodified applications with cycle-level statistics
in full system manner which is supported by gem5. gem5’s design is modu-
lar which means components such as the memory system, CPU model and
coherence protocols can be modeled according to the design.

The interconnection network can also be configured to model a variety of
systems due to gem5’s modular design. Currently it supports classic caches
and the Ruby memory system. The Garnet network model(HeteroGarnet)
[5] is present within the Ruby memory system and due to its level of details
and flexibility we chose it for modeling our interconnection topologies.

gem5 is used with HeteroGarnet to model all system configurations for

23

full system simulations. The base system configuration shown in Table 3.3
is same for all the architectures under study.

Table 3.3: Fixed System Parameters

Parameter Value

ISA x86
CPU Type TimingSimpleCPU
Simulation mode Full System
L1[data/inst.] size, associativity 32kB, 4
L2 size, associativity 256kB, 8
Cache coherency MESI Two Level
Kernel x86-linux-kernel-4.19.83
OS Ubuntu 18.04.2 LTS pre-loaded with

PARSEC benchmark
Memory 512MB
Clock 1GHz
Interconnection Network Garnet 3.0(HeteroGarnet)

A command similar to Listing 3.1 is used to execute a particular instance
of a benchmark on a specific system configuration. As seen in the command,
every parameter is an input to the gem5 build file[line:1] which is specific for
x86 ISA. The gem5.opt is built beforehand for specific ISA and Coherence
protocol.

Listing 3.1: A typical gem5 run command

1 ./ build/X86/gem5.opt \

2 -d $GEM5_OUTPUT_DIR \

3 --debug -flags=$DEBUG_FLAG \

4 --debug -file=$DEBUG_FILE_PATH \

5 configs/example/fs.py \

6 --checkpoint -dir $CHECKPOINT_DIR_PATH \

7 -r 1 \

8 --restore -with -cpu TimingSimpleCPU \

9 --disk -image =/path/to/disk -image/x86 -parsec \

10 --kernel =/path/to/kernel/x86 -linux -kernel -4.19.83 \

11 --cpu -type TimingSimpleCPU \

12 --num -cpus=${NUM_CPUS} \

24

13 --caches \

14 --l1d_size=’32kB’ \

15 --l1i_size=’32kB’ \

16 --l1d_assoc =4 \

17 --num -l2caches=${NUM_CPUS} \

18 --l2_size=’256kB’ \

19 --l2_assoc =8 \

20 --num -dirs=${NUM_CPUS} \

21 --mesh -rows=${MESH_ROWS} \

22 --ruby \

23 --network=garnet \

24 --topology=$TOPOLOGY \

25 --script=$RUN_SCRIPT_PATH

HeteroGarnet is attached to gem5 simulation with the --network=garnet
option along with --ruby. The desired topology is provided with --topology

keeping the --mesh-rows value comptabile with the topology. More details
on the use of HeteroGarnet and obtaining traces is presented in section 3.3.

The benchmark to run is given to --script(bash in our work) to gem5.opt.
The script contains parsecmgmt with application name and the input size as
shown in Listing 3.2[line:4].

Listing 3.2: Script passed to run on guest OS

1 #!/bin/bash

2 cd /home/gem5/parsec -benchmark

3 source env.sh

4 parsecmgmt -a run -p bodytrack -c gcc -hooks -i simsmall

-n 16

5 sleep 5

6 m5 exit

RSim

RSim is an in-house wireless network simulator designed for studying wireless
interconnect traffic. It accepts the trace in the format cycle, source node.
It takes as an input the number of nodes and the Medium Access Proto-
col(MAC) protocol to use for transmission of packets. Other inputs are the
buffer size of each node, transmission rate of each node and maximum num-
ber of packets.

25

Each node acts as an antenna transmitting packets. The latency of a
packet is calculated as the difference in time of arrival and time of injec-
tion. Every node stores the statistics of each packet it transmitted and the
whole system statistics are calculated accordingly. The transmission occurs
according to the MAC protocol.

To give RSim the trace generated by gem5 as input, it has to be filtered
so that RSim accepts the format of each packet. We slightly modified the
Ring-Token(Token) protocol implemented in RSim to also take into account
the number of flits in a packet. Hence, for packets containing more flits each
node takes more time to transmit.

3.3 Characterization and Analysis

Statistical analysis is important for any research dealing with data. It helps
analyse the data, test the hypothesis on which the research started, evaluate
the performance and to design the experiments. To perform these statistical
analysis, we first need obtain and clean the data so that the tests can be
performed. Furthermore, a single dataset may be filtered and used for multi-
ple analysis evaluating entirely different parameters. The following sections
describe the process by first defining what kind of data we need, obtaining it
and the procedures involved, gathering it together and filtering it for different
purpose.

