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Abstract

Nanoscale devices with Terahertz (THz) wireless communication capabilities are envi-
sioned for sensing and actuation-based applications within human bloodstreams. These
devices detect biomarkers, enable targeted drug delivery, and improve precision diagnos-
tics. The introduction of flow-guided nanoscale localization utilizes THz-based commu-
nication to establish communication between nanonodes and anchors. This approach is
envisaged to accurately locate regions where events occur by using the nanodevice’s circu-
lation duration in the bloodstream. This enables precise identification of disease biomark-
ers, viruses, and bacteria, facilitating targeted intervention and early detection of health
conditions.

To avoid the pitfalls encountered in benchmarking and standardizing traditional indoor
localization, this work presents a workflow for standardized performance evaluation of
flow-guided nanoscale localization. The workflow is implemented in the form of an open
source simulator, considering nanodevice mobility, in-body THz communication with on-
body anchors, and energy-related constraints. The simulator is able to generate raw data
that can be used to streamline different flow-guided localization solutions and establish
standardized performance benchmarks.

The evaluation is performed in the form of a design space exploration. The results indicate
that the proposed workflow and the simulator can be utilized for capturing the perfor-
mance of flow-guided localization approaches in a way that allows objective comparison
with other approaches serving as the foundation for standardized evaluation of future
solutions.
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Resumen

Dispositivos a escala nanométrica con capacidades de comunicación inalámbrica en Ter-
ahertz (THz) aspiran a implementarse para aplicaciones de detección dentro del torrente
sangúıneo humano. Estos dispositivos detectan biomarcadores, permiten la administración
dirigida de medicamentos y mejoran el diagnóstico precoz. La introducción de la local-
ización nanométrica guiada por flujo utiliza la comunicación basada en THz para estable-
cer la comunicación entre nanonodos y anclas. Se espera que este enfoque localice con
precisión las regiones donde ocurren los eventos mediante el tiempo de circulación del
nanodispositivo en el torrente sangúıneo. Esto facilita la identificación precisa de biomar-
cadores de enfermedades, virus y bacterias, lo que permite una intervención dirigida y la
detección temprana de diversas condiciones de salud.

Para evitar los desaf́ıos encontrados en la evaluación y estandarización de la localización
tradicional, este trabajo presenta un flujo de trabajo para la evaluación del rendimiento
estandarizado de la localización nanométrica guiada por flujo. El flujo de trabajo se im-
plementa en forma de un simulador de código abierto, teniendo en cuenta la movilidad
del nanodispositivo, la comunicación THz en el cuerpo con anclas externas y las restric-
ciones relacionadas con la enerǵıa. El simulador puede generar datos que se pueden utilizar
para optimizar diferentes soluciones de localización y establecer puntos de referencia de
rendimiento estandarizados.

La evaluación se realiza mediante una exploración del espacio de diseño. Los resultados
indican que el flujo de trabajo propuesto y el simulador se pueden utilizar para capturar
el rendimiento de los enfoques de localización guiados por flujo de manera que permita
una comparación objetiva con otros enfoques, sentando aśı las bases para la evaluación
estandarizada de soluciones futuras.
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Resum

Els dispositius a nanoescala amb capacitats de comunicació sense fils en Terahertz (THz)
aspiren a implementar-se en aplicacions basades en detecció i actuació dins del torrent san-
guini humà. Aquests dispositius detecten biomarcadors, permeten el lliurament prećıs de
fàrmacs i proporcionen un diagnòstic precoç. La introducció de la localització a nanoescala
guiada per flux utilitza la comunicació basada en THz per establir la comunicació entre
nanonodes i ancoratges. Aquest enfocament aspira a localitzar amb precisió les regions
on es produeixen els esdeveniments utilitzant el temps de circulació del nanodispositiu a
cada una de les regions. Això permet la identificació precisa de biomarcadors de malalties,
virus i bacteris, donant lloc a una intervenció dirigida i a la detecció precoç de diverses
condicions de salut.

Per evitar els inconvenients que sorgeixen en les primeres etapes d’investigació, aquest
treball presenta un flux de treball per a l’avaluació estandarditzada del rendiment de la
localització a nanoescala guiada per flux. El flux de treball s’implementa en forma d’un
simulador de codi obert, tenint en compte la mobilitat del nanodispositiu, la comuni-
cació THz dins del cos amb els ancoratges situats a la superf́ıcie del cos i les limitacions
relacionades amb l’energia. El simulador és capaç de generar dades que després de ser
processades, ens permeten obtenir una avaluació estandaritzada del sistema .

L’avaluació es va realitzar en forma d’exploració espacial de disseny. Els resultats indiquen
que el flux de treball proposat i el simulador es poden utilitzar per capturar el rendiment
de la solució implementada d’una manera que permet la comparació objectiva amb altres
enfocaments, servint d’aquesta manera com a base per a l’avaluació estandarditzada de
futures solucions.
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1 Introduction

During the last years, there have been many promising advancements in nanotechnol-
ogy which can make a difference in the biomedical field. Specifically, nanotechnology is
paving the way toward nanoscale devices with integrated sensing, computing, and data
and energy storage capabilities. These devices are envisioned to be injected in the pa-
tients’ bloodstreams. As such, these nanodevices will have to abide to the environmental
constraints limiting their physical size to the one of the red blood cells (smaller than 5
microns). Due to such constrained sizes, their sole powering option will be to scavenge
environmental energy (from heartbeats or through ultrasound-based power transfer) uti-
lizing nanoscale energy-harvesting entities such as Zinc-Oxide (ZnO) nanowires [1]. With
such devices, on the one hand, will enable the development of atomically precise materials
and structures with revolutionary electrical, optical and mechanical features. On the other
hand, for the first time ever, such devices will enable an interaction with living systems,
bio-markers, bacteria, viruses, cancerous tissue, etc, on the same scale as they naturally
interact. This opens the door to a wide range of applications, like an early diagnostics for
the patients, delivering readings from the inside of the body or commanding precise drug
delivery [2] [3].

However, even such interaction is not enough for enabling the envisioned applications. One
of the main reasons is the lack of communication capabilities at the nano device level.
Nonetheless, the emergence of graphene points to a feasible future solution. Graphene
naturally resonates at terahertz (THz) frequencies (0.1-10 THz), and as such can serve as
a primer for the development of THz nanoscale transceivers [4]. Although graphene-based
nanoantennas have been shown to efficiently operate in the sub-THz band, this is not
the only reason why this material is so important. These nanodevices need high precision
and sensitivity to detect bio markers and other biological analytes. The high electron
transfer rates, high charge-carrier mobility and low electrical noise levels are of utmost
importance are only some of the many properties that makes graphene one of the most
suited materials to use for the nano devices.

In the context of the above-discussed nanodevices, wireless communication capabilities
will enable two-way communication between them and the outside world [5]. Fully inte-
grated nanodevices with communication capabilities are paving the way toward sensing-
based applications such as oxygen sensing within the bloodstream for detecting hypoxia (a
biomarker for cancer diagnosis), as well as actuation-based ones such as non-invasive tar-
geted drug delivery for cancer treatment. As recognized in recent literature, nanodevices
with communication capabilities will also provide a primer for Flow Guided Localization
in the bloodstream [3], [6]. Intuitively, such localization would enable associating the lo-
cation of the nanodevice with a detected event, providing medical benefits along the lines
of non invasiveness, early and precise diagnostics, and reduced costs [6]–[7].

Flow-guided localization is in an early research phase, with only a few works targeting
the problem. The main challenges are the environment the nano devices are supposed
to be deployed in. The bloodstream is a more hostile and complex environment, so the
transmission is more difficult than in air or vacuum adding up the high mobility of the
nanodevices within the bloodstream, with their speeds reaching 20 cm/sec, also the cen-
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timeter level range of THz-based in-body wireless communication at nanoscale and energy
related constraints stemming from energy harvesting as the sole powering option of the
nanodevices.

