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Abstract This research presents a constitutive

model for the macro scale simulation of masonry

structures. The model is containing an orthotropic

plane stress assumption, which appears as an appro-

priate assumption for the in-plane analysis of masonry

walls. The material model is based upon damage

mechanics, split into tensile and compression parts.

The novelty herewith is the consistent mapping of the

damage evolution laws. Aim of this research is to

develop a simple but accurate constitutive law,

suitable to simulate large scale structures and build-

ings with reasonable computational costs. The devel-

opments are presented and compared with available

literature examples from laboratory testings.

Keywords Macro scale modeling � Continuum

damage mechanics � Orthotropic damage model �
Tensor mapping � Shear behaviour

1 Introduction

Ever since the use of masonry in buildings and

monuments, it has been a challenging task to accu-

rately predict the behaviour and durability of the

construction material. With the introduction of finite

element methods, numerical methods have eased the

assessment and simulation significantly [1]. Simulta-

neously, different scales of modeling have been raised,

aiming to analyze different details of the structure.

Detailed micro models, which are containing all

constituents separately have been developed to show

the heterogeneous composite behaviour. Macro mod-

els on the other end shall help estimating the structural

behaviour of the material.

Macro models overlook the combined kinematics

of bricks, mortar and their interface to aim a compu-

tationally efficient modelling of the large scale

structures. The constitutive behaviour might be

obtained from reference volume elements (RVE),

where the properties can be gathered experimentally

e.g. [2, 3], from national codes as the EC 6 [4], or

numerically [5–10]. The macro-scale finite element

simulations of masonry structures may be idealized as

solid, shell, beam, truss or spring elements depending
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on the local dimensional fidelity requirements. Even

though solid and shell elements can better represent

the system geometry of masonry structures, dimen-

sionally reduced 1D and spring elements are exten-

sively used for seismic and blast simulations because

of their optimized computational costs ([11–15] for

some seismic masonry examples). Continuum-based

masonry macro models are typically accurate in the

structural simulation (examples for in-plane loading

include references [8, 16] and out-of-plane load-

ing [17–20]), however, estimating non-homogeneous

material properties as unstructured bonds and detailed

crack predictions is, up-to-date, complex. Apart from

analytical and continuum based approaches, mesh free

or particle based methods find increasing application

in masonry classification as well (e.g. discrete element

modeling [21], or latice discrete particle model [22]),

which facilitates the latter problem of difficulties in

crack propagation simulation, however, the computa-

tional costs can be tremendous.

This research aims to facilitate simulations capable

to express complex geometries and structures with

justifiable computational costs for full scale buildings.

Auxiliary elements and beams typically have increas-

ingly challenges when modelling complex structures.

Whereas, solid and particle based modeling allows

almost infinite possibilities in the geometrical speci-

fication of constructions, typically the computational

efforts prevent the application in structural analyses

processes. Thusly, the larger scope shall be on the

description of surface-based shell structures, which

allow the expression of many geometrical shapes,

including reasonable computation costs.

Continuum based damage models define a common

way to describe the structural properties of masonry

buildings. Initially, one damage parameter was

applied to describe the softening of the construction

material [23]. Where later, those models have been

split up into compression and tension damages to

allow deeper insights in highly loading dependent

materials [24–26]. Those concepts have been

enhanced further with damage parameters per direc-

tion [27]. Other concepts do not make the damage split

within the stress state but the direction [28] with inter-

dependent damage parameters, which is a powerful

approach but less appropriate for the apparent

masonry properties. Following, within this publication

the focus shall be kept on two parameter dþ/d�-

damage models for simplicity with less parameters

and fewer internal dependencies.

The mentioned material models are adequate in the

analysis of isotropic materials with sensible triggers

for the softening zones. Thusly, in masonry, its

applications are so-far mostly for the simulation

within continuum-based micro models of bricks

(without holes) and mortar. However, as the structural

properties of masonry show significant correlating

orthotropic behaviour it is insufficient to fulfill the

apparent direction-dependent estates. Rather than

updating the yield surface with anisotropic surfaces

as the Hill-type criterion [29–31] or Tsai–Wu [32] it is

preferred to base upon a mapping from the real

anisotropic space to an ideal mapped isotropic stress

state. This concept is generally simpler with the

possibility to keep former developments and mostly

leaner computational costs. The concept of the

implicit orthotropic yield criterion was initiated by

Betten [33] and later advanced by Oller et al. [34, 35].

Pelà et al. [16, 36] promoted those models to the

simulation of masonry structures. The most significant

improvement from the macro model of Lourenço et al.

[31] has been achieved by the split in compressive and

tensile damages, which allowed to model an exceed-

ingly vast amount of problems.

Within this research the focus is on damage-based

models, while plastic zones would be expressed by the

damage parameter. This is a fast and generally reliable

approach once a one directional loading is applied. For

seismic and changing loading cases, plasticity effects

should be considered separately for a better accuracy

(see e.g. [23, 27, 37]).

Subsequently, a model which merges the latest

improvements of the damage evolution law from

Petracca et al. [14, 38] and Pelà et al. [16] into a novel

material model is presented. The presented research

proposes a consistent mapping of the corresponding

damage evolution laws with more sensitive triggers in

the softening within an appropriate orthotropic

behaviour.

This publication is structured as following:

• Section 2 presents the applied continuum based

dþ/d�-damage material model.

• Section 3 shows the damage model with the

orthotropic to a mapped isotropic state.

• Section 4 gives some explanatory examples with

the proposed constitutive model.
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• Section 5 summarizes the applied approaches and

gives an outlook to future studies.

2 Continuum tension/compression damage model

Within this section the continuum based dþ/d�-

damage model from [10, 17, 38] shall be discussed.

The aim of this research is the modelling of thin walled

masonry. Therefore, the following formulations are

expressed in a plane-stress state.

2.1 Constitutive relations

The effective stresses �r (with the notation �� used to

mark the effective state) are obtained from the elastic

constitutive tensor Celastic and the actual strains �:

�r ¼ Celastic : � ð2:1Þ

Similarly to [24–26], the effective stresses are split

into the positive �rþ-tensile and negative �r�-compres-

sive constituents, while implying:

�r ¼ �rþ þ �r� ð2:2Þ

The two parts can be computed as following:

�rþ ¼
X3

i¼1

h�rii � pi � pi �r� ¼ �r� �rþ ð2:3Þ

where ri is the i-th principal stress, with the corre-

sponding unitary eigenvector pi. The Macaulay

brackets h�i selects the positive values, while being

zero for negative ri.

2.2 Equivalent stress threshold

The stress thresholds rþ and r� are the maximum

uniaxial equivalent stresses which can be carried

within a system. The applied threshold yield surface

shall be based upon a Drucker–Prager criterion,

enhanced by Lubliner et al. [23] and thoroughly

defined by Petracca et al. [38]. The two equivalent

stress surfaces in tension s� and compression sþ, are

graphically displayed in Fig. 1 and discussed in the

following:

s�ð�rÞ ¼ Hð��rminÞ
1

1 � a
a�I1 þ

ffiffiffiffiffiffiffi
3 �J2

p
þ k1bh�rmaxi

� �� �

ð2:4Þ

sþð�rÞ ¼ Hð�rmaxÞ
1

1 � a
a�I1 þ

ffiffiffiffiffiffiffi
3 �J2

p
þ bh�rmaxi

� � ft

fcp

� �

ð2:5Þ

with the scalars a and b being used as subsequently:

a ¼ kb � 1

2kb � 1
b ¼ fcp

ft
ð1 � aÞ � ð1 þ aÞ

ð2:6Þ

Furthermore, �I1 is the first invariant of the effective

stress tensor and �J2 the second invariant of the

deviatoric stress tensor. �rmax is used as the maximal

principal effective stress, respectively �rmin being the

smallest principal effective stress. The shear reduction

parameter k1 is introduced to control the compressive

strength in the shear state, which properties are shown

Fig. 1. Petracca [14] and Petracca et al. [17] provide

comprehensive studies on the structural effect of this

parameter. Finally, the factor kb is defined by the ratio

from the biaxial strength of the applied material (see

Fig. 1).

Fig. 1 Compression and tension threshold surfaces (adapted

from [14, 38])
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As the thresholds are defined for any stress state, in

some cases it may happen that the damage surface

advances for tension in uniaxial compression or in

reverse. To avoid this, the Heavyside function HðxÞ ¼

0 for x� 0

1 for x[ 0

�
is used to ensure following criteria:

• tensile damage only evolves if at least one

principal stress is positive,

• compressive damage only evolves if at least one

principal stress is negative.

The effect of the applied Heavyside is deciphered in

Fig. 1 by the active and inactive threshold surfaces.

2.3 Damage evolution

The previously described equivalent stress thresholds

shall be used as parameters for the irreversible damage

evolution of the material. It is expected that the tensile

softening is defined by the strength and the fracture

energy with a non-linear softening, whereas the

compression shows a more complex behaviour with

multiple inputs for the analysis (see Fig. 2 for possible

damaging zones).

The tensile damage growth is obtained by the

subsequent equation:

dþðrþÞ ¼ 1 � rþ0
rþ

exp 2Hdis
rþ0 � rþ

rþ0

� 	� �
: ð2:7Þ

where the thresholds are applied as rþ ¼
max½rþ0 ;maxðsþÞ� with rþ0 ¼ ft0. It shall be noted that

always the maximal sþ should be considered, to avoid

damage relaxation. The discrete softening parameter

Hdis is defined as following:

Hdis ¼
lch

lmat � lch
with lmat ¼

2EGt

f 2
t0

: ð2:8Þ

The characteristic length lch is used to regularize the

fracture zone and is dependent on the geometry of the

finite element. Multiple approaches exist to approxi-

mate the characteristic length [10, 39–41], where it is

possible to accurately calibrate the fracture dissipation

length within structured quadrilaterals, more complex

non-aligned geometries and high order form functions

will typically produce discrepancies.