3.3.1 Obtaining Traces

The base of our study has been to improve the performance of many core
systems. The research focuses primarily on the interconnection network and
the simulation infrastructure setup also indicates the same. The level of
depth in this study has been at the system level, i.e. we do not dive into the
physical layer of interconnect communication stack. This suggests that we
should collect data at this level through our simulators.

The interconnection network acts as the backbone of the system connect-
ing all the memory components together and all the communication happens
through it. Hence it is an ideal choice to study and obtain the required
traces from this network. Diving further into the implementation details we
can see in Figure 3.3 the life cycle of a message which is generated from one
of the source cache controllers. At this point we have enough level of detail

26

to capture the trace.
The source cache controller generates a message and designates one or

more cache controllers as the recipients. This message is subsequently placed
into message queues. Each cache controller typically possesses multiple out-
going and incoming message buffers, which are utilized for handling various
types of messages. A Network Interface(NIC) is attached to each controller
which wakes up and checks these buffers to convert it to flits and transmit
them. We place our debug filter right in the NIC before conversion to flits.
This is done because once the message is ’flitisized’, the broadcast packets
are converted to unicasts which will not be helpful as we are considering
to transmit them through wireless links which are an excellent solution for
broadcasting.

Figure 3.3: Life cycle of a Coherence Message [18]

Debug Trace

The code in Listing 3.3 is placed in NetworkInterface.cc file of the Garnet
module under Ruby in the gem5 source files. The code is a DPRINTF

27

statement, meaning it is used for debugging purposes in gem5. When the
Network Interface connected to a cache controller wakes up and deques the
message from message buffer, we print that message into the debug trace
using the DPRINTF statement. The first argument to this statement is the
debug flag which can be activated by passing it to the gem5 run command.
The following arguments define the desired output format. The format we
chose is shown in Figure 3.4. It contains five fields indicating the cycle
number, the router which is sending this message, the destination router, the
number of flits this message will be divided into and the type of message
respectively. As shown in Figure 3.2, when this trace is passed through the
extractor only three fields are kept: the cycle number, the source and the
number of flits.

The size of the trace file for a given application in a given configuration is
several Gigabytes. There were 64 of these trace files resulting in more than
100 Gigabybtes of data which had to be processed for obtaining meaningful
results. Apart from this output, gem5 generates stats.txt for each run
which is a great source of obtaining statistics. The next section describes
this helpful feature of gem5.

Listing 3.3: Debug traces at message level in NetworkInterface.cc

DPRINTF(MESSAGE , "%ld %d %d %d %s\n ",

ticksToCycles(curTick ()),

route.src_router ,

route.dest_router ,

num_flits ,

MessageSizeType_to_string(net_msg_ptr ->

getMessageSize ()));

Cycle Src Router Dest Router Num. Flits Message Type

16030487788 1 13 1 Control

Figure 3.4: Trace output format from gem5

28

Default gem5 output

Each gem5 run by default produces stats.txt containing most of the system
parameter values and various statistics. A sample is shown in Listing 3.4.
A component wise statistic is printed in each line such as in line 6 where
the ruby component lists the input of the network module which outputs
the average packet latency of the whole network. The important thing is
that garnet which is defined under the Ruby also dumps its statistics into
stats.txt. All the necessary statistics like this are obtained from this file
and are processed to produce the results. Also a distribution of number
of packets from each source router to each destination router is produced
which complements our trace obtained from the debug flag and is filtered
and passed to Rsim for further experimentation.

Listing 3.4: A sample stats.txt generated by a completed gem5 run

---------- Begin Simulation Statistics ----------

simSeconds 9.789171

Number of seconds simulated (Second)

simTicks 9789170927751

Number of ticks simulated (Tick)

.

.

system.ruby.network.average_packet_latency 22.178867

... network.average_packet_network_latency 20.290069

.

.

... network.ctrl_traffic_distribution.n0.n15 255202

... network.data_traffic_distribution.n6.n13 613599

.

.

---------- End Simulation Statistics ----------

3.3.2 Evaluation metrics

The traffic obtained from gem5 for different applications on different architec-
tures holds critical information about inter-chiplet traffic which is obtained
from the analysis we perform. We perform both charazterization and per-
formance metrics for our data. This sections describes the various tests
performed.

29

The main characteristics of the workloads traditionally exhibited by mul-
tithreaded applications in single-chip multiprocessors are heterogeneity, vari-
ability, spatial hotspot behavior, and temporal bursty behavior. In more
detail:

• Temporal bursty behavior: With regards to the trace analysis, we
first note that communication data traversing an interconnection net-
work exhibits temporal variance [31] . In other words, the level of
burstiness or packets per unit time is not constant and varies across
applications. We thus parameterize this level of burstiness using a
single parameter, the Hurst exponent H. Self-similarity is exhibited
where 0.5 < H ≤ 1. There are a number of tests to measure H
as self-similarity manifests itself in a number of ways. Here we use
time-domain analysis based on the re-scaled adjusted range statistic,
known as the R/S statistic. To obtain H, one plots log10

R(s)
S(n)

versus

log10n. This is called an R/S pox plot, where the slope of the R/S
line is H. This slope is calculated using an inverse-variance-weighted
least-squares curve fit.

• Spatial behavior: To inspect the spatial distribution of packets in a
trace we plot heatmaps representing the chiplets and their traffic gen-
eration. This will help us identify the hotspot chiplet in the traffic
and whether it is a source or destination. Also combined with vari-
ability and burstiness, this helps in designing a protocol for wireless
communication or selecting one.

• Variability: The existence of multiple applications means that there
might be changes in terms of communication pattern from one appli-
cation to another. Furthermore, the particular chiplet combination in
a heterogeneous architecture influences such variability as different ap-
plications may require to use a particular accelerator chiplet intensely
while others may not. This can be seen from a combination of the
heatmaps and plotting number of messages per unit cycles.

• Average Latency: Packets crossing the inter-chiplet boundary are the
ones which are supposed to be the major component of average latency
of communication. We describe this trend through plots of all the
benchmarks across different architectures. This will help identify which
applications scale with the chiplet architecture and which perform worst
with more chiplets.

• Execution Time: In conjunction with latency, the performance will

30

depend finally on the execution time of the application. We plot the
various execution times of Region of Interest of applications across the
architectures considered. Baseline for the execution time is the mono-
lithic 16 core system and all the times are normalized to it.

3.4 Conclusion

In this chapter we defined our design for conducting the experiment. The ex-
periment is setup with two systems of 16 and 64 cores. For each of the system
we divided them into chiplets of reasonable size, i.e. 4 chiplets containing 4
cores each for the 16 core system and 4 and 8 chiplets containing 16 and 8
cores each for the 64 core system. Our key component is the interconnection
network through which all the communication occurs. This configuration is
first studied for the wired part with range of topologies for each of the system
and then through the wireless part for obtaining similar output statistics for
characterization and performance evaluation.

Detailing further, we defined the simulation flow from the gem5 full sys-
tem simulation to Rsim wireless Network on chip simulator. We setup the
simulation pipeline with fixed and variable parameters with trace propaga-
tion and filtering. Each part of the flow has been detailed to the system level
describing significant details in form of code statements to trace formats.
The benchmark applications and the criteria for choice is defined. Keep-
ing all the variables in constraint with time, resource and complexity this
chapter presents the essence of the entire research conducted. The following
chapter brings to light the results, outputs, comparisons and outcomes of the
designed experiment.

31

Chapter 4

Evaluation

The evaluation of inter-chiplet traffic plays a crucial role in understanding
the communication dynamics within many core systems. In this chapter, we
present a comprehensive analysis of inter-chiplet traffic for both 16-core and
64-core systems, considering various topologies and latencies. The goal is to
gain insights into the communication patterns and performance implications
of different interconnect configurations.

Throughout the sections we have collectively characterize and evaluate
all the system configurations by juxtaposing them in different combinations.
Given the significant impact of network traffic on network performance, the
presence of comprehensive traffic models becomes crucial for a profound ex-
ploration of the extensive design landscape encompassing network architec-
tures, protocols, and implementations [31]. Hence, characterizing the traffic’s
spatial and temporal profile becomes much important.

The time of execution for the type of application also becomes necessary
to evaluate. It helps understand the scaling of architecture and its impli-
cation on the application’s execution time. The speedup or slowdown can
be inferred and can be linked to the latency of the interconnection network
which can help us understand the potential impact of incorporating wireless
interconnection networks. The same is true for the packet latencies of the
interconnection network.

Driven by these concepts our evaluations for characterization concentrate
on the following remarks:

• spatial and temporal profile of traffic using statistical parameters

• comparing inter vs intra chiplet traffic

32

• investigating the type of messages

• comparing execution times

• comparing average latencies

The parameter that applies to both the wired and wireless approach is mainly
the average latencies. We assess the performance of wireless interconnections
against wired counterparts, considering factors such as latency and through-
put. By contrasting the two approaches, we aim to highlight the trade-offs
and potential benefits of wireless interconnects in the context of inter-chiplet
communication within many core chiplet based systems.

Through this comprehensive evaluation, we expect to gain valuable in-
sights into the characteristics of inter-chiplet traffic in both 16-core and 64-
core systems. The findings will not only contribute to the understanding
of communication dynamics but also provide a basis for optimizing intercon-
nect designs and exploring alternative interconnection technologies for future
chiplet based architectures.

4.1 Characterization

4.1.1 Inter chiplet traffic

Communication data traversing the interconnection network exhibits multi-
ple type of variances. One such variation is with respect to time. To model
such variation we can consider the number of packets traversing through the
network in equally divided time intervals. Time in its best form is repre-
sented in cycles for the interconnection network and intervals could be of n
cycles where n is chosen suitably so that it can represent the traffic count in
visually comprehensible manner. This variation is shown in Figure 4.1. We
can definitely see that in both the applications the traffic is highly bursty.
Looking at different chiplet configurations of Figure 4.1, we see that appli-
cation dedup’s variance changes with number of cores and chiplets. Also the
maximum number messages transferred grow by 50% per thousand cycles
from 16 to 64 cores. These bursts are not evenly spread across the timeline
indicating heterogeneity.

The Figure 4.2 shows the percentage of each type of message crossing the
chiplet boundary for 8 chiplet system. 60-70% of the messages are Control
and Response Data and this pattern is similar for other configurations.

33

(a) 16 cores with 4 chiplets (b) 64 cores with 4 chiplets

(c) 64 cores with 8 chiplets (d) 16 cores 4 chiplets

(e) 64 cores with 4 chiplets (f) 64 cores with 8 chiplets

Figure 4.1: Traffic in intervals of 1000 cycles for freqmine and dedup

34

Figure 4.2: Message type characterization for inter-chiplet traffic

4.1.2 Spatial and temporal profile

Interesting results are obtained when spatial analysis is conducted for the
communication. The plots below show the heatmaps for all the three config-
urations and all the applications. In Figure 4.3 we can see the there are a lot
of messages from chiplet 1 to 3 in all the applications except canneal. There
is variation amond the inter-chiplet transfers but general hotspot is chiplet 1
as a source for all applications. The pattern changes for the 64 core system
with same chiplets Figure 4.4 with chiplet 4 acting as a hotspot in half of
the applications, with chiplet 1 still the hotspot for the other half. We can
also conclude that the number of messages reduced when the base system
was scaled to 64 cores meaning less inter-chiplet traffic on average. The dis-
tribution is unequal among chiplets except for vips where it is of the same
range. The dynamics change pretty abruptly for the 8 chiplet configuration
Figure 4.5. All the chiplets transmit roughly equal amount of data but the
destination chiplet 5 receives most of the messages for all applications.

Figure 4.6

35

Figure 4.3: 16-4 chiplets

Figure 4.4: 64-4 chiplets

Figure 4.6 shows the hurst exponents of all applications for all chiplet
architectures. First observation is that the communication traffic is highly
self-similar as H > 0.8 for all applications. It means that the traffic shows
bursts of communication followed by relatively long silences. ’bodytrack’ and
’fluidanimate’ show varying burstiness across different chiplet configurations

36

Figure 4.5: 64-8 chiplets

Figure 4.6: Hurst exponent for all applications accross multiple systems

as they become more bursty in 64 core system. Generally the 64 core system
with 8 chiplets has the most bursty traffic for all applications except for
freqmine meaning the chiplets communicate burstily for short time followed
by relatively long silences.

37

4.2 Performance

4.2.1 Speedup or slowdown

Figure 4.7: Slowdown of applications accross multiple systems

The execution time of applications on many core systems has been re-
searched extensively. Here we present it for our chiplet based configurations
in Figure 4.7. The runtime of each application is normalized to its baseline
configuration, which is monolithic or normal 16 cores. General trend shows
that applications run at least 2 times slower(the yellow bar) on an 8 chiplet
system with the slowest being 7 times slower than the base. Further, chiplets
indicate poor scaling on the same base system with 64 cores. It is slightly
seen when 16 cores are segmented in 4 chiplets but evident in 64 cores. Ap-
plicatons blackschole, fluidanimate, freqmine lose performance when scaling
from 16 to 64 cores under 4 chiplets(considering 100 latency) where all other
applications ran faster on 64 core system with 4 chiplets. They however also
ran slow on baseline 64 but so did canneal, dedup and ferret.

38

4.2.2 Latency

Figure 4.8 shows average packet latencies for application across all configu-
rations (Notice the y-scale is logarithmic). One can definitely see a common
trend: the latencies increase when the chiplets increase(purple and pink bars)
under the 64 core system. Also the jump in network latency for a chiplet
is not quantitatively progressed into average packet latencies, i.e when base
network latency is increased 10 times, the packet latency does not increase
10 times. However, the jump is substantial and impacts the performance
also. Segmentation of chiplets on the same system also adds to the average
latencies, almost twice if chiplets are doubled. Figure 4.8

Figure 4.8: Average packet latencies of applications accross multiple systems

Average packet latencies for TOKEN protocol obtained with RSim are
listen in Table 4.1. Such high latency values are because of incompatibilty
of the trace file output and the RSim input parameters. Due to the design
of RSim the node injection rate and packet distribution to nodes was for
synthetic traffic generated by the values of Hurst exponent and coefficient of
variation of the source nodes.

39

Table 4.1: Average packet latencies for inter-chiplet data(cores)

Benchmark Cycles per Packet(16) (64)
blackscholes 32.8307 224.296
bodytrack 587.901 170409
canneal 8.74244e+06 1.77433e+07
dedup 1016.42 44710.3
ferret 749.175 28900.1
fluidanimate 324020 229.056
freqmine 65.9824 8.05431e+06
vips 234.271 2.95392e+07

40

Chapter 5

Conclusion

We conducted our researching concerning different chiplet based designs con-
sidering different inter-chiplet latencies. Specifically 16 core system with 4
chiplets and 64 core system with 4 and 8 chiplets with 10 and 100 times
inter-chiplet link latency for all configurations. We performed full system
simulations with 8 applications from the parsec benchmark of varying size
and communication to computation ratio. The trace output from all the
simulations is used for obtaining multiple plots and graphs which cover spa-
tial, temporal and burstiness of the communication traffic. The same trace
is then filtered and sent to RSim for performing simulations for the wireless
part.

Consolidating the evaluations and inferences from the above experiment,
we found that around 70% of the traffic for an application is inter-chiplet and
the rest is within the chiplet. This is found true for all the applications across
all the configurations. Further we found that inter-chiplet traffic is highly
self similar as the Hurst exponent is higher than 0.8 for all applications.
The spatial profile of the traffic remains dynamic with change in chiplet
configuration. The emergence of hotspots is application specific.

While looking at performance results we see the relative slowdown of
application to the 16 core baseline. We find that chiplets do not scale well
for benchmarks, especially on the 64 core system. The performance gain
obtained by some application when running on base 64 cores than 16 cores is
lost when the system is segmented in chiplets. The trends in average packet
latency are not similar. There is no gain in average latency when the chiplets
are scaled on the 64 core system. The increase in latency is not exactly the
same when the inter-chiplet latency is increased 10 and 100 times. However,

41

they are significantly increased to hamper the performance in a substantial
way.

The substantial increase in latency when going from base to chiplet ar-
chitectures, even considering 10 times inter-chip latency with respect to the
base link latency is evident in our work. The path for chiplets and their in-
tegration while keeping up the performance is tough. This paves the way for
new advancements in interconnect technology. The average packet latency
increase in intra-chiplet wireless interconnects is significantly less than the
wired inter-chiplet part. Further, integrating wireless with the current wired
interconnects will not require a change in the cache coherence protocol. This
is a huge benefit as designing new coherence protocols and debugging them
is a task of extreme complexity.

This work is a source of characterization of communication traffic for re-
searchers looking for other interconnect technologies to create a hybrid inter-
connect for connecting chiplets. Experimentation with other MAC protocols
will further decrease the average packet latency as token induces waiting pe-
riods in certain situations. Wireless interconnects are a viable solution to
pave the path for a hybrid inter-chip interconnect.

42

Bibliography

[1] Sergi Abadal et al. “Graphene-enabled wireless communication for mas-
sive multicore architectures”. In: IEEE Communications Magazine 51.11
(2013), pp. 137–143. doi: 10.1109/MCOM.2013.6658665.

[2] Sergi Abadal et al. “On the Area and Energy Scalability of Wireless
Network-on-Chip: A Model-Based Benchmarked Design Space Explo-
ration”. In: IEEE/ACM Trans. Netw. 23.5 (Oct. 2015), pp. 1501–1513.
issn: 1063-6692. doi: 10.1109/TNET.2014.2332271. url: https:
//doi-org.recursos.biblioteca.upc.edu/10.1109/TNET.2014.

2332271.

[3] Sergi Abadal et al. “OrthoNoC: A Broadcast-Oriented Dual-PlaneWire-
less Network-on-Chip Architecture”. In: IEEE Transactions on Parallel
and Distributed Systems 29.3 (2018), pp. 628–641. doi: 10.1109/TPDS.
2017.2764901.