This area of study has become an interesting area to research and exploit. This has led
to numerous flow-guided localization proposals. Most of these studies have been done
by evaluating different performance metrics and different scenarios but forgetting cer-
tain environmental variables essential to recreate a simulation of these characteristics,
such as the energy consumption of the nano devices, their constraints in energy storage,
self interference within the system and the constrained communication range of THz in
body communication. Although all those proposals have made an encouraging progress
in addressing the above challenges, some more research and further advances on such
localization are needed and still to flourish.

Based on the above argument, as well as the knowledge generated through decades of
research on this topic, we are convinced that there is a necessity, at least at this early
stage, to design and develop a framework for objective performance evaluation of flow
guided THz-based nanoscale localization. The actual research was lacking the possibility
of comparing the performance of different approaches in an objective way. In other words,
the reported performance results were often incomplete (e.g., targeting a single metric
such as localization accuracy and ignoring the other important ones such as the latency
in reporting location estimates), utilizing different performance indicators (as mean vs.
median accuracy), and utilizing different evaluation criteria.

With this thesis, we aimed to move forward this area of research by proposing a framework
for standardized performance evaluation of such localization approaches. Specifically, we
discuss the fundamentals of flow-guided nanoscale localization, provide the categorization
of existing approaches, and discuss the limitations of their current performance assess-
ments. This is followed by proposing a workflow for standardized and objective perfor-
mance assessment of flow-guided localization. In addition, an open-source network sim-
ulator is provided that implements the discussed workflow and provides the community
with the first tool for realistic and objective assessment of flow-guided localization.

Our achievements include the successful development of a highly accurate simulator repli-
cating the human body’s internal environment and establishing stable two-way communi-
cation between nanonodes and anchors. This breakthrough enables event-based commu-
nications, transcending constraints and advancing healthcare technologies. Additionally,
we have implemented a standardized evaluation methodology to validate the simulator’s
performance and gain insights into system operation, laying the foundation for future
enhancements.

However, challenges persist, including relatively low accuracy due to unreliable THz com-
munication and intermittent nanonode operation. Some regions, especially in the upper
body, have similar circulation times, making prediction and training difficult. Distinguish-
ing between paired regions poses challenges. Scalability and data disparity further impact
accuracy and reliability, demanding our attention and improvement efforts.
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1.1 Thesis Structure

The content of this thesis has been organized into several chapters to explain the work
done as clearly as possible. Chapter 2 provides a brief overview of previous research
and elements used in this project. In chapter 3, we dive into the technical depth of the
work, starting with high-level explanations accompanied by fundamental knowledge of the
project area for a better understanding of chapter 4, which focus more on the software
development. Chapters 5 and 6 covers the performance assessment of the flow guided
localization solution, including the definition of parameters, scenarios, and the results
themselves. Finally, this thesis concludes with a discussion of the conclusions drawn from
the project, its limitations, and suggestions for future work to overcome these limitations.
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2 State of the Art of the Technology Used or Applied

in this Thesis

2.1 Related Work

2.1.1 Performance Evaluation of THz Nanoscale Systems

As argued in [8], simulating the performance of a given system allows for completely
controllable experimental conditions and environments. In combination with repeatability
and cost-efficiency, these advantages make simulations a valuable tool to evaluate new
algorithms, especially at early research stages. Given that the research on flow-guided
localization is still in a preliminary stage, simulating the operation of such systems can
be considered as a natural first step in the assessment of their performance. This was only
meagerly recognized in the scientific community, with BloodVoyagerS [8] being the first
tool for modelling the working environment of the nanodevices. BloodVoyagerS features
a simplified model of the bloodstream to simulate the mobility of the nanodevices within
it. As depicted in Figure 2, the simulator covers 94 vessels and organs, with the origins
of the used coordinate system placed in the center of the heart. The spatial depth of
all organs in the simulator is equated, with the reference thickness of 4 cm mimicking
the depth of a kidney, resulting in the z–coordinates of the nanodevices being in the
range between 2 and -2 cm. TeraSim [9] is the first simulation platform for modeling THz
communication networks which captures the capabilities of nanodevices and peculiarities
of THz propagation. TeraSim [9] is built as an ns-3 module, implementing physical and
link layer solutions tailored to nanoscale THz communications. In section 4 we explain in
more detail about this two open sources software.

2.1.2 Evaluation Methodologies for Flow-guided Localization

As argued, research lessons on the performance evaluation of indoor localization systems
can to an extent be applied for objective and standardized assessment of flow-guided
localization. The EU EVARILOS project was among the early efforts aiming at such
performance assessment for RF-based indoor localization [10]. Within the project, a per-
formance assessment methodology was developed, which included a number of evaluation
scenarios, envisioned capturing the performance of evaluated solutions along a hetero-
geneous set of metrics including localization accuracy, latency, and energy consumption,
and assessing and mitigating the negative effects of RF interference on the performance of
the evaluated solutions. The project also yielded a web platform populated with raw data
that can be inputted in an indoor localization solution for its streamlined performance
assessment along a number of standardized scenarios. Similar approach was followed in
the NIST PerfLoc project [11], however with a set of possible solutions to be evaluated
extending beyond only Radio Frequency (RF) to Inertial Measurement Unit (IMU)-based,
Global Positioning System (GPS)-supported, and other hybrid approaches. Finally, the
IPSN/MICROSOFT Indoor Localization Competition [12] was among the first efforts
to support back-to-back evaluation of different indoor localization approaches along the
same set of conditions.

The above-discussed and consequent efforts yielded the following lessons: i) performance
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comparison of different indoor localization approaches can be carried out in an objective
way by following the same evaluation methodology, i.e., utilizing the same environments,
scenarios, and evaluation metrics, ii) such evaluation can be streamlined by providing a set
of raw data captured along a standardized evaluation methodology, which is envisioned
to be used as an input to an indoor localization solution, and iii) the performance of
RF-based indoor localization can be degraded by both self-interference and interference
from neighboring RF-based systems operating in the same frequency band.

In the current outlook on the performance assessment of existing flow-guided localization,
the approaches from [7] and [13] are evaluated in a rather simplified way accounting
solely for the mobility of the nanodevices as modeled by the BloodVoyagerS. As such, their
performance assessments ignore many potential effects of wireless communication (e.g., RF
interference), as well as energy-related constraints stemming from energy-harvesting and,
consequently, the intermittent operation of a nanodevice [1]. It is also worth mentioning
that [6] carried out a limited performance evaluation assessing the number of nanodevices
needed for localizing a nanodevice at any location in the body in a multi-hop fashion.
The derived assessments can, therefore, at this point only serve as a rough indication
due to their low levels of realism and subjective evaluation methodologies. In this work,
we enhance the realism of such assessments by jointly accounting for the mobility of the
nanodevices, in-body nanoscale THz communication between the nanodevices and the
outside world, and energy related and other technological constraints (e.g., pulse-based
modulation) of the nanodevices.
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3 High Level Design

In this section, we will cover non-technical aspects of our localization solution, providing
a high-level explanation of the flow-guided localization approach. First, we will briefly
introduce the fundamentals of flow-guided localization, followed by an overview of the
proposed solution.

3.1 Flow Guided Localization Fundamentals

The different localization solutions can be categorized according to the type of application
they support. Obviously, there is a need to be able to locate some nano devices that are
mobile. These devices target three different types of applications [14]: First is the localiza-
tion of macro scale elements inside the body, specifically for localizing gastric capsules (as
there is a clear diagnostic benefit of assigning the measurements of the gastrointestinal
system with the locations at which they were taken) and implants (for detecting their
movements away from the intended deployment locations). It is expected that these de-
vices are not intended to be of nanoscale magnitude and have reduced mobility (few cm/h
in the gastrointestinal system) or simply no mobility in the case of implants. This reduces
the complexity of locating the devices in contrast to the following two categories. The
second category includes the localization of nanoscale devices that have reduced mobility
levels and are used in applications such as tracking fiducial markers (devices that pro-
vide accurate target location for tumors or organs which move in respect to surrounding
anatomy) and other types of miniaturized implants. Although many of these applications
do not specifically require their dimensions to be nanoscale, in order to enable all its
applications these devices must be nanoscale. (serve as example an early targeted treat-
ment of small-scale tumors). Here is a representation of this category [6] which consists
of nanodevices deployed and flowing through the bloodstream. In this scenario an inter-
active localization is proposed in which the nanodevices closest to the surface are located
first thanks to anchors that will be on the surface of the body, using the nanodevices
located first to locate the ones deeper in the body. Such an approach could conceptually
be applied for localizing nanoscale implants within the body.

The final category is the flow-guided nanoscale localization considered in this work. Here,
the goal is to use the nanodevices to detect and localize a target event, not necessarily
to localize themselves. The work in [6] can conceptually support this type of scenarios,
therefore, that is why it is included in both categories in figure 1. Even so, the works that
are the models for this category are [13] and [7]. In these two works, machine learning al-
gorithms are used to distinguish the region of the body through which a nanodevice passes
during one circulation through the bloodstream. In [8] base this procedure on tracking
the distances traversed by a nanodevice in its circulations through the bloodstream by
utilizing a conceptual nanoscale IMU. This process therefore generates a series of prob-
lems, such as the storage for processing the IMU-generated data, also must be taken into
account the sharp turns of the nanodevices in the bloodstream that will adversely affect
the IMU measurements. In [7] an attempt is made to solve these problems by tracing the
time it takes to make a circulation and then sending this data to an anchor close to the
heart using THz-based back-scattering at the nano device level.

14



Figure 1: Scope of the present work

In these models, the region through which the nanodevice has circulated is detected and
not the specific point where there is an event as in [6]. Although being able to locate the
specific point would give tremendous benefits for health-care diagnostics, the accuracy and
reliability in these cases is not acceptable, but with the models [13] and [7] we can obtain an
increase in these performance metrics with an increase in the number of circulations made
by the nanodevices in the bloodstream. On the other hand, this increase causes the energy
consumption levels to rise. Therefore, in flow-guided localization the relevant performance
metrics such as the point and region accuracy, reliability, and energy consumption should
be considered as a function of the application-specific delay allowed for localizing target
events.

3.2 Experimentation Overview

Our system relies on bilateral communication between two main elements: the nanonodes
and the anchors. The nanonodes are small devices that flow through the bloodstream and
constantly collect and send data to the anchors, which are strategically located on the
skin. The anchors transmit beacon packets and receive backscattered responses from the
nano nodes.

The nanonodes are equipped with capacitors for energy storage and ZnO nanowires for
energy harvesting. The capacitor charging is modeled as an exponential process, taking
into account the energy-harvesting rate and interval (e.g., 6 pJ per 20 ms for harvesting
from ultrasound-based power transfer), which charges the capacitor more or less depending
on the available energy at the moment.

Due to energy harvesting limitations, the nanodevices exhibit intermittent behavior, turn-
ing on when their energy levels are above a certain threshold and turning off when de-
pleted. If turned on, they periodically execute sensing or actuation tasks at a given fre-
quency, with each task consuming a constant amount of energy.
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These sensing tasks are designed to detect events, such as biomarkers, which are hard-
coded into the experiment. The locations of these events are varied in different scenarios
to test the accuracy of the system in different parts of the body. The conditions for the
nanonodes to detect events include:

1. The Euclidian distance between the actual nano node position and the event position
is less than predefined threshold.

2. The nano node is turned on

The communication between an anchor and a nanodevice involves passive reception of a
beacon, followed by active transmission of a response packet from the nanodevice. This
means that nanodevices do not spend energy on receiving, but they do for sending data
to the anchors. Although we attempted to implement full back-scattering communication,
the in-body attenuations were too high, preventing the packet from reaching the anchor.
To resolve this issue, we established a passive reception of the beacon sent by the anchor
and an active transmission of the response. This method allows the nanonodes to spend
energy on sending a packet back to the anchor and sensing events. However, this type of
communication leads to a large energy drain, which is why an energy harvesting model is
crucial.

The anchor transmits a constant beaconing frequency and power. Each beacon packet
contains the anchor’s Medium Access Control (MAC) address and ID. In the backscattered
packets, the nanodevices report their MAC addresses, the time elapsed since their last
passage through the heart, and an event bit. These data points represent the raw data
that can be used in a flow-guided localization approach to locate a target within the body.
We process this raw data in evaluations to determine the target’s region and evaluate the
system’s performance.

Flow-guided localization of nanodevices in the bloodstream requires at least one anchor
mounted on the patient’s body. With a single anchor strategically positioned near the
heart, flow-guided localization approaches in [13] and [7] can be enabled because nanode-
vices are guaranteed to pass through the heart in each iteration through the bloodstream.
In this thesis, we evaluate the performance of the system with just one anchor. Although
the simulator supports additional anchors by specifying their positions in the configuration
file.

Each time a nanodevice passes through the heart, the time elapsed since the last passage
is re-initialized to zero to prevent compounding multiple iterations. The event bit is a
logical 1 if a target event is successfully detected and 0 otherwise. Similarly, the event bit
is re-initialized to 0 in each passage through the heart.

16



4 Low Level Design

In this chapter, we will delve into the technical aspects of our thesis, presenting a detailed
low-level design of our flow-guided localization solution. First, we will provide an overview
of the software tools used to develop our solution, their interactions with each other, and
the results they produce. Next, we will define all the internal and external components
that make up our simulator. To conclude, we will describe the workflow of our simulator
in detail.

4.1 Utilized Tools

In chapter 2, we discussed how our localization system integrates three different open-
source software packages. The integration of these three software packages provides the
research community with a powerful tool for realistic and objective assessments of flow-
guided localization. This tool will facilitate the evaluation of new algorithms, particularly
in the early stages of research, and will enable many advancements in future research in
this area.

4.1.1 Blood-Voyager-s

The first step of our procedure involves utilizing the Blood-voyager-s software, which
was introduced in section 2. This software provides a simplified model of the human
cardiovascular system, allowing us to determine the global positions of the nanonodes
within the system. We integrated this software into our NS-3 code and generated a csv file
containing the positions of the nanonodes, which we will later use in our main simulation.
To adapt the csv file to our specific needs, we developed a python script for processing
the data. The resulting cardiovascular positioning map, used for simulating the global
positions of the nanonodes, is displayed below.

Figure 2: Blood-voyager-S positioning structure
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Figure 2 shows the main vessels that provide local coverage and contain large organs
and limbs. Overall there are 94 vessels and organs covered. The human body is three-
dimensional, the spatial direction from the front (anterior) to the back (posterior), the
z-coordinate, is still lacking. The measurement of the organs from anterior to posterior on
the skin is not possible and again there is no record of all relevant dimensions. Therefore,
the spacial depth is established using as a guideline, the thickness of the kidney, which is
between 3 and 5 cm, then in this simulations, all z distances are set at 4 cm, as explained
in chapter 2.

