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Abstract—In this paper a method to measure the signal-
to-noise ratio of superregenerative oscillators is presented. A
spectrum analyzer can easily be coupled to a superregenerative
oscillator without paying attention to possible loading effects.
With just two measurements of the displayed power spectrum,
in combination with the resolution bandwidth of the spectrum
analyzer and the quench frequency of the oscillator, the signal-
to-noise ratio is determined in a straightforward way. This is
supported analytically with results from a frequency-domain
analysis technique. Examples of the power displayed by a
spectrum analyzer are given to provide insight into the explained
procedure.

Index Terms—Superregenerative oscillator, noise, SNR, fre-
quency domain analysis, wireless receiver.

I. INTRODUCTION

INTRODUCED almost a century ago [1], superregenerative

(SR) receivers are still an active topic of interest as a

low-power and low-complexity receiver. Both features are

becoming even more and more relevant in the current context

of the IoT paradigm and its applications to fields such as

Industry 4.0 and Smart Cities, among many other areas where

cost and power consumption are a major driving force allowing

to ignore some of the shortcomings of the SR alternative.

Nowadays, the SR receiver is able to detect almost any type

of modulation, ranging from narrow-band analog and digital

modulations (AM, FM [2], [3], and PM [4], [5]) to ultra-wide

band modulations (AM [6] and FM [7]), with applications

ranging from the IoT field [8], [9] to base-band amplification

[10] or to ultrasound wake-up receivers [11].

Noise analysis is a very relevant issue in RF receivers

and some results on the signal-to-noise ratio (SNR) of SR

circuits were already presented in [2]. Further results have

been given lately in [12]–[16]. In this paper, we build on a

method to quantify noise in SR receivers [17] which is, in

turn, based on the frequency domain analysis technique [18],

to experimentally compute SNR of an SR receiver.

II. COMPUTING THE POWER SPECTRUM DISPLAYED BY A

SPECTRUM ANALYZER

An SR receiver can be modeled by the block diagram in

Fig. 1, where the part labeled SRO represents the core of the

receiver, the SR oscillator. The response to a sinusoidal input

signal vi(t) of frequency ωin and a periodic (not necessarily

sinusoidal [19]) quench signal ka(t) of frequency ωq is a
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Fig. 1. Block diagram of the SR receiver.

combination of sinusoids, each one of frequency ωin + kωq ,

with k integer [18].

By using superposition, this technique can also be applied

when the input is a combination of sinusoids and, as is

explained in [17], to a continuous input spectrum such as that

of white noise.

In [17] a method to compute signal and noise power spectra

in SRO was presented. Based on this method, we are going

to show an experimental method to determine the SNR of an

SRO based on the observation of the information given by a

spectrum analyzer (SA).

The power displayed by a swept-tuned SA at a given

frequency ωc is the power at the output of a narrow band-

pass filter (which sets the resolution bandwidth, RBW) whose

input is a down-converted portion of the input signal spectrum

around the center frequency ωc, to the center frequency ωbp of

this band-pass filter. The Gaussian band-pass filters commonly

available on most SAs exhibits the frequency response

|HSA(ω, ωbp)| = e−

(

ω−ωbp
2π

)

2

2σ2 . (1)

The parameter σ, in Hz, of the band-pass is related to the SA

RBW adjustment, given also in Hz. This figure is sometimes

defined as the 3 dB bandwidth (BW3dB) and sometimes as

the equivalent noise bandwidth (ENBW) of the SA band-pass

filter. These figures are related as

BW3dB = σ2
√
ln 2, (2)

ENBW = σ
√
π. (3)

The signal spectrum at the output of the SRO for a si-

nusoidal input of frequency ω0, the center frequency of the

selective network G(s) in Fig. 1, has the form

Csignal(ω) =

n=n2
∑

n=−n1

Cnδ(ω − (ω0 + nωq)), (4)

where Cn is the amplitude of the impulse at frequency



ω0,n = ω0 + nωq. (5)

So, the total SRO signal output power taking into account both

sides of the spectrum is given by [17]

Psignal = 2

n=n2
∑

n=−n1

|Cn|2 . (6)

Each of the impulses of the signal spectrum gives an SA power

response with the shape of the frequency response (1) squared,

centered at ωc = ω0,n, and amplitude given by

Psignal SA(ω0,n) = 2 |Cn|2 . (7)

Now, let us consider noise. The double-sided noise power

spectral density (PSD) at the output of the SRO in the interval

ωi′ −∆ω/2 ≤ ω < ωi′ +∆ω/2 is constant and equal to

PSD(ωi′) = |Ci′ |2
2π

∆ω
, (8)

where |Ci′ |2 is measured in V2 and PSD in V2/Hz. This

PSD is obtained after distributing the power of each one of

the following impulses over the bandwidth ∆ω around its

frequency ωi′ :

Cnoise(ω) =

i′=K2
∑

i′=−K1

Ci′δ(ω − ωi′). (9)

with

ωi′ = ω0 + i′∆ω, (10)

and ∆ω = ωq/m sufficiently small, which is achieved with

a sufficiently high value of m. The total SRO noise output

power taking into account both sides of the spectrum is given

by

Pnoise = 2

i′=K2
∑

i′=−K1

|Ci′ |2 . (11)

Each one of the noise intervals centered at ωi′ with constant

PSD given by (8) gives an SA power that is two times the

power contained in an interval equal to the ENBW (3) of the

SA band-pass filter (1), i.e.

Pnoise SA(ωi′) = 2PSD(ωi′)ENBW. (12)

This last expression considers that the ENBW is small com-

pared with the variation of the noise PSD with the frequency,

assumption that can be assured changing the RBW adjustment

of the SA.

III. SNR MEASUREMENT

As was shown in [17], the SNR at the output of the SRO

can be computed in a straightforward way from (11) and (6):

SNR =
Psignal

Pnoise

=

∑n=n2

n=−n1
|Cn|2

∑i′=K2

i′=−K1
|Ci′ |2

. (13)

The next step is to experimentally determine the SNR from

the information displayed by the SA. A first idea is to compute

the SNR in the interval ω0 − ωq/2 ≤ ω < ω0 + ωq/2, called
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Fig. 2. PSD of noise in dBV/Hz and signal power spectrum in dBV at the
output of the SRO for each of the quench signals ka(t) in Fig. 3. For each
quench signal, the PSD of noise has been scaled to make its maximum value
in dBV/Hz equal to the maximum value of the signal power spectrum in
dBV.
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∆ω0,0. Following the reasoning made in the previous section,

the signal power contained in all this interval is

Psignal(∆ω0,0) = 2 |C0|2 , (14)

and the noise power contained in the same interval is

Pnoise(∆ω0,0) = 2PSD(ωi′)fq, (15)

with fq =
ωq

2π
. So, the SNR in this interval using (14) and (15)

is

SNR(∆ω0,0) =
Psignal(∆ω0,0)

Pnoise(∆ω0,0)
=

2 |C0|2
2PSD(ω0,0)fq

. (16)

This expression can be related to the values given by the SA

using (7) and (12) as

SNR(∆ω0,0) =
Psignal SA(ω0,0)

Pnoise SA(ω0,0)

ENBW

fq
. (17)

We could repeat the computation of SNR in other intervals

ω0 + nωq − ωq/2 ≤ ω < ω0 + nωq + ωq/2, called ∆ω0,n. In

each one of these intervals the SNR is

SNR(∆ω0,n) =
Psignal SA(ω0,n)

Pnoise SA(ω0,n)

ENBW

fq
. (18)

The addition of all the noise and signal power will give the

overall SNR as

SNRSA =

∑n=n2

n=−n1
Psignal SA(ω0,n)

∑n=n2

n=−n1
Pnoise SA(ω0,n)

ENBW

fq
. (19)

As can be seen in Fig. 2 (extracted from [17]), the shape of the

envelope of the PSD of noise and of the signal power spectrum

is almost the same. For the purpose of computing power,
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Fig. 4. Power displayed by an SA at the output of an SRO for each of the
quench signals ka(t) in Fig. 3. RBW=100 kHz.

they can be considered the same because the differences

appear when the power levels are negligible compared to the

maximum power. So, the relation between the PSD of noise

and of the signal power spectrum can be considered constant

for all frequencies, i.e.

Psignal SA(ω0,n)

Pnoise SA(ω0,n)
= SNRraw (20)

for all values of n. So, (19) becomes

SNRSA = SNRraw

ENBW

fq
. (21)

Even if the value SNRraw could be evaluated at any frequency

ω0,n, we will consider that this value is evaluated at ω0. This

way, the overall SNR is equal to the SNR in the interval ∆ω0,0

as (17):

SNRSA =
Psignal SA(ω0,0)

Pnoise SA(ω0,0)

ENBW

fq
. (22)

So, only two measurements are required to compute SNR.

In the next section we explain how to experimentally do this

measurements.

IV. APPLICATION EXAMPLES

Several simulations have been made to validate the fact

that the overall SNR can be obtained from just two values

displayed by the SA. We have used the set of parameters given

in [17], with f0 = ω0

2π
= 2.4GHz and fq = 2.4MHz. For

comparison, we take as a reference the exact SNR computed

using (13). The literal use of (22) requires measuring sepa-

rately the signal and the noise powers at the same frequency.

Obviously this is not possible in practice because both sources

overlap. We can solve this situation when the SRO is in the

linear mode of operation by first measuring the output (due

to noise) when no signal is applied at the input, and then

measuring the output for signal levels high enough to make

noise contribution negligible. Or, as an alternative also valid

when the SRO is in the logarithmic mode of operation, we

can measure the noise when signal is present by measuring

the noise beside the signal peaks as is shown later in Fig. 5.

In Fig. 4 we can see the power displayed by an SA for

a sinusoidal, rectangular and sawtooth quench signal with a

RBW=100 kHz. The SNR computed using (13) is 24.757 dB
for a sinusoidal quench, 24.338 dB for a rectangular quench

and 26.301 dB for a sawtooth quench.
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Fig. 5. Zoom in of Fig. 4. Power displayed by an SA at the output of an
SRO for each of the quench signals ka(t) in Fig. 3. RBW=100 kHz.

