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Abstract

We propose new methods for identifying and classifying Aberrant Re-

sponse Patterns (ARP) by means of Functional Data Analysis (FDA).

These methods take the Person Response Function (PRF) of an individ-

ual and compare it with the pattern that would correspond to a generic

individual of the same ability according to the Item-Person Response Sur-

face (IPRS). ARP correspond to atypical difference functions. The ARP

classification is done with functional data clustering applied to the PRFs

identified as ARP. We apply these methods to two sets of simulated data

(the first is used to illustrate the ARP identification methods, and the sec-

ond demonstrates classification of the response patterns flagged as ARP)

and a real data set (a Grade 12 science assessment test, SAT, with 32 items

answered by 600 examinees). For comparative purposes, ARP are also iden-

tified with three non-parametric person-fit indices (Ht, Modified Caution

Index, and ZU3). Our results indicate that the ARP detection ability of

one of our proposed methods is comparable to that of person-fit indices.

Moreover, the proposed classification methods enable ARP associated with

either spuriously low or spuriously high scores to be distinguished.

Keywords: Person-fit, Person Response Function, Item-Person Response Sur-

face, Functional Data Analysis, Outlier detection, Functional Clustering.
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1 Introduction

Knowledge and skills reflect individual characteristics that are evaluated indi-

rectly through a respondent’s performance on certain tasks that are grouped into

a test. The respondent’s answers to the test items are summarized into an indi-

vidual score that is interpreted as an indicator of ability. Inferences from scores

will be valid only if the individual level of achievement can be correctly inferred

from them (AERA/APA/NCME, 2014). Various reasons may be adduced for

inferring that an individual score is invalid. For example, respondents may copy

the answers they do not know for the most difficult items from a more competent

examinee. In this case, their test score will overestimate their ability. In other

cases a test score may underestimate the abilities of examinies, e.g. when capable

examinees fail to pay sufficient attention to the easiest items and thus provide in-

correct answers. Such situations give rise to Aberrant Response Patterns (ARP),

as a result of which inferences made about examinees’ abilities based on their

test score will not be valid.

Numerous person-fit indices have been proposed for identifying ARP (e.g.,

Meijer & Sijtsma, 2001), which to a greater or lesser extent efficiently identify

response patterns that underestimate or overestimate the latent ability of the

respondent being evaluated. However, none of these indices have been designed to

identify directly the type of bias involved in estimating this latent ability. Several

authors (Emons, Sijtsma, & Meijer, 2004, 2005; Nering & Meijer, 1998; Sijtsma &

Meijer, 2001; Walker, Engelhard, Hedgpeth, & Royal, 2016) argued to identify the

type of ARP from the Person Response Function (PRF), a synonym for Person

Response Curve. A PRF provides the probability of a certain respondent giving

the correct answer to each test item (Trabin & Weiss, 1983).
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The objectives of this study are the identification and classification of ARP

based on Functional Data Analysis (FDA). Analyzing PRF as functional data

was first mentioned by Emons et al. (2004) as a possibility for further research

in person-fit analysis. Our proposal essentially consists in comparing the PRF of

an individual with the PRF that would correspond to a generic individual of the

same ability according to the Item-Person Response Surface (IPRS), which also

takes into account the estimated item parameters and which is estimated on the

basis of the responses of all examinees. We compute the difference between both

functions for each individual. The further the difference function is from zero, the

more aberrant is the response pattern of the individual it represents. Functional

outlier detection techniques are used to identify ARP. Finally, functional cluster

analysis is applied to the PRFs that are flagged as aberrant in order to classify

them into different types of ARP.

The paper is structured as follows. Section 2 introduces the Functional Data

Analysis concepts employed throughout this paper. Section 3 presents the IPRS,

which are defined in this section from a functional perspective. Section 4 presents

our proposed methods for estimating the global Item-Person Response Surface

and the PRF, as well as for detecting and classifying ARP. In order to illustrate

the performance of these methods, two simulation studies are discussed in Section

5. Our proposed methods for identifying and classifying ARP are applied to a

real data example in Section 6. Final conclusions are discussed in Section 7.
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2 Functional Data Analysis

2.1 Basic concepts

FDA deals with the statistical description and modeling of samples in which a

whole function is observed for each individual. For instance, in the Berkeley

Growth Study, the heights of 39 boys and 54 girls were measured and registered

at 31 specific time points from one to 18 years old. Each individual in the study

contributed a complete function to the sample, namely his or her own growth

curve. This is one of the examples included in Ramsay and Silverman (2005,

first edition in 1997), which constitutes the first FDA monograph and includes

functional versions for a wide range of statistical tools. A recent general intro-

duction to FDA can be found in Kokoszka and Reimherr (2017). Two packages

in R deserve special mention because of their broad coverage of functional tools:

fda (Ramsay & Silverman, 2005) and fda.usc (Febrero-Bande & Oviedo de la

Fuente, 2012). We use the latter one throughout this paper.

A functional random variable is a random variable f that takes values in an

infinite functional space, usually the set of all the square-integrable functions de-

fined in an interval [a, b] ⊆ R: L2([a, b]) =
{
f : [a, b]→ R, with

∫ b
a
f(t)2dt <∞

}
.

An observation f of f is called a functional datum. A functional dataset f1, . . . , fn

is the observation of n independent functional random variables f 1, . . . ,fn that

are identically distributed as f . For convenience, we assume that the func-

tional space is always L2([a, b]) because it has a Hilbert space structure: it is

a vector space with an inner product, 〈f, g〉 =
∫ b
a
f(t)g(t)dt, inducing a norm,

‖f‖ = 〈f, f〉1/2, known as the L2-norm on [a, b].

The parameters describing the probability distribution of a functional random
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variable f are defined in the usual way. The expected value function and the

variance function f are E(f(t)) and Var(f(t)), respectively, for all t ∈ [a, b].

The covariance function of f is given by c(s, t) = Cov(f(s),f(t)), for all s, and

t ∈ [a, b]. These theoretical functions can be estimated by the corresponding

descriptive statistics computed on a functional dataset coming from f : f̄(t),

V̂ar(f(t)) (respectively, the sample mean and variance of the values that functions

f1, . . . , fn take at a particular value t ∈ [a, b]), and ĉ(s, t) (the sample covariance

between the values that functions f1, . . . , fn take at two values s and t in [a, b]).

They can be computed with func.mean and func.var in library fda.usc.

2.2 Functional depth

The measure of depth is intended to quantify the centrality of an observation

within a given sample; see Cuevas, Febrero-Bande, and Fraiman (2007) for a

comprehensive treatment of the concept of statistical depth for functional data.

Depth measures are useful for detecting functional outliers, identified as func-

tional data with the least depth (Febrero-Bande, Galeano, & González-Manteiga,

2008).

In this paper, we use modal depth (through the function depth.mode, in the

library fda.usc), which for each functional data fi quantifies how densely it is

surrounded by other data in the functional dataset. Given a metric or a semi-

metric d(·, ·) between functions, for fixed h > 0 the h-modal-depth is

MDh(fi) =
∑
j 6=i

1

h
K

(
d(fi, fj)

h

)
where K(z) is a kernel function (a unimodal symmetric univariate density func-

tion, which is typically the standard normal density). In the library fda.usc,
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the tuning parameter h is selected by default as the 15% quantile of d(fj, fk),

j, k = 1, . . . , n, j 6= k, because empirical experience shows that the relative order

of depths does not vary too much for values of h between 10% and 25% quantiles.

2.3 Clustering of functional data

The distance matrix between observations is the only information required for

hierarchical clustering. Clustering functional data can therefore be performed as

soon as a distance between functional data is defined. For instance, the L2-norm

can be used. Another classical clustering method, namely k-means, also requires

computation of the averages of the observations allocated to the same cluster. We

use the function metric.lp (in the package fda.usc) to compute distances and

the function hclust for hierarchical clustering. We perform functional k-means

using kmeans.fd (also from the package fda.usc).

3 Item-Person Response Surface

3.1 Definition and estimation

For the sake of simplicity we consider a unidimensional one-parameter IRT model.

Let us assume that an exam has m items that differ only in their (latent) difficul-

ties b1, . . . , bm (bj ∈ Ω ⊆ R) and that n examinees with (latent) abilities θ1, . . . , θn

(θi ∈ Θ ⊆ R) take the exam. The examination produces a n×m matrix X with

entries xij ∈ {0, 1}, such that xij = 1 if and only if examinee i has answered item

j correctly.

The IPRS is a function p defined from Θ×Ω to [0, 1], such that p(θ, b) is the

probability that a generic individual with ability θ gives the right answer to a
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generic item of difficulty b. It is expected that p(θ, b) increases in θ and decreases

in b. An identifiability problem exists, consisting in the fact that abilities, diffi-

culties and the IPRS p are not unambiguously determined. More specifically, let

τ : Θ −→ Θ∗ and ν : Ω −→ Ω∗ be two increasing monotonic functions. Then the

abilities θ∗ = τ(θ), the difficulties b∗ = ν(b) and the IPRS p∗ defined from Θ∗×Ω∗

to [0, 1] as p∗(θ∗, b∗) = p(τ−1(θ∗), ν−1(b∗)) are equivalent to θ, b and p(θ, b). It

follows that only the order of abilities and difficulties are relevant.

A simple statistical model for the data coming from an IPRS is as follows.

Let b1, . . . , bm be m independent identically distributed (i.i.d.) observations from

a random variable with known distribution function Fb. Let θ1, . . . , θn be n i.i.d.

observations from a random variable with known distribution function Fθ, which

are independent from difficulties bj. Given difficulties bj, abilities θi, and the

IPRS p(θ, b), let Xij ∼ Bern(p(θi, bj)) be n × m independent binary random

variables. Entries xij in the matrix X are realizations of random variables Xij.

The inference goal is to estimate abilities θi, difficulties bj and the IPRS p(θ, b).

Sometimes a parametric expression is assumed for p(θ, b). This is the case of the

one-parameter logistic model (1PLM): p(θ, b) = 1/(1 + e−D(θ−b)). Observe that

this is a particular case of logistic regression p(θ, b) = 1/(1+e−(β0+β1θ+β2b)), when

β0 = 0, β1 = −β2 = D. The logistic regression model can also be stated as

logit(p(θ, b)) = log

(
p(θ, b)

1− p(θ, b)

)
= β0 + β1θ + β2b. (1)

We use the 1PLM with D = 1.7 to generate a data set consisting of n = 100

individuals responding to a multiple-choice test with m = 50 items, each of them

having four response options with only one being correct. The abilities θi and

the difficulties bj are independent observations of a standard normal distribution.

We refer to this data set as the Illustrative Example.
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When working with a non-parametric model we assume that

logit(p(θ, b)) = s(θ, b), (2)

where s(θ, b) is a smooth function (for instance, it has continuous second partial

derivatives) that can take any value in R. Additionally, it can be assumed that

s(θ, b) increases in θ and decreases in b.

We estimate the models in Equations 1 and 2 in the following way. First,

the total score is computed for examinee i on the exam as ti =
∑m

j=1 xij. Then

the ranks of t1, . . . , tn, say r1, . . . , rn, are calculated and transformed in esti-

mated abilities by θ̂i = F−1θ ((ri − 1/2)/n), and the same is done for the items.

The ranks si, . . . , sm for the number of wrong responses to items 1, . . . ,m are

computed and the estimated difficulties are b̂j = F−1b ((sj − 1/2)/m). The mono-

tonicity of p(θ, b) is a sufficient condition for the consistency of θ̂i and b̂j (e.g.,

Ramsay, 1991). Finally, a binary response regression model (either parametric

or non-parametric) is fitted to the data (θ̂i, b̂j; xij) to estimate p(θ, b). The max-

imum likelihood estimation is used for parametric regression models, and the

penalized maximum likelihood estimation for non-parametric models (see, for in-

stance, Ramsay, 2000). Figure 1 shows the estimation results for the Illustrative

Example data.

3.2 Aberrant Response Patterns

The PRF for individual i is a function PRFi from Ω to [0, 1], such that PRFi(b)

computes its probability of giving a correct answer to an item with difficulty

b ∈ Ω. Under the previous IPRS model, if θi is the ability of individual i, then

PRFi(b) = p(θi, b) for all b ∈ Ω. That is, PRFi(b) is the slice of the IPRS p(θ, b).

Nevertheless, it is possible that the PRF for certain individuals do not coincide
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Figure 1: Illustrative Example. (a) Two-dimensional representation of the IPRS
p(θ, b). (b) Estimation p̂(θ, b). The lighter color in both panels (resp. darker)
corresponds to the higher (resp. lower) probability of a correct answer.

with their corresponding IPRS profiles. In such cases we say that these individuals

present an ARP. More formally, we say that individual i follows an ARP when

the functions PRFi(·) and p(θi, ·) are different. In accordance with Karabatsos

(2003), the types of ARP used in this study are listed in Table 1. A comprehensive

list of ARP types discussed in the literature and their relationships to real-life

testing situations can be found in the review by Rupp (2013).

An IPRS model including the ARP is as follows. Consider the difficulties bj

and the abilities θi generated as explained before. Let p(θ, b) be the IPRS defined

as before. Let πA ∈ [0, 1] be the probability that an examinee has an ARP. For

individuals i = 1, . . . , n, let their PRF be PRFi(b) = p(θi, b) with probability

1 − πA, and PRFi(b) = gi(b) with probability πA where gi(b) is an ARP (corre-

sponding, for instance, to cheaters, lucky guessers, random respondents, careless

respondents or creative respondents). The random selection of individuals with

ARP is mutually independent. Finally, Xij follows a Bernoulli distribution with

probability of success PRFi(bj). Figure 2 shows the PRF corresponding to the

Illustrative Example data and ordered by the ranking of abilities θi. For 10 ex-
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Table 1: Types of ARP considered in this study, their characteristics and opera-
tionalization for simulating them.

Type of ARP Definition Operationalization

Cheaters These are low ability exami-
nees who unfairly obtain the
correct answers on test items
that they are unable to an-
swer correctly. For instance,
they copy from another ex-
aminee with a higher ability.

An individual with low ability
(θi < z.375) is randomly selected.
Then p(θi, b) is replaced by gi(b)
defined as

gi(b) = 1 if b > z.85,

otherwise gi(b) = p(θi, b).

Lucky-
guessers

These examinees guess the
correct answers to some test
items, for which they do not
know the correct answer.

An individual with low ability
(θi < z.375) is randomly selected.
Then p(θi, b) is replaced by gi(b)
defined as

gi(b) = .25 if b > z.85,

otherwise gi(b) = p(θi, b).

Random
respondents

These examinees randomly
choose the answer for each
item on the multiple-choice
test.

An individual is randomly selected.
Then p(θi, b) is replaced by the con-
stant gi(b) = .25.

Careless
respondents

These examinees answer cer-
tain items incorrectly, even
though they are able to an-
swer them correctly.

An individual with high ability
(θi > z.625) is randomly selected.
Then p(θi, b) is replaced by gi(b) de-
fined as

gi(b) = .5 if b < z.15,

otherwise gi(b) = p(θi, b).

Creative
respondents

These are examinees with a
high ability who give incor-
rect responses to the easi-
est items, because they in-
terpret them creatively.

An individual with high ability
(θi > z.625) is randomly selected.
Then p(θi, b) is replaced by gi(b) de-
fined as

gi(b) = 0 if b < z.15,

otherwise gi(b) = p(θi, b).

Mixed This category is a mixture of
the previous types.

One fifth of the simulated ARP comes
from each different type.
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aminees (randomly chosen), their profiles p(θi, b) are replaced by gi(b).

4 Implementation

4.1 Outline of the procedure

We propose the following procedure for identifying examinees with ARP. First,

the IPRS is estimated using data from all the individuals in such a way that

the estimation is not significantly affected when ARP are present. Secondly,

the PRF of individual i is estimated using data from this individual only; this

estimation will be affected by the presence of ARP. Thirdly, for each individual

the corresponding profile derived from the estimated IPRS is compared with its

individually estimated PRF. Individuals for which both estimations are extremely

different are identified as ARP. The estimation procedures are detailed in Section

4.2, and the ARP identification process is described in Section 4.3.

4.2 IPRS and PRF estimation

Following the estimation strategy for the IPRS model introduced in Section 3, we

propose using a specific type of non-parametric regression model: the Generalized

Additive Model (GAM; see, for instance, Wood, 2017), which assumes that

logit(p(θ, b)) = log

(
p(θ, b)

1− p(θ, b)

)
= β0 + s1(θ) + s2(b),

where s1 and s2 are smooth functions that can take any value in R. Additionally

it can be assumed that s1 is an increasing function and that s2 is decreasing.

One may observe that the GAM model is more flexible than the logistic model in

Equation 1, which is a particular case when s1(θ) = β1θ and s2(b) = β2b, but not
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Figure 2: Illustrative Example including 10 ARP of the following types: cheaters
(a1 and a2), lucky guessers (b1 and b2), random respondents (c1 and c2), careless
respondents (d1 and d2), and creative respondents (e1 and e2). Panel (a) gives
their PRF and Panel (b) gives the ARP profiles for one examinee of each type.
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as flexible as the non-parametric model in Equation 2 (both coincide only when

s(θ, b) = s1(θ)+s2(b)). Note that GAM achieves a balance between the flexibility

of a full non-parametric regression model and the low sensitivity against ARP

of parametric models (e.g., logistic regression). The estimations are carried out

using the function gam in the library mgcv.

In order to estimate an individual’s PRFi, we fit a non-parametric estimator

with a logistic link (e.g., by using penalized spline regression as in Wood, 2017) for

every individual in the dataset to the pairs (b̂j; xij), j = 1, . . . ,m. Let P̂RFi(b) be

the estimated function. We fit penalized spline regression using the function gam

in the library mgcv. In order to avoid degeneracies, it is necessary to remove the

following response patterns from the data set before estimation: (a) individuals

with constant answers (e.g., all answers are correct or all are incorrect); (b) those

with a perfect Guttman pattern (e.g., correct answers to a certain number of

the easiest items and incorrect answers to the remaining items that are more

difficult); and (c) those with an anti-Guttman pattern (e.g., incorrect answers to

a certain number of the easiest items and correct answers for the remaining items

that are more difficult).

For the Illustrative Example, Figure 3a shows the estimated IPRS and Figure

Figure 3b the PRF for the 100 individuals whose PRF was plotted in Figure

2. The ranking and relative order of the 10 individuals presenting ARP have

changed with respect to Figure 2 because these individuals were chosen at random

before their IPRS profiles were replaced by the ARP functions that correspond

to abilities different from those they originally had. Figure 3b shows that there

are more than 10 estimated PRF that could be declared ARP.
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Figure 3: Continuation of the Illustrative Example. (a) IPRS and (b) PRF esti-
mates of the 100 individuals whose PRF was plotted in Figure 2.

4.3 Detection of ARP

Rationale. We propose to compute the differences between P̂RFi(b) and the pro-

file function p̂(θ̂i, b) in the logit scale, Di(b) = logit
(
P̂RFi(b)

)
− logit

(
p̂(θ̂i, b)

)
,

b ∈ Ω, which leads to the functional data set {Di(b) : i = 1, . . . , n}. If individual

i does not have an ARP, Di(b) should be close to 0 for all b ∈ Ω because P̂RFi(b)

and p̂(θ̂i, b) both estimate the same function of b: p(θ̂i, b).

When individual i has an ARP, Di(b) is expected to be far from 0 because

p̂(θ̂i, b) estimates p(θ̂i, b) (especially when the non-parametric bivariate estimator

is not so flexible, as is the case with GAMs) but P̂RFi(b) estimates gi(p). So

Di(b) will appear as functional outliers for individuals with an ARP.

ARP detection. We propose three methods for ARP detection, the first two of

which are based on FDA. In particular, the first method consists in computing the

modal depth of the functional data {Di(b) : i = 1, . . . , n}. The least deep func-

tions are candidates for being functional outliers (a bootstrap test exists for find-
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ing atypicality; see Febrero-Bande et al., 2008) and consequently correspond to

ARP. We label this method Foutl. The second proposal consists in applying the

first ARP detection method to the first derivatives D′i(b), because the functional

outliers are sometimes revealed much more clearly when looking at derivatives

than when looking at the original functions (see, for instance, Febrero-Bande et

al., 2008). We label this method Foutl.d1.

Finally, our third proposal is based on a log-likelihood ratio test approach.

Consider individual i. There are two ways to compute the log-likelihood of the

observed data xij, j = 1, . . . ,m, the first of which uses the estimated PRFi:

loglik.PRFi =
m∑
j=1

{
xij log

(
P̂RFi(b̂j)

)
+ (1− xij) log

(
1− P̂RFi(b̂j)

)}
.

The second one uses the estimated IPRS:

loglik.IPRSi =
m∑
j=1

{
xij log

(
p̂(θ̂i, b̂j)

)
+ (1− xij) log

(
1− p̂(θ̂i, b̂j)

)}
.

Loglik.PRFi − loglik.IPRSi is expected to take abnormally high values for in-

dividuals with ARP. We then identify ARP by looking for outliers in the one-

dimensional dataset {loglik.PRFi − loglik.IPRSi : i = 1, . . . , n}. We label this

method LikRat. Observe that loglik.PRFi − loglik.IPRSi is the log-likelihood

ratio test statistic for testing the null hypothesis H0 : PRFi(b) = p(θ̂i, b) for all

b, against the alternative that these two functions are different.

Illustration. Figure 4a shows for the Illustrative Example the differences {Di(b),

i = 1, . . . , n}, between individual PRF and the IPRS profile estimates. Their first

derivatives,D′i(b), are shown in Figure 4b. Black curves correspond to the 10 ARP

introduced in Figure 2. The ARP of the cheater and creative respondent types

were the most clearly identifiable, followed by careless respondents, lucky guessers

and random respondents (more clearly distinguished by their derivatives). This
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result was expected given the way in which the ARP were simulated: cheaters

and creative respondents are intensified versions of careless respondents and lucky

guessers, respectively. Moreover, there were other curves, Di(b) and/or D′i(b),

far from zero even if they did not correspond to ARP, indicating that ARP

identification may not be an easy task.

Given that the method based on the log-likelihood ratio test statistic is a

non-standard way of detecting outliers, its performance is shown for the illus-

trative data. Figure 5 displays the scatter plot of (loglik.IPRSi, loglik.PRFi),

i = 1, . . . , n. The dashed line corresponds to differences between loglik.PRFi

and loglik.IPRSi equal to the upper whisker value of the box-plot for the one-

dimensional data {loglik.PRFi− loglik.IPRSi, i = 1, . . . , n}. So only the individ-

uals with points in the upper left part of the plot would be regarded as ARP. In

this case 9 out of the 10 ARP were detected as ARP (the unidentified tenth ARP

is a lucky guesser) and no other points were wrongly declared as such.

4.4 Classification of identified ARP

Rationale. In order to characterize the PRF of individuals identified as ARP, we

propose using clustering techniques for functional data (k-means and hierarchical

clustering, as in Section 2.3). The working functional dataset is formed by

Go(b) = logit(PRFo), o = 1, . . . ,O,

where O is the number of functional outliers identified as ARP. The distances

between functions are calculated as the weighted L2-norm of the logit differences:

dh,k = d(Gh, Gk) =

(∫ 2

−2
(Gh(b)−Gk(b))

2 φ(b)db

)1/2

, (3)

where φ is the density function of a standard normal (as difficulties b are N(0, 1)).
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i = 1, . . . , n} in the logit scale of individual PRF and the IPRS profile estimates
shown in Figure 3.
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Figure 5: Scatter-plot of (loglik.IPRSi, loglik.PRFi), i = 1, . . . , n, for the Illus-
trative Example. The dashed line corresponds to the upper whisker value of the
box-plot for {loglik.PRFi − loglik.IPRSi, i = 1, . . . , n}.

We choose [−2, 2] as the integration interval, because on the one hand it has a

high probability under the standard normal distribution, and on the other hand

by excluding more extreme values of b we avoid numerical problems when taking

the logit transformation of PRFh(b) values that are too close to zero or one.

Procedure. For functional k-means clustering we used the function kmeans.fd

in the package fda.usc. The hierarchical clustering was performed by using the

standard clustering R function hclust while working on the functional distances

dhk computed in Equation 3 and using Ward’s linkage method. The number

of clusters (k in the k-means method, or the number of groups after cutting the

dendogram into hierarchical clustering) was automatically selected by minimizing

the ratio of the average distance within clusters divided by the average distance
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between clusters (we have used the function cluster.stats of the R package

fpc, Hennig, 2018).

Illustration. As an example, we worked with a simulated dataset of 500

individuals and 50 items with a proportion of 10% of ARP. Specifically, we had 10

of each type: cheaters, lucky guessers, random respondents, careless respondents,

and creative respondents (details on the simulation are given below in Section 5).

When applying the ARP detection method based on log-likelihood differences

(using an ARP threshold based on a resampling procedure that mimics that of

the cutoff function in the R library PerFit from Tendeiro, Meijer, & Niessen,

2016), a total of O = 49 cases were identified as such, which were distributed as

follows: 10 cheaters, seven guessers, eight random, four careless respondents, 10

creative respondents and 10 non-ARP.

For the functional k-means clustering, the optimal number of clusters was

k = 6 when using the ratio within/between distances as a criterion. Randomly

selected initial centers were used. The results are summarized in Table 2 and

in Figure 6a. Looking row-wise at Table 2, it follows that the different types of

ARP could be retrieved except for the careless respondents, that were in different

clusters. Column-wise this table shows that the clusters were heterogeneous with

respect to the different ARP types, except for the smaller cluster with cheaters

and for two non-ARP clusters.

Figure 6a gives a graphical representation of the discovered clusters. The thin

gray dashed curves are the PRF of the 49 individuals identified as ARP. Each

thick curve represents a summary of one cluster: they are the logit inverse trans-

formation of the average of the logit transformation of the PRF for the individuals

in each cluster. These summary curves had the expected shape: the two solid
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Table 2: Cross table of the true ARP type by the assigned cluster by k-means clus-
tering for the 49 individuals identified as ARP. The cluster numbers correspond
to those in Figure 6a.

Clusters by k-means
Truth 1 2 3 4 5 6
non-ARP 2 3 0 0 1 4
cheaters 0 0 3 7 0 0
guessing 0 0 0 3 4 0
random 0 0 0 2 5 1
careless 0 0 0 0 0 4
creative 0 0 0 3 0 7

gray curves correspond to Clusters 1 and 2, including non-ARP respondents who

differed in ability but shared the characteristic of moving too suddenly from eas-

ier items with correct responses to more difficult items with incorrect responses;

the dot-dashed curve (corresponding to Cluster 3 comprising only three cheaters)

increases abnormally for the difficult items (b > 0); the 2-dotted curve is similar

but somewhat flatter (this corresponds to Cluster 4 containing cheaters, guessers

and random respondents); the solid black curve (Cluster 5, mostly random and

guesser respondents) is almost flat; the long-dashed curve (Cluster 6 with creative

and careless respondents) is abnormally low for easy items (b < 0). The dashed

gray curve corresponds to the average of all truly non-ARP cases.

The dendogram resulting from hierarchical clustering is shown in Figure 7.

It suggests that a cut defining three clusters is appropriate, leading to results

summarized in Table 3 and in Figure 6b. One may observe that one cluster with

only non-ARP individuals was identified (Cluster 1, which average is the gray

solid line in Figure 6b). Two more clusters also appeared: Cluster 2 (2-dotted

curve in Figure 6b) included all cheaters, guessers and random respondents plus

one non-ARP case, while Cluster 3 (long-dashed curve in Figure 6b) consisted of
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Figure 6: Clustering with (a) k-means and (b) hierarchical clustering of the 49
PRFh(b) curves identified as ARP (gray lines).
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creative and careless respondents plus one non-ARP.

Table 3: Cross table of the true ARP type by the assigned cluster by hierarchical
clustering for the 49 individuals identified as ARP. The cluster numbers corre-
spond to those in Figure 6b.

Hierarchical clustering
Truth 1 2 3

non-ARP 8 1 1
cheaters 0 10 0
guessing 0 7 0
random 0 8 0
careless 0 0 4
creative 0 0 10
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Figure 7: Dendogram for the hierarchical clustering applied to ARP from simu-
lated data.

There was a high degree of concordance between the clusters obtained by

k-means and those by hierarchical clustering, as shown in Table 4. The main

difference was that Clusters 3, 4 and 5 obtained by k-means were grouped when

using hierarchical clustering as Cluster 2.
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Table 4: Cross table of the cluster composition through k-means and hierarchical
clustering for the 49 individuals identified as ARP. The cluster numbers corre-
spond to those used in Figure 6.

Hierarchical clustering
Clusters

by k-means 1 2 3
1 2 0 0
2 3 0 0
3 0 3 0
4 0 12 3
5 0 10 0
6 3 1 12

5 Simulation studies

5.1 Simulation of the ARP detection

Methods. We conducted a simulation study to evaluate the ARP identification

power of the three different methods proposed in Section 4.3. Furthermore, we

compared them with three well-known non-parametric person-fit statistics, which

have been reported to be among the best at identifying aberrant-responding ex-

aminees by Karabatsos (2003): Sijtsma’s Ht, Harnisch & Linn’s Modified Caution

Index (labeled as Cstar in the figures), and van der Flier’s ZU3 (the standardized

form of van der Flier’s U3 index). We used their implementation in the library

PerFit (Tendeiro et al., 2016) by means of the functions Ht, Cstar and ZU3,

respectively. In order to determine the reference values according to which these

person-fit statistics indicate that a respondent can be regarded as an ARP, the

PerFit cutoff function was used. This function employs a resampling procedure

to determine the required reference values.

Instead of the default value of 1000, 100 resamples were used in our simu-
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lations in order to reduce computing time. The other function parameters in

the library PerFit were left at their default values. In order to compare the

six ARP detection methods (the three proposed methods plus the three non-

parametric person-fit statistics) on an equal footing, for our proposal based on

the log likelihood-ratio test statistic we mimicked the resample scheme included

in the cutoff function. For the methods based on functional depth, we used the

bootstrap procedure already implemented in the function outliers.depth.trim

from the library fda.usc.

The design of the simulation study was in accordance with what is usual in

this field (Rupp, 2013). A total of S = 100 exams were independently simulated,

each with m = 50 items. The number of examinees was n = 200 for the first

50 exams and n = 500 for the other 50. The individual abilities θi, i = 1, . . . , n

were independent values of a standard normal. The same applied for the item

difficulties bj, j = 1, . . . ,m. The true IPRS was the 1PLM with D = 1.7.

Three different proportions (0.05, 0.1, 0.25) of ARP were used with each of the

five different types of ARP (cheater, lucky guesser, random respondent, careless

respondent, and creative respondent) separately, and a separate “mixed” group

in which 20% of the ARP were each of the five types. This yielded a total of 18

combinations. The way these ARP were generated was based on the Karabatsos

(2003) simulations. These and other ways to operationalize different types of

ARP were reported by Rupp (2013).

Results. Figures 8 and 9 summarize the results of the simulation study for n =

500. While not included here, results for n = 200 leaded to similar conclusions.

These figures show the sensitivity (Figure 8) and the specificity (Figure 9) of each

ARP detection method for all of the 18 simulated scenarios.
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Figure 8: Simulation results for n = 500: Sensitivity (probability of correctly
detecting an ARP).
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Figure 9: Simulation results for n = 500: Specificity (probability of correctly
detecting a normal response pattern)
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The main results from the simulation study can be summarized as follows.

1. The following general findings were valid for all the ARP detection methods:

(a) The lower the proportion of ARP, the better its detection.

(b) Cheaters and creative respondents were the easiest types of ARP to

detect. This was particularly clear when looking at the sensitivity.

This result was expected, given that cheaters and creative respondents

were simulated with the largest deviations from normal patterns.

2. Regarding our suggested methods, the main results were the following:

(a) In general, the method based on the log likelihood-ratio test statistic

(LikRat) had the best performance over the proposed new methods.

(b) For low proportion of ARP (5%), the methods based on functional

depth (Foutl and Foutl.d1) were comparable to LikRat in sensitivity

(even a little better when detecting careless respondents and mixed

ARP), although the specificity was clearly greater for LikRat. When

10% were ARP, Foutl.d1 still had good sensitivity performance for

careless respondents and mixed ARP cases (once again, its specificity

is worse than that of LikRat).

3. These findings allowed us to compare our methods with the person-fit statis-

tics:

(a) LikRat, Ht, Cstar and ZU3 had high sensitivity when the proportion

of ARP is 5% or 10%, except for guessers or careless respondents. The

specificity was always high, even for a 25% proportion of ARP.

(b) Comparison of these four methods (in both sensitivity and specificity)

enabled us to state that Ht had the best performance, surpassing by a
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narrow margin Cstar and LikRat, both of which were comparable in

quality and outperform ZU3.

(c) The sensitivity of LikRat was slightly greater than that of Ht and

Cstar when all ARP were either careless or creative respondents.

Their specificities were similar. On the other hand, Ht and Cstar

outperformed LikRat in the detection of random respondents.

Discussion. The proposed ARP identification methods present better detection

rates in conditions with less presence of ARP. This is the usual result obtained

with other indices: detection rates decrease as the percentage of ARP increases

(e.g., Karabatsos, 2003). Thus, under the simulated condition with a 25% pres-

ence of ARP, the detection rate of all ARP types is low. In general, however,

under simulated conditions with a relatively low percentage of ARP (5% or 10%)

the detection rates increase with all methods and for any type of ARP. This result

is in accordance with those reported by Rupp (2013).

Calculating the difference between the log-likelihoods presents the best per-

formance among the proposed methods. Its good functioning is due not only to

a high ARP detection rate against false negatives (in general sensitivities above

.90), but also to a high detection rate of normal patterns against false positives

(specificities above .95). The sensitivity of this index is lower when identifying

characteristic patterns of guessers and careless respondents.

This result is not unexpected, since the previously defined characteristic pat-

terns of guessers and careless respondents deviate less from the normal patterns

than those of cheaters and creative respondents. However, both cheaters and

guessers deviate from the representative function of normal responses in the most

difficult items, just as the careless and creative respondents deviate from the rep-
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resentative function of normal responses in the easiest items.

Among the proposed methods, the one based on the log likelihood-ratio test

statistic presents the best performance, and is globally comparable to that of the

three non-parametric person-fit indices we have used. In particular, it performs

similarly to Cstar, and both are slightly behind Ht.

5.2 Simulation of the identified ARP classification

Methods. A simulation study was conducted to evaluate the identified ARP

classification proposal in Section 4.4. We simulated exams using n = 500 exam-

inees and m = 50 items, with a 10% proportion of mixed type ARP (that is,

there are 10 ARP of each type: cheaters, guessers, random, careless respondents,

and creative respondents). ARP identification was performed by means of two

procedures: our proposal based on the log likelihood-ratio test statistic (LikRat,

the best one among our proposed methods) and the Ht person-fit statistic (Ht,

the best one among the considered person-fit statistics). The processes for exam

simulation and ARP identification were replicated S = 500 times.

We applied clustering methods to classify separately the two sets of identified

ARP by either LikRat or Ht and followed the steps described in Section 4.4.

Hierarchical clustering and k-means were used, the optimal number of clusters

being chosen according to the within/between distance ratio.

When we analyzed all the simulated exams, it was not possible to replicate for

each exam the detailed analysis conducted for the example in Section 4.4. Thus,

automatic summaries of the clustering results were required. For each simulated

exam, and for the sets of ARP identified by either LikRat or Ht, cross-tables like

those in Tables 2 and 3 were created and taken as the output of the classification
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processes. The following statistics summarized such cross-tables:

1. Number of columns K. This was the optimal number of clusters when doing

either k-means or hierarchical clustering. The range of possible values of

K was constrained to between two and ten.

2. Combined purity of each type of ARP. In order to evaluate when a specific

type of ARP, say ti, was correctly allocated to one of the identified clusters

while, at the same time, taking into account whether the cluster where it

was mostly allocated was shared or not by other types of ARP, we computed

the ARP combined purity:

pti = max
k=1...K

√
|ti ∩ ck|
|ti|

|ti ∩ ck|
|ck|

,

where |ti| was the number of identified ARP of type ti, |ck| was the number

of identified ARP allocated to Cluster k, and |ti ∩ ck| was the number of

cases at the intersection. Observe that the first factor inside the square

root can be understood as the purity of the cell (ti, ck) in its row, and the

second factor as its purity in its column. So the combined purity pti merged

both purity measures by taking their geometric average.

To fix ideas, the combined purity of cheaters in Table 2 (k-means) was

pkmt2 = max

{
0, 0,

√
3

10

3

3
,

√
7

10

7

15
, 0, 0

}
=

√
7

10

7

15
= 0.57

which was attained at the Cluster 4. On the other hand, the combined

purity of cheaters in Table 3 (hierarchical clustering) was

phclt2
= max

{
0, 0,

√
10

10

10

26
, 0

}
= 0.62

which was attained at Cluster 2. Thus, cheaters were classified better by

hierarchical clustering than by k-means.
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Table 5: Summary statistics of the S = 500 values of the optimal number of clus-
ters K, for the four combinations of ARP identification and clustering methods.