The simulator further assumes that the arteries and veins are set anterior and posterior,
respectively. Transitions from the arteries to veins happen in the organs, limbs, and head.
In the heart, the blood transitions from the veins to arteries. The flow rate is modeled
through the relationship between pressure difference and flow resistance. This results in the
average blood speeds of 20, 10, and 2–4 cm/sec in aorta, arteries, and veins, respectively.
Transitions between the arteries and veins are simplified by utilizing the constant velocity
of 1 cm/sec.

To summarize this section, we have used Blood Voyager-S to obtain the global position
of the nanonodes every second throughout the simulation. By doing this, we will be able
to integrate these positions into our nanonodes in the simulator.

4.1.2 NS-3+TeraSim

The main part of our develop solution has been made using NS-3 and TeraSim. NS-3 is an
open source computer networks simulation environment that is based on discrete-event
simulation. In such a simulator, each event is associated with its execution time, and
the simulation proceeds by executing events in the temporal order of simulation time.
It is designed for research use, thinking of the needs of the research community, and
fosters a community-based collaboration model both to support the development of new
modules and to perform validation or peer review activities across different groups. NS-3
is distributed under an open-source model and a free software paradigm.

TeraSim is another open source code, compatible with NS-3, and it’s the first simulation
platform for THz communication networks which captures the capabilities of THz devices
and supports all the peculiarities of the THz communications, as the THz channel or
the molecular loss absorption among other features [9]. Specifically, at the physical layer
the simulator features pulsebased communications with an omnidirectional antenna over
distances shorter than 1 m, assuming a single, almost 10 THz wide transmission window.
At the link layer, TeraSim implements two well-known protocols, ALOHA and CSMA,
while a common THz channel module implements a frequency selective channel model,
assuming in-air wireless communication. We will utilize BloodVoyagerS and TeraSim as
the starting point in the development of the envisioned simulator.

With these two open source softwares we have managed to design a communication system
between the nanonodes and the anchors simulating the environment inside the human
body. This solution will integrate all the features and constraints discussed in chapter 1
and 3 necessary for both the nanonodes and the anchors to operate correctly within such
a conflicting environment as the in-body is.
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4.2 System Design

In this section, we will provide a detailed explanation of the internal structure of our
nanonodes in our simulator, which consists of various modules. We will delve into the main
features and functionalities of each module. Additionally, we will describe the different
external modules used to establish bilateral communication between the nanonodes and
anchors.

NET DEVICE

THzMac

THzPhy

NODE INTERNAL 
STRUCTURE

THzNetDevice

THzSpectrum
ValueFactory

THzEnergyModel
THzDirectional

Antenna

Figure 3: Nanonode structure

Figure 3 depicts the internal structure of both the nanonodes and the anchors. The design
includes a physical and link layer, as well as several assisting modules such as an energy
model that addresses the constraints discussed in previous chapters. Additionally, there
are other modules that we will now describe in greater detail.

1. THzNetDevice: THzNetDevice is derived from the base class NetDevice provided
by ns-3 to create new MAC protocols. It performs as the joint point which connects
the THzChannel module, THzPhy module, THzMac module and the assistant mod-
ules such as the THzDirectionalAntenna and THzEnergyModel together.

2. THzMAC: At the link layer there is a MAC protocol implemented. When a packet
is enqueued in the THzMacNano, if the node is turned on then it passes the packet
over the physichal layer for 0-way (ALOHA) handshake protocol. A node receives
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the packet then. The desired receiver then sends an acknowledgement (ACK) packet
to the sender.

3. THzPhy: The physical layer for the nanoscale transmit by using TSOOK, a mod-
ulation scheme based on the transmission of one-hundred-femtosecond-long pulses
by following a non-off keying modulation spread in time.

4. THzDirectionalAntenna: The THzDirectionalAntenna module based on CosineAn-
tennaModule, which is provided in the NS-3 platform. The antenna gain of the co-
sine model We as we are doing simulations at a nanoscale level so we are using an
omnidirectional antenna.

5. THzEnergyModel: The nanonodes use an energy model, unlike the anchors which
are assumed to have enough energy for transmitting. This energy model uses passive
reception, which means that there is no energy consumption for receiving a packet.
However, there is energy consumption for sending back the packets to the anchors
and for performing sensing tasks. To manage energy usage, we have implemented an
ON/OFF threshold. The nano nodes begin the simulations with a maximum storage
capacity of 800 pJ. When the energy of a nano node is depleted to 0 pJ, the node
is put into an OFF mode, where it is unable to send or perform sensing tasks. The
nanonodes will recharge over time, and once they reach or exceed the ON threshold,
which we have defined as 10 pJ, the nanonode will return to the ON state.

Regarding our energy harvesting model, the nanonode will harvest energy expo-
nentially at a constant time. Our energy harvesting model is designed to be highly
efficient. The nanonodes operate on an exponential harvesting curve, meaning that
the amount of energy harvested will increase rapidly when their actual energy is
at the lowest levels and increase slower as their energy storage is being fulfilled.
Additionally, this harvesting process occurs at a constant rate, allowing for reliable
and consistent energy generation.

The harvested energy can be specified with the duration of the harvesting cycle
tcycle and the harvested charge per cycle △ Q. Capacitor charging through energy
harvesting can be accurately modeled as an exponential process, accounting for
the total capacitance Cc of the nanonode, i.e., Cc depends on the maximum energy
storage capacity Emax and the generator voltage Vg . In the modeling, it is required
to know in which harvesting cycle ncycle the nanonode is, given its current energy
level Encycle

ncycle = (Vg ∗ Cc)/ △ Q ∗ ln(1−
√
2Encycle/Cc ∗ V 2

g ) (1)

Encycle+1 = (Cc ∗ V 2
g )/2 ∗ (1− exp−(△ Q ∗ (ncycle+1))/Vg ∗ Cc)

2 (2)

Where Cc is:

Cc = 2 ∗ Emax/V g2 (3)
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Figure 4: Energy model simulation

Figure 4 provides a detailed overview of the behavior of our energy model. Specif-
ically, the nanonode operates on a constant harvesting interval of 20ms, leveraging
the exponential formula described earlier. The figure demonstrates that the nano
node is capable of harvesting more energy when the available energy is lower, and
that it continues to harvest energy until it reaches its storage capacity limit. Once
the nano node sends a packet back to the anchor, its energy level begins to decrease,
as illustrated in the figure.

Figure 5: Event detection consumption

Figure 5 above illustrates the energy consumption required for event detection.
To demonstrate this performance, we employed a granularity of 1000 samples per
second. Specifically, we utilized an energy consumption rate of 0.1pJ per event de-
tection. As depicted in the figure, we observe that the nanonode consumes 0.1pJ for
each sensing task.

Table 1 shows the values predefined in our simulations for the following parameters
defined in the formulas above.
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Variable Value
Harvesting cycle duration 20ms

Harvested charge per cycle (△ Q) 6pC
Generator voltage(Vg) 0.42V
Turn OFF threshold 0pJ
Turn ON threshold 10pJ
Maximum energy storage capacity (Emax) 800 pJ

Table 1: Energy model parameters

Having outlined the modules at the nanonode level, we will now provide an overview of
the external modules that enable bilateral communication between the nanonodes and
anchors.

EXTERNAL STRUCTURE

Nanonode X ANCHOR

THzChannelTHzSpectrum
PropagationLoss

Node-Applic Anchor-Applic Custom-Data-
Tag-Anchor

 Custom-Data-
Tag-Node

Figure 6: Simulator structure

Figure 6 illustrates the various modules that interact with both the nanonodes and anchors
to enable effective communication between both.

1. Node-Applic: This module acts as the application and transport layer of the
nanonodes, because it manages the behavior of the nanonodes and also generates
the packets that will be sent to the anchors. The main functionalities of this module
are:

(a) Receiving the beacons from the anchors and substract their addresses and IDs.

(b) Checking it there is enough energy for continue sensing new events.

