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The Hopf whole‑brain model 
and its linear approximation
Adrián Ponce‑Alvarez  1* & Gustavo Deco  2,3

Whole-brain models have proven to be useful to understand the emergence of collective activity 
among neural populations or brain regions. These models combine connectivity matrices, or 
connectomes, with local node dynamics, noise, and, eventually, transmission delays. Multiple choices 
for the local dynamics have been proposed. Among them, nonlinear oscillators corresponding to 
a supercritical Hopf bifurcation have been used to link brain connectivity and collective phase and 
amplitude dynamics in different brain states. Here, we studied the linear fluctuations of this model 
to estimate its stationary statistics, i.e., the instantaneous and lagged covariances and the power 
spectral densities. This linear approximation—that holds in the case of heterogeneous parameters 
and time-delays—allows analytical estimation of the statistics and it can be used for fast parameter 
explorations to study changes in brain state, changes in brain activity due to alterations in structural 
connectivity, and modulations of parameter due to non-equilibrium dynamics.

Whole-brain models are coupled stochastic dynamical systems in which nodes (i.e., brain regions) interact 
through couplings that represent anatomical connections estimated using diffusion imaging1, fiber tracing 
techniques2, or generative rules—such as the exponential distance rule3. Whole-brain models have proven to be 
useful to understand the emergence of correlations between neural populations or brain regions (or functional 
connectivity), as well as their spectral properties, in different brain states. In general, the ingredients of these 
models are a connectivity matrix between nodes, local node dynamics, noise, and, eventually, time-delays. Multi-
ple choices for the local dynamics have been used depending on the studied behavior (e.g., network correlations, 
synchrony, metastability, etc.) and the data to be modelled (e.g., fMRI or M/EEG). Local node dynamics have 
been previously modelled using spiking networks4, conductance-based dynamics1, neural population dynamics5, 
neural mass models6, excitable systems7, phase oscillators8–10, and nonlinear oscillators11. In the present study, we 
examined the behavior of a network of nonlinear oscillators corresponding to a normal form of a supercritical 
Hopf bifurcation. This network model, first introduced by Matthews and Strogatz12 to study collective behavior, is 
known as the Stuart-Landau model. It is a canonical model to study systems of coupled oscillators for which both 
the phase and the amplitude interact. The Stuart-Landau network has been used in diverse applications, from the 
study of coupled lasers13 to neural networks14. In the context of neuroscience, this model is often referred as the 
Hopf model. In this model, as nonlinearities increase, isolated nodes transit through two qualitatively different 
dynamics: from damped oscillations to self-sustained oscillations.

The Hopf model has been used to study the link between brain structure and dynamics in resting-state 
conditions15 and in different brain states, such as sleep16, low-level states of consciousness17–21, and psychedelic 
states22. Moreover, the Stuart-Landau model has been used to study the emergence of remote synchronization 
in human cerebral cortex23. Theoretical works have revealed sophisticate nonlinear emergent phenomena in the 
Stuart-Landau network such as oscillation and amplitude death24,25. Nevertheless, comparison of whole-brain 
models with resting-state neuroimaging data showed that the network operates in the simpler noisy-oscillation 
regime, suggesting that nonlinearities are small15,26. As we showed below, this case allows to strongly simplify the 
model to estimate the network statistics. This is important because, the Hopf model being a system of coupled 
stochastic differential equations, estimation of the network statistics (e.g., variances and covariances) requires 
extensive numerical simulations27, making often unpractical the exploration of a large part of the model’s param-
eter space.

Here, we reviewed the Hopf model and derived network statistics using its linear approximation. The lineari-
zation allows analytical estimation of the statistics and can be used for fast parameter explorations without the 
need of extensive simulations. In order to facilitate future research, we have made the Matlab codes freely avail-
able online, allowing to perform the calculations for any connectome and for a large space of model parameters.
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Results
Local dynamics
The dynamics of an isolated node are described by the following complex-valued equation, representing the 
normal form of a supercritical Hopf bifurcation:

where z = x + iy , with x and y being the real and imaginary parts of the state variable z (which has arbitrary 
units), respectively, and i the imaginary unit; |z| is the module of z , i.e., |z|2 = x2 + y2 ; ω = 2πυ is the intrinsic 
angular frequency (in rad.s-1), where υ is the intrinsic frequency in Hz; the parameter a is called the node’s 
bifurcation parameter (in s-1); finally, κ is a dimensional parameter, equal to κ = 1 s−1, that we dropped in the 
remaining of the article. Additive white noise is represented by η , i.e., �η(t)� = 0 and �η(t)η(t′)� = σ 2δ(t − t ′) , 
where σ is the noise amplitude (in s−1/2) and the angular brackets 〈.〉 denote the average over stochastic realiza-
tions. Note that we use the common, but loosely, notation for stochastic differential equations. Rigorously, Eq. (1) 
writes: dz =

[
(a+ iω)z − |z|2z

]
dt + dW , where W represents a Wiener process (Brownian motion) for which 

a time-derivative is not defined and �dW(t)dW(t)� = σ 2dt.
One can write Eq. (1) as a function of the real and imaginary parts:

where ηx and ηy are uncorrelated white noises added to the real and imaginary parts, respectively.
The variable z can also be written in polar coordinates, i.e., z = reiθ , where r = |z| =

(
x2 + y2

)1/2 is the 
module of z and θ = arctan

(
y/x

)
 is its phase. Note that r ≥ 0 . In polar coordinates, we have rṙ = xẋ + yẏ and 

r2θ̇ = xẏ − yẋ . Thus, in absence of noise, Eq. (1) becomes:

Equation (4) indicates that the phase evolves independently of r as θ(t) = ωt + ϕ , where ϕ is a constant 
phase. Clearly, a fixed point of Eq. (5) is r = 0 for which drdt = 0 . The stability of the fixed point r = 0 depends 
on the parameter a , since deviations from r = 0 grow (i.e., drdt > 0 ) if  ar − r3 > 0 and decrease (i.e., drdt < 0 ) if 
ar − r3 < 0 (Fig. 1A). For a < 0 , the solution r = 0 is stable as fluctuations around this point are attenuated. The 
eigenvalues of the system (2)–(3) are complex conjugates and equal to � = a± iω . For a < 0 , both eigenvalues 
have negative real part, indicating that the system relaxes to z = 0 with damped oscillations (see Fig. 1B), i.e., 
a spiral or focus solution. Note that, in this regime, addition of noise induces oscillations of the system. On the 
contrary, if a > 0 , r = 0 is unstable as fluctuations around it are amplified (Fig. 1A). In this latter case, a new 
fixed point appears given by r = a1/2 , which is stable since fluctuations around it, r = a1/2 + δr , are increased if 
δr < 0 , but decreased if δr > 0 . This solution is called a limit-cycle for which the system produces self-sustained 
oscillations with a constant amplitude and a constant angular frequency ω (see Fig. 1C).

In studies of whole-brain models, the brain signals (e.g. fMRI or MEG) are modelled by the real part of the 
state variables, i.e., x = Re(z).

Network model
The whole-brain dynamics are obtained by coupling the local dynamics of N Hopf nodes interconnected through 
a given coupling matrix C representing anatomical connections (Fig. 1C). In this study, to illustrate the method, 
we used a publicly available human diffusion MRI (dMRI) connectome from the Human Connectome Project 
(HCP) as the coupling matrix ( C ). The state variables of the network are given by the system of stochastic coupled 
nonlinear differential equations:

where g (in s−1) represents a global scaling of the connectivity C and ηj is uncorrelated white noise, i.e., �ηj(t)� = 0 
and �ηj(t)ηk(t′)� = σ 2δ(t − t ′)δjk . Two versions of this model have been studied previously: the homogenous 
case for which the local bifurcation parameter is constant across nodes (i.e., aj = a)15,16, 28 and the heterogene-
ous case for which nodes can have different local bifurcation parameters aj estimated from the data15,20. In both 
cases, ωj are estimated from the peak frequency of the data.

This model can be interpreted as an extension of the Kuramoto model to the case in which both the phase 
and the amplitude of the oscillators are allowed to vary and interact. In particular, the choice of the coupling 
function 

(
zk − zj

)
 promotes phase synchronization between coupled nodes. This can be seen by writing the 

deterministic system in polar coordinates:

(1)
dz

dt
= ż = (a+ iω)z − κ|z|2z + η,

(2)
dx

dt
=

(
a− x2 − y2

)
x − ωy + ηx ,

(3)
dy

dt
=

(
a− x2 − y2

)
y + ωx + ηy ,

(4)
dθ

dt
= ω,

(5)
dr

dt
= ar − r3.

(6)
dzj

dt
=

(
aj + iωj

)
zj −

∣∣zj
∣∣2zj + g

N∑

k=1

Cjk

(
zk − zj

)
+ ηj ,
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Equation (7) represents a version of the Kuramoto model of phase oscillators for which couplings are modu-
lated by the ratio of the amplitudes. The term sin

(
θk − θj

)
 favors synchronization of nodes j and k , since an 

oscillator lagging behind another one ( θk − θj > 0 ) is sped up (a positive term sin
(
θk − θj

)
 is added), whereas 

an oscillator leading another ( θk − θj < 0 ) is slowed down (a negative term sin
(
θk − θj

)
 is added). In the case 

where the oscillations of the nodes are self-sustained (limit-cycles) and the couplings are weak, amplitude fluc-
tuations are little compared to phase changes, and the system can be approximated by a Kuramoto model of 
phase oscillators interacting through couplings equal to Cjk

√
ak
aj

 . In this study, however, we concentrated on the 
case of noisy oscillations (i.e., when nodes do not produce self-sustained oscillations).

Note also that the coupling function can have a stabilizing effect, since Eq. (6) without noise can be written 
as: żj =

(
aj − gSj + iωj

)
zj −

∣∣zj
∣∣2zj + g

∑N
k=1 Cjk , where Sj =

∑N
k=1 Cjk is the strength of node j . In the case 

of Sj > 0 , which is true in particular for positive connections Cjk , the term −gSj < 0 contributes to the stability 
of the network.

Linear approximation
Estimating the network statistics (e.g., the covariance matrix) of the system given by Eq. (6) requires long sto-
chastic simulations, impeding the exploration of different model parameters. However, in the case of weak noise 

(7)
dθj

dt
= ωj + g

N∑

k=1

Cjk
rk

rj
sin

(
θk − θj

)
,

(8)
drj

dt
=

(
aj − g

N∑

k=1

Cjk − r2j

)
rj + g

N∑

k=1

Cjkrkcos
(
θk − θj

)
.

Figure 1.   Hopf model: single-node and network dynamics. (A) The fixed points of a Hopf node have modules 
which are the roots of ṙ = ar − r3 . For a < 0 , the solution r = 0 is stable since deviations from r = 0 are 
attenuated (i.e., ṙ < 0 ). On the contrary, if a > 0 , r = 0 is unstable as fluctuations around it are amplified (i.e., 
ṙ > 0 ). In this latter case a new fixed point appears given by r = a1/2 , which is stable since fluctuations around 
it, r = a1/2 + δr , are increased if δr < 0 , but decreased if δr > 0 . The arrows indicate the direction of flow and 
are given by the sign of ṙ . (B) Single-node dynamics for a < 0 . The system relaxes with damped oscillations 
from the initial condition (white circle) to the origin of the complex plane. Insets: top: in the absence of noise 
( η = 0 ) the oscillations die out; bottom: in the presence of noise ( η  = 0 ) the oscillations are noise-driven. (C) 
Single-node dynamics for a > 0 . The system produces self-sustained oscillations. Insets: top, deterministic 
system; bottom, stochastic system. (D) Network model. The whole-brain network is composed of N Hopf 
nodes interconnected through anatomical connections. Here, we used dMRI connectivity from the Human 
Connectome Project (HCP), in a parcellation with N = 1000 nodes. (E) Example dynamics for five nodes of the 
network. Parameters: aj = −0.5 (homogeneous); g = 1 ; ωj = 10 rad.s-1; σ = 0.3.
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and small non-linearities, one can estimate the statistics of the whole-brain network using a linear approximation 
that we describe in this section.

In the following, we use bold symbols to indicate column vectors and matrices. The dynamical system can 
be re-written in vector form as:

where z = [z1, . . . , zN ]
T  , z  is the complex conjugate of z  , a = [a1, . . . , aN ]

T  , ω = [ω1, . . . ,ωN ]
T  ,  

S = [S1, . . . , SN ]
T is the vector containing the strength of each node, i.e., Si =

∑
jCij , and η = [η1, . . . , ηN ]

T 
represents a vector of uncorrelated noise. The symbol ⊙ is the Hadamard element-wise product, i.e., 
u⊙ v = [u1v1, . . . , uNvN ]

T . The superscript T denotes the transpose operator.
We studied the linear fluctuations δz around the fixed point z = 0 , which is the solution of dzdt = 0 (Fig. 2A). 

In the linearized system the higher-order terms (δz ⊙ δz)δz are discarded and only terms in the first-order in 
δz are kept. Using the real and imaginary parts of the state variables, the evolution of the linear fluctuations δu 
follows the stochastic linear equation:

where the 2N-dimensional column vector δu = (δx, δy) =
[
δx1, . . . , δxN , δy1, . . . , δyN

]T contains the fluctua-
tions of real and imaginary parts. The 2N × 2N matrix A is the Jacobian matrix of the system evaluated at the 
fixed point:

w h e r e  Fj =
(
aj − xj

2 − yj
2
)
xj − ωjyj + g

∑N
k=1 Cjk

(
xk − xj

)
 f o r  1 ≤ j ≤ N  ( r e a l  p a r t s ) ,  a n d 

Fj =
(
aj − xj

2 − yj
2
)
yj + ωjxj + g

∑N
k=1 Cjk

(
yk − yj

)
 for N + 1 ≤ j ≤ 2N (imaginary parts).

By evaluating the partial derivatives at the fixed point, the Jacobian matrix can be written as a block matrix:

(9)
dz

dt
=

(
a − gS + iω

)
⊙ z − (z ⊙ z)z + gCz + η,

(10)
d

dt
δu = Aδu+ η,

(11)Ajk =
∂Fj

∂uk

∣∣∣∣
0

,

(12)A =

[
Axx Axy

Ayx Ayy

]
,

Figure 2.   Linear stability of the origin. (A) We considered the heterogenous model for which the parameters 
a and ω were drawn from normal distributions N (a0,�a) and N (ω0,�ω) , respectively, with means a0 and ω0 , 
and standard deviations �a and �ω . The connectivity matrix C was given by the HCP structural connectivity 
in a parcellation with N = 1000 nodes (Schaefer parcellation). We numerically calculated the eigenvalues 
of the Jacobian matrix for different values of a0 and the global coupling g (normalized by the 2-norm of the 
connectivity matrix ‖C‖ ) and we evaluated the stability of the origin. The origin is stable if Re(�max) < 0 , where 
�max is the eigenvalue with largest real part. Note logarithmic scale in the x-axis. Grey: the origin is unstable, 
i.e., Re(�max) > 0 . Blue: the origin is stable, Re(�max) < 0 , and aj < 0 for all nodes. Light blue: the origin is 
stable, Re(�max) < 0 , and aj > 0 for at least one node. Parameters: �a = 0.2 ; �ω = 0.1× 2π . (B) Proportion of 
positive bifurcation parameters ( aj > 0 ), for g/�C� = 0.7.
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where Axx  ,  Axy  ,  Ayx  ,  Ayy  are N × N  matrices given as:  Axx = Ayy = diag
(
a − gS

)
+ gC  and 

Axy = −Ayx = diag(ω) , where diag(v) is the diagonal matrix whose diagonal is the vector v . As shown below, 
the Jacobian matrix determines the statistics of the linear system. Note that the Jacobian depends on all the 
parameters of the model.

Given an initial condition δu(0) at t = 0 , the general solution of a stochastic linear system such as Eq. (10) 
is given by29:

where W  is an 2N-dimensional Wiener process, σ is the noise amplitude, and etA is the exponential matrix 
defined as:

where I is the identity matrix. The right-hand side of Eq. (13) is the sum of the deterministic behavior plus a 
stochastic integral representing the diffusion due to noise.

The linearization is only valid if the origin z = 0 is a stable solution of the system, i.e., if all eigen-
values of A have negative real part. Note that, in complex representation, the Jacobian writes 
A = diag

(
a + iω − gS

)
+ gC = diag(a + iω)− gL , where L = S − C is the Laplacian matrix of the network. 

It is known that the Laplacian matrix is positive semidefinite: the eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µN of L are real, 
nonnegative and µ1 = 030. Let �j be the eigenvalues of A , the origin is asymptotically stable if Re(�max) < 0 , 
where �max is the eigenvalue with largest real part. In the case of homogeneous local bifurcation and intrinsic 
frequency parameters, i.e., diag(a + iω) = (a+ iω)I , the eigenvalues of A relate to those of −gL and we have 
Re(�max) = a− gµ1 = a . Thus, in this case, the origin is stable if a < 0 . For the heterogenous case, however, 
there is not a direct expression for Re(�max) which depends on the contribution of the matrices diag(a + iω) 
and −gL , and stability needs to be evaluated numerically. For the HCP coupling matrix and the heterogeneous 
case, we found that the stability of the origin fixed point increases as a function the global coupling g and that, 
for sufficiently large g , the origin is stable even if aj > 0 for some nodes (Fig. 2A). Indeed, for strong coupling 
and close to instability, the majority of nodes can have aj > 0 while the origin remains stable (Fig. 2B). In other 
words, the focus solutions of single nodes can be unstable by themselves, but are stabilized by network interac-
tions—as observed in simpler oscillator networks31.

Network statistics: covariances
In the following, we derive the network statistics of the linear system. The network mean activity (first order 
statistic) is trivial since fluctuations around the origin z = 0 have null mean. A first interesting statistic is the 
covariance of the fluctuations around the origin, i.e., Cv = �δuδuT � , where the superscript T denotes the trans-
pose operator. For a stochastic linear system such as Eq. (10), the motion equation of the covariance matrix Cv 
is given as:

where Qn = �ηηT � is the covariance matrix of the noise. For uncorrelated noise, Qn is diagonal, i.e., Qn = σ 2I . 
The derivation of Eq. (15) is based on Eq. (10) which can be formally written as: dδu = Aδudt + dW , where W 
is an 2N-dimensional Wiener process with covariance �dWdWT � = Qndt . Using Itô’s stochastic calculus, we get 
d
(
δuδuT

)
= d(δu)δuT + δud

(
δuT

)
+ d(δu)d

(
δuT

)
  ,  a n d  t h u s : 

d
(
δuδuT

)
= (Aδudt + dW)δuT + δu

(
δuTA

T
dt + dWT

)
+ (Aδudt + dW)

(
δuTA

T
dt + dWT

)
 . This allows 

to calculate the evolution of the covariance d〈δuδuT 〉 . Since �δudWT � = 0 , taking the expectations and keeping 
terms in first order of the differential dt  (since dt2 can be made arbitrarily small), we obtain: 
d�δuδuT � = A�δuδuT �dt + �δuδuT �ATdt + Qndt.