As proposed by Petracca et al. [17, 38], the

compression damage progression is analyzed on an

ad hoc basis under a segmented Bézier curve, which is

controlled by the elastic limit strength fc0, the yield

strength fcp, its corresponding yield strain �cp and the

residual strength fcr. The damage evolution is defined

by the hardening variable RðnÞ with its strain-like

counterpart n ¼ r�

E (follow ‘‘Appendix 1’’ for a

detailed extraction of the Bézier curve):

d�ðr�Þ ¼ 1 � RðnÞ
r�

: ð2:9Þ

2.4 Total stresses

Including the convoluted damage parameters dþ/d�

the total stresses are defined by:

r ¼ ð1 � dþÞ�rþ þ ð1 � d�Þ�r�: ð2:10Þ

2.5 Tangent constitutive tensor

With the projection operator P:

P ¼
X3

i¼1

h�rii � pi � pi � pi � pi; ð2:11Þ

the fourth order tangent constitutive tensor Ctangent can

be computed by:

Ctangent ¼ ð1 � dþÞP þ ð1 � d�ÞðI � PÞ: ð2:12Þ

This tensor can directly be used within most finite

element implementations. Checkout [42] for alterna-

tive approaches for a more consistent implementation

of the constitutive tensor.

Fig. 2 Compression and tension fracture zones
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3 Orthotropic damage model

In the following the recently described isotropic

damage model shall be enhanced to enable orthotropic

behaviours. Rather than updating the yield surface

with anistropic surfaces as the Hill type criterion

[29–31] or Tsai–Wu [32] it is preferred to base upon a

mapping from the real anisotropic space to an ideal

mapped isotropic stress state [33–35], as this is the

simpler and thusly computationally more efficient

approach. Furthermore, it allows the application of

advanced threshold surfaces for isotropic materials, as

e.g. the one discussed in Sect. 2.

3.1 Transformation between actual orthotropic

and mapped isotropic space

The concept of the implicit orthotropic yield criterion was

initiated by Betten [33] and lateron advanced by Oller et al.

[34, 35]. Pelà et al. [16, 36] brought those models to the

application in simulation of masonry structures, with

enhancing the previous models with the split in compres-

sive and tensile parts. The models are based upon a

transformation between the actual anisotropic, or in this

case orthotropic stress state to an arbitrary mapped

isotropic space (notation ð�Þ�) and its corresponding

strain-based reverse mapping, as shown in Fig. 3.

The mapping from the actual stress state to the

isotropic space is defined by the transformation tensor

Ar is defined as following:

�r� ¼ Ar : �r; ð3:1Þ

considering the split into tensile rþ and compressive

r� the mapping relations read:

�rþ� ¼ Arþ : �rþ and �r�� ¼ Ar� : �r�:

ð3:2Þ

The transformation tensors Arþ and Ar� map from the

actual orthotropic space and its actual limit strength to

the mapped isotropic space. As the mapped isotropic

space is an independently chosen space, fþ� and f��

can be selected arbitrary. However, Pelà L et al. [36]

suggests to use f�� ¼ f�11
1 to simplify the transforma-

tion, which are defined by following matrices accord-

ing to Voigt notation (see [34] for a detailed derivation

of the constituents):

Arþ ¼

fþ�

ft0;1
0 0

0
fþ�

ft0;2
0

0 0
fþ�
t;12

ft;12

0

BBBBBBBB@

1

CCCCCCCCA

; ð3:3Þ

Ar� ¼

f��

fcp;1
0 0

0
f��

fcp;2
0

0 0
f��
12

fc;12

0

BBBBBBB@

1

CCCCCCCA

: ð3:4Þ

Additionally to f ��, this model also requires f��
12 ,

which shall impress the mapped space shear force.

Accordingly, the last entries of the mapping matrices

shall devote the relation between the two shear

strength.2 Considering Eq. 2.2, the stress split is still

valid in the mapped isotropic space:

�r� ¼ �rþ� � �r��: ð3:5Þ

Proceeding, the uniaxial stresses can be computed

with the mapped isotropic effective stresses by

Fig. 3 Mapping between actual anisotropic and isotropic space

(adapted from [34])

1 Within this section f�11 is the generic form for ft0;1 or fcp;1.
2 Pelà et al. [36] considers a Drucker–Prager damage surface,

which itself modifies the threshold r�0 with the mapped strength:

r��
0 ¼

ffiffi
3

p

3
ðkb �

ffiffiffi
2

p
Þf��. The Lubliner damage surface is reduc-

ing the uniaxial stress with the contribution of kb (see Sect. 2).