22



(c) Estimating the euclidean distance between the actual nanonode position and
the event position which is hardcoded. The threshold that determines whether
the event will be detected or not will vary depending on the scenarios but we
will establish as a base value that if the Euclidean distance is equal to or less
than one, then the event will be detected. We used the following equation to
estimate the Euclidean distance:

d(p, q) =
√

(px − qx)2 + (py − qy)2 + (pz − qz)2 (4)

p,q being the actual position of the BNS and the event position respectively.

(d) Sending the response back to the beacons with all the raw data necessary for
later use that data to locate in which region of the body the target was, and
obtain the performance of our system.

2. Anchor-Applic: It has the same functionality as the one explained before, but
this is applied for the anchors. It manages the behavior of the anchors and also
generates and prepares the packets that will be sent to the nanonodes. The anchors
will generate beacons every 100ms and send it to their surroundings waiting for
nanonodes to enter its communication range and receive the packets. This beacons
are sending the anchors’ ID and their addresses, so that the nanonodes can know
where they have to send back the response. It is also the responsible to receive the
response packets of the nanonodes with all the raw data.

3. THzChannel: The THz channel takes into account waveforms with realistic band-
width and applies the frequency selective propagation behavior of the THz channel.
When the waveform generated by THzSpectrumValueFactory is passed down to
the channel, THzChannel first obtains the antenna gains of the transmitter and re-
ceiver from the THzDirectionalAntenna module Then it passes the waveform, total
antenna gain and the mobility model to THzSpectrumPropagationLoss and finally
passes the packet along with the received power to the physical layers of the receiver
to simulate the wireless broadcast channel.

4. THzSpectrumPropagationLoss: This module together with the Inbody-loss
module, model and recreate the attenuation of the environment of in body. The
propagation at THz band is mainly affected by molecular absorption which results
in both molecular absorption loss and molecular absorption noise. We calculated
the path loss of the vessels, tissues and skin, based on certain parameters that we
are explaining now. The total path loss for an in-body transmission/reception is:

TotalPathLoss = V esselPathLoss+ TissuePathLoss+ SkinPathLoss (5)

To calculate each path loss for each part is:

PathLoss = SpreadingLoss ∗ AbsorptionLoss (6)

The necessary variables for getting those path loss are:

(a) The carrier frequency which we established in our simulations as 10THz
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(b) The distance between the anchor and the nanonode

(c) Different constants like the thickness of the skin, vessels, tissues or the speed
of light

Figure 7: Nanonode reception power

Figure 7 shows the performance of the receive power according to the distance
between the nanonode and the anchor. It is reflected how the received power decrease
a lot in only a few centimeters due to all the attenuation the in-body communication
have. The communication range is around 0.4/0.5 cm.

5. Tag Classes: The both tag classes (Custom-Data-Tag-Node and Custom-Data-
Tag-anchor) encapsulates the information that we want to sent in NS-3 objects
called Tags and that will be used by the application layer to generate the packets.
Custom-Data-Tag-Node encapsulates the raw data needed to send to the anchor and
Custom-Data-Tag-anchor encapsulates the data needed to send to the nanonodes,
the receivers in the application level are the ones in charge of untag that packets.

4.3 Workflow

The architecture of the simulator follows a well-established ns-3 layered model, as de-
picted in Figure 8. The Anchor-Application module implements continuous beaconing
with a predefined period (nb., with 100 ms being a default value) to broadcast with their
address and ID. Each beacon packet is forwarded to the THzNetDevice module. At the
THzNetDevice the packet calls the enqueue method from the THzMac, in the MAC pro-
tocol a header is included, after that it passes the packet to the physical layer, THzPhy
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creates its own data structure for the packet and adds it to the list of ongoing transmis-
sions. If a new transmission or reception comes while a transmission is going on, THzPhy
will use the information to interleave and check for collision. The link and physical layers
implement the ALOHA protocol and TS-OOK modulation, respectively.

Then the packet is passed to the THzChannel by calling the SendPacket() method of the
channel through the handle (pointer to THzChannel).The THz channel is modeled by
calculating the receive power for each communicating pair of devices and scheduling the
invocation of the ReceivePacket() method accounting for the corresponding propagation
time. The channel model entails in-body path-loss and Doppler term. The path loss is cal-
culated using the attenuation and thickness parameters of the vessel, tissue, and skin. The
Doppler term is accounted for by evaluating the change in relative positions between the
nanodevices and anchors with time.The ReceivePacket() method of the channel invokes
the RecivePacket() method of the THzPhy using the pointer to it.

The ReceivePacket() method of the THzPhy checks for the collision and calculates the
SINR every time there is a new interfering signal. Then it marks the packet as collided if
the SINR value is less than the predefined threshold for detection, otherwise it marks the
packet as not collided. The ReceivePacketDone() of the PHY then checks the completely
received packet to see if it was collided i.e., the SINR was less than the threshold at some
point during reception. If it did collide, the packet is dropped. Otherwise, the packet is
passed to the MAC layer. The MAC layer first checks if it is the intended receiver of the
packet by looking into the destination address. If it is the intended receiver and the packet
is received correctly it passes the packet to the upper layer. Finally at the application layer
the receiver (anchor) untag all the information that was at the packet. At the nanodevice
level, the receive power of the beacon is used for setting up the transmission power of the
packet to be backscattered. This is followed by backscattering the response packet from
the nanodevice toward the anchor by utilizing the same procedure as for the transmission
of the beacon.

The anchors are assumed to be static entities and feature sufficient energy for continuous
operation. The nanodevices are assumed to be energy-harvesting entities that are mobile
within the bloodstream. To model their mobility, we have integrated BloodVoyagerS in
our simulator. Invoking a BloodVoyagerS execution results in generating csv file that
specifies the locations of the nanodevices in the bloodstream. The positions generated in
these simulations are generated with a frequency of 1 Hz. Since ns-3 is an event-driven
simulator, at each BloodVoyagerS-originating location of a nanodevice, the nanodevice
is assumed to carry out a sensing/actuation task. Given that for certain applications
carrying out such tasks could be required more frequently, we provide an upsampler for
BloodVoyagerS-originating locations sampled at 1 Hz. As the vessels in BloodVoyagerS
are modeled using straight lines, the upsampling is based on linear interpolation with
a small random component drawn from a zero-mean Gaussian distribution, representing
vortex flow of blood and minor changes in the diameters of veins, arteries, etc. At each
new location, the nanodevice is expected to carry out a task for detecting an event of
interest.

Finally, once the communication system between the nodes and the anchors has been
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established, and they are able to exchange messages correctly, then we need to converting
the raw data that the nano nodes gathered and sent to the anchors into a usable solution
for our flow guided localization solution. This raw data is, the time elapsed since their
last passage through the heart, and an event bit.

For each scenario proposed, this raw data is generated. Once we have all the data necessary,
then we need to evaluate the performance of our simulator. For that we are going to use an
ML algorithm. Finally, after applying the ML solution, we can evaluate the performance
of the different scenarios, and have an initial idea of the limitations of our simulations
and necessary future work.
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Figure 8: Simulator workflow

Figure 8 presents a summary diagram of the workflow described in this section. The
input signals consist of the parameters we have designed, which can be readily modified
in the configuration files. The bilateral communication between the anchors and the nano
nodes is initiated at the application layer of each node/anchor and continues down to the
corresponding application layer of the other node/anchor. The resulting raw data is then
utilized to generate our flow guided solution.
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5 Flow Guided Localization Solution

Once communication between the nanodevices and the anchors has been enabled, and
the nanodevices are able to send the necessary data to the anchors (such as circulation
time, nanodevice ID, and whether the event has been detected or not), it is necessary to
process the large amount of data that is generated. For this purpose, we have created a
set of Python scripts that will be responsible for processing all this data. Once we have
the processed data, it will go through an ML system that we have designed, which will
allow us to obtain a prediction of the regions where the events are located and finally, we
will be able to obtain an evaluation of these results.