The stationary covariance matrix can be obtained by solving dCv
dt = 0 , which leads to the following algebraic 

equation:

Equation (16) is an algebraic Lyapunov equation that has a unique solution provided that A is asymptoti-
cally stable. The Lyapunov equation can be solved using the eigen-decomposition of the Jacobian matrix. Let 
A = VDV−1 , where D is a diagonal matrix containing the eigenvalues of A , denoted �i , and the columns of 
matrix V  are the eigenvectors of A . Multiplying Eq. (16) by V−1 from the left and by the conjugate transpose of 
V−1 , noted V−† , from the right we get:

where the matrix M is given as: Mij = −Q̃ij/(�i + �
∗
i ) and Q̃ = V−1QnV

−† . A fast, stable numerical solution 
of Eq. (16) can be obtained using the MatLab function lyap.m that uses the Bartels-Stewart method32 based on 
the Schur decomposition of the matrix A.

(13)δu(t) = etAδu(0)+ σ

∫ t

0
e(t−s)AdW(s),

(14)etA =

∞∑

k=0

1

k!
(tA)k = I + tA+

1

2!
(tA)2 +

1

3!
(tA)3 + · · · ,

(15)
dCv

dt
= ACv + CvA

T + Qn,

(16)ACv + CvA
T + Qn = 0,

(17)Cv = VMV−†,
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Moreover, knowledge of the Jacobian matrix and the stationary covariance gives the stationary lagged covari-
ances of the state variables, defined as Cv(τ ) = �δu(t + τ)δu(t)T � . Using the general solution of the system given 
by Eq. (13), we get:

where Cv(0) = Cv is the covariance matrix (i.e., zero-lag). The lagged covariance has been used to described the 
temporal structure of whole-brain activity33.

Network statistics: power spectral densities
In the frequency domain, the power spectral density (PSD) of fluctuations around the fixed point is also deter-
mined by the Jacobian matrix. Taking the Fourier transform F  of Eq. (10), we get:

where δũ(ν) and η̃(ν) are the Fourier transforms of δu(t) and η(t) at frequency ν , respectively. Using the relation 
δũ = −(A+ i2πνI)−1

η̃ , we get the cross-spectrum of the linear fluctuations:

The real part of the cross-spectrum (also called co-spectrum) represents the simultaneous covariance at fre-
quency ν . Its imaginary part (called quadrature spectrum) is the covariance of time-series lagged by a phase π/2 
at frequency ν . At each frequency ν , the PSDs of the nodes, φj(ν) , are given by the diagonal terms of ψ(ν) and the 
coherence between nodes, γjk(ν) , is given by the normalized cross-spectrum, i.e., γjk(ν) = ψjk(ν)/

√
φj(ν)φk(ν)

34. For uncorrelated noise, the PSD is given as:

where J = (A+ i2πνI)−1.
The Fourier transform is also a useful tool to study the system in the case of time-delays. Consider the non-

linear Hopf network with delayed interactions:

where τjk represents the time-delay of the interaction between nodes j and k . For simplicity, one can assume 
that τjk is given by the Euclidean distance between nodes j and k divided by a constant transmission velocity 
v . Delayed-interactions can be treated in the Fourier space, since the change of variable t ′ = t − τjk leads to 
F
[
zk
(
t − τjk

)]
=

∫ +∞

−∞
zk
(
t − τjk

)
e−2πνtdt = e2πντjk

∫ +∞

−∞
zk
(
t ′
)
e−2πνt′dt′ = e2πντjkF[zk(t)] . Using the linear 

approximation and the Fourier transform, we get:

where  Ŵ is the matrix containing the delays, i.e., Ŵjk = τjk , the elements of C ⊙ ei2πŴ are Cjke
i2πτjk , and B  is the 

block matrix given by:

w h e r e  Bxx = Byy = diag
(
a − gS

)
 a n d  Bxy = −Byx = diag(ω) .  F r o m  E q .   ( 2 5 ) ,  w e  g e t 

δũ = −
(
B+ gC ⊙ ei2πŴ + i2πνI

)−1
η̃ , and thus the cross-spectrum is given by:

with U =
(
B+ gC ⊙ ei2πŴ + i2πνI

)−1 . From the cross-spectrum ψ we can obtain the PSD of each node (i.e., 
diagonal terms), the lagged-covariances (i.e., the inverse Fourier transform of the cross-spectrum), and the 
covariance matrix Cv by integrating the real part of ψ over frequencies:

(18)Cv(τ ) = eτA�δu(t)δu(t)T � = eτACv(0),

(19)F

[
dδu

dt

]
= AF[δu]+ F[η],

(20)−i2πνδũ(ν) = Aδũ(ν)+ η̃(ν),

(21)ψ(ν) = �δũδũ†� = (A+ i2πνI)−1Qn

(
AT − i2πνI

)−1

.