We can compare these reference values with the ones com-

puted using (22). The RBW adjustment has been considered

to be equal to the BW3 dB. Using (2) and (3) we can compute

ENBW from RBW as

ENBW =

√
π

2
√
ln 2

RBW ≈ 1.0645RBW, (23)

i.e., a 0.27 dB difference. We can express (22) in dB as

SNRSA dB = Psignal SA(ω0,0)dBm − Pnoise SA(ω0,0)dBm

+10 log
10
(

ENBW

fq
).

(24)

Figure 5 shows the signal power measurement made at the

peak centered at f0 and the noise power measurement made

beside this peak. Using (24) we compute SNRSA dB for the

sinusoidal quench signal as

SNRSA dB = −34.01 dBm+ 72.33 dBm+

10 log
10

( √
π × 100× 103

2×
√
ln 2× 2.4× 106

)

= 24.789 dB,
(25)

value that is 0.032 dB greater than the reference (13). For the

rectangular quench signal, (22) gives

SNRSA dB = −37.68 dBm+ 75.54 dBm+

10 log
10

( √
π × 100× 103

2×
√
ln 2× 2.4× 106

)

= 24.329 dB,
(26)

value that is 0.009 dB lower than the reference (13), and for

the sawtooth quench signal (22) gives

SNRSA dB = −43.11 dBm+ 83.06 dBm+

10 log
10

( √
π × 100× 103

2×
√
ln 2× 2.4× 106

)

= 26.419 dB,
(27)

value that is 0.118 dB greater than the reference (13). We

can conclude that the differences between (13) and (22)

are negligible for practical purposes. Figure 6 shows the

mesurements for a RBW= 50 kHz. As expected, halving the

RBW decreases the noise power measurement by 3.01 dB,

while the signal power measurement doesn’t change. As a

result the same SNRSA dB values are computed.

Note that the noise levels at the lower and upper limits of the

frequency range shown in Fig. 4 are extremely low. In many

circumstances, they will be masked by the noise floor of the

SA, giving shapes such as the experimental results shown in

Fig. 7-9 of the next section.
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Fig. 6. Power displayed by an SA at the output of an SRO for each of the
quench signals ka(t) in Fig. 3. RBW=50 kHz.

V. LABORATORY MEASUREMENTS

We have applied this technique in the laboratory to measure

SNR at the output of an SRO tuned to work outside of the

crowded 2.4GHz band [20] with f0 = 2.584GHz and a

sinusoidal quench with fq = 1MHz. A Rohde & Schwarz

SA was loosely coupled to an SRO by the usual procedure

of building a small loop at the end of a coaxial cable and

placing it near the SRO. In this way, there is no need to

build a cumbersome probing system that might affect SR

operation. Next we show the displayed results for different

values of RBW that in this SA is equal to the BW3 dB. In

Fig. 7 we can see (top right corner) that the difference between

Psignal SA(ω0,0)dBm and Pnoise SA(ω0,0)dBm is =16.12 dB. So,

considering RBW=5 kHz, fq = 1MHz, and (23) and (24):

SNRSA dB = 16.12 dB + 10 log
10

( √
π × 5× 103

2×
√
ln 2× 106

)

= −6.62 dB.

(28)

Using a RBW 10 times higher, i.e. RBW=50 kHz, will not

change Psignal SA(ω0,0)dBm, while Pnoise SA(ω0,0)dBm will be

increased 10 dB as is shown in Fig. 8, and as a consequence

the computed SNR will be the same, i.e.

SNRSA dB = 6.12 dB + 10 log
10

( √
π × 50× 103

2×
√
ln 2× 106

)

= −6.62 dB.

(29)

Finally, doubling the RBW, i.e. RBW=100 kHz, will increase

Pnoise SA(ω0,0)dBm by 3 dB as is shown in Fig. 9. Again, the

computed SNR will be the same in practice.

VI. CONCLUSION

A simple and effective experimental method to quantify

the SNR at which an SRO is operating has been presented.

Exploiting the fact that the shape of the envelope of the

signal power spectrum and the noise PSD is the same in the

region where the power contribution is significant, we can

determine the SNR by taking just two measurements of the

power displayed by an SA. The relation between these two

measurements is scaled by the RBW adjustment of the SA

and the quench frequency of the SRO. Application examples

for different RBW and quench signals have been provided.

The same method can be used to determine SNR in SROs

operating in the logarithmic mode at a given signal input

Fig. 7. Power displayed by an SA. RBW=5 kHz.

Fig. 8. Power displayed by an SA. RBW=50 kHz.

Fig. 9. Power displayed by an SA. RBW=100 kHz.

power. However, in this case the compression effect associated

to this non-linear mode has the consequence that a 1 dB
increase in the signal input power gives less than 1 dB increase

in the signal output power and so, a decrease of the noise

output power.
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