5.1 Flow-guided Localization Solution under Test

As we have mentioned before, in order to achieve our flow guided localization solution, we
need to run the data collected during our simulator through a machine learning algorithm
that we have designed. This algorithm will predict the region where the events are located
based on their circulation times (which are transmitted by the nano nodes as they pass
through the heart’s anchor).

A large number of simulations had to be carried out in order to train this algorithm. Our
flow guided localization solution currently distinguishes 25 regions of the human body,
defined in table 2. To train the model, various training simulations were conducted in
which the position of the event to be detected was varied. This enabled us to obtain a
large amount of data with circulation times for each region.

Figure 9: Distribution of circulation time on anchor 0 for each region

In Figure 9, we can observe the circulation times of each of the regions that we have
collected through the various simulations we have conducted to train the model. The
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different regions are defined by an ID. In table 2, we associate each ID with the respective
name of the region. One problem encountered in training this model has been the disparity
of data obtained from the different regions, which made it difficult to have a functionally
trained model. To address this, we had to conduct many more simulations of the regions
from which we obtained less data to achieve a balanced number of data in all regions.

Regions ID
ID Region ID Region
17 left shoulder 33 left hand
59 left foot 60 right foot
47 left pelvis 36 liver
56 right knee 15 right upper arm
49 left hip 23 left upper arm
21 right elbow 30 spleen
54 left knee 2 left heart
24 thorax 51 right pelvis
39 intestine 11 right shoulder
52 right hip 58 right heart
27 right hand 40 kidneys
29 left elbow 9 head
61 lungs

Table 2: Regions ID

In Figure 9, we could already observe how some data points in several regions had circu-
lation times that were too high and far from the average. In Figure 10, we extracted the
circulation times of a single nanodevice in a single simulation. The main takeaway from
both figures is that, for some raw data instances, the circulation time is larger than 90
sec, which is the maximum circulation time that might occur in a single loop trough the
bloodstream. This implies that in some circulations the raw data is not reported to the
anchor and, when the data is eventually reported, it contains the compound of multiple
such circulations. Such behavior is a result of one of the following:

1. Intermittent operation of a nanonode due to energy-harvesting, resulting in the
nanonode sometimes not featuring sufficient energy for sensing or transmission

2. Self-interference from the other nanonodes and anchors, resulting in reception and
transmission errors.

In addition, random paths of the nanonodes in the vicinity of the target event (i.e., in an
organ, limb, or head) can result in the nanonodes missing the event due to its Euclidean
distance from the event never being smaller than the threshold of 1 cm, despite the fact
that they went through the loop that contained the event. This implies that the event bit
parameter might in some cases be erroneous.
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Figure 10: Raw data output

5.2 Design Space

We are conducting experiments with various scenarios based on specific parameters that
are relevant to our research. By doing so, we aim to obtain diverse performance metrics and
outputs, which will help us draw better conclusions about the strengths and weaknesses
of our localization solution. Furthermore, this will inform us about how we can improve
our model for future studies. All of the parameters we designed can be modified and set
in the ”executeProgram.sh” file, which serves as the foundation for running the system
explained in section 4. The parameters include the number of nano nodes deployed in the
cardiovascular system, the number of anchors used as receivers, as well as their optimal
placement on the body, the sample granularity, and the detection threshold for events.
In the following sections, we will provide more detailed information on each of these
parameters.

1. Number of nano nodes: The number of nano nodes deployed in the cardiovascu-
lar system complicates the simulation run time as the amount of data to be handled
increases. However as more data we should to analyse more accuracy we will have
on the results.The number of nanonodes deployed in the different scenarios will have
a range of values according to the number of full bits. By this we mean that the
numbers of BNS will be of the order of 2X where X is an integer. The reason why
we implement these values is because in this way we can optimize to the maximum
the number of bits destined to designate the ID of the nano nodes. We have also
calculated the simulation run time for the various scenarios in order to quantify the
amount of resources it consumes computationally.

2. Granularity We have explained that we obtain the global positions of the nanon-
odes through simulations made with the blood-voyager-S software. These simula-
tions provide us with position updates every second until the final simulation time.
But in elements as mobiles as the nanonodes are, getting updates every second may
not be enough, so we believe, it may be interesting to add this granularity variable.
With this variable what we have done is to interpolate positions according to the
chosen option.To interpolate these positions, we have used a linear interpolation
method added to a small random component as well (representing vortex flow of
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the blood, arbitrary changes in the diameter of the veins and arteries, etc.), to repre-
sent that we added some random numbers from a zero-mean Gaussian distribution.
Below you are going to have the interpolation formulas used.

coordx = [..., x1, xi1, xi2, x2, ...] (7)

coordy = [..., y1, yi1, yi2, y2, ...] (8)

coordz = [..., z1, zi1, zi2, z2, ...] (9)

Being ti, xi, yi, zi the interpolated data and

xi1 = x1 + Aint|x2 − x1|/(Nint + 1) +Gaussian(0, |t1 − ti1|/10) (10)

xi2 = x1 + Aint|x2 − x1|/(Nint + 1) +Gaussian(0, |t1 − ti1|/10) (11)

Being Nint the number of interpolated rows and Aint the actual interpolation row
that goes from 1 to (Nint − 1) and that’s applied for every axe and every position
that we have to add according the option we choose to analyse in each scenario.

3. Event threshold detection The detection of an event is done by calculating the
euclidean distance between the actual position of the nano node and the position
where the event is located. The event threshold detection is the maximum distance
that the nano nodes can detect the events. Obviously, the number of events detected
will increase proportionally to the detection range. However, the constraints due to
the size of nano nodes and their sensors limit that detection range. We have done
several tests changing that threshold in order to evaluate its performance.

5.3 Parametrization of Scenarios

As we mentioned in chapter 5, we have automated several parameters so that we can
conduct various simulations, changing the variables and thus obtain performance based on
the variables we have discussed in this chapter. The parameters that have been automated
are: the number of nanonodes, the number of anchors, granularity, simulation time, the
number of events per region and we also are able to modify their location using some
functions we designed.

To perform the training simulations of the machine learning model, we have defined the
different parameters, explained above, as follows:

number of nanonodes 64
number of anchors 1

granularity 1/3s
simulation time 2000s

Table 3: Hyperparameters
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We designed the evaluation in a way that we can understand how the parameters affect
the performance metrics. The first evaluation consists in using a baseline scenario, which
contains, the base values (chapter 5.3.1) we designed to evaluate a first set of results and
analyse its behaviour. Once we have the baseline scenario, we divide our evaluations in
three scenarios:

1. Based on the number of nanonodes: In this evaluation we modify the number nanon-
odes deployed on the bloodstream. The range of values to test in this scenario are:
32,128,250 nanonodes keeping the other parameters as the baseline scenario. A total
of 4 scenarios in this set.

2. Based on the granularity: In this evaluation we modify upsampling frequency. The
range of values to test in this scenario are: 1 sample/s, 2 samples/s, 5 samples/s
and 10 samples/s nanonodes keeping the other parameters as the baseline scenario.
A total of 4 scenarios in this set.

3. Based on the event threshold: In this evaluation we modify the threshold of detec-
tion. The range of values to test in this scenario are: 0.5cm, 2cm and 3cm keeping
the other parameters as the baseline scenario. A total of 3 scenarios in this set.

We have conducted 25 simulations for each scenario of a set, each of them moving the
event to be detected to a different region. As we have a total of 25 regions, this means 25
different simulations.