[4] AmandaK. Blue Cheetah Demonstrates Industry Leading Silicon-Proven
Die-to-Die Interconnect Solution for Chiplets. 2023. url: https://
semiwiki.com/forum/index.php?threads/blue-cheetah-demonstrates-

industry-leading-silicon-proven-die-to-die-interconnect-

solution-for-chiplets.18036/.

[5] Srikant Bharadwaj et al. “Kite: A Family of Heterogeneous Interposer
Topologies Enabled via Accurate Interconnect Modeling”. In: 2020
57th ACM/IEEE Design Automation Conference (DAC). 2020, pp. 1–
6. doi: 10.1109/DAC18072.2020.9218539.

[6] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD the-
sis. Princeton University, Jan. 2011.

43

https://doi.org/10.1109/MCOM.2013.6658665
https://doi.org/10.1109/TNET.2014.2332271
https://doi-org.recursos.biblioteca.upc.edu/10.1109/TNET.2014.2332271
https://doi-org.recursos.biblioteca.upc.edu/10.1109/TNET.2014.2332271
https://doi-org.recursos.biblioteca.upc.edu/10.1109/TNET.2014.2332271
https://doi.org/10.1109/TPDS.2017.2764901
https://doi.org/10.1109/TPDS.2017.2764901
https://semiwiki.com/forum/index.php?threads/blue-cheetah-demonstrates-industry-leading-silicon-proven-die-to-die-interconnect-solution-for-chiplets.18036/
https://semiwiki.com/forum/index.php?threads/blue-cheetah-demonstrates-industry-leading-silicon-proven-die-to-die-interconnect-solution-for-chiplets.18036/
https://semiwiki.com/forum/index.php?threads/blue-cheetah-demonstrates-industry-leading-silicon-proven-die-to-die-interconnect-solution-for-chiplets.18036/
https://semiwiki.com/forum/index.php?threads/blue-cheetah-demonstrates-industry-leading-silicon-proven-die-to-die-interconnect-solution-for-chiplets.18036/
https://doi.org/10.1109/DAC18072.2020.9218539

[7] Nathan Binkert et al. “The Gem5 Simulator”. In: SIGARCH Comput.
Archit. News 39.2 (Aug. 2011), pp. 1–7. issn: 0163-5964. doi: 10.1145/
2024716.2024718. url: https://doi-org.recursos.biblioteca.
upc.edu/10.1145/2024716.2024718.

[8] Tobias Bjerregaard and Shankar Mahadevan. “A Survey of Research
and Practices of Network-on-Chip”. In: ACM Comput. Surv. 38.1 (June
2006), 1–es. issn: 0360-0300. doi: 10.1145/1132952.1132953. url:
https : / / doi - org . recursos . biblioteca . upc . edu / 10 . 1145 /

1132952.1132953.

[9] Grigory Chirkov and David Wentzlaff. “Seizing the Bandwidth Scal-
ing of On-Package Interconnect in a Post-Moore’s Law World”. In:
Proceedings of the 37th International Conference on Supercomputing.
ICS ’23. Orlando, FL, USA: Association for Computing Machinery,
2023, pp. 410–422. doi: 10.1145/3577193.3593702. url: https:
//doi.org/10.1145/3577193.3593702.

[10] W.J. Dally and B. Towles. “Route packets, not wires: on-chip inter-
connection networks”. In: Proceedings of the 38th Design Automation
Conference (IEEE Cat. No.01CH37232). 2001, pp. 684–689.

[11] Uday Kumar Dasari et al. “Apparatus and mechanism for processing
neural network tasks using a single chip package with multiple dies”.
US 10,936,942 B2. 2021.

[12] Sujay Deb et al. “Enhancing performance of network-on-chip architec-
tures with millimeter-wave wireless interconnects”. In: ASAP 2010-21st
IEEE International Conference on Application-specific Systems, Archi-
tectures and Processors. IEEE. 2010, pp. 73–80.

[13] Cliff Edwards. NVIDIA Opens NVLink for Custom Silicon Integration.
2022. url: https://nvidianews.nvidia.com/news/nvidia-opens-
nvlink-for-custom-silicon-integration.

[14] Pouya Fotouhi et al. “Enabling scalable chiplet-based uniform memory
architectures with silicon photonics”. In: Proceedings of the Interna-
tional Symposium on Memory Systems. 2019, pp. 222–334.

[15] Antonio Franques et al. “Fuzzy-Token: An Adaptive MAC Protocol for
Wireless-Enabled Manycores”. In: 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE). 2021, pp. 1657–1662. doi:
10.23919/DATE51398.2021.9473960.

44

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi-org.recursos.biblioteca.upc.edu/10.1145/2024716.2024718
https://doi-org.recursos.biblioteca.upc.edu/10.1145/2024716.2024718
https://doi.org/10.1145/1132952.1132953
https://doi-org.recursos.biblioteca.upc.edu/10.1145/1132952.1132953
https://doi-org.recursos.biblioteca.upc.edu/10.1145/1132952.1132953
https://doi.org/10.1145/3577193.3593702
https://doi.org/10.1145/3577193.3593702
https://doi.org/10.1145/3577193.3593702
https://nvidianews.nvidia.com/news/nvidia-opens-nvlink-for-custom-silicon-integration
https://nvidianews.nvidia.com/news/nvidia-opens-nvlink-for-custom-silicon-integration
https://doi.org/10.23919/DATE51398.2021.9473960

[16] Amlan Ganguly et al. “Interconnects for DNA, Quantum, In-Memory
and Optical Computing: Insights from a Panel Discussion”. In: IEEE
Micro (2022).

[17] Amlan Ganguly et al. “The Advances, Challenges and Future Pos-
sibilities of MillimeterWave Chip-to-Chip Interconnections for Multi-
Chip Systems”. In: Journal of Low Power Electronics and Applications
(2018). doi: https://doi.org/10.3390/jlpea8010005.

[18] Tushar Krishna. A Detailed On-Chip Network Model Inside a Full-
System Simulator. 2017. url: https://pdfs.semanticscholar.org/
c1e9/0beac857ce1af1a531b6538804e71efdef05.pdf.

[19] John H. Lau. “Evolution, challenge, and outlook of TSV, 3D IC in-
tegration and 3d silicon integration”. In: 2011 International Sympo-
sium on Advanced Packaging Materials (APM). 2011, pp. 462–488. doi:
10.1109/ISAPM.2011.6105753.

[20] John H. Lau. “Recent Advances and Trends in Heterogeneous Inte-
grations”. In: Journal of Microelectronics and Electronic Packaging
(2019). doi: https://doi.org/10.4071/imaps.780287.

[21] Chengeng Li et al. “Accelerating Cache Coherence in Manycore Pro-
cessor through Silicon Photonic Chiplet”. In: Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design. 2022,
pp. 1–9.

[22] Li Li et al. “Reliability Challenges in 2.5D and 3D IC Integration”. In:
2017 IEEE 67th Electronic Components and Technology Conference
(ECTC). 2017, pp. 1504–1509. doi: 10.1109/ECTC.2017.208.

[23] Tao Li et al. “Chiplet Heterogeneous Integration Technology—Status
and Challenges”. In: Electronics (2020). doi: https://doi.org/10.
3390/electronics9040670.

[24] Gabriel H. Loh et al. “Interconnect-Memory Challenges for Multi-
Chip, Silicon Interposer Systems”. In: Proceedings of the 2015 Inter-
national Symposium on Memory Systems. MEMSYS ’15. Washington
DC, DC, USA: Association for Computing Machinery, 2015, pp. 3–10.
isbn: 9781450336048. doi: 10.1145/2818950.2818951. url: https:
//doi.org/10.1145/2818950.2818951.

45

https://doi.org/https://doi.org/10.3390/jlpea8010005
https://pdfs.semanticscholar.org/c1e9/0beac857ce1af1a531b6538804e71efdef05.pdf
https://pdfs.semanticscholar.org/c1e9/0beac857ce1af1a531b6538804e71efdef05.pdf
https://doi.org/10.1109/ISAPM.2011.6105753
https://doi.org/https://doi.org/10.4071/imaps.780287
https://doi.org/10.1109/ECTC.2017.208
https://doi.org/https://doi.org/10.3390/electronics9040670
https://doi.org/https://doi.org/10.3390/electronics9040670
https://doi.org/10.1145/2818950.2818951
https://doi.org/10.1145/2818950.2818951
https://doi.org/10.1145/2818950.2818951

[25] X. Ma, Y. Wang, and Y. et al. Wang. “Survey on chiplets: interface,
interconnect and integration methodology”. In: (2022). doi: https:
//doi.org/10.1007/s42514-022-00093-0.

[26] Rafael Medina et al. “System-Level Exploration of In-Package Wireless
Communication for Multi-Chiplet Platforms”. In: ASPDAC (2023).

[27] Samuel Naffziger et al. “2.2 AMD Chiplet Architecture for High-Performance
Server and Desktop Products”. In: 2020 IEEE International Solid-
State Circuits Conference - (ISSCC). 2020, pp. 44–45. doi: 10.1109/
ISSCC19947.2020.9063103.

[28] Samuel Naffziger et al. “Pioneering Chiplet Technology and Design for
the AMD EPYC™ and Ryzen™ Processor Families”. In: ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA)
(2021).