(22)φj(ν) = ψjj(ν) = σ 2
∑

k

∣∣Jjk
∣∣2,

(23)żj(t) =
(
aj + iωj

)
zj(t)−

∣∣zj(t)
∣∣2zj(t)+ g

N∑

k=1

Cjk

[
zk
(
t − τjk

)
− zj(t)

]
+ ηj(t),

(24)F

[
dδu

dt

]
= BF[δu]+ g

(
C ⊙ ei2πνŴ

)
F[δu]+ F[η],

(25)−i2πνδũ(ν) = Bδũ(ν)+ g
(
C ⊙ ei2πνŴ

)
δũ(ν)+ η̃(ν),

(26)B =

[
Bxx Bxy

Byx Byy

]
,

(27)ψ(ν) = �δũδũ†� = UQnU
†,

(28)Cv = 2

∫ ∞

0
Re[ψ(ν)]dν.
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In summary, in the linear approximation, the stationary instantaneous and lagged covariance matrices, the 
cross-spectrum, and the PSDs of the model can be obtained through algebraic operations including the Jacobian 
matrix. This can be done both in the homogeneous and the heterogeneous cases, and also in the presence of 
time delays.

Comparison with stochastic simulations
We compared the predictions of the linear approximation against the statistics obtained using stochastic simu-
lations of the nonlinear model. The coupling matrix was given by the human dMRI connectome from HCP, 
with N = 1000 nodes. The model parameters a and ω were drawn from normal distributions N (a0,�a) and 
N (ω0,�ω) , respectively, with means a0 and ω0 , and standard deviations �a and �ω . We simulated the system 
for T = 3 min after letting it reach the stationary regime and we used n = 100 realizations of the system with 
different random initial conditions.

We used the linear approximation to study the fluctuations around the origin. We first examined the predic-
tions of the linear approximation when the stability of the origin is strong ( Re(�max) < −1 ). In this case, the 
approximation accurately estimates the covariances (Fig. 3A), the auto- and cross-covariances (Fig. 3B,C), and 
the PSDs (Fig. 3D,E). To study the accuracy of the prediction as a function of the origin’s stability, we varied the 
local bifurcation parameter a0 in the homogeneous case (i.e., �a = 0 ). This analysis, that requires to simulate 
the system for different parameters a0 , was done using a subsampled of the network, with N = 250 nodes (see 
Methods). As the origin loses stability, nonlinear terms become non-negligible, it is thus expected that the linear 
approximation fails close to Re(�max) → 0 . We quantified the goodness of the prediction through two measures: 
(i) the R-squared value ( R2 ) of the correlation between covariances obtained from numerical simulations Csim

v  
and those obtained with the linear approximation Clin

v  , and ii) the relative error ( E ) between the matrices using 

Figure 3.   Comparison with numerical simulations. (A) Comparison between variances and covariances 
obtained using numerical simulations and the linear approximation. The black line indicates the identity line. 
(B,C) Autocovariances (B) and lagged covariances (C) for numerical simulations (black trace) and the linear 
approximation (red dotted trace) for three example nodes (B) and pairs of nodes (C). (D) PSD for six example 
nodes and their linear predictions (solid lines). The frequency was normalized by the average intrinsic frequency 
ν0 = ω0/(2π) . (E) Comparison between the peak frequencies (normalized by ν0 ) obtained using numerical 
simulations and the linear approximation. The black line indicates the identity line. Model parameters for panels 
(A–E): a0 = −1 ; �a = 0.3 ; g = 3 ; ω0 = 2π ; �ω = 0.2× 2π ; σ = 0.01 . (F) Accuracy of the prediction for 
different values of Re(�max) . The origin is stable for Re(�max) < 0 . We quantified the goodness of the prediction 
through the R-squared value ( R2 ) of the correlation between covariances obtained from numerical simulations 
and those obtained with the linear approximation. In the analysis presented in panel (F) we used a subsample of 
the network, i.e., N = 250 nodes. Model parameters: �a = 0.3 ; g = 3 ; ω0 = 2π ; �ω = 0.2× 2π ; σ = 0.001.
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the Frobenius norm: E = �Csim
v ��Clin

v �/�Csim
v �  (Fig. 3F). We found that the linear approximation accurately 

estimates the covariances ( R2 > .99 and E < 0.1 ) for Re(�max) < −0.15.
We also evaluated the predictions of the linear approximation in the case of time-delays. The delay-coupled 

Hopf model has been recently studied using numerical simulations35. In this case, the interaction delays between 
nodes can be approximated using the Euclidean distance between brain regions divided by a transmission veloc-
ity v . Here, we used the distances from the HCP data, which yield an average distance between nodes equal to 
79 mm. The intrinsic frequencies were chosen from a normal distribution centered on ω0

2π = ν0 = 1 Hz and with 
standard deviation equal to �ω

2π = 0.2 Hz. For this example, we chose a transmission velocity v such that the aver-
age transmission delay D is of the same order of the average intrinsic period of the network, i.e., D ∼ ν0

−1 . The 
parameters a were drawn from the normal distribution N (a0,�a) , with a0 = −1 and �a = 0.3. As previously, we 
simulated the system for T = 3 min after letting it reach the stationary regime and we used n = 100 realizations of 
the system with different random initial conditions. The linear approximation accurately approximates the PSD 
of the nodes (Fig. 4A). Moreover, integration of the cross-spectrum, obtained using the linear approximation, 
gives an accurate prediction of covariances (Fig. 4B).

Parameter exploration and data fitting
Finally, we studied how well the linear approximation predicts the correlations of resting-state (rs-) fMRI signals. 
For this, we analyzed rs-fMRI signals from the HCP, from 1003 participants. First, we calculated the correlation 
matrix (or functional connectivity, FC) averaged over participants, in the parcellation with N = 1000 nodes. Sec-
ond, we computed the FC for the heterogenous linearized Hopf model constraint by the HCP dMRI connectivity 
matrix. Finally, we compute the correlation between FC matrices obtain from the data and from the linearized 
Hopf model. The model parameters a and ω were drawn from normal distributions N (a0,�a) and N (ω0,�ω) , 
respectively, with �a = 0.2 , ω0 = 2π , and �ω = 0.1 . Note that, here, the local parameters aj and ωj were taken 
from normal distributions and were not fitted/optimized using the data as in previous work20. We evaluated 
the fitting of the empirical FC in the parameter space 

(
a0, g

)
 , for varying mean local bifurcation parameter and 

global coupling (Fig. 5). We found that, for this particular example, the best fit of the FC was obtained when the 
coupling was high enough with respect to the norm of the connectivity matrix (i.e., g

�C� ∼ 1–100). The fitting 
values are similar to what was found with previous numerical simulations with the same parcellation36. In that 
previous work, however, long-range connections were added to the connectivity, which improve the fit. Also, in 
previous studies15,16, a narrow band-pass filter was applied to the fMRI signals, thus making the signals strongly 
oscillatory, which might explain the fit increase close to the onset of self-sustained oscillations.

Discussion
Using a linear approximation, we have derived network statistics of the Hopf whole-brain model. The lineari-
zation allows analytical estimation of the stationary instantaneous and lagged covariance matrices, the cross-
spectrum, and the PSDs of the model. This can be done in the most general form of the model, namely in the 
delay-coupled heterogeneous case. The linearization provides good estimates of these quantities as soon as non-
linear terms do not dominate (as it is the case sufficiently close or beyond the bifurcation). This occurs when the 

Figure 4.   Delay-coupled system. (A) PSD for five example nodes and their linear predictions (solid lines). 
The frequency was normalized by the average intrinsic frequency ν0 = ω0/(2π) . The transmission velocity 
was v = 0.07 m/s. Inset: distribution of time delays (normalized by ν0 ). (B) Comparison between variances and 
covariances obtained using numerical simulations and the linear approximation. The black line indicates the 
identity line. Model parameters: a0 = −1 ; �a = 0.3 ; g = 3 ; ω0 = 2π ; �ω = 0.2× 2π ; σ = 0.0002.
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origin is stable. Exploration of the parameter space, for which the origin destabilizes and dynamics are strongly 
nonlinear, could be treated using approximations more sophisticated than the linear approximation, for example, 
using higher-order phase reduction37.

Synchronization among brain regions has been studied in multiple previous studies using different neuroim-
aging techniques10,18, 38–42. The present model is a canonical model to describe, at a phenomenological level, the 
synchronization of oscillators with phase and amplitude interactions, previously used to study large-scale brain 
dynamics15–18, 20, 22. However, the neuronal/synaptic mechanisms underlying the brain’s large-scale synchroniza-
tion are not fully understood. Noisy oscillations around a fixed point can be understood using more realistic, 
yet still simple, models composed of interconnected excitatory and inhibitory neural populations such as the 
Wilson-Cowan model43 or the stabilized supralinear network44, for which linear fluctuations can be studied in 
light of the biological interpretation of the different parameters. It is worth noting that the linear fluctuations 
around the fixed point are rich in structure, as shown here by their structured covariance and cross-spectrum 
which are determined by local dynamics, network interactions, network stability, time-delays, and noise propa-
gation. Even richer dynamics could emerge in the case of strongly nonlinear dynamics, which might be the 
subject of future research.

There are several applications of the present framework. The estimated network statistics can be used to track 
changes in the brain state, e.g., in the case of low-level states of consciousness17–21, anesthesia20,45, sleep16, etc., or 
to evaluate the effect of lesions in the connectome46–49.

We here tested the model predictions using rs-fMRI data, but the model can be used to approximate MEG data 
in different frequency bands28,35. The slow time scale of fMRI signals allows to neglect the effect of conduction 
delays between the different brain regions, which are orders of magnitude faster—tens of milliseconds50—than 
the periods of the model oscillators, and treat the interactions as instantaneous. In the case of MEG data, however, 
delayed interactions can have an important effect for sufficiently fast frequency bands. Thus, the linear approxi-
mation of delay-coupled Hopf whole-brain model derived here can represent a valuable tool to study the PSDs 
and cross-spectrum of MEG, which are well-established methods for FC analysis in the frequency domain51–54.

Furthermore, recent studies suggest that dynamics out of equilibrium are relevant to describe the whole-
brain55–57. The present model can be used to track non-stationarities by assuming that changes in parameters are 
sufficiently slow relative to the time it takes for the system to reach equilibrium58. In this way, using the linear 
model to fit the stationary statistics of the system measured in short time windows, it is possible to infer the 
change in network parameters over time.

Finally, since the goal of the present study was to derive the linear statistics of the model, rather than fitting 
functional data, we used models for which the local parameters were not estimated from the data, opposite 
to previous studies15,20. Future research could combine the present linear approximation with algorithms to 
optimize the parameters of the model, such as the N local bifurcation parameters. This can be achieved using 
genetic algorithms applied to infer optimal local parameters59, allowing to compare the learned parameters in 
different brain states, disorders, or across aging, for example. The use of the linear approximation would allow 
to estimate the parameters for large N.

In all the above applications, one would need to systematically verify that the origin of the model is a stable 
fixed point and that the real part of the leading eigenvalue does not approach zero.

Figure 5.   FC prediction in parameter space. Correlation between FC matrices obtain from the data and the 
linearized Hopf model, for varying mean local bifurcation parameter and global coupling. Grey: the origin is 
unstable, i.e., Re(�max) > 0 . Between the horizontal line and the grey zone, the nodes can have aj > 0 while the 
origin remains stable. Note the logarithmic scale of the x-axis.
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Methods
Neuroimaging ethics
The Washington University–University of Minnesota (WU-Minn HCP) Consortium obtained full written 
informed consent from all participants to study procedures and data sharing outlined by HCP, and research 
procedures and ethical guidelines were followed in accordance with Washington University institutional review 
board approval.

Functional MRI data
In this study we analyzed publicly available rs-fMRI data from the Human Connectome Project (HCP), from 1003 
participants. The participants were scanned on a 3 T connectome-Skyra scanner (Siemens). The rs-fMRI data 
was acquired for approximately 15 min, with eyes open and relaxed fixation on a projected bright cross-hair on 
a dark background. The HCP website (https://​www.​human​conne​ctome.​org/) provides the details of participants, 
the acquisition protocol and preprocessing of the functional data.

Parcellation
Schaefer and colleagues created a publicly available population atlas of cerebral cortical parcellation based on 
estimation from a large data set (n = 1489)60. They provide parcellations of regions of interest (ROIs) available 
in surface spaces, as well as MNI152 volumetric space. We used the Schaefer parcellation with 1000 areas and 
estimated the Euclidean distances from the MNI152 volumetric space60 and extracted the timeseries from HCP 
using the surface space version. Finally, for the analysis presented in Fig. 3F, we subsampled the connectivity 
by choosing only 250 ROIs. This allowed us to simulate the stochastic nonlinear dynamical system for a large 
amount of repetitions, initial conditions, and varying parameters.

Structural connectivity using dMRI
Structural connectivity was estimated from diffusion spectrum and T2-weighted imaging data from 32 partici-
pants from the HCP database, scanned over 89 min. Acquisition parameters are described in detail in the HCP 
website61. The freely available Lead-DBS software package (http://​www.​lead-​dbs.​org/) provided the preprocessing 
which is described in detail in Horn and colleagues62. Standardized methods in Lead-DBS were used to produce 
the structural connectomes for the Schaefer parcellation scheme60. The connectivity weight Cij = Cji was given by 
the number of fibers connecting two brain regions. To have values between 0 and 1, we normalized the weights 
by dividing them by the largest value, i.e., max(C).

Statistics and reproducibility
The goodness of the linear prediction of fMRI FC was given by the Pearson correlation between the vectorized 
FC averaged over all subjects and the model FC for all combinations of parameters 

(
a0, g

)
 (Fig. 5).

Stochastic numerical simulations were performed using Euler’s method, with a simulation step size equal to 
0.001 s and 0.005 s in the absence and presence of delays, respectively. The system was simulated for T = 3 min 
after letting it reach the stationary regime after 20 s; the stochastic simulations were repeated n times with differ-
ent random initial conditions ( n = 100). For the subsampled system of 250 nodes (Fig. 3F) we used: T = 10 min 
and n = 200. The PSDs of simulated time-series were estimated using the fast Fourier transform.

MATLAB (R2021a) software was used to perform all analyses and to simulated the model. Numerical simula-
tions were performed in a 50-nodes computer cluster (Intel® Xeon® E5-2684 at 2.1 Ghz, 256 GB RAM, 1 TB disk).

Materials availability
We used a publicly available dataset of dMRI and fMRI data from the Human Connectome Project (HCP). Struc-
tural connectivity was estimated from diffusion spectrum and T2-weighted imaging data from 32 participants 
from the HCP database. fMRI data was acquired from 1003 participants. The HCP dataset is available at https://​
www.​human​conne​ctome.​org/​study/​hcp-​young-​adult.

Code availability
The codes to perform the numerical simulations and to estimate the network statistics using the linear approxi-
mation are available at https://​github.​com/​adria​nponce/​Linear-​Hopf-​model. In this repository, we also included 
the structural and functional connectivity matrices used here. The provided codes and matrices are sufficient 
to replicate the present study.
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