This makes the mapping simpler and more consistent.
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Eqs. 2.4 and 2.5 and with those the damage parameters

by Eqs. 2.7 and 2.9. With the updated damage

parameters the total stresses per loading are defined

as following:

rþ� ¼ ð1 � dþÞ�rþ� and r�� ¼ ð1 � d�Þ�r��:

ð3:6Þ

Those updated stresses are transformed back into the

anisotropic space, where they yield with the appearing

stress strain relation.

rþ ¼ Arþ�1
: rþ� and r� ¼ Ar��1 : r��:

ð3:7Þ

In the actual anistropic stress space, the stress split

in total stresses is equivalent to the stress split with

effective stresses, as per Eq. 2.2. That means that the

scalars dþ and d� do not need to be mapped back, but

are consistently valid in the actual space. Accordingly,

the computation of the constitutive tensor as per

Eq. 2.12 yields similarly.

3.2 Consistent mapping of evolution law damage

parameters

The major challenge of the proposed constitutive

material model is the consistent mapping of all

damage evolution law parameters, which shall be

presented in the following. The transformation

towards a mapped isotropic stress state dependent on

the chosen mapping limit strength f�� 1. If the

material length per direction and in the mapped space

are similar, (see Eq. 2.8 for the computation of lmat in

the tensile regime and Eq. 6.14 for the material length

in the compressive regime) as:

l��
mat ¼ l�;1

mat ¼ l�;2
mat ð3:8Þ

!
2E�G��

f

f��ð Þ2
¼

2E1G�
f ;1

f�11


 �2
¼

2E2G�
f ;2

f�22


 �2
; ð3:9Þ

then, if no further mapping is introduced, this condi-

tion results that the fracture energies3 in direction 1

and direction 2 would be dependent upon following

restriction:

G�
f ;2 ¼

f�22=f�11


 �2

E2=E1

G�
f ;1: ð3:10Þ

To avoid this limitation, additional parameters will

need a direction dependent mapping, which is depen-

dent on the angle to the main stress h.4 Within

following association the material lengthens can

therefore be interpolated consistently:5

l��
matðhÞ ¼ l�mat;1 cos2ðhÞ þ l�mat;2 sin2ðhÞ: ð3:12Þ

Similarly to f��, E� can be chosen arbitrarily.

However, it again simplifies the transformation oper-

ations significantly, if it yields E� ¼ E1, as otherwise

this would imply a more involved update of G�
f ,

according to Eq. 3.8. Therefore, the mapped G�
f can be

computed by Pelà et al. [36]:

G��
f ¼ f��

2E�l��
matðhÞ

if: E� ¼ E1 and f�� ¼ f�11:

ð3:13Þ

The tensile post crack behaviour is dependent upon E,

Gt and ft0, which are consistently mapped by Eq. 3.13.

However, the applied compressive softening is requir-

ing additional parameters as fc0, fcr and �cp. The

stresses are given by a direct interpolation of the

mapped stresses:

f �c0 ¼ f��

fcp;1
fc0;1 cos2ðhÞ þ f��

fcp;2
fc0;2 sin2ðhÞ; ð3:14Þ

f �cr ¼
f��

fcp;1
fcr;1 cos2ðhÞ þ f��

fcp;2
fcr;2 sin2ðhÞ: ð3:15Þ

The strain �cp (see Sect. 2 and ‘‘Appendix 1’’) is

mapped according to its corresponding undamaged

strain �i (see Fig. 13) at the limit strength, as per:

�i;1 ¼ fcp;1

E1

; ð3:16Þ

following to:

3 Within this scope G�
f represents the generic fracture energy,

which is either Gc or Gt.

4 The angle to the main stress is being calculated as:

h ¼

1

2
arctanð 2s12

r11r22

Þ for r11 [r22

1

2
arctanð 2s12

r11r22

Þ þ p
2

for r11 � r22

8
>><

>>:
ð3:11Þ

5 Considering the trigonometric statement: 1 ¼ cos2 þ sin2.

151 Page 6 of 18 Materials and Structures (2023) 56:151



��cp ¼ ��i
�i;2

�cp;1 cos2ðhÞ þ ��i
�i;2

�cp;2 sin2ðhÞ; ð3:17Þ

¼
f��

E�

fcp;1

E1

�cp;1 cos2ðhÞ þ
f��

E�

fcp;2

E2

�cp;2 sin2ðhÞ: ð3:18Þ

In the scenario that f�� ¼ f�11 and E� ¼ E1, follows

that Eq. 3.18 can be simplified to:

��cp ¼ �cp;1 cos2ðhÞ þ
f��

E�

fcp;2

E2

�cp;2 sin2ðhÞ: ð3:19Þ

The Bézier controllers are mapped subsequently9:

c�i ¼ ci cos2ðhÞ þ ci sin2ðhÞ for i ¼ 1; 2; 3;

ð3:20Þ

equally as the shear reduction parameter k1 and the

factor kb defined by the ratio of biaxial strength9:

k�1 ¼ k1
1 cos2ðhÞ þ k2

1 sin2ðhÞ; ð3:21Þ

k�b ¼ k1
b cos2ðhÞ þ k2

b sin2ðhÞ: ð3:22Þ

4 Numerical example

This section demonstrates the applicability of the

proposed model using two numerical examples. First,

this model is used to represent the directional masonry

material features from [3]. Next, the shear wall tests

from [43] are examined with varying pre-compression

and different geometries (without and with hole).

Within this publication the parameter convention in

the directions parallel and normal to bed joints is given

in Fig. 4. E1 corresponds to the direction e1 and E2 to

the direction e2. Same accounts for the remaining

parameters. e3 refers to the out of plane direction,

which is not discussed within this scope. See also [3],

which refers to the same parameter definition.

4.1 Uniaxial numerical tests of [3]-masonry

In this study, the uniaxial behaviours within both

directions shall be examined with the apparent mate-

rial model, including a perspective to the damage

growth. This is conducted to prove that the orthotropic

mapping is working properly, with a focus on the

variated strengths within compression and tension.

Within Table 1 are summarized the material proper-

ties including the additional Bézier curve parameters

(see ‘‘Appendix 1’’).

The obtained results for compression and tension

are presented within Fig. 5. It demonstrates that the

damage evolution in both directions can be expressed

appropriately. Therefore, all control parameters are

mapped consistently between the apparent spaces. It

shall be noted that the graphs act independently as the

additional mapping is employed. If this were not

provided, the relaxation would always conform

dependently in the two directions. The additionally

Fig. 4 Parameter definition within this scope

Table 1 Masonry material properties from experimental

tests [3]

E (MPa) m (–) G (MPa) Gt (N/mm) ft0 (MPa)

Elastic and tension properties

5000 0.15 1340 1:9 	 10�3 0.091

3100 0.1 960 4:5 	 10�3 0.272

Gc (N/mm) fc0 (MPa) fcp (MPa) �r (–) fcr (MPa)

Compression properties

1.2 5.2 7.38 0.0018 1.3

1.2 2.9 4.05 0.002 0.0

c1

(–)

c2

(–)

c3

(–)

Bézier curve parameters

0.65 0.8 1.2

0.65 0.5 1.5
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presented damage growth shall communicate the

reader an impression of how the material model is

operating.

Figure 5b is providing the respective selection of

the tensile part.

4.2 Shear wall

This study considers a masonry wall which is first

subjected to a vertical load (I) at different magnitudes.

In a second step it is fixed vertically at this deforma-

tion (IIa) and sheared horizontally (IIb). Geometri-

cally this problem appears within two different

variations: once as a whole wall (see Fig. 6a) and

once with a window opening (see Fi. 6b). Both walls

have a dimension of 1 	 0:99 m.

This example [43, 44] is well known in literature,

among others shall be mentioned:

• Lourenço [45]: micro and macro models

• Lourenço et al. [5]: meta models

• G. Milani [46]: homogenization macro model

• Pelà et al. [16, 36]: orthotropic mapping damage

model

• Petracca et al. [10]: FE2 model

• Fu et al. [47]: orthotropic plastic damage model

• Abdulla et al. [19]: simplified micro model

• Bilko et al. [48]: orthotropic elastic plastic model

• Pulatsu et al. [49]: discrete element model

• D’Altri et al. [50]: two step adaptive limit and

pushover analysis

Due to the high amount of references, the example

delivers great possibilities for comparisons and thus, it

appears as a good benchmark. Most of the in-plane

masonry phenomena are apparent: significant ortho-

tropic material, shear failure and biaxial stiffness

effects. This helps to justify if the model is suitable to

express the major in-plane masonry characteristics.

It shall be noted that the apparent literature,

typically focuses on either of the geometrical options:

full wall or wall with window. This shows that

covering this example entirely remains challenging.

The material properties of the tests are summarized

in Table 2. Some of the macro scale parameters are

Fig. 5 Stress–strain relation of compression and tension tests in

two directions and according damage parameter growth for the

apparent properties of [3]. The subscript 1/2 is thereby used to

denote the according direction, which is either 0
 or 90
 to the

first material direction

Fig. 6 Vermeltfoort and Raijmakers [43] shear walls. The

experimental program is split into 2 phases: the pre-compression

(I) then holding this deflection (IIa) and shearing (IIb)
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known directly from test data tð�Þ by Vermeltfoort and

Raijmakers [43] or analyzed by micro scale analyses

[45]. While others are acquired through speculation
sð�Þ and reverse engineering. These parameters are

either obtained from literary works or extrapolated

with the apparent demands. It should be noted that

certain speculated values change across several pub-

lications since the employed models make modest

adjustments and apply parameters in various manners.

Unfortunately, not sufficient experimental data is

available to mechanically justify either of the selected

parameters. Additionally, various parameter sets could

be providing the correct outcome for the apparent

model. As a further challenge shall be noted that the

material parameters seem to vary significantly

between the experimental tests. However, within this

numerical study only one parameter set shall be

considered. Although there may be larger disparities

compared to some of the results, this should be a step

in the direction of homogenization, allowing predic-

tions rather than just result fitting by calibration.

4.2.1 Wall with varying pre-pressure

The initial example is considering the wall without

window, as per Fig. 6a. The experiments are discussed

with 2 different lateral pre-loadings: 0.3 MPa and

1.21 MPa. As per Vermeltfoort et al. [43] the pre-

loading with 0.3 MPa appears in 2 consecutive

experimental trials.

The stress–strain graphs of this example are

presented within Fig. 7. The strengthens of the

0.3 MPa pre-loading examples are matching well.

The experimental test at 1.21 MPa indicates material

characteristics that are noticeably different since the

first elastic zone seems stiffer than in the previous test.

That is quite usual with this heterogeneous material. In

both test setups, the softening of the specimen seems

Table 2 Masonry material

properties from

experimental tests [43] or

evaluated and updated

within [16, 31, 47]

E (MPa) m (–) G (MPa) ft0

(MPa)

Gt (N/mm)

Elastic and tension properties
t7520 s;½24�0.09

t1460 t0.30 t5 	 10�3

t3960 s;½37�0.05 s;½37�0.25 s;½37�4:8 	 10�3

fc0

(MPa)

fcp

(MPa)

�r (–) fcr

(MPa)

Gc[N/

mm]

Compression properties
s6.8 t10 s0.002 s2.3 s2.0
s5.2 t8.8 s0.002 s3.0 s1.96

c1 (–) c2 (–) c3 (–) kb (–) k1 (–) ft;12

ft;21
(–)

fc;12

fc;21
(–)

Bézier curve parameters, biaxial and shear parameters
s0.65 s0.5 s1.5 s1.2 s0.16 s1 s1
s0.65 s0.5 s1.5 s1.2 s0.16 s1 s1

Fig. 7 Shear wall from [43]. Computed with 50 	 50 elements
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to be faster and more significant in the numerical tests

than in the experimental tests. The results of the

experimental study show that the overall material

behaviour can be estimated correctly. With an

increased pre-loading the maximum resistance

increases. While overestimating the ultimate strength

for the bigger pre-compression, the overall reaction of

the numerical model appears to be accurate.

4.2.2 Wall with hole

The second example uses the identical wall sample as

the first, with the exception of a window opening. It

will examine if this model can handle diverse forms.

The problem is evaluated with the same material

parameters.

4.2.3 Quantitative analysis of stress–strain behaviour

Figure 8 displays the findings and compares them to

several existing references. The graph shows good

agreement between both test results. The first soften-

ing is adequately addressed by the suggested model,

however the first major softening is exaggerated.

The comparison to some literature in Fig. 8 show

that most results contain an almost continuous soften-

ing after reaching the peak. The presented solution is

showing a jump in the softening. It is believed that this

is in relation to the shear cracking which is not covered

in such detail in the other references. This damaging

would allow a movement, which otherwise would not

be possible. However, this is based on speculation and

it is suggested to conduct further research on this topic.

Furthermore, it shall be mentioned that with certain

calibrations this jump can be smeared.

It should be emphasised that while each model from

the literature that has been cited has some merit.

However, typically distinct zones are highlighted.

Some results match mostly the initial limit state.

Others focus more on the accurate representation of

the softening.

4.2.4 Qualitative analysis of results

Within Fig. 9 are shown the displacements in refer-

ence to the aimed current top displacements. Further-

more are provided the tensile damage and compressive

damage contour plots and the resulting maximum

principal strains of the digital model. Within Fig. 11

are presented the corresponding Cauchy stresses, the

principal stresses in their direction and the max and

min principal stresses in the system. The colours of the

principal stresses are mostly kept similar, however,

peaks are highlighted slightly, which can be compared

to the neighboring figures.

The evolving damage results from Fig. 9 denote

crack initiations at the corners of the window, that are

opening towards the supports of the walls amid

increasing displacements. At the top left and basal

right part of the specimen is shown a damage, which is

not displayed within the referenced crack pattern. This

is showing a separation of the specimen from the

concrete top and bottom bars, which can also be

observed within the experimental results. Further-

more, in the damage patterns can be seen that in both,

the experimental tests and the numerical model, a

crack happens in the left upper third and right bottom

third. This proves quite effectively that a certain trust

can be given to the macroscopic models and that not

only micro models would display this local phenom-

ena. Finally, the cracks which initiate at the corners of

the windows do not go towards the corners of the

specimen, but towards a close point at top or bottom.

The reason of this is that most of the forces, which are

supplied from top to bottom go through the parts left

and right of the window. Accordingly those areas are

largely under compression and thusly do not fail by

tensile forces.

Fig. 8 Shear wall from [43] with window opening. Computed

with 50 	 50 elements
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The tensile damage indicates good agreement with

the reference solutions, see Fig. 10, which displays the

experimental test results within the solutions from the

numerical model at a displacement of 20 mm. It shows

thin crack lines where only single cracks appear (top

third left and bottom third right). At the zones of

multiple crack lines, the model shows damage zones

instead of thin cracks (corners of the window towards

the boundaries of the specimen).

