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Resum 

Aquesta tesi està centrada al voltant del progrés de l’enginyeria d’automoció mitjançant 

una exploració exhaustiva de la dinàmica de vehicles i els sistemes de control, enfocant-

se específicament en el cotxe de competició de l’equip BCN eMotorsport (CAT15x). 

L’objectiu principal és millorar les eines i els mètodes actuals de l’equip mitjançant la 

implementació i optimització d’un sofisticat model matemàtic de la dinàmica del vehicle. 

Amb aquesta finalitat s’ha realitzat una extensa revisió bibliogràfica, l’adquisició de dades 

reals amb el cotxe i el desenvolupament d’una eina basada en software capaç de simular 

diversos models de vehicle i proporcionar comparacions gràfiques i quantitatives del seu 

rendiment entre ells i contra dades reals. Inicialment es considera un model bàsic, seguit 

d’un altre una mica més complex i acabant amb el desenvolupament de dues evolucions 

més. Es realitzen simulacions dels diferents models considerant dades que provenen de 

proves reals amb el cotxe. A continuació, es duen a terme comparacions entre els resultats 

obtinguts, i es tria el model que ha representat millor la realitat per a ser sotmès a un procés 

d’optimització. Finalment, una vegada optimitzat el model, s’integra en vàries estructures 

de sistemes de control per a ser provat i validat. 

Els resultats indiquen que l’últim model plantejat, el més complex, demostra ser el que té 

un comportament més proper al real del CAT15x. Posteriorment, el procés d’optimització 

millora encara més la precisió del model. Per últim, es valida parcialment el model 

optimitzat en ser integrat amb sistemes de control. El projecte conclou assolint amb èxit els 

seus objectius, obtenint informació útil per a l’equip BCN eMotorsport i aplanant el camí per 

poder seguir avançant en l’ús i el desenvolupament de software per a vehicles elèctrics de 

Formula Student. 
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Resumen 

Esta tesis está centrada en torno al avance de la ingeniería de automoción a través de una 

exploración exhaustiva de la dinámica de vehículos y los sistemas de control, enfocándose 

específicamente en el coche de competición del equipo BCN eMotorsport (CAT15x). 

El objetivo principal es mejorar las herramientas y metodologías actuales del equipo 

mediante la implementación y optimización de un sofisticado modelo matemático de la 

dinámica del vehículo, con el fin de simular el rendimiento del coche con precisión. Para 

ello se ha llevado a cabo una extensa revisión bibliográfica, la adquisición de datos reales 

con el coche y el desarrollo de una herramienta basada en software capaz de simular varios 

modelos de vehículo y proporcionar comparaciones gráficas y cuantitativas de su 

rendimiento entre ellos y frente a datos reales. Inicialmente se considera un modelo básico, 

seguido de otro un poco más complejo y terminando con el desarrollo de dos evoluciones 

más. Se realizan simulaciones de los distintos modelos considerando datos procedentes 

de pruebas reales con el coche. A continuación, se llevan a cabo comparaciones entre los 

resultados obtenidos, y se elige el modelo que ha representado mejor la realidad para ser 

sometido a un proceso de optimización. Finalmente, una vez optimizado el modelo, se 

integra en varias estructuras de sistemas de control para ser probado y validado. 

Los resultados indican que el último modelo propuesto, el más complejo, demuestra ser el 

que se acerca más al comportamiento real del CAT15x. Posteriormente, el proceso de 

optimización mejora aún más la precisión del modelo. Por último, el modelo optimizado se 

valida parcialmente al ser integrado con sistemas de control. El proyecto concluye 

alcanzando con éxito sus objetivos, obteniendo información útil para el equipo BCN 

eMotorsport, y allanando el camino para poder seguir avanzando en el uso y desarrollo de 

software para vehículos eléctricos de Formula Student. 
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Abstract 

This thesis revolves around advancing automotive engineering through a comprehensive 

exploration of Formula Student electric vehicle dynamics and control systems, specifically 

focusing on the BCN eMotorsport team’s racing car (CAT15x). 

The primary objective is to enhance the current tools and methodologies of the team by 

implementing and optimising a sophisticated mathematical vehicle dynamics model, aiming 

to simulate the performance of the car accurately. This involved a meticulous literature 

review, real-world data acquisition with the car, and the development of a software-based 

tool able to simulate various vehicle models and provide graphical and quantitative 

comparisons of their performance between them and against real data. Initially a basic 

model is considered, followed by a bit more complex one, and ending with the development 

of two more evolutions. Simulations of the different models considering data coming from 

real tests with the car are performed. Subsequently, comparisons between its results are 

carried on, choosing the one that has resulted to represent better the reality to be 

submerged on an optimisation process. Finally, once the model is optimised, it is integrated 

into various control system structures to be tested and validated. 

Results indicate that the last model proposed, which is the most complex, demonstrates to 

be the closest to represent the real behaviour of the CAT15x. Then, the optimisation 

process further improves the overall model accuracy. At last, the Optimised Model is 

partially validated being integrated with control systems. The project concludes by 

successfully achieving its objectives, offering valuable insights for the BCN eMotorsport 

team, and paving the way for continued advancements in the field of the use and 

development of software for Formula Student electric vehicles. 
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1. Preface 

The world of motorsport has long been a crucible of innovation, where engineering and 

cutting-edge technology converge to push the limits of speed and performance. In this 

constantly changing environment, Formula Student stands out as a special platform that 

develops the abilities of young engineers by presenting them with the challenge of 

designing, constructing, and racing high-performance vehicles. 

This thesis is the culmination of a journey that has been characterized by a passion for 

automotive engineering and a pursuit of excellence. The refined world of race vehicle 

modelling, control and simulation is explored in the pages that follow, with a special 

emphasis on the meticulous work carried out within the BCN eMotorsport team, specifically 

focused on that done inside the vehicle controls department. The intention of compiling the 

information and work done in this project is not only a testament to the remarkable 

achievements of the BCN eMotorsport team but also that it can serve as a reference for the 

upcoming generations of members and collaborators. It provides insightful information on 

several relevant features in the development process of an electric formula race car. 
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2. Introduction 

2.1. Motivation   

The motivation behind this thesis lies in the passionate commitment to automotive 

engineering and the desire to help in improving the tools and methodologies employed by 

the BCN eMotorsport team. By delving deeper into race vehicle modelling and simulation, 

the goal is to contribute to the team providing refined software-based analysis solutions, 

while leaving a valuable reference for future generations of members and collaborators. 

The elevation in these aspects could not only accelerate the learning curve but also facilitate 

and precise monitoring of the car’s performance, potentially reducing the time spent on 

extensive on-track testing and associated expenses. Therefore, this project aspires to be a 

catalyst for optimising resources and drive the team towards greater competitiveness and 

sustainability. 

2.2. Scope  

While the ambitions outlined in the motivation are substantial, it is imperative to define the 

scope within which this thesis operates. Temporally, the focus is on the current Formula 

Student car of the BCN eMotorsport team (CAT15x), limiting the direct application to the 

timeframe of the existing vehicle and immediate future developments. Spatially and 

economically, the scope is limited to the operational environment and available resources 

of the team, supported by those provided by UPC (Universitat Politècnica de Catalunya). 

On an environmental scale, the work primarily addresses the physical aspects related to 

the vehicle’s performance and dynamics, as well as the impact that technologies employed 

may have, overlooking broader biological and social considerations. The technological 

focus is on developing vehicle representation tools useful for analysis and simulation, 

omitting high computing processes or exploration of extremely realistic scenarios. 

2.3. Prerequisites 

For the successful realization of this project, several key prerequisites must be addressed. 

On a technical level, access to comprehensive literature and resources related to racing car 

dynamics, control systems, and Formula Student electric vehicles is essential, which mostly 

is facilitated by the BCN eMotorsport team. Additionally, the availability to obtain accurate 

real-world data from the CAT15x car is fundamental, including detailed information of its 

dynamic aspects. Regarding the costs derived from the software used for development, 

sufficient allocations for licenses are needed, which in fact are supplied directly by UPC or 
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sponsors of the team. 

Establishing these prerequisites creates a solid foundation for a satisfactory execution of 

the proposed work, ensuring a well-prepared environment aligned with the objectives. 

2.4. Objectives 

The overall aim of this thesis is to implement and optimise an effective model of the current 

electric Formula Student race car of the BCN eMotorsport team (CAT15x) in order to carry 

out accurate simulations and analysis based on data acquired from real life testing with the 

car. 

The specific objectives of this work are as follows: 

• Conduct a comprehensive literature review to identify and understand the principles 

of racing car dynamics and control systems, and more specifically of Formula 

Student electric vehicles. 

• Acquire and process real-world data from the BCN eMotorsport team’s racing car, 

including information on vehicle dynamics and control systems performance. 

• Develop a useful software-based analysis tool able to simulate the performance of 

mathematical models and compare their outcomes to real data, both graphically 

and quantitatively. 

• Test and compare the accuracy of several vehicle models proposed by analysing 

results obtained from simulations carried out through personally developed software 

and contrasting with real-world data. 

• Calibrate and validate the model considered that offers better precision through 

optimisation methods and real track testing, adjusting its parameters to obtain 

results as close to the reality as possible. 

• Integrate the car model into control systems and conduct simulations facing real 

based scenarios, to validate its utility in complex situations. 

• Document and present the results of this work in a comprehensive and accessible 

thesis report, serving as a useful reference for future BCN eMotorsport team 

members and other engineering students with a keen interest in the use of 

simulation, benchmarking and data acquisition and analysis methods in the 

development of racing cars. 
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2.5. Planning 

To effectively manage and schedule the tasks that need to be undertaken during the 

duration of this project, from October 2023 to January 2023, a system based on a Gantt 

chart is employed. In it, a visual representation of the planned tasks with the ideal time 

allocated for them is displayed, allowing an overview of the project timeline and ensuring a 

structured workflow through the stages of the thesis. 

 

Figure 1. Gantt chart of the thesis 
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3. Formula Student 

Formula Student is a prestigious and recognized engineering competition since 1981, which 

brings together students from all over the world in designing and building a Formula style 

car to compete during summer. The popularity of the event has grown significantly, with 

over 20 Spanish teams, including 8 from Catalonia with various of them coming from 

faculties of Universitat Politècnica de Catalunya (UPC). The competition features 

combustion and electric categories, allowing teams to choose whether competing with a 

vehicle powered by petrol or electricity. In addition, for some years now teams can also 

participate in a driverless discipline, where the car is driven autonomously. 

As it is an engineering focused competition, the participating vehicles are subject to several 

static and dynamic tests, thus the winning team is determined by the highest overall score 

across these. 

3.1. BCN eMotorsport 

This thesis is realized in collaboration with BCN eMotorsport team, which is formed by 

undergraduate engineering students from UPC Barcelona with the aim of developing a 

Formula Student vehicle capable of competing and obtaining good records in the national 

and international competitions in which it participates. 

History 

The first Formula Student team in Spain was created in 2007 under the name ETSEIB 

Motorsport by a small group of industrial engineering students from the ETSEIB (Escola 

Tècnica Superior d’Enginyeria Industrial de Barcelona) [1]. This team would become BCN 

eMotorsport a few years later. That first year, they developed a combustion engine car able 

to compete in Formula Student competitions, which received the name CAT01. During the 

following years, significant steps in terms of knowledge and recognition were made. 

In 2012, a radical change in direction was made, as electric mobility was embraced by 

creating the CAT05e, the first electric single-seater among all the Spanish Formula Student 

teams. In 2018, Driverless UPC, a parallel team from the same university, was established, 

and they were focused on the autonomous electric racing discipline. From 2018 to 2020, 

both ETSEIB Motorsport and Driverless UPC progressed independently. 

Later, in 2020, a pivotal moment took place, as the two teams of UPC merged to become 

BCN eMotorsport. This crucial decision was made in order to join forces and knowledge, 

as well as to meet new regulations requiring a single car for both manual and autonomous 

modes. During that season and the following one, fusion vehicles CAT14x and CAT15x 

respectively, were developed and employed in national and international competitions, 
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obtaining successful results. 

In this moment, the team is already thinking in new improvements for the next car to come, 

the CAT16x, the one that will be used to participate in 2024 season. However, to this end, 

the CAT15x continues to be tested and studied, as it is the most cutting-edge car built to 

date by BCN eMotorsport team, and it continues fully operational. That is the main reason 

why this thesis is based on CAT15x car. 

 

Figure 2. Visual timeline of remarkable team events [1] 

Vehicle Controls 

This work is closely related to the vehicle controls section, where all the control systems for 

autonomous and manual architectures of the car are built, tested and implemented. The 

members of this section are responsible for the lower-level layers like torque vectoring, 

traction control and power management, as well as the path planning, state estimation and 

autonomous controller algorithms. The main objective is bridging the gap between planning 

and control, unlocking superior automobile behaviour on the track performances. 
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4. Vehicle model 

To be able to accurately simulate the behaviour of the car without spending so much money, 

time and effort in specific testing with the real car, it is necessary to have a model that 

represents the car and as close to the reality as possible. 

4.1. Kinematic bicycle model 

To get used to a simple initial model to afterwards try to improve it and optimise it to a more 

realistic one, a good idea is to start with a kinematic bicycle model. It consists of a simplified 

version of the kinematic four-wheel model, where it just has one rear and front wheel 

(imaginaries) replacing both rear and front wheels in the middle of them, respectively. This 

well-known model, which is quite appropriate for representing car motion under typical 

driving circumstances, also receives the name front wheel steering model, as the direction 

of the rear wheels is static whilst the front wheel orientation in relation to the direction of the 

vehicle can be adjusted. 

The inputs of the model are the velocity (v) and the steering angle (δ), and there is a 

constant variable, which is the length of the wheelbase (L). The distance reference is 

composed of two dimensions (x, y), which in this case is located in the centre of the rear 

axle. The ICR illustrated in the following figure is the Instantaneous Centre of Rotation. 

 

Figure 3. Representation of the kinematic bicycle model 
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Making the necessary relations through trigonometry the following equations to compute 

the state change rate are obtained: 

[

�̇�
�̇�

�̇�

] = [

𝑣 ∙ 𝑐𝑜𝑠 𝜃
𝑣 ∙ 𝑠𝑖𝑛𝜃
𝑣

𝐿
∙ 𝑡𝑎𝑛𝜃

] (1) 

 

To get the final state, it is commonly used the forward Euler method by solving the ordinary 

differential equations after stating an initial state, as it is one of the basic but efficient 

methods to use when calculating by hand. Moreover, these types of calculus are often done 

through computer software, where other more advanced methods can be easily used. 

[

𝑥𝑡+1

𝑦𝑡+1

𝜃𝑡+1

] = [

𝑥𝑡 + 𝑣 ∙ 𝑐𝑜𝑠 𝜃 ∙ ∆𝑡
𝑦𝑡 + 𝑣 ∙ 𝑠𝑖𝑛 𝜃 ∙ ∆𝑡

𝜃𝑡 +
𝑣

𝐿
∙ 𝑡𝑎𝑛 𝜃 ∙ ∆𝑡

] (2) 

 

4.2. Dynamic bicycle model 

In order to obtain a more accurate representation of car dynamics it is crucial to work with 

a more complex and sophisticated model than the kinematic bicycle model. As a natural 

evolution from it, the dynamic bicycle model appears. In contrast to the kinematic one, which 

assumes that a vehicle’s motion can be described solely by its position and orientation, the 

dynamic bicycle model considers the distribution of the mass of the vehicle and some 

essential forces that are involved during motion. For these reasons, this more complex 

model is far more adequate when dealing with scenarios involving simulations and 

analyses. 

The model considers the longitudinal velocity (Vx), as well as the lateral (Vy) and rotational 

(r) ones. The force provided by the motors (Fm), the steering angle (δ) and the yaw angle 

(θ) are also reflected, and the same goes for the constant variables noting the distance from 

front and rear wheels to the CoG (Centre of Gravity), which are Lf and Lr, respectively. 

Additionally, the forces regarding friction and the interactions on the tires, alongside the slip 

angle for front and rear axles (all of them detailed in the following sections), are regarded. 
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Figure 4. Representation of the dynamic bicycle model 

 

The kinematic part of the model is defined by the equations: 

[
�̇�
�̇�

�̇�

] = [
𝑣𝑥 ∙ cos𝜃 − 𝑣𝑦 ∙ sin 𝜃

𝑣𝑥 ∙ sin𝜃 + 𝑣𝑦 ∙ cos 𝜃
𝑟

] (3) 

 

The dynamics of the vehicle are represented through: 

[
�̇�𝑥

�̇�𝑦

�̇�

] =

[
 
 
 
 
 
1

𝑚
(𝐹𝑚(1 + cos 𝛿) − 𝐹𝑦,𝐹 sin 𝛿 + 𝑚 𝑣𝑦 𝑟 − 𝐹𝑓)

1

𝑚
(𝐹𝑚 sin𝛿 + 𝐹𝑦,𝑅 +𝐹𝑦,𝐹 cos 𝛿 + 𝑚 𝑣𝑥 𝑟)

1

𝐼𝑧
(𝐿𝐹(𝐹𝑚 sin 𝛿 +𝐹𝑦,𝐹 cos 𝛿) − 𝐹𝑦,𝑅 𝐿𝑅 ]

 
 
 
 
 

(4) 

 

Regarding the particular case of the CAT15x, it boasts a powerful rear wheel drive system 

(RWD) system, a feature that significantly influences its handling dynamics. Unlike front 

wheel drive (FWD) vehicles, where the engine’s force propels the car through the front 

wheels, or all-wheel drive (AWD) vehicles, where that force is propelled through all wheels, 
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the car built by BCN eMotorsport students channels its power to the rear wheels. This 

configuration requires some modifications in the general dynamic bicycle model stated 

above (4), as the absence of engine force acting directly on the front tires impacts the overall 

behaviour of the vehicle.  

The adapted dynamic equations to represent a RWD car are:  

[
�̇�𝑥

�̇�𝑦

�̇�

] =

[
 
 
 
 
 
1

𝑚
(𝐹𝑚(1−𝐹𝑦,𝐹 sin𝛿 + 𝑚 𝑣𝑦 𝑟 − 𝐹𝑓)

1

𝑚
(𝐹𝑦,𝑅 +𝐹𝑦,𝐹 cos 𝛿𝑚 − 𝑣𝑥 𝑟)

1

𝐼𝑧
(𝐿𝐹 𝐹𝑦,𝐹 cos 𝛿 − 𝐿𝑅 𝐹𝑦,𝑅)

]
 
 
 
 
 

(5) 

4.3. Tire modelling 

Tires play a crucial role in automotive vehicles, as the performance, efficiency and safety of 

vehicles depend largely on how the tires interact with the road or surface they are on. 

However, modelling this interaction is a very complex work because many factors must be 

considered, such as camber (the angle at which the tire contacts the road), load (weight 

placed on the tire) and various external conditions depending on the environment. The goal 

is to develop a model that accurately represents the behaviour of the tires of a vehicle 

across a wide range of operating conditions. 

The most common model used to represent the tires is the Pacejka tire model, which in 

practice is known for its accuracy in terms of emulating reality [14]. To be able to calculate 

the lateral force (it is customary to only consider the lateral force as it provides suitable 

results for not extremely advanced studies) using the Pacejka magic formula, it is needed 

to consider the vertical load on the tire (Fz) several constant parameters such as the 

stiffness factor (B), the shape factor (C) and the peak value (D). To obtain its values, the 

following formulas are applied: 

We define C as a constant value between 1 and 1,8. 

𝐷 = 𝐹𝑧(𝑎1 𝐹𝑧 + 𝑎2)(1 − 𝑎15 γ
2) (6) 

 

BCD = 𝑎3 sin (arctan(
𝐹𝑧

𝑎4
) 2) (1 − 𝑎5 |γ|) (7) 

 

𝐵 =
𝐵𝐶𝐷

𝐶𝐷
(8) 
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𝐸 = (𝑎6 𝐹𝑧 + 𝑎7) + (1 − (𝑎16 γ + 𝑎17)𝑠𝑖𝑔𝑛(α + 𝐻)) (9) 

 

The vertical load (Fz) comprises the gravity (g) and the mass of the vehicle and the driver 

(m): 

𝐹𝑧 = 𝑔 ⋅ 𝑚 (10) 

 

It is also crucial to consider the horizontal shift (H), the vertical shift (V) and the slip angle 

(α), which are calculated as follows: 

H = a8 Fz + a9 + a10𝛾 (11) 

 

V = 𝑎11 𝐹𝑧 + 𝑎12 + (𝑎13 𝐹𝑧 + 𝑎14) γ 𝐹𝑧 (12) 

 

Bx1 = B(α + 𝐻) (13) 

 

With all the previous parameters defined, it is possible to obtain the lateral force generated 

by the tires through the magic formula, which is stated as follows: 

Fy = Fz ⋅ D ⋅ sin [C ⋅ arctan (Bx1 − E ⋅ (Bx1 − arctan(Bx1)))] + V (14) 

 

As a car has two front and two rear wheels, to obtain more realistic results it is necessary 

to use different Pacejka constant values for front and rear tires, as the behaviour of them is 

usually quite different. Therefore, two different lateral forces are obtained, Fy,F for the front 

axle and Fy,R for the rear one. 

Simplified Magic Formula (constant coefficients) 

To facilitate the analysis and computation of tire behaviour, it is often employed a simplified 

approach of the Pacejka magic formula that relies on using the four dimensionless B, C, D 

and E coefficients as constant values. These, they do not depend on load, camber or further 
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parameters, and they serve as essential elements in the formula stated above to model and 

predict the tire performance. This simplification is very useful to obtain a more manageable 

model to work with. 

𝐹𝑦 = 𝐹𝑧 ⋅ 𝐷 ⋅ 𝑠in [𝐶 ⋅ 𝑎𝑟𝑐𝑡𝑎𝑛 (𝐵α − 𝐸 ⋅ (𝐵α − 𝑎𝑟𝑐𝑡𝑎𝑛(𝐵α)))] (15) 

 

Another more approximate simplification, which can be useful on certain models as it also 

can achieve a very similar result, involves not taking into consideration either the E 

coefficient or the vertical load. This concrete formula works when the parameter D itself 

comprises the vertical load. 

𝐹𝑦 = 𝐷 ⋅ 𝑠in[𝐶 ⋅ 𝑎𝑟𝑐𝑡𝑎𝑛(𝐵α)] (16) 

 

 

Figure 5. Representation of the tire model 

In the specific case this project is focused on, the Pacejka constants used to model the 

vehicle are determined by those provided by the manufacturer of the tires used in the 

formula student car (CAT15x). This is mainly because to obtain more accurate values of 

the coefficients than these, it would be necessary to perform large studies and analysis of 

the behaviour of the wheels and the vehicle, which is beyond the scope of this project as it 

is not focused on it. Furthermore, the values provided by the manufacturer have been 

obtained from their own studies and should provide a result quite close to reality. It should 

be noted that as the front and rear tires are not exactly the same and do not behave in the 
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same way, the values provided are different for front and rear tires, thus providing more 

precision. 

These Pacejka constants considered are the following: 

𝐵𝐹 = 10,5507 

𝐵𝑅 = 10,5507 

𝐶𝐹 = −1,2705 

𝐶𝑅 = −1,2705 

𝐷𝐹 = 2208,0635 

𝐷𝑅 = 2563,5990 

4.4. Slip angle 

The slip angle or cornering angle is one of the fundamental concepts when modelling the 

dynamics of a vehicle. Understanding and quantifying slip angle in a vehicle model is crucial 

for obtaining an accurate representation as close to reality as possible. It refers to the angle 

between the direction of the wheels and the direction in which the vehicle itself is moving. 

The slip angle is usually zero when the car is going straight, as the wheels are aligned with 

the direction of the trajectory the vehicle is following. That differs when the car is turning, 

because in that moment the wheels are offset from the direction of the body of the car, and 

the angle between them is what receives the name of slip angle. 

As front and rear wheels are not always matching its direction, and the distance from them 

to the CoG is not the same, the slip angle is computed independently for each axle. In both 

cases, the calculation takes into account longitudinal velocity (Vx) and lateral velocity (Vy), 

as well as the rotational one (r), which is factored alongside the distances from the wheel 

axes to the CoG (LF for the front and LR for the rear). Moreover, in the front axle the steering 

angle (δ) appears in the equation, as the front wheels are the ones subject to turning. In 

contrast, the steering angle has no impact on the back wheels, given that they cannot rotate 

laterally. 

The equations are considered as: 

[
𝛼𝐹

𝛼𝑅
] =

[
 
 
 
 tan−1 (

𝑣𝑦 + 𝐿𝐹 ∙ 𝑟

𝑣𝑥
) − 𝛿

tan−1 (
𝑣𝑦 + 𝐿𝑅 ∙ 𝑟

𝑣𝑥
)

]
 
 
 
 

(17) 
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4.5. Friction 

Aerodynamic Drag Force (Fdrag) 

The aerodynamic drag force is the one acting in the opposite direction of the car's forward 

motion due to air resistance or aerodynamic drag. This force is a result of the vehicle moving 

through the air, and its magnitude depends on several factors, including the speed, the 

shape and the air density. The equation for aerodynamic drag force is composed of the 

frontal cross-sectional area of the car (A), the air density (ρair), the drag coefficient (Cd) and 

the longitudinal velocity (vx). It can be represented as: 

𝐹𝑑rag =
1

2
⋅ 𝐴 ⋅ ρ𝑎𝑖𝑟 ⋅ 𝐶𝑑 ⋅ 𝑣𝑥

2 (18) 

 

The current drag coefficient for the CAT15x calculated by the team through some tests is: 

𝐶𝑑 = 1,793 

Rolling Resistance (Fr) 

The force that opposes the motion of the wheels of the car as they roll on the road surface 

receives the name of rolling resistance. It is mainly dependent on tire factors such as the 

type and the pressure, as well as on other variables like the road surface. The equation for 

rolling resistance is typically linear, consisting of the rolling resistance coefficient (Cr) 

multiplied by the vertical load on the tire (Fz). It is commonly stated as: 

𝐹𝑟 = 𝐶𝑟 ⋅ 𝐹𝑧 (19) 

 

The current rolling resistance coefficient for the CAT15x calculated by the team through 

some tests is: 

𝐶𝑟 = 0,0045 

 

Then, the friction force (Ff) is considered as the sum of both rolling resistance and drag 

force, resulting as: 

𝐹𝑓 = 𝐹𝑟 + 𝐹𝑑𝑟𝑎𝑔 = 𝐶𝑟 ⋅ 𝐹𝑧 +
1

2
⋅ 𝐴 ⋅ ρ𝑎𝑖𝑟 ⋅ 𝐶𝑑 ⋅ 𝑣𝑥

2 (20) 
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4.6. The BCN eMotorsport car: CAT15x 

The CAT15x is the fifteenth Formula Student single-seater of the BCN eMotorsport team. 

It represents a significant evolution from its predecessor, the CAT14x, both in its design and 

performance. This vehicle is the second prototype designed by the team with the aim of 

participating in manual and autonomous events during the same competition, which was 

successfully achieved in the 2023 summer season. 

 

Figure 6. Side view of the CAT15x 

 

The CAT15x is defined by several technical characteristics that play a crucial role in its 

performance. With a very low vehicle mass of 200 kg, with all the elements distributed in 

order to obtain a carefully balanced weight distribution, the centre of gravity is located a bit 

behind the middle of the car, which results in being perfect for race driving. In terms of 

aerodynamics, a meticulous work was done by the members of the team in the construction 

of large front and rear wing, which are very well suited and provide better ground hugging 

in corners. Regarding control systems, the car is equipped with traction control and 

regenerative break algorithms, which allows a smoother driving experience when trying to 

go really fast to decrease lap times in competitions. 
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After the construction of the CAT15x, the team carried on several studies and tests with it 

in order to know the car in detail, obtaining precise values for crucial parameters related to 

technical aspects. Some of these are considered for the work of this thesis, and are detailed 

below: 

m  =  200 kg 

𝐿𝐹 = 0,7994 m 

𝐿𝑅 = 0,7356 m 

𝐼𝑧 = 129,024 𝑘𝑔/m2 

𝐴𝑎𝑒𝑟𝑜 = 1 m2 

𝐶𝑑 = 1,793 

𝐶𝑟 = 0,0045 
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5. Software 

In order to be able to perform the necessary calculations and subsequent simulations, a 

sufficiently powerful software is required. Regarding this project, MATLAB and Simulink are 

the main tools chosen to work with, as its combination is particularly suitable for data 

acquisition, processing and analysis, and also fitting for running appropriate simulations for 

the scope of the thesis in question. In addition, for some approaches and side tasks the 

programming languages C++ and Python are also used. 

5.1. MATLAB 

MATLAB is a technical computing programming environment really useful for algorithm 

development, data analysis, visualization and numerical computation, among many other 

applications. Its extensive library of built-in functions and toolboxes make it a truly valuable 

tool for rigorous mathematical modelling, calculations, analyses and simulations. All these 

possibilities within MATLAB prove particularly beneficial when working on a Formula 

Student vehicle, as it allows to perform sophisticated simulations of vehicle dynamics and 

control systems, aerodynamics, and other critical aspects. 

In the context of this thesis, MATLAB is the principal tool used for mathematical modelling 

and quantitative simulation and analysis of the BCN eMotorsport’s Formula Student car. 

Through the development of numerous scripts and functions running in its environment, as 

well as taking advantage of some built-in tools, it is possible to obtain accurate enough 

results for the scope of this project. For these reasons, MATLAB stands as the central 

computational and simulation engine driving the success of this project, ensuring a thorough 

and fairly realistic examination of the simulations and analyses carried around the team’s 

vehicle studied (CAT15x). 

5.2. Simulink 

One of the most commonly used graphical programming environments that allows the user 

to model, simulate and analyse complex dynamic systems, such as electrical circuits, 

mechanical and control systems, signal processing, among other things, is Simulink. It is 

perfectly integrated with MATLAB, enabling the usage of scripts and functions within the 

models, as well as exporting and analysing simulation results in MATLAB. Simulink is such 

a powerful tool for designing, implementing and analysing control algorithms, sensors and 

actuators in racing cars. In addition, it is particularly useful to define a realistic model of a 

vehicle and carry on simulations to test its behaviour and performance in close-to-reality 

scenarios. 

Simulink is the main tool used in the BCN eMotorsport Formula Student team regarding 
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control systems and algorithms, and that is one of the main reasons why it is widely used 

in this particular project. By the usage of several blocks and subsystems in the Simulink 

environment, as well as some built-in tools, the team is able to represent the system 

dynamics of the car and the control systems and algorithms that act upon it. For all the 

things stated above, Simulink complements  MATLAB as the essential computational and 

simulation engine driving the success of this project and the team. 

 

Figure 7. Simulink scheme used by BCN eMotorsport for traction control 

5.3. C++ 

C++ is a programming language that offers high performance, flexibility and control over 

hardware and software resources. It is extensively used for software development and 

scientific applications that require speed, efficiency and reliability. For Formula Student 

projects, C++ is particularly useful when it comes to the implementation of complex control 

algorithms and data structures, as well as to interact with the hardware and sensors of the 

vehicle. Also, it can be used to integrate the system with a commonly used framework for 

developing and running software for robots called ROS (Robot Operating System), which 

is a feature that makes it really interesting when working with a race car. 

For the purposes of this thesis, C++ is used in the background for certain control systems 

and algorithms related to the car, as well as code that is generated in that language through 

the schemes and simulations carried out in Simulink, usually to make it more appropriate 

when implementing them in real life, but it is not used directly to develop the modelling, 

analyses and simulations done. 
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5.4. Python 

Python is one of the most versatile open-source programming languages. It is renowned 

for its simplicity and readability, while excelling in importing, processing and analysing data, 

which makes it an interesting option for comprehensive vehicle modelling and real data 

analysis tasks. Its wide ecosystem of libraries such as Pandas, NumPy, Matplotlib, or SciPy, 

as well as all the existing forums and documentation about Python given the strong 

community that surrounds it, allows engineers and scientists an efficient handling of data-

driven projects. 

First preliminary analyses and simulations in this thesis were done through the development 

of various notebooks and scripts based on Python. However, after those initial approaches, 

a strategic decision was made to consolidate virtually all software usage to MATLAB as the 

project evolved. This shift was motivated by the superior suitability of MATLAB for handling 

complex mathematical modelling and calculations, in addition to its extensive included 

toolboxes specifically built for vehicle modelling and simulation (and given that UPC 

provides licenses to the students). Furthermore, it was taken under consideration that 

MATLAB is the main tool used by the BCN eMotorsport team in aspects closely related to 

vehicle control and dynamics, so working with the same tools facilitates smooth integration 

and collaboration within the team. 
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6. Model simulation and analysis 

Comprehensive analyses of several models are undertaken through simulation to delve into 

their complexities. The simulation section constitutes a pilar model of this thesis. Four 

distinct bicycle models are employed to evaluate their capacity in representing the real-

world dynamics of the vehicle CAT15x. The accuracy of the various models is tested and 

analysed by subjecting them to comparisons with real data derived from trial runs with the 

actual car. In the simulations, the models are fed with torque values for both front and rear 

axles, and steering angle values, obtained from the sensors of the car during the trial runs. 

The outputs generated by the models are meticulously examined, focusing on key 

parameters such as the lateral, the longitudinal and the rotational velocities. The 

comparison is conducted by visualizing these simulated velocity values over time through 

graphs and quantitatively analysing the MSE (Mean Squared Error) against the velocities 

directly captured by sensors during real-life runs, which provides the average squared 

differences between the model's predictions and the actual values. This approach enables 

a detailed assessment of each model’s behaviour (visually through graphs and quantitively 

through the error) in response to the exact same real-world inputs, clarifying their 

capabilities and limitations in accurately replicating the dynamics of the vehicle. 

Real-life testing data 

To execute the simulations and subsequent analyses, real-life data from tests conducted 

by the BCN eMotorsport team with the CAT15x car is used. These tests are mainly 

conducted to see where is room for improvement in order to obtain better results in 

competitions, either by increasing reliability or by trying to reduce lap times. 

Three distinct datasets are employed, each extracted from a singular run conducted on 

different days during 2023 year. In the runs considered the car is driven in autonomous 

mode around different track layouts, which are designed following similar scenarios to those 

of the competitions. Specifically, a first analysis and simulation are carried on with data 

captured on October 19, followed by a second one using information from December 17, 

and a final analysis based on data acquired on December 29. These selection of datasets 

from diverse days is rooted in the intention to capture the model’s behaviour under varying 

weather conditions and diverse track scenarios. This multifaceted approach ensures a 

robust evaluation, enhancing the reliability and applicability of the models across a range of 

dynamic driving environments. 
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Figure 8. CAT15x undergoing autonomous dynamic tests 

Vehicle models 

The first model proposed (Simplified Model) encompass a simplified dynamic bicycle model 

version with a lateral velocity that is considered as an input, taken directly from real-data. 

The second model considered (Base Model) it is also a dynamic bicycle model, but this one 

comprehends both lateral and longitudinal velocity as variables, therefore making it much 

more complete. This both models, the Simplified and the Base one, use some constant 

parameters approximated by the team considering the Pacejka magic formula with some 

given parameters by the tire manufacturer, in order to calculate the forces that represent 

the interaction of the vehicle tires with the road. 

The next models of the vehicle presented are two intricate variants derived from the Base 

one, as they also contemplate a fundamental dynamic bicycle model. The main differences 

with the Base Model are in how the forces that act on the tires are calculated, since here 

an auxiliary function is used in order to theoretically obtain more precise values than when 

calculating it through some approximated coefficients for the Pacejka magic formula. 

Regarding these last two, they are practically identical, but one of them (Calc Fy Model) 

considers the vertical load of the tires as if the car has the weight perfectly distributed 

between both axes, and the other one (Calc Fz & Fy Model) pretends to be more realistic 

taking into account the real position of the CoG (Centre of Gravity). 

6.1. Simulation setup 

The structure of the simulation is organized comprising some fundamental MATLAB 

functions and scripts (Solver, Simulator and Comparator, Vehicle Model Definer, Data 

Preparation and Model Optimiser), while calling some other auxiliary functions (Forces 

Calculator and MSE Calculator) and built-in tools (ODE Solver and Pattern Search). The 

principal functions are responsible for defining the vehicle models and its differential 

equations that will be considered during the concrete simulation. In tandem, the whole 
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simulation is run from a main script that is formulated to function as a solver, simulator and 

comparator. It is built to orchestrate the simulation process through loading real test data, 

calling and executing the mode functions, and finally comparing them graphically and 

quantitatively. This organizational setup ensures clarity and efficiency in the exploration of 

the accuracy of different car models and provides the user visual representations as well 

as quantitative results in order to be able to analyse the results. 

 

Figure 9. Conceptual map of the simulation structure 

Solver, Simulator and Comparator 

This is the main script of the simulation structure, as it solves the vehicle models, performs 

simulations with them considering real-data, and provides a graphical and quantitative 

display of their outcomes. It begins with the establishment of some constant parameters, 

as well as with the usage of the Data Preparation function to prepare the real testing data. 

Subsequently, the built-in function ODE45 is used to solve each of the vehicle models to be 

considered in a concrete simulation. After the simulations are completed, it follows with 

plotting the estimated values obtained for all models and the real ones, displaying them side 

by side in three distinct graphs (for lateral, longitudinal, and rotational velocity against time). 

These visualizations provide a comprehensive overview of the variations between the 

different models considered, and against the reality. Additionally, mean squared error 

values are calculated using the MSE Calculator function, displaying them to offer a 

quantitative evaluation. Finally, the script saves the charts in a specific folder chosen by the 

user. 

In brief, this script serves as the primary pilar of the simulation and analysis setup, serving 

as the main tool for running all simulations and providing all needed valuable insights for 

analysing and comparing different vehicle models accuracy. 
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Vehicle Model Definer 

It defines the vehicle model used in the simulation and computes the differential equations 

governing its motion. First, it states several constants defining the physical properties of the 

car, such as aerodynamic parameters, tire characteristics, mass or the inertial moment. 

Additionally, a condition based on time is defined to ignore some extremely small input 

steering values. Then, it describes the equations of the bicycle model and the ones defining 

the forces that are considered during the simulation, like the vertical load on the tires, slip 

angles or friction forces (in some of the models, few of these equations are defined through 

calling some auxiliary functions, which are stated separately in order to maintain a more 

clean and optimised script). Finally, the code incorporates an order reduction process, 

which provides a set of ODEs (Ordinary Differential Equations) that represent the lateral 

and longitudinal dynamics of the car. 

In summary, this script is where the vehicle model is defined, facilitating the subsequent 

simulation and analysis of its dynamic behaviour under various inputs and conditions. 

Model Optimiser 

This script is designed to enhance the accuracy of a vehicle model by iteratively optimising 

some of its parameters based on real data inputs. First, it defines the parameters subjected 

to optimisation and pre-processes the data using the Data Preparation function, following 

with a simulation process of the model. In addition, lower and upper bounds for the 

parameters to optimise are set to avoid obtaining unrealistic results. Then, the script 

employs the Pattern Search function to refine the parameters iteratively, which uses the 

MSE Calculator one to evaluate the error for each iteration. The outcome of the optimisation 

process is the determination of the optimal parameters that result in the minimum MSE for 

the model estimations against the reality. Finally, the obtained values are displayed, 

alongside insights into the runtime and iterations of the optimisation. 

Data Preparation 

It is used for preparing and processing the data obtained from the real tests done with the 

car. First, this function loads all the data coming from the tests, which is saved in a csv file 

that consists of a table with an innumerable number of columns representing different 

information measured by the sensors mounted on the car. Then, it selects from that file just 

the parameters that are used in the other scripts and functions during the simulation 

process, and it removes some of the first and some of the last values of the data collected 

that are not useful for the analysis (mainly because in the very first and last moments of the 

test runs, the car is not moving) and it filters out some other values that are extremely low 

and could cause problems. In addition, through some equations it calculates the force 

applied by the motors. Finally, it returns the outputs of this MATLAB code function, which 

are a table with the data that is useful and ready to be used in the analyses and simulations, 



p. 38  Thesis 

 

and the force provided by the engines. 

MSE (Mean Squared Error) Calculator 

This function is essentially designed to facilitate quantitative analysis of simulation 

outcomes through computing their mean squared error values with respect to the real data. 

It serves as a fundamental tool within the Model Optimiser script, as its primary function is 

to gauge the error by comparing simulation results against real data. Additionally, it plays a 

main role in the Solver, Simulator and Comparator script, in order to display the MSE values 

for all simulations carried on each time.  

Forces Calculator 

The role of this function is to precisely compute the values for the interaction forces exerted 

on the tires of the vehicle. It takes some parameters coming from real data as inputs, which 

are processed through some sophisticated operations calibrated with corrector coefficients, 

to finally deliver accurate values for the force in question. These obtained outcomes are 

dependent on a functional relationship with slip angle. It is specifically used in the Vehicle 

Model Definer script when considering one of the more complex models (Calc Fz & Fy). 

Built-in Functions (ODE45, Pattern Search) 

Two pivotal MATLAB built-in functions are employed within the simulation setup. ODE45, 

short for Ordinary Differential Equation 45, stands as a robust solver used for solving 

differential equations. In this context, it is used to numerically solve the ODEs of the models 

that describe their evolution over time, making it a relevant component for conducting the 

simulations, providing precise solutions. On the other hand, the Pattern Search function 

essentially works an optimisation algorithm that explores a parameter space, iteratively 

adjusting values to find the minimum of a function. Regarding this project, it is called within 

the Model Optimiser script to adjust some parameters of the model minimizing the 

discrepancies between simulated outcomes and real data. 

6.2. Simplified Model simulation 

The model used in this simulation employs a simplified dynamic bicycle model composed 

of the equations detailed in Section 4.2 in combination with the equations for calculating the 

slip angle, the friction (drag force and rolling resistance), and the tire interactions with the 

surface through the Pacejka magic formula. Notably, it considers the lateral velocity (Vx) as 

an input, directly extracted from real data from the tests. This simplification allows working 

with a more basic representation of the model while providing foundational understanding 

of the vehicle dynamics. This serves as a valuable initial small-scale demonstration to 

assess whether the model behaves in a way that appears to start from an appropriate basis. 
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Such insights are particularly helpful in determining if further development in this direction 

is worthwhile or if some adjustments are needed. 

As detailed before, the data used to carry on the simulations is obtained from BCN 

eMotorsport’s CAT15x tests on October 19, December 17 and December 29, in order to 

get a realistic and reliable evaluation of the model’s performance. 

As in the case of this Simplified Model the longitudinal velocity (Vx) is an input coming from 

real data, it makes no sense to study it, and that’s why only lateral and rotational velocity 

are considered. 

October 19, 2023 Test 

 

Figure 10. Lateral velocity obtained for the Simplified Model under October 19 data  

 

Regarding the Figure 10 it can be said that both the Simplified Model and real data show a 

similar trend for the lateral velocity: an initial spike around the 14 second mark followed by 

a gradual decrease, which reflects an initial fast move from the car and more stables moves 

after that. However, there is a remarkable difference between both lines as the real data 

has far more pronounced fluctuations than the Simplified Model, meaning that in this case 

the model is not that effective in predicting the reality as it ignores some of the factors that 

affect the vehicle’s lateral velocity. 
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Figure 11. Rotational velocity obtained for the Simplified Model under October 19 data 

 

For the rotational velocity, the simulated one obtains similar values as the real values 

among all the run, closely following the same path over time and presenting the same 

frequency of oscillation. Therefore, it can be said that in this case the Simplified Model 

presents a really accurate approximation. However, the Simplified Model slightly 

smoothens some fluctuations that appear in the reality. 

 

 Simplified Model 

MSE Lateral Velocity 0,4809 

MSE Rotational Velocity 0,0372 

Table 1. Mean Squared Error in velocities for the Simplified Model under October 19 data 

Quantitatively analysing the Simplified Model MSE for both lateral and rotational velocities 

among this first run, it is quite apparent that it presents a fairly good approximation. 

Nonetheless, it reveals distinct performance characteristics for lateral and rotational 

velocity, as the MSE is notably lower for the rotational velocity, suggesting that regarding 

this first test the model has better accuracy in predicting the rotational values of the velocity.  
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December 17, 2023 Test 

 

Figure 12. Lateral velocity obtained for the Simplified Model under December 17 data 

 

The prediction of the lateral velocity in this precise run follows the same overall trend as the 

real one, but seems markedly deviated when the values are low. For example, it can be 

seen that the Simplified Model tends to underestimate the lateral velocity when it is positive 

and overestimate it when it is negative, and at the top of the first velocity peak that appears 

from the second 15 to 18, the model presents some misleading values. Moreover, these 

differences are not that remarkable in absolute terms, as in this run the speeds are generally 

low (-2 to 3,5 km/h), and this visually makes the deviation appear larger than it is.  
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Figure 13. Rotational velocity obtained for the Simplified Model under December 17 data 

 

As seen in Figure 13 the Simplified Model prediction is close to the reality during most of 

the time, but some differences can be spotted. For instance, at the top of the first velocity 

peak that appears from the second 15 to 18, the model presents some misleading values, 

and when the rotational velocity is around 0, it seems to have a bit of displacement. Despite 

this, in general terms the model appears to provide a fairly accurate result here. 

 

 Simplified Model 

MSE Lateral Velocity 0,0750 

MSE Rotational Velocity 0,0454 

Table 2. Mean Squared Error in velocities for the Simplified Model under December 17 data 

In this case, both errors for lateral and rotational velocities are fairly low, which leads to 

validate positively the model performance regarding this dataset. In addition, the rotational 

velocity MSE is slightly below the lateral one. 
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December 29, 2023 Test 

 

Figure 14. Lateral velocity obtained for the Simplified Model under December 29 data 

 

Looking at the chart, it is clear that the Simplified Model exhibits a pattern of change similar 

to the real data, but it differs in the amplitude and frequency of the variations. In the real 

case the lateral velocity has more frequent and sharper ups and downs, indicating more 

variability, and this is not that precisely reflected in the simulated one. 
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Figure 15. Rotational velocity obtained for the Simplified Model under December 29 data 

 

As it is clear, the behaviour of both rotational velocities is really similar in this occasion. The 

simulated values obtained for the Simplified Model coincide with the real ones practically at 

all times throughout the course of the time. In any case, it could be pointed that there is a 

small difference in the first 12 seconds and in some of the peak values. 

 

 Simplified Model 

MSE Lateral Velocity 0,1893 

MSE Rotational Velocity 0,0272 

Table 3. Mean Squared Error in velocities for the Simplified Model under December 29 data 

Taking into account the values obtained for MSE, it seems that in this scenario the model 

provides decent predictions. It can also be noted that the fit for the lateral velocity is worse 

than for the rotational, although it is still not a bad value. 
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Average results 

Considering each run of the three different sets of data used for the simulations, the 

following averages for the MSE values are obtained:  

 

 Simplified Model 

Avg MSE Lateral Velocity 0,2484 

Avg MSE Rotational Velocity 0,0366 

Table 4. Average Mean Squared Error in velocities for the Simplified Model 

Considering the relatively low average MSE values obtained during the three runs, it can 

be said that the Simplified Model appears to perform reasonably well. The average MSE 

for lateral velocity of 0,2484, and for rotational velocity, standing at 0,0366, reinforces the 

ability of the model studied to provide accurate predictions across different scenarios. This 

indicates a strong fit of the simulation to the reality, implying that the model is robust in 

capturing the dynamics of the car, especially in terms of rotational velocity. Taking into 

account the individual results of each test, it is evident that some variability across different 

situations exists, as for example the increased error exhibited during the first simulation with 

October 19 test data. Despite these minor variations, the overall results of MSE values 

observed are fairly low, which leads to considering the Simplified Model as a good basis to 

continue developing a more complex model based on the same initial basis. 

6.3. Base Model simulation 

Vehicle Model 

The model considered in this second simulation represents an advancement in complexity 

to the Simplified one by also incorporating lateral velocity as a variable instead of an input 

from real data. It starts from the same basis as the previous model, a dynamic bicycle model 

composed of the equations detailed in Section 4.2 in combination with the equations for 

calculating the slip angle, the friction (drag force and rolling resistance), and the tire 

interactions with the surface through the Pacejka magic formula using the constant 

coefficients provided by the team. The inclusion of the model’s prediction of lateral, 

longitudinal and rotational velocities enables a better understanding of how the vehicle 

could behave in different driving conditions, making the Base Model a valuable tool for 

analysis and simulation. 
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October 19, 2023 Test 

 

Figure 16. Longitudinal velocity obtained for the Base Model under October 19 data 

 

Regarding the graph above, it can be stated that in this case the Base Model appears to 

obtain an adequate longitudinal velocity representation of the reality, capturing the key 

phases of acceleration and deceleration, while following. In more detail, both the Base 

Model and real data lines follow a very similar path during the initial acceleration (0-12 

seconds) and the intermediate phase where the longitudinal velocity is more stable (12-50 

seconds). Although during the last part of the simulation, it seems that the values acquired 

are not that much precise, as there is a notable difference at specific time points because 

the deceleration in the simulated values is less pronounced. 
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Figure 17. Lateral velocity obtained for the Base Model under October 19 data 

 

For the lateral velocity it is observed that the Base Model and the actual data exhibit a 

comparable pattern characterized by an initial surge around the 4th second of the run. 

Despite that, there is no denying that the velocity predicted by the model has significant less 

pronounced highs and lows. 

 



p. 48  Thesis 

 

 

Figure 18. Rotational velocity obtained for the Base Model under October 19 data 

 

In this case, the simulated values of rotational velocity for the Base Model closely mirrors 

the reality throughout most of the run. The trajectory followed is softer in the peaks, but the 

oscillation frequency and values obtained are similar to the ones from real data. Moreover, 

during the last 10 seconds of the simulation some notable deviation appears. 

 

 Base Model 

MSE Longitudinal Velocity 1,2871 

MSE Lateral Velocity 0,5276 

MSE Rotational Velocity 0,0474 

Table 5. Mean Squared Error in velocities for the Base Model under October 19 data 

Considering the MSE values obtained during this first dataset for the Base Model, it appears 

that there is a considerable disparity between the predicted and actual values in the 

longitudinal velocity. Anyway, checking the corresponding graph (Figure 16) it seems that 

the higher error value could be probably caused because the longitudinal velocities reach 

higher values than the lateral or rotational ones, and in a short amount of time (fast 

accelerations), which might be an influential factor. Meanwhile, the Base Model exhibits 

relatively better accuracy in predicting lateral velocity, and suggests considerably great 

precision in predicting rotational motion, as reflected by its low MSE. 
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December 17, 2023 Test 

 

Figure 19. Longitudinal velocity obtained for the Base Model under December 17 data 

 

On Figure 19 it is can be observed that the simulated longitudinal velocity for the Base 

Model presents the same fluctuations over time as the real data from the test, though there 

is a significant offset during almost all the run. The actual data has two more extreme peaks 

during the first 20 seconds in comparison to the simulated one where are softened. 
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Figure 20. Lateral velocity obtained for the Base Model under December 17 data 

 

Observing the diagram, it is clear that there are some existent discrepancies between the 

Base Model predicted results and the reality in terms especially in terms of the amplitude 

and frequency of the lateral velocity changes. In particular, the Base Model often provides 

lower values when the velocity is positive and higher ones when it is negative, and there 

also are some inaccurate appearances at the top of the first velocity peak. However, the 

trend that follows the Base Model is almost identical to the real data, and the differences 

named are don’t seem much significant considering that the speeds in this run are generally 

low, which could make them look bigger than really are.  
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Figure 21. Rotational velocity obtained for the Base Model under December 17 data 

 

The rotational velocity obtained from the simulation of the Base Model in this case mostly 

matches the real data obtained from the trial. In any event, some inaccurate values are 

given particularly at the highest points of the first apex, whilst in the last part of the run (from 

the second 30 to the end) more extreme values are obtained in the highest and lowest 

points. 

 

 Base Model 

MSE Longitudinal Velocity 3,8851 

MSE Lateral Velocity 0,0817 

MSE Rotational Velocity 0,0947 

Table 6. Mean Squared Error in velocities for the Base Model under December 17 data 

Comparing quantitatively the differences between the velocities predicted by the Base 

Model and the reality, it can be said that in terms of lateral and rotational velocities the 

model offers reasonable precision. Besides, the MSE for the longitudinal velocity is 

relatively elevated, and from having a look at the corresponding chart (Figure 19), it can be 

deduced that this difference could be mainly due to the fact that the longitudinal speeds are 

high and the existing offset during almost all the run has a significant effect. 
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December 29, 2023 Test 

 

Figure 22. Longitudinal velocity obtained for the Base Model under December 17 data 

 

In the figure above it is showed that the simulated longitudinal velocity by the model follows 

the same path as the data coming from the test. Even though, the accuracy drops in the 

extreme values, as the simulated values are slightly flattened, and during the latest 5 

seconds of the run where the Base Model fails to be precise slowing down less than 

expected. 
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Figure 23. Lateral velocity obtained for the Base Model under December 17 data 

 

Visualizing the lateral velocity against time during this particular run, it can be stated that 

the general course of both data obtained by the simulation through the model and the real 

data is alike. There are still some discrepancies in the magnitude and frequency of the 

fluctuations, where are more pronounced and abrupt in the reality than in the lateral velocity 

the model provides. 
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Figure 24. Rotational velocity obtained for the Base Model under December 29 data 

 

With respect to Figure 24, it is clear that the rotational velocity obtained by the Base Model 

has a very close resemblance to the trial data. Despite a slight existent discrepancy in the 

first 12 seconds of the run and in some of the maximum and minimum values, the rotational 

velocity provided by the Base Model matches constantly the actual values. 

 

 Base Model 

MSE Longitudinal Velocity 3,9182 

MSE Lateral Velocity 0,1828 

MSE Rotational Velocity 0,0316 

Table 7. Mean Squared Error in velocities for the Base Model under December 29 data 

Regarding the MSE values for the velocities obtained with this particular set of data, the 

less accurate prediction is clearly for the longitudinal velocity, as its value is relatively high. 

By checking its graph (Figure 22), it doesn’t seem to be that inaccurate except for the last 

5 seconds, so it might be the cause of that final values. In contrast, the Base Model presents 

a better performance in predicting lateral velocity, and even more in the rotational velocity 

case, where the value of mean squared error found is minimal, stating its reliability. 
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Average results 

Considering each run of the three different sets of data used for the simulations, the 

following averages for the MSE values are obtained:  

 

 Base Model 

Avg MSE Longitudinal Velocity 3,0301 

Avg MSE Lateral Velocity 0,2640 

Avg MSE Rotational Velocity 0,0579 

Table 8. Average Mean Squared Error in velocities for the Base Model 

Analysing the average of the MSE for the longitudinal, lateral and rotational velocities 

among the three sets of real data chosen, it can be generally affirmed that the Base Model 

offers a very decent performance. Comparing the averages to the individual test results, it 

can be seen that the simulation carried on with the test data from October 17 differs from 

the other two, as it obtains the lower error value for longitudinal velocity but higher values 

for both lateral and rotational velocities. The best prediction for lateral velocity is obtained 

with the dataset from December 19, and for longitudinal velocity with the last simulation, 

involving data from December 29. Despite these variations across the different runs, the 

average relatively low MSE values demonstrate that the Base Model manages to predict 

the velocities effectively in all the situations presented, especially the lateral and rotational 

ones. Regarding the average MSE obtained for the longitudinal velocity, it is clear that it is 

a bit high, but analysing the diagrams against time (Figures 16, 19 and 22) it can be 

concluded that the cause of this is due to the higher values of velocity reached, as the 

simulated data follows almost exactly the same pattern as the real data but with some offset 

or a located mistake on the last few seconds.  

6.4. Simplified Model vs Base Model 

An in-depth comparison of the simulation results obtained for the Simplified Model and the 

Base Model is conducted. By juxtaposing the predicted lateral and rotational velocities from 

both models in the same graphs, as well as the values from real data, the results are 

examined both visually and quantitatively thus providing valuable insights into the 

effectiveness and limitations of each model. 
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October 19, 2023 Test 

 

Figure 25. Lateral and rotational velocities comparison under October 19 data 

 

Regarding the velocity predictions of the Simplified and Base models, it can be seen that 

they are really similar between them in terms of accuracy against real data. The Simplified 

Model, however, performs better specifically during the very last seconds of the run, where 

the Base Model tends to deviate by showing more extreme values.  

 

 Simplified Model Base Model 

MSE Lateral Velocity 0,4809 0,5276 

MSE Rotational Velocity 0,0372 0,0474 

Table 9. Mean Squared Error in velocities under October 19 data by vehicle model 

In terms of the error observed for each model, the Simplified Model is slightly more precise 

in predicting the velocities than the Base Model. Nevertheless, both are quite similar, and 

the difference is not very pronounced. 
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December 17, 2023 Test 

 

Figure 26. Lateral and rotational velocities comparison under December 17 data 

 

Comparing the lateral and longitudinal velocities obtained for the Simplified and Base 

models among data obtained at December 17 test, it is plain that both models provide 

similar outcomes. Even so, some differences can be spotted, as the Simplified Model is 

closer to the reality in the peak values, where the Base Model deliver anomalies particularly 

during the last part of the run. 

 

 Simplified Model Base Model 

MSE Lateral Velocity 0,0750 0,0817 

MSE Rotational Velocity 0,0454 0,0947 

Table 10. Mean Squared Error in velocities under December 17 data by vehicle model 

In relation to the MSE values, there is no doubt that the Simplified Model performs better, 

particularly in estimating rotational velocity. Yet, the performances for the lateral velocity are 

near. 
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December 29, 2023 Test 

 

Figure 27. Lateral and rotational velocities comparison under December 29 data 

 

In this case, the effectiveness of both Simplified and Base models seems nearly identical. 

The two lines representing the models are almost one over another throughout the entire 

simulation, but it is true that for lateral speed, the Simplified Model appears to more 

accurately reflect some of the minimum values.  

 

 Simplified Model Base Model 

MSE Lateral Velocity 0,1893 0,1828 

MSE Rotational Velocity 0,0272 0,0316 

Table 11. Mean Squared Error in velocities under December 29 data by vehicle model 

The MSE values derived from this simulation reveal that the accuracy of both models is 

practically identical, with the Simplified Model minimally surpassing the Base Model.  

Average results 

Considering each run of the three different sets of data used for the simulations, the 

following averages for the MSE values are obtained:  

 

 Simplified Model Base Model 

Avg MSE Lateral Velocity 0,2484 0,2640 

Avg MSE Rotational Velocity 0,0366 0,0579 

Table 12. Average Mean Squared Error in velocities by vehicle model 

Analysing the average values for MSE in lateral and rotational velocities and considering 

the ones obtained in each of the three simulations done, it is clear that the Simplified Model 
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is a little more accurate when estimating its values. This outcome aligns with expectations, 

given that the Simplified Model does not simulate longitudinal velocity (directly takes the 

real one as input) when the Base one does. Consequently, the Simplified Model avoids any 

minimum error coming from this prediction, obtaining better accuracy thanks to its simplicity. 

As the differences between both models are not much big, this result is satisfactory, given 

that the Base Model is more complex and useful, which can also obtain results for 

longitudinal velocity. 

6.5. Base Model vs More Complex Models 

Moving beyond the Base Model, two intricate variants derived from it are introduced. These 

variants also come from the same dynamic bicycle model but differ in the calculation of 

forces acting on the tires. Instead of relying on the constant parameters calculated by the 

team based on the characteristics indicated by the tire manufacturer, an auxiliary function 

is employed to theoretically derive more precise values for these interaction forces, which 

is used for the front and rear axles separately, as they have distinct properties. This auxiliary 

complex function is coded on MATLAB and has been provided by the team, but basically it 

takes as inputs the slip ratio (SL), the slip angle (α), and the vertical load on the tire (Fz), 

and performs diverse complex operations involving corrector coefficients obtained by the 

team via experimental testing, to finally obtain the value of the lateral force on the tires (Fy) 

as a function of the slip angle.  

The first model variant, named as Calc Fy Model, assumes a perfectly distributed weight 

between both axes, providing a bit simplification on tire forces. The second variant, known 

as Calc Fz & Fy Model, aims for increased realism by considering the actual position of the 

CoG of the CAT15x when calculating the vertical load on the tire. 

A thorough analysis is carried out comparing the simulation outcomes from the Base Model 

and its more complex variants detailed above. The estimated longitudinal, lateral and 

rotational velocities are placed side by side in the same charts, along with the real data 

values. This allows for a visual and quantitative evaluation of the results, which reveals the 

strengths and weaknesses of each model. 
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October 19, 2023 Test 

 

Figure 28. Longitudinal velocity comparison under October 19 data 

 

Concerning the Figure 28, it can be said that the Base Model shows the best performance 

during most of the run, except during the last part of the run where the car decelerates 

rapidly. The velocity values predicted by the Calc Fy and Calc Fz & Fy models, represented 

with the yellow and the purple line respectively, also follow the real data closely at first, but 

it starts to deviate earlier than the Base Model and has some pretty constant offset during 

most part of the run. In addition, it seems that the Calc Fy Model overestimates the minimum 

extremes, being less accurate than the other two in this aspect.  



Autonomous guidance of a Formula Student car  p. 61 

 

 

Figure 29. Lateral velocity comparison under October 19 data 

 

The graph shows that the real data has various large spikes during the course of the run, 

which all three models try to replicate but they provide much flatter results, drawing a similar 

pattern. Notably, the Base Model is always a bit further away from the expected values, 

while the other two models are evenly matched, as the Calc Fy one follows the peaks better, 

whilst the Calc Fz & Fy aligns better where the velocity is near zero.  



p. 62  Thesis 

 

 

Figure 30. Rotational velocity comparison under October 19 data 

 

For the rotational velocity it seems that all three models replicate the real data precisely, but 

a bit smoothened. Comparing the predictions obtained, it is visible that the more complex 

models provide higher fluctuations than the Base one when the values are at the top of the 

diagram, particularly the Calc Fy one, which might provide some inaccuracies.  

 

 Base Model Fy Model Fz & Fy Model 

MSE Longitudinal Velocity 1,2871 1,9153 1,6444 

MSE Lateral Velocity 0,5276 0,4045 0,3937 

MSE Rotational Velocity 0,0474 0,0639 0,0526 

Table 13. Mean Squared Error in velocities under October 19 data by vehicle model 

Quantitatively analysing the MSE values obtained for the estimