NMF for quality control of multi-modal retinal
images for diagnosis of diabetes mellitus and
diabetic retinopathy*

Anass Benali'?, Laura Carrera’?, Ann Christin"?, Ruben Martin'?:, Anibal
Alé%, Marina Barraso®, Carolina Bernal®, Sara Marin?, Silvia Feu®, Josep
Rosinés?, Teresa Hernandez?, Irene Vila?, Cristian Oliva®®, Irene
Vinagre*®6 Emilio Ortega®®, Marga Gimenez*®6, Enric Esmatjes*>
Javier Zarranz-Ventura®%°, Enrique Romero!-?, and Alfredo Vellido!2

! TIntelligent Data Science and Artificial Intelligence (IDEAT-UPC) Research Center
2 Computer Science Department, Facultat d’Informatica de Barcelona (FIB),
Universitat Politécnica de Catalunya (UPC BarcelonaTech)

3 Institut Clinic d’Oftalmologfa (ICOF), Hospital Clinic de Barcelona, Barcelona,
Spain
4 Diabetes Unit, Hospital Clinic de Barcelona, Barcelona, Spain
5 Institut Clinic de Malalties Digestives i Metaboliques (ICMDM), Hospital Clinic de
Barcelona, Barcelona, Spain
6 August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain

Abstract. In current ophthalmology, images of the vascular system in
the human retina are used as exploratory proxies for pathologies affecting
different organs. In this brief paper, we use multi-modal retinal images
for assisting diagnostic decision making in diabetes mellitus and diabetic
retinopathy. We report the use of matrix factorization-based source ex-
traction techniques to pre-process the images as a data quality control
step prior to their classification. Through this quality control, we un-
veil some relevant sources of bias in the data. After correcting for them,
promising pathology classification results are still obtained, which merit
further exploration.

Keywords: retinal imaging - non-negative matrix factorization - source
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1 Introduction

Diabetic Retinopathy (DR) is the leading cause of human blindness in Type 1
Diabetes Mellitus (DM) patients. It is a serious and lifelong condition, estimated
to constitute just between 5 to 10% of all diabetes cases [4] and characterized by
the pancreas inability to generate enough insulin. When related complications
affect the blood vessels in the retina, it can develop in what its known as DR,
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Fig. 1. Fundus Retinography.

Fig. 3. Optical Coherence Tomography Angiography images at two resolution levels.

which may cause several vision difficulties [12]. In its early stages, DR may cause
no symptoms, making it hard to detect and diagnose, as the differences between
a healthy eye and an eye with early-stage DR are not obvious. Consequently,
detecting DR early on after onset is key to slow its advancement, or even prevent
the vision complications which can lead to blindness if left untreated.

Different non-invasive imaging techniques can be applied to the study of
retinal diseases in general, and DR in particular, such as fundus retinography
(FR, Figure 1), structural Optical Coherence Tomography (OCT, Figure 2), or
Optical Coherence Tomography Angiography (OCTA, Figure 3).

Standard DR screening systems use FR [8] due to its widespread availability.
For this reason, the vast majority of computational science applications in oph-
thalmology have been applied to FR images and, far more rarely, to OCT scans,
which are not so readily available. Recently, the advent of the more advanced
(and still scarcely used) OCTA technology allows for direct visualization of flow
in the retinal vessels, easing the evaluation of these patients.

We analyze a high-quality multi-modal image dataset gathered in previous
ophthalmology research projects [1-3,14]. The ultimate goal of its analysis is
diagnostic classification to be provided to the expert for decision-making assis-
tance. In this study, though, we focus on image quality control prior to classifi-
cation, using source extraction techniques, namely non-negative matrix factor-
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ization (NMF) and some of its variants. This quality control is a necessary step
to guarantee the robustness of the diagnostic assistance tool.

2 Materials and Methods

There are three image modalities in the analyzed dataset, namely FR, OCT and
OCTA. For the OCTA images there are, in turn, four sub-modalities: 3 x 3mm
superficial, 3x 3mm deep, 6 X 6mm superficial and 6 X 6mm deep. Here superficial
and deep refer to the perifoveal superficial capillary plexus (SCP) and perifoveal
deep capillary plexus (DSP), respectively. This dataset is quite unique in that
it only includes patients with Type 1 diabetes and that it also includes a subset
of controls with no diabetes.

The DR scale is redefined to include such controls as class 0 and, therefore,
we have classes 0: Controls, 1: No DR, 2: Mild Non-proliferative DR, 3: Moderate
Non-proliferative DR, 4: Severe Non-proliferative DR, and 5: Proliferative DR.

The original dataset includes 599 people in total. The retinal images acquired
with the three imaging techniques (FR, OCT, OCTA) are available for both the
left and right eye (whenever possible).