[29] Saptadeep Pal et al. “Design Space Exploration for Chiplet-Assembly-
Based Processors”. In: IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 28.4 (2020), pp. 1062–1073. doi: 10.1109/
TVLSI.2020.2968904.

[30] Daniel Sanchez, George Michelogiannakis, and Christos Kozyrakis. “An
Analysis of On-Chip Interconnection Networks for Large-Scale Chip
Multiprocessors”. In: ACM Trans. Archit. Code Optim. 7.1 (May 2010).
issn: 1544-3566. doi: 10.1145/1736065.1736069. url: https://doi.
org/10.1145/1736065.1736069.

[31] V. Soteriou, Hangsheng Wang, and L. Peh. “A Statistical Traffic Model
for On-Chip Interconnection Networks”. In: 14th IEEE International
Symposium on Modeling, Analysis, and Simulation. 2006, pp. 104–116.
doi: 10.1109/MASCOTS.2006.9.

[32] A. W. Topol et al. “Three-dimensional integrated circuits”. In: IBM
Journal of Research and Development 50.4.5 (2006), pp. 491–506. doi:
10.1147/rd.504.0491.

[33] Wen-Chung Tsai et al. “Networks on Chips: Structure and Design
Methodologies”. In: JECE 2012 (Jan. 2012). issn: 2090-0147. doi: 10.
1155/2012/509465. url: https://doi.org/10.1155/2012/509465.

46

https://doi.org/https://doi.org/10.1007/s42514-022-00093-0
https://doi.org/https://doi.org/10.1007/s42514-022-00093-0
https://doi.org/10.1109/ISSCC19947.2020.9063103
https://doi.org/10.1109/ISSCC19947.2020.9063103
https://doi.org/10.1109/TVLSI.2020.2968904
https://doi.org/10.1109/TVLSI.2020.2968904
https://doi.org/10.1145/1736065.1736069
https://doi.org/10.1145/1736065.1736069
https://doi.org/10.1145/1736065.1736069
https://doi.org/10.1109/MASCOTS.2006.9
https://doi.org/10.1147/rd.504.0491
https://doi.org/10.1155/2012/509465
https://doi.org/10.1155/2012/509465
https://doi.org/10.1155/2012/509465

[34] Chifeng Wang, Wen-Hsiang Hu, and Nader Bagherzadeh. “A Wireless
Network-on-Chip Design for Multicore Platforms”. In: 2011 19th Inter-
national Euromicro Conference on Parallel, Distributed and Network-
Based Processing. 2011, pp. 409–416. doi: 10.1109/PDP.2011.37.

[35] Wikipedia contributors. Token passing — Wikipedia, The Free Ency-
clopedia. [Online; accessed 22-June-2023]. 2022. url: https://en.
wikipedia . org / w / index . php ? title = Token _ passing & oldid =

1111727902.

[36] S.C. Woo et al. “The SPLASH-2 programs: characterization and method-
ological considerations”. In: Proceedings 22nd Annual International
Symposium on Computer Architecture. 1995, pp. 24–36. doi: 10.1109/
ISCA.1995.524546.

[37] XiaowenWu et al. “UNION: A Unified Inter/Intrachip Optical Network
for Chip Multiprocessors”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 22.5 (2014), pp. 1082–1095. doi: 10.1109/
TVLSI.2013.2263397.

[38] Xiaowu Zhang et al. “Heterogeneous 2.5D integration on through sili-
con interposer”. In: 2015. doi: 10.1109/DAC18072.2020.9218539.

47

https://doi.org/10.1109/PDP.2011.37
https://en.wikipedia.org/w/index.php?title=Token_passing&oldid=1111727902
https://en.wikipedia.org/w/index.php?title=Token_passing&oldid=1111727902
https://en.wikipedia.org/w/index.php?title=Token_passing&oldid=1111727902
https://doi.org/10.1109/ISCA.1995.524546
https://doi.org/10.1109/ISCA.1995.524546
https://doi.org/10.1109/TVLSI.2013.2263397
https://doi.org/10.1109/TVLSI.2013.2263397
https://doi.org/10.1109/DAC18072.2020.9218539

	f2d8667a-2b77-4e29-83ab-3f5af9d9895f.pdf
	Introduction
	Background and motivation
	Objectives
	Contribution
	Organization

	Literature Review
	Related work
	State of the art

	Methodology
	Design of experiment
	Modeling wired interconnects
	Modeling wireless interconnects

	Experimental Setup
	Benchmarks
	Simulators

	Characterization and Analysis
	Obtaining Traces
	Evaluation metrics

	Conclusion

	Evaluation
	Characterization
	Inter chiplet traffic
	Spatial and temporal profile

	Performance
	Speedup or slowdown
	Latency

	Conclusion