Lourénço et al. [31] and Pelà et al. [16] are

reporting a compressive damage in the upper left and

lower right corner of the specimen. This is not

observed in the current model. The apparent com-

pressive stresses in those corners are higher than in the

Fig. 9 Observed displacements, damage, and strains at [43]-wall with window tests. Computed with 50 	 50 elements
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remaining areas, but below the damage thresholds (see

Fig. 11 right column). This change is associated to

different assumptions of the compressive damage

criteria in previous works compared to the current

research. It shall be noted that the original reports

[43, 44] do not specifically report this damage.

The compression damage zones are situated in

regions where the tension damages are likewise

apparent (see Fig. 9). This is a result of the shear

reduction controlled by kb (see also [38]) and is

therefore a damage which occurs due to shear in those

areas. It demonstrates that the shear damage generated

by this model functions as intended. The additional

reduction of strength and therefore the allowance of a

deflection due to shear may be one explanation to the

lower compressive stresses in the corners on the

opposite side of the tensile damages.

Within the Cauchy stresses and the principal stress

plots can be observed that the numerical model

develops a stress distribution, where most of the

energy distributes around the window. The areas of the

cracks do not carry any load and split the masonry wall

into some structural pieces. This is a significant result

of such a continuum damage analysis, as the force

rearrangement might give suggestions about remain-

ing resistances of a damaged structure. Additionally, it

may indicate that other parts of the undamaged zones

or supports might get higher stresses, which could lead

towards a failure of connected parts or supports.

The measured displacements show that the antic-

ipated separation into two main pieces, with some

additional local failures is apparent. After a final crack

opening, those pieces would mostly have a rigid body

movement with a remaining sliding resistance.

4.2.5 Refinement and robustness of the simulation

The mesh element size and the number of elements

denote important parameters in the accurateness and

sometimes robustness of the simulations. Accord-

ingly, a qualitative mesh refinement study is presented

within Fig. 12. With increased refinement the appear-

ing crack zones shrink, which is towards the expec-

tations as the cracks are actually not zones but thin

lines. Additionally, certain cracks cannot be displayed

in the coarse mesh as e.g. in the 10 	 10 mesh the

middle cracks on both edges are not apparent.

It shows that the damage plots vary by an increased

refinement. However, a reasonable fine mesh appears

to be on the safe side. It shall be noted that refinement

and regularization plays a significant role towards a

robust and reliable solution. As this is a separate topic,

which is valid for all types of constitutive associations,

it is not be discussed further within the scope of this

research. It is suggested for future research to quan-

titatively discuss the mesh refinement and different

mesh types.

Within the discussion of this example a mesh of

50 	 50 elements has been chosen. This is selected as

some other literature appear to contain a similar

refinement. Furthermore, the result plots are visually

appealing, while showing all required details. How-

ever, it shall be noted that other refinement levels are

equally valid, while containing small quantitative

changes in the force–displacement graphs.

5 Conclusion and outlook

The proposed constitutive material law is being

advanced from the constituents of the orthotropic

mapping model introduced in [16, 36] and the damage

model from [14, 38], which itself is based on the

Lubliner threshold surface [23]. The major contribu-

tion of this work lays in the development of a

consistent mapping of the parameters of the respective

damage evolution laws. It shows great potential with

the examples from Sect. 4 as it provides correct

responses on the load capacities of the studied

masonry structures. Furthermore, as a continuum

based macro model, it is easier within the modelling

Fig. 10 Observed damage at experimental tests of [43]-wall

with window in comparison to the numerical solutions. Red is

the damage from the first experimental test, blue from the

second. (Colour figure online)
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processes compared to micro models. The computa-

tional costs seem to be fairly low, whereby a

comprehensive quantitative comparison would exceed

the scope of this publication, as it would require a

comparison to micro models with comparative

implementations.

One of the improvements of the proposed model is

the capability to cover the biaxial stress states and the

resulting internal forces in an orthotropic manner,

which allows the analysis of masonry in different pre-

loading scenarios. Furthermore, the model has a large

bandwidth of possibilities to trigger the stress strain

Fig. 11 Observed stresses at [43]-wall with window tests. Computed with 50 	 50 elements
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behaviour, which brings stability within the simulation

if the material response is known. As contrast,

comparatively many parameters need to be obtained,

which is up-to date infrequent, as typically only few

parameters are studied within a series of experimental

tests. It has to be noted that a large amount of material

properties needed to be speculated as not sufficient test

data was provided. Seeing the performance of the law

within a fully comprehensive test setup [3] would be

required to specify the entire generality of the model.

Fig. 12 Observed damage at [43]-wall with window tests with a mesh refinement from 10 	 10–100 	 100 elements
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It shall be noted that the model contains 17

parameters per direction, making it 34 in total.

Unfortunately, mostly barely that much information

is known about the material. Once the uniaxial

evolution law would be simplified, this number could

be reduced. However, this would limit the possibilities

for a correct adjustment of the model.