Method for ARP Method for
identification clustering Median Mean Mode Maximum
Ht k-means 3 3.174 2 9
Ht Hierarchical 2 2.156 2 4
LikRat k-means 4 4.288 3 10
LikRat Hierarchical 3 2.792 3 5

3. Chi-squared distance between types of ARP. In order to determine which

types of ARP tended to be classified together, we computed the chi-square

distance between the rows of the cross-tables (e.g., Greenacre, 2016):

dχ2(ti, tj) =

√√√√ K∑
k=1

1

|ck|

(
|ti ∩ ck|
|ti|

− |tj ∩ ck|
|tj|

)2

.

Results. Regarding the optimal number of clusters, K, Table 5 shows the sum-

mary statistics of S = 500 values of K on the simulated exams for the four

combinations of methods for ARP identification and clustering. It can be seen

that, roughly speaking, the sets of ARP identified by LikRat required one more

cluster than those identified by Ht. Otherwise, hierarchical clustering tended to

give fewer clusters than k-means (approximately one less cluster).

Given that the results on combined purity were similar for both LikRat and

Ht ARP identification methods, only those referred to LikRat are reported here.

Figure 10 summarizes the combined purity for each type of ARP as box-plots

of the S = 500 obtained values. The main findings are the following. Firstly,

the non-ARP type (that is, those examinees wrongly identified as ARP) tended

to be classified in one cluster where these kinds of cases were mainly allocated.

This is even more clear when hierarchical clustering was used. Secondly, k-means

31



●●● ●●●

●● ●●●●

● ● ●●●●● ●● ●

●● ●● ●●●

creative

careless

random

guessing

cheaters

non−ARP

0.0 0.2 0.4 0.6 0.8 1.0

(a)

Combined purity

●●●●●●●●● ●●● ● ●● ●●●●●●●●● ● ●●●● ●●●●●●●●●●● ●●●●

● ●●●●● ● ●●● ●●● ● ●●● ●●●● ● ●● ●●●●●

● ●●● ● ●●● ● ●● ●●● ● ●●●● ●● ●●●●

● ●●●●● ●●●● ●●●

● ●●●●● ●●●● ●●● ● ● ●●●●●● ● ●● ●● ●●● ●● ●● ●● ●● ●●●●● ●●

creative

careless

random

guessing

cheaters

non−ARP

0.0 0.2 0.4 0.6 0.8 1.0

(b)

Combined purity

Figure 10: Average combined purity for each type of ARP in (a) k-means and
(b) hierarchical clustering. ARP detection is conducted with the method based
on log likelihood-ratio.

provided clusters with high combined purity for cheater respondents, whereas cre-

ative respondents were better classified by hierarchical clustering. Lastly, guesser

respondents had the lowest representation quality in both clustering methods.

The matrices containing the average of chi-square distances between types of

ARP throughout the S = 500 simulated exams are reported as color maps in Fig-

ure 11. Again, we show only the results from LikRat because those from Ht were

similar. The main result was that hierarchical clustering provided fewer clusters,

but they were separated better than by k-means. The observed distances for

k-means seemed to indicate that there were four groups of ARP types (non-ARP,

cheaters, guessing-random, careless-creative), while three groups weare clearly de-

tected in the hierarchical clustering results (non-ARP, cheaters-guessing-random,

careless-creative). These results corroborated the previous findings on the aver-

age number of clusters in Table 5. Finally, the non-ARP type was the furthest
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Average chi−2 distance between clustering profiles of ARP

Figure 11: Average chi-squared distance between clustering profiles of ARP ob-
tained by (a) k-means and by (b) hierarchical clustering. ARP detection was
done with the method based on log likelihood-ratio. Black corresponds to the
lowest distances and white to the greatest.

one (confirming the findings about the combined purity) although, in hierarchical

clustering, non-ARP slightly resembled creative and careless respondents.

Discussion. No clustering method perfectly classifies the six types of responses

considered. The k-means method tends to propose more (and less pure) clusters

than the hierarchical method. In both cases, different types of ARP are com-

bined in the same cluster in a logical way. The hierarchical clustering method is

good at distinguishing clusters with response patterns that are mainly associated

with (a) spuriously high scores (cheaters, guessers and random respondents), (b)

spuriously low scores (careless and creative respondents), and (c) those with non-

ARP (wrongly identified as such), which have a certain similarity to careless and

creative respondents. The results obtained by the k-means method are less clear

but still coherent. There is one pure cluster for non-ARP identified as such, an-

other that is not so pure for cheaters, and two more that mainly group together
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guessing with random respondents, and careless with creative respondents, re-

spectively. Once again, the responses associated with spuriously low scores tend

to be grouped together, but now the responses associated with spuriously high

scores are less drawn together than in hierarchical clustering.

6 Empirical example

We applied our proposed methods for identifying and classifying ARP to the

responses of 600 students to 32 items on a Grade 12 science assessment test

(SAT12) which measured their knowledge on the topics of chemistry, biology,

and physics. These data are available at the mirt R package (Chalmers, 2012)

as the data set named SAT12, and were obtained from the TESTFACT software

manual (Wood et al., 2003). The original answers were transformed into binary,

considering missing values to be wrong answers, and we followed the advice in the

mirt R package about the potentially better scoring for Item 32. We removed

the Cases 496 (with correct answers for all items) and 50 (a perfect Guttman

pattern with only one wrong answer on the most difficult item).

Figure 12 describes this data set. It shows (a) the empirical cumulative dis-

tribution functions (ECDF) of the examinee proportion of correct answers (this

variable seemed to be close to normality), and (b) the item proportion of exami-

nees who answered it incorrectly (quite close to uniformity). These two features

were used to estimate examinee abilities θi and item difficulties bj, respectively,

in accordance with Section 3. The PRF was then estimated for each examinee,

as explained in Section 4.2.

In addition to the PRF, the IPRS for each examinee was also estimated as

in Section 4.2. Both sets of functions were used for ARP detection by means of
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Figure 12: Description of the SAT12 dataset. ECDF of (a) examinee proportion
of right answers and (b) item proportion of examinees who answered incorrectly.

the LikRat method, as explained in Section 4.3. The person-fit statistics Ht was

also used for ARP identification. Among the 598 considered examinees, 86 were

identified as ARP (30 only by LikRat, 39 only by Ht, and 17 by both methods).

The 86 cases identified as ARP were used in the classification step (as in

Section 4.4). Both k-means and hierarchical clustering were applied, and the

number of automatically determined clusters for both of them was three. The

automatic selection for k-means yielded one very large cluster that was distributed

nearly uniformly across the clusters of the hierarchical clusters. To break up this

mixed cluster, we explored the k-means solution for k = 4, and the obtained

solution strongly agreed with that of hierarchical clustering with three clusters,

as can be seen in Table 6.

We now describe the ARP classification results corresponding to k-means

with k = 4 and to hierarchical clustering with three clusters. Figure 14 shows the

inverse logit transformation of the average PRF logit transformation for the indi-

viduals in each cluster. Table 6 and Figure 14 indicate that there were essentially

three clusters in the SAT12 dataset:
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Table 6: Clustering of 86 curves identified as ARP in the SAT12 dataset. Cross-
ing the assigned cluster by k-means and hierarchical clustering. The number of
clusters for k-means is four. The cluster numbers correspond to those in Figure
14.

Hierarchical clustering
k-means 1 2 3

1 18 0 0
2 2 0 0
3 1 39 0
4 0 11 15

3

1

2

Figure 13: Dendogram for the hierarchical clustering applied to the 86 curves
identified as ARP in the SAT12 dataset.

Cluster A is represented with dotted curves in Figure 14. These curves underwent

a sudden decline (far more pronounced than the average) resembling perfect

Guttman patterns. They were detected as ARP by LikRat, but not by Ht.

This was a single group in hierarchical clustering (Cluster 1), but it became

divided into two in k-means with k = 4 (Clusters 1 and 2).

Cluster B , represented with long-dashed curves in Figure 14, was composed by

individuals with lower than average probabilities of giving the right answer

to the items of low and medium difficulty, but the opposite happened for the

most difficult items. A common characteristic was that the curves in this
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Figure 14: Clustering of 86 curves identified as ARP in the SAT12 dataset.
(a) k-means results with k = 4 clusters. (b) Hierarchical clustering, and an
automatically selected number of clusters equal to 3.

cluster decreased more slowly than the average. These examinees shared

certain characteristics with careless and creative respondents.

Cluster C is represented with 2-dotted curves in Figure 14. It corresponded to

individuals with greater than average probabilities of giving the right answer

to the items with medium and high difficulty, but the opposite happened

for the easiest items. As in the previous cluster, the curves in this cluster

decreased more slowly than the average. These examinees shared certain
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characteristics with cheaters and guessers.

7 General discussion

An ARP detection and classification methodology is presented based on PRF.

Regarding identification, our simulation experiments reveal that the approach

denoted as LikRat outperforms the other two, and that its ability to identify

ARP is comparable to other person-fit scalar statistics such as Sijtsma’s Ht, Har-

nish Linn’s Modified Caution Index and van der Flier’s ZU3. This certainly does

not mean that they provide similar lists of identified ARP. In fact Ht overlaps with

LikRat sensibly less than with other person-fit statistics. We agree with Sijtsma

and Meijer (2001), when they highlight that analyzing PRF from an FDA per-

spective constitutes a powerful tool for the diagnosis of aberrance, not only for

ARP identification but also for their later classification. Although the functional

approach is more complex than the computation of standard person-fit indices,

examining the entire PRF is much more informative than summarizing it in scalar

indices. Taking advantage of this fact, we propose a functional classification pro-

cedure in which the identified ARP are clustered. Despite its functional nature,

our classification proposal can also be fed by ARP identified by any standard

person-fit index.

Regarding classification of identified ARP, we have used functional distances

to perform functional k-means and hierarchical clustering. In both cases, the

number of clusters was chosen automatically. Our results indicate that k-means

tends to identify more clusters than hierarchical clustering, and also that it is less

stable than the latter because of its dependence on random initial centers for the

k clusters.
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We recommend professionals to follow the next steps (cf. empirical example):

1. Perform descriptive analyses (as in Figure 12) to visualize the distributions

of abilities and difficulties, and to check if the 1PL model is plausible.

2. Estimate the IPRS and the PRF non-parametrically.

3. Flag all ARP cases identified by either LikRat or Ht.

4. Classify the flagged ARP using both functional k-means and hierarchical

clustering, with automatic determination of the number of clusters.

5. Describe the final clusters representing the average curves as in Figure 14.

This strategy enables to distinguish patterns that are associated with spuriously

low scores from those associated with spuriously high scores. It even allows

different types of of ARP to be detected among the high-scoring examinees.

It is possible to extend this work in two main directions. On the one hand,

the number of items and respondents could be expanded. In our study, we sim-

ulated only 50 items and both 200 and 500 respondents. Subsequent studies

should be carried out to analyze the extent to which the results of the study can

be generalized to other evaluation conditions. On the other hand, in addition

to the difficulty of the items, future analyses should consider their discrimina-

tion and the probability of random responses. Our proposal can be general-

ized to the 2PL model as follows. Consider that items can vary in difficulty b

and discrimination a, with (b, a) ∈ Ω ⊆ R2. In this case the IPRS p depends

on three arguments: p(θ, b, a). The (bj, aj) for item j, j = 1, . . . ,m, can be

estimated non-parametrically using, respectively, the mean item score and the

item scalability coefficient Hj (Sijtsma, 2005). Estimating p(θ, b, a) is possible

by fitting a non-parametric binary regression model to the data (θ̂i, b̂j, âj, xij),

i = 1, . . . , n, j = 1, . . . ,m. The PRF for individual i would then depend on b and
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a, PRF(b, a), which can be estimated from the data (b̂j, âj, xij), j = 1, . . . ,m, us-

ing a non-parametric binary regression model. The differences, in the logit scale,

of individual PRF and the IPRS profiles, would then depend on two parameters,

Di(b, a). Detecting ARP based on the log-likelihood ratio test statistic would

follow exactly the same structure as in our proposal for one parameter, because

loglik.PRFi and loglik.IPRSi are defined in the same way. Generalizing it to the

3PL model would also be possible, provided that a non-parametric estimate of

the pseudo-guessing parameter is available.
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