For a variety of reasons some of the images (and related clinical information)
were missing in the original dataset. Therefore, the data needs some preliminary
filtering. Also, some of the OCT, OCTA, FR scans are corrupted. Some examples
of this can be seen in Figure 4.

Fig. 4. Examples of corrupted OCT, OCTA and FR images.

Besides, some of the eyes on the dataset have other eye pathologies or pre-
vious treatments. To avoid biasing the models, only people with good enough
quality OCT and OCTA were included. Also, patients that underwent treatment
or surgery that can affect the captured features were filtered out.

The pre-filtering process for the OCT and OCTA was performed as specified
in a previous study [2]. The FR images do not have any quality information and
so they are all included in this filter.

After applying the exclusion criteria, as graphically described in Figure 5, we
are left with 771 eyes.

Inspecting the distribution of the instances in the dataset (See Figure 6) and
their distribution of exclusion (See Figure 7), too few class 3, class 4 and class
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Fig. 5. Diagram showing the exclusion criteria [2].
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Fig. 6. DR class counts.

Fig. 7. Distribution of exclusion
by class labels.

5 eyes are found to remain after filtering. Thus, from a classification viewpoint,
it makes more sense to aggregate them into three classes: class 0, class 1 and
class {2,3,4,5}, representing Controls, Type I diabetic with no DR and Type I
diabetic with DR, respectively.

The ultimate goal of this investigation is the assessment of the capabilities
of discrimination in the following two binary classification problems:

— classification task 0-15: Discrimination between the eyes of non-diabetics
(controls) and of Type 1 diabetics, which corresponds to class {0} wversus
class {1,2,3,4,5}.

— classification task 1-25: Discrimination between no DR eyes and clinical
DR eyes, corresponding to class {1} versus class {2,3,4,5}.

We will start by building small standard NMF models for a first exploration of
the quality of the extracted image sources, removing those which are artefactual
and reconstructing the target image through a linear combination of the relevant
ones. In this setting, we prefer sources to capture sparse localized features so that
the parts-based representation is easier to interpret for medical experts.

After this pre-processing, several models of the NMF family, namely standard
NMF [10], Sparse NMF [9], Separable NMF [6] and Convex NMF [5] will be built
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for each of the six types of image. The rank r (number of extracted sources) will
be estimated by inspecting the decay of the SVD eigenvalues. We will retain a
relatively large number of components so as not to restrict too much the features
the models can learn.

For each combination of image type, model and parametrization, the data
matrix decomposition obtained consists of sources and weights (encoding). Fol-
lowing similar approaches [13] that used NMF as the basis for subsequent classifi-
cation, the encoding matrices of all NMF variants will be used as input variables
in preliminary feature selection and classification models.

3 Exploratory Pre-processing

The first exploratory step consists on experimenting with small standard NMF
models for each type of image and inspecting the extracted sources. The result
of this step reveal some issues that should be fixed before using the encoding
matrices of NMF for classification.

3.1 Retinography

Some small standard NMF models were built from the FR photographs, where
images were initially modeled in a RGB (Red, Green, Blue) colour space. From
Figure 8, we see that the extracted sources only separate the colour channels,
the shades and illuminations, instead of intrinsic anatomical differences. There-
fore, we will need to normalize the illumination in order to learn more effective
features. This can be achieved with local adaptive filters. Here, we make use of
the FR image pre-processing method made public by the winner of the Kaggle
2015 FR images competition [7].

Fig. 8. Six sources of the FR exploratory model

3.2 OCT

Looking at the sorces reported in Figure 9, it seems clear that the NMF model
is actually learning different translations and rotations of the OCT scans, which,
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again, is not what we sought. Moreover, the strange-looking last source is ac-
tually the result of some OCT scans being in a grayscale colour space instead
of RGB. An expert ophthalmologist confirmed that OCT scans were originally
grayscale and that the colour in the image is extraneous. Therefore, they were
all transformed to grayscale.

Fig. 9. Nine OCT sources of the exploratory model

To learn more intrinsic features instead, we developed a pre-processing step
to isolate the regions of interest (ROI). The existence of a legend and symbol on
the bottom-left of the OCT scan was also noticed. This recurrent feature was
being isolated in its own source by NMF. Interestingly, the artefactual patterns
present in the OCT scans (a magenta bar and the legend) where not identified
as completely individual sources until setting the models to extract 13 sources
(rank r = 13).

3.3 OCTA

OCTA images were found to be mostly fine to be used as they are. In Figure
10, some of the extracted sources are shown. Nevertheless, we still used noise
reduction filters such as a median filter, bilateral filter and different types of
image thresholding to improve the images.

The model still identified artefacts in some of the images. For example, one
source helped identifying six images (see Figure 11) containing the camera model
watermark on the bottom right. It also identified the eye of a patient with a very
unusual path of the eye nerve through the FAZ area, as seen in Figure 12. All
these edge cases were fixed or filtered out.
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Fig. 10. Top row: OCTA deep sources. Bottom row: OCTA superficial sources.