In table 4 we have the range of values we evaluate in each set, including the baseline
values.

Number of nano nodes Number of anchors Granularity Event threshold detection
32 1 at the heart 1 samples/s 0.5cm
64 2 samples/s 1cm
128 3 samples/s 2cm
256 5 samples/s 3cm
512 10 samples/s

Table 4: Parameters range

For our first scenario we have decided to choose a series of parameters that will serve as a
basis for us to, depending on the results, modify the following ones to find a balance that
achieves the most optimal results.

5.3.1 Baseline Scenario

To gain insight into the behavior of our system, we initially established a set of baseline
parameters. These parameters served as our starting point, enabling us to obtain prelim-
inary results. Subsequently, during the evaluation process, we made incremental changes
to a single parameter within each set, while keeping the remaining parameters at their
baseline values. Table 5 illustrates the baseline simulation and the corresponding base
values for each parameter.
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Variable Total
Number of BNS 64
Number of anchors 1 at heart
Granularity 1/3 s
Event threshold detection 1cm

Table 5: Baseline scenario

To ensure meaningful and dependable results, we have carefully selected 64 nanonodes for
deployment in our simulations. This number strikes a balance between avoiding insignifi-
cance and unreliability that a smaller sample size may produce, while also steering clear
of an excessively high number. Our primary objective in this initial stage is to validate the
proper functioning of our system and investigate its behavior. As for the number of an-
chors, we begin with the minimum requirement, as previously mentioned, which involves
placing an anchor in the heart/thorax region. Additionally, we will initiate the simulations
with a sampling rate of 3 samples per second and a 1cm event threshold for detection.
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6 Experiments and Results

Each evaluation scenario within a set will present a figure comprising three types of
graphs. Firstly, we include a graph that assesses accuracy in relation to simulation time,
this graphs represents the accuracy (positive detection/total detection) versus the time.
Secondly, we provide a graph displaying the point accuracy, which is the error in distance
for each region. This graph allows us to observe the average error in distance for predic-
tions, as well as identify any outlier values. To best represent this data, we have chosen to
utilize a boxplot, as it offers a clear visualization of the desired results. Lastly, the third
graph illustrates the most frequently predicted region, which can also be interpreted as
a measure of accuracy. However, instead of calculating this for each simulation time, we
have employed the mode to determine the most predicted region. We gathered all the pre-
dictions for each simulated region and calculated the mode to identify the region with the
highest frequency of predictions. Subsequently, we compared this most predicted region
against the actual region. A value of 1 indicates a match between the most predicted and
actual regions, while a value of 0 indicates a mismatch.

Figure 11: Baseline evaluation

Firstly, we will present the base scenario that was previously discussed. The figure above
showcases the three graphs mentioned earlier. In the first graph, we observe that the
accuracy remains below 10% throughout the simulation period. Moving on to the second
graph, we can observe the variation in distance errors across different regions. It is evident
that only regions 51 and 56 have a mean error of 0, indicating accurate predictions.
However, it is important to note that most regions exhibit outlier values, which is a
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common occurrence in simulations of this nature due to communication interference and
insufficient energy for reliable data transmission. Lastly, the third graph demonstrates
that when we consider the mode of predicted regions for each actual region instead of
analyzing individual samples, only 6 out of the 25 regions align with the original regions.

6.1 Scaling with the Number of Nanonodes

(a) 32 nanonodes evaluation (b) 128 nanonodes evaluation

(c) 250 nanonodes evaluation

Figure 12: Localization performance as a function of the number of nanonodes
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In this set of scenarios, we assessed the behavior of our system by manipulating the number
of nanonodes within the body. It is evident that as we increase the number of nanonodes,
there is a slight decrease in accuracy, as depicted in the first graph. Moving on to the
second graph, we observe a slight decrease in error distance; however, it is accompanied
by an increase in the number of outlier values. Finally, in the third graph, we can see a
rise in the most predicted value per region. Consequently, we observe a greater number of
regions where the mode (most frequently occurring value) aligns with the correct region,
reaching a maximum of 8 regions.

The results depicted in the first graph may appear somewhat counterintuitive at first, but
it is logical that the accuracy experiences a slight decline when the number of nanonodes
increases. This can be attributed to the initial implementation of our ML model, which
tends to produce more incorrect predictions than correct ones. Consequently, while we may
also generate more true positives, the number of negatives increases even more, resulting
in a decrease in overall accuracy. However, upon examining the third graph, we observe
the advantages and improved outcomes of calculating accuracy using the mode. This
approach allows us to predict regions more accurately, leading to better results overall.

In conclusion, increasing the number of nanonodes leads to improvements in the number
of predicted regions which allow to predict two more regions correctly in contrast with
the baseline scenario and it also reduces the error in distance. However, it results in a
decrease in accuracy in relation to the simulation time, as we have more samples miss
predicted.
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6.2 Scaling with Granularity

(a) 1 sample/s evaluation (b) 2 samples/s evaluation

(c) 5 samples/s evaluation (d) 10 samples/s evaluation

Figure 13: Localization performance as a function of temporal granularity

In this series of simulations, we have examined the behavior of our system by manipulating
the frequency of upsampling. Notably, we have observed a decrease in accuracy as the
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frequency increases. Furthermore, an interesting observation is that the most predicted
region tends to decrease as the frequency is raised.

Initially, during the evaluations, there was an expectation that increasing the number of
samples per second would result in a higher number of regions being predicted correctly.
However, upon conducting the evaluations, it became evident that this assumption did
not hold true. The reason behind this lies in the behavior of our system. While an increase
in the number of samples does generate more positive predictions, it also introduces an
elevated number of negative predictions due to noise and reduced precision in certain
regions. As a result, both the precision in relation to circulation time and the number of
correctly predicted regions decrease when the frequency is increased.
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6.3 Scaling with the Event Threshold

(a) 0.5 cm event threshold (b) 2 cm event threshold

(c) 3 cm event threshold

Figure 14: Localization performance as a function of the event threshold

In this set of scenarios, we examined the behavior of our system by manipulating the
threshold of detection for each event within the body. The first graph illustrates the
accuracy, which experiences a slight decrease as the threshold is increased. Notably, the
best performance in terms of accuracy versus time is observed when the threshold is set at
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0.5cm, maintaining a consistent 10%. As we further increase the threshold, the accuracy
continues to decrease, gradually. Moving on to the second graph, we observe a decrease in
the mean error in distance for certain regions as the threshold is adjusted. This indicates
an improvement in prediction accuracy for those specific regions. Lastly, the third graph
highlights the relationship between the threshold and the number of correctly predicted
regions. Lowering the threshold results in a higher number of regions being predicted
correctly. Conversely, as the threshold is increased, the number of correctly predicted
regions decreases.

In theory, one might expect that increasing the threshold would lead to the detection of
more events, thereby improving the overall accuracy. However, as observed in graph 3,
the number of correctly predicted regions actually decreases as the threshold is raised.
This unexpected outcome can be explained by the fact that, as we previously mentioned,
the events in the evaluations were randomly located within the region rather than being
centralized. Consequently, when the threshold is increased, an event may be detected
even if the corresponding nanonode is not in the same region as the event itself. This
discrepancy results in a higher number of erroneous predictions, contributing to the decline
in accurate region predictions.

These results serve as a valuable reminder of the significance of the assumptions we make
before conducting evaluations. As demonstrated in this set of simulations, our assumptions
can have a substantial impact on the anticipated outcomes. Therefore, it is crucial to
carefully consider and validate our assumptions to ensure the reliability and relevance of
the expected results.
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7 Conclusions and Future Work

As you have seen throughout this thesis, our work offers a model that serves as the
foundation for standardized evaluation of future solutions. This allows all researchers
to work hand-in-hand, with a correct and solid foundation to start from, and continue
advancing in this area that has so many benefits to offer us.