The model was studied within examples which

cover uniaxial compression and tension, shear, biaxial

stress states with a simple and a more complex

geometry. The test cases have been in-plane 2D

problems in a plane-stress state, while the expected

behaviour could be simulated properly. However,

more complex shapes would need to be considered to

allow a more generic evaluation of the proposed model

with the behaviour of the sophisticated construction

material masonry. Accordingly, an avenue for future

research shall be the application of the constitutive law

within 3D solid formulations for complex shapes with

largely varying thickness. Another possibility would

be the imposition within thin-walled or thick/solid-

based shell formulations to investigate the bending

and the out-of plane performance. Thereby, shells with

a thickness integration would consider multiple enti-

ties of the material per in-plane integration point (see

[51, 52] for eventual applications).
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Appendix 1: Uniaxial compression Bézier-curve

based relaxation

Within this appendix, the uniaxial compression

Bézier-curve based relaxation introduced by Petracca

et al. [17], which is shown within Fig. 13 shall be

deciphered. The model itself requires as input E, fc0,

fcp, �cp and fcr. Furthermore, the locations of the

remaining required stress/strains can be controlled by

a set of scalars, namely the Bézier controllers c1, c2

and c3. However, if preferred, the input can also

contain the remaining stresses and strains, rather than

controllers.

With the input of the Bézier controller inputs, the

complete set of initial control parameters shall be

defined as following:

rj ¼ fc0 ri ¼ rp ¼ rj ¼ fcp ru ¼ rr ¼ fcr ð6:1Þ

Fig. 13 Uniaxial compression segmented Bézier-curve based

relaxation (adapted from [17])
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�p ¼ �cp �0 ¼ r0

E
�i ¼

rp

E
ð6:2Þ

�̂j ¼ �p þ a � c2 �̂k ¼ �̂j þ a � ð1 � c2Þ ð6:3Þ

with: a ¼ 2 �p �
rr

E

� �

rk ¼ rr þ ðrp � rrÞ � c1

ð6:4Þ

�̂u ¼ ð�̂k � �̂jÞ
ðrp � rkÞ

ðrp � rrÞ þ �̂j �̂r ¼ �̂u � c3

ð6:5Þ

Within, the damage model the strain-like counterpart

shall be defined as following:

n ¼ r�

E
ð6:6Þ

which is the basis for the evaluation of the hardening

variable RðnÞ:

RðnÞ ¼

0 for n� �0

Bðn; �0; �i; �p;r0;ri;rpÞ for �0\n� �p

Bðn; �p; �j; �k;rp;rj;rkÞ for �p\n� �k

Bðn; �k; �u; �r;rk;ru;rrÞ for �k\n� �r

ru for �r\n

8
>>>>>><

>>>>>>:

ð6:7Þ

whereby, each Bézier curve segment is defined as

following:

BðX; x1; x2; x3;

ðy1 � 2y2 þ y3Þt2 þ 2ðy2 � y2Þt þ y1

ð6:8Þ

including the the parameters:

A ¼ x1 � 2x2 þ x3 B ¼ 2ðx2 � x1Þ
C ¼ x1 � X D ¼ B2 � 4AC

t ¼ �B þ
ffiffiffiffi
D

p

2A

ð6:9Þ

Furthermore, the fracture energy Gc, which is the

shaded area under the Bézier curve (see Fig. 13) can

be computed as following:

Gc ¼ Gc;1 þ Gc;2 þ Gc;3

Gc;1 ¼ rp�p

2

Gc;2 ¼ Að�p; �j; �k; rp; rj; rkÞ
Gc;3 ¼ Að�k; �u; �r; rk; ru; rrÞ

ð6:10Þ

whereby A is the respective area under the Bézier

curve:

Aðx1; x2; x3;y1; y2; y3Þ

¼ x2y1

3
þ x3y1

6
� x2y3

3
þ x3y2

3
þ x3y3

2

� x1ð
y1

2
þ y2

3
þ y3

6
Þ

ð6:11Þ

Considering that the explained model is an ad hoc

formulation, Gc is not the total area as it will need to be

regularized to comply with the grey shaded area, being
Gc

ldis
(see Fig. 13). The regularization is applied with a

stretching factor S, defined subsequently:

S ¼
Gc

ldis
� Gc;1

Gc � Gc;1
� 1 ð6:12Þ

The stretching factor S is applied on the constituents

�j; �k; �u and �r:

�n ¼ �̂n þSð�̂n � �pÞ for n ¼ j; k; uandr

ð6:13Þ

It shall be noted that the stretching factor should not be

lower than -1, which would otherwise lead into snap

back and accordingly a discontinuity in the softening.

To avoid S\� 1, the dissipated length should be

smaller than the respective plastic material length:

ldis\lmat where lmat ¼
2EpGc

fcp
2

¼ 2Gc

rp�p
ð6:14Þ
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36. Pelà L, Cervera M, Roca P (2011) Continuum damage

model for orthotropic materials: application to masonry.

Comput Methods Appl Mech Eng 200(9):917–930
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