Fig. 12. Eye with unusual vessel pathing. Left: 3 x 3mm Right: 6 x 6mm

4 Learning unsupervised part-based representations

Once the pre-processing of the images was carried out, a definitive extraction
was implemented with all the models. Each NMF variant was run with different
initializations (random, NNDSVD and NNDSVDa).

Regarding the number of components or sources to extract in the factoriza-
tion models, since the ultimate goal is using the transformed data as the basis
for a classification problem, a cross-validation (CV) scheme could be used for
its choice. However, it would have to be tuned for each model and initialization.
This is a rather cumbersome procedure and, therefore, we opted for a different
strategy: a sensible range of values was found by inspecting the decay of the SVD
eigenvalues (tantamount to looking at the retained variance of PCA) and was run
for different numbers of sources. Supervised feature selection was then applied
and used to decide which decomposition was best in terms of classification.

We tried to use the images at full resolution, but, for computational expedi-
ency, and given that preliminary results were not significantly different, image
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sizes were reduced (for FR, to 256 x 256; for OCT, to 100 x 500; and for OCTA,
to 256 x 256). With these, the SVD explained variance was calculated (see Figure
13).
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Fig. 13. SVD cumulative percentage of variance explained, for all image modalities.

It is noteworthy that OCT images show a “better” curve than the rest, as a
low number of components already explain much variance. A possible reason for
that could be that the factorization method does not agree well with the vessel
variability present on the FR and OCTA images. Based on the plot, we decided
to run the models for r € {64, 128, 256, 384}. Going beyond that for most models
would result in learning specific cases, instead of features. For the sparse models
though, it could make sense to have a larger number of features, but we do not
expect to have a large amount of relevant sparse and localized features in the
data. The resulting encoding matrices were subsequently used as input features
in classification designs. Then a feature selection and double CV scheme was
performed to train and test the models.

4.1 Feature selection and classifier training

A supervised feature selection approach based on mutual information (MI) was
applied and a stratified double-cross CV scheme was used to robustly train and
test the classification models. Feature selection was carried for each of the classi-
fication tasks (diabetic or non-diabetic and presence of DR) and for each subset
of features (FR, OCT, OCTA and all of them). The following ML /statistical
classifiers were used: LR, LDA, Linear SVM and RBF-SVM.

Each selected subset of features was ordered from highest to lowest MI with
the target class and the first 32 features were selected. This procedure uses a
10-fold CV; thus, the MI of each variable is computed for each CV split, resulting
on 10 MI estimates for each variable that are then averaged.
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Then, using a double CV scheme, the hyper-parameters of the classification
models were optimized and the generalization error estimated. Specifically, the
inner CV was used to select the best hyper-parameters according to the averaged
validation AUC metric. Once the parameters of the models have been defined,
a (optional) backward elimination wrapper method was applied to remove the
irrelevant or less useful features for the model. In order to check if a feature
can be safely removed, the hyper-parameters are re-optimized on the same cor-
responding inner CV to see if there is a decrease on the averaged AUC metric.
Once the features and hyper-parameters are selected, a model is re-trained for
each inner CV train split and are tested on the corresponding outer test CV
fold.

The stratified double CV is defined with 5 splits on the outer CV and 4 splits
of the inner CV (a total of 20 iterations). Using this scheme, 20 test estimates
are obtained, which are displayed in the study as a boxplot. The grid search for
the classifier hyper-parameters is shown in Table 1.

Method Hyper-parameters
Logistic Regression|C = 10~ °%

LDA None

Linear SVM C =101

RBF-SVM C=10" y=10""1

Table 1. Grid search values for the hyper-parameters of the classification methods.
The notation z : y denotes all the integers in the range [z, y].

5 Results and Discussion

5.1 Useful sources learnt

After executing the models, we take a look at the learnt components. We show
some of the relevant learnt standard NMF sources for each type of image when
initialized with NNDSVD. Here, the NMF variants components are not shown
because they are less intuitive to interpret and not always parts-based represen-
tations.

Some of the learnt NMF components for the FR images are represented in
Figure 14. The sources mostly seem to capture the thickest vessels. Like in the
OCTA sources, there is variability on the positioning of the vessels which ends
captured in different sources.

Figure 15 shows some of the sources learnt by NMF for OCT images. We can
see that the sources are a localized parts-based representation.

Looking at the learnt NMF components for the deep OCTA images (Fig. 16)
reveals that they capture the different patterns around the FAZ area.
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Fig. 14. Some NMF sources from FR images when initialized with NNDSVD

—

Fig. 15. Some NMF sources from OCT retinal images (initialized with NNDSVD)

Fig. 16. Some NMF sources from OCTA deep images (initialized with NNDSVD)

The learnt NMF features for the superficial OCTA images can bee seen in
Figure 17. A sparse representation is learnt. We notice that the bottom vessel is

being captured by different components depending of its position.

Fig. 17. Some NMF sources from OCTA superficial (initialized with NNDSVD)

5.2 Classification results

For comparison, a Dummy Classifier that generates predictions by following the
training set class distribution is included. It will have an average AUC of 0.5.

We note that if the pre-processing explained on section 3 is not applied, the
classification results are no better than random.
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Discriminating DR For classification task 1-25 (see section 2), we obtain
the results shown in Figure 18. OCT features yield the best results. The FR
and OCTA features produce more or less similar results. The best results are
obtained for logistic regression and LDA. We hypothesize that the reason SVM
classifiers work worse is because the hyper-parameter search was not exhaustive
enough, but this should be further investigated.

075 Features used
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== ocT
. . OCTA (all)
0
LogisticRegression LoA SVClineal SVCrbf DummyClassifier
Models

BN FR + OCT + OCTA

.

AUC value (test)

g

Fig. 18. Resulting boxplot of AUC results for classification task 1-25.

Discriminating DM For classification task 0-15, we obtain the results shown
on the left plot in Figure 19. It can again be seen that the OCT features yield the
best performance. The FR features work better than random, while the OCTA
features are all over the place. At this point, we inspected the sources yielding
the best results and found a bias in the data: that the range of images from
388 to 420 have OCT scans with an unexpected noise and level of gray. Some
examples can be observed in Figure 22 and Figure 23.

This, in itself, would not be necessarily a problem if it was not because that
range of images has more controls than the other classes. In the filtered data,
those are 32 individuals of class 0, 4 of class 1 and 1 of class 2.

According to the ophthalmologist, a possible explanation for this could be
that the lens of the camera equipment was dirty when those images were taken,
or an artefact in the export from the camera equipment software. We decided to
test how the model performs when removing those instances. This change means
reducing the number of class 0 eyes from 136 to 104. By doing so, the results
shown on the right hand side plot of Figure 20 are obtained. They worsen slightly
for OCT and have higher variance. Oddly enough, the results for retinography
marginally improved. Since there is no quality filter for the FR images, it could
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Fig. 20. Boxplot of task 0-15 (without
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Fig. 21. Boxplots of the results when discriminating DM from controls

Fig. 22. Example of the found bias in the preprocessed data

Fig. 23. Example of the found bias on the original images

be that the removed instances were difficult ones where the models previously
failed. Also, we notice that, although the OCTA results worsen slightly on aver-

age, they exhibit lower variance.

Discriminating controls from DR For completeness, we perform the clas-
sification task class 0 versus {2,3,4,5}. Hence, we remove class 1 (the majority
class), emphasizing the importance of the detected bias of class 0. We call this
classification task 0-25. Experiments were run with and without the biased data.
The results are reported in Figures 24 and 25.
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Fig. 24. AUC boxplot for task 0-25. Fig.25. AUC boxplot for task 0-25 (with-
out bias).

The results are consistently better and with less variability when including
the biased image range: all the models perform similarly (even SVM, which
yielded worse results in the other tasks). Removing the biased range decreases
the performance and increases the variability of the results, but it is still far
better than the dummy classifier. Worth stressing that the use of all the features
(FR, OCT, OCTA) gives consistently the best results, with and without bias.
This task showcases the importance of having found the bias on the image data
and exemplifies the potential of NMF as a quality control tool.

6 Summary and Conclusion

In this brief paper, we have shown how a matrix decomposition method for
feature extraction, namely NMF, can successfully be used for quality control
in a medical imaging problem, by detecting data artefacts and biases. These
methods can also provide further insight into the images themselves, increasing
the interpretability of the results, a requisite for the application of ML models
to medical problems [11].

The results reported in the previous section indicate that the NMF descrip-
tion of the image data is capable of discriminating in the tasks posed, albeit
with varied results. OCT with logistic regression yields the best results in task
0-15 (between 0.6 and 0.65 average AUC) and, most interestingly, for the more
difficult problem of task 1-25 (between 0.65 and 0.70), which opens the door to
early DR warnings for patients already with Type I DM. Encouragingly, the dis-
crimination between controls and DR patients consistently reaches average AUC
values over 0.70 with the use of all modalities. Logistic regression is a tried and
trusted model in the medical domain, which could provide an extra push to the
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practical implementation of the NMF based analytical pipeline. With the experi-
ments for task 0-25 we have shown how a significant bias found using NMF-based
feature extraction affects the results. This exemplifies how important is quality
control and how NMF can help to identify data issues given the right settings.
Overall, these promising results warrant further investigation and comparison
with alternative feature extraction methods and data representations.
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