Building upon our successful development of a highly accurate simulator for replicating
the internal environment of the human body, we have achieved a significant milestone by
establishing stable and reliable two-way communication between nanonodes and anchors.
This achievement has paved the way for a standardized model that facilitates event-based
communications within the human body, effectively transcending the inherent constraints
imposed by both the human body and the nanonodes. This breakthrough brings us closer
to unlocking a deeper understanding of communication dynamics within the human body
and opens up exciting possibilities for advancements in healthcare technologies and remote
monitoring.

In addition to the successful development of the simulator, we have also implemented a
carefully designed standardized evaluation methodology for the flow guided localization
solution under consideration. The purpose of this methodology is twofold: to validate the
accurate functioning of the simulator and to gain valuable insights into the operation
of our system. These crucial initial steps provide us with a solid foundation for future
enhancements and advancements in our research and development endeavors.

The results indicate that the proposed workflow and the simulator can be utilized for
capturing the performance of flow-guided localization approaches in a way that allows
objective comparison with other approaches. Our results reveal relatively improvable ac-
curacy of the different evaluated scenarios.This is due to unreliable THz communication
between in-body nanonodes and on-body anchors and intermittent operation of the nanon-
odes due to energy-harvesting. It has also been shown in the evaluations how some regions
are never detected, this is because the circulations times in some regions, most of them
on the upper body (right and left heart, thorax, intestine, hips) their circulations times
are too close between them, and some minimum delay in the transmission, makes miss
the prediction, also the lack of data make also hard the training of some regions. There
is other problems regarding the predictions in some regions for example when trying to
distinguish between a region of the body and its pair region (for example between left
and right hand), for our actual system it is very hard to distinguish between them if their
circulation times are similar or equal.

We can observe that the accuracy obtained is relatively low, which is our most important
limitation that we must focus on. We also have limitations in terms of scalability, requiring
further code and system structure modifications. Another limitation, although it is more
a problem, would be the disparity of data obtained in different simulations, which hinders
the training of our ML model and directly affects the reliability and accuracy of our
results.

As we mentioned in the previous paragraph, our priority for the future is to improve the
levels of accuracy we have obtained in this thesis. Clearly, much higher values are needed
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to consider them reliable, so this must be the main focus in the future. Modifications will
need to be made to both the programming and structure of the designed system to achieve
greater scalability in the future. Furthermore we will need to continue improving the
proposed ML model. As we have mentioned, it will need better tools to facilitate/improve
its training, with that we should be able to predict some regions that now are not predicted
well due to their similarities in their simulation times, and with that obtain better results.
It is also important to make some improvements for solve the prediction problems between
the regions that has two pairs equally located (for example right and left hand). Finally,
there is also a need to evaluate this system with more than one anchor as explained in
chapter 5 due to for some bugs regarding the ML algorithm the evaluations could not be
done, although our simulator is prepared to work with more than one anchor.

Part of the work presented in this thesis has been submitted as a paper to the IEEE
Communication Standards magazine. Specifically, the section on the development of the
simulator and evaluation of it has been selected for publication. This paper [15] provides a
detailed description of the fundamentals, design, and testing of the proposed flow guided
localization solution, as well as the performance evaluation. The paper also includes a
discussion of the potential applications of these devices in the detection of health problems
and drug delivery. The possible acceptance of this paper for publication in the IEEE
magazine is a significant accomplishment and highlights the contribution of this work to
the field of nanotechnology and wireless communication.
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8 Work Plan

We tried to design a realistic work plan, with a clear split of the different task that we
should develop from the beginning until the end. For every task we estimated a time
schedule, based on what we though every task would spend. While developing the tasks
we encounter some issues, specifically in the development of the simulator, we ended up
having some unforeseen problems, in the development of the communication between the
anchor and the nanonode. Understanding where this issues were and how to solve them
makes us spend more time than what we thought we would spend. Another problem we
had was developing the in-body propagation loss, recreating the in-body environment with
all the constraints and attenuation the in-body has, to adapt that to our simulation. Also,
the data processing was also something more complicated that what I initially thought
due to the amount of data generated that needs processing.

These problems mentioned above have caused us to delay the completion of our work and
we were unable to deliver the complete thesis on time, so we had to use a little more time
to finish polishing and fixing our work. The tables below are detailing the changes made
in our work plan in this final steps of our thesis.

Project: Coarse-grained Localization of In-body Energy-harvesting Nanonodes WP ref (WP1)
Principal task: Research and study Table 1 of 5

Description:
Read different published papers about THz nanonetworks and in-body localization.

Planned start date: 01/09/2022
Planned end date: 30/09/2022
Start event: 01/09/2022
End event: 30/09/2022

Internal task T1.1. Read and research papers about THz nanonetworks.

Internal task T1.2. Read and research papers about in-body localization.

Deliverables:
N/A

Dates:
N/A

Table 6: Work package 1

Project: Coarse-grained Localization of In-body Energy-harvesting Nanonodes WP ref (WP2)
Principal task: Design space specification for flow-guided THz localization Table 2 of 5

Description:
Design the parameters needed for flow-guided THz localization.

Planned start date: 07/10/2022
Planned end date: 29/10/2022
Start event: 3/10/2022
End event: 15/10/2022

Internal task T2.1. Design the parameters for flow-guided Thz localization.

Internal task T1.2.

Deliverables:
N/A

Dates:
N/A

Table 7: Work package 2
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Project: Coarse-grained Localization of In-body Energy-harvesting Nanonodes WP ref (WP3)
Principal task: Implementation of simulation setup and designed localization solution Table 3 of 5

Description:
Developing the simulator with Blood voyager-s, NS-3 and teraSim.
Make all the intermediate scripts to process the logs generated.

Planned start date: 29/10/20222
Planned end date: 24/11/2022
Start event: 17/11/2022
End event: 17/03/2023

Internal task T3.1. Setup of the differents softwares needed for the implementation

Internal task T3.2. Develop our simulation with our designed space specifications.

Internal task T3.3. Generate the logs and generate scripts to process them

Deliverables:
1.The simulation developed

Dates:
N/A

Table 8: Work package 3

Project: Coarse-grained Localization of In-body Energy-harvesting Nanonodes WP ref (WP4)
Principal task: Design space exploration and analysis Table 4 of 5

Description:
Design and implement the flow guided localization solution.

Planned start date: 05/12/2022
Planned end date: 24/12/2022
Start event: 18/03/2022
End event: 01/05/2023

Internal task T4.1.Implement the flow guided localization solution.

Internal task T4.2. Generate the evaluation scenarios.

Deliverables:
Results and conclusions

Dates:
N/A

Table 9: Work package 4

Project: Coarse-grained Localization of In-body Energy-harvesting Nanonodes WP ref (WP5)
Principal task: Implementation of simulation setup and designed localization solution Table 5 of 5

Description: Write and defend the thesis .
Planned start date: 12/12/2022
Planned end date: 10/01/2023
Start event:01/05/2023
End event:13/05/2023

Internal task T1.1. Write the thesis

Internal task T1.2. Design the final presentation of the thesis

Deliverables:
N/A

Dates:
N/A

Table 10: Work package 5
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8.1 Gantt Diagram

According to the explained before at the work plan, we had some issues that delayed the
development of our thesis. Obviously, we also had to make changes in the Gantt Diagram
to show that issues. Now we are representing the final Gantt Diagram of our thesis.

Figure 15: Gantt diagram
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If you want more details about the implementation of the simulator, the repository with
the system code is attached:

https://bitbucket.org/filip lemic/flow-guided-localization-in-ns3/src/master/

It will also be attached a zip of all the simulator in the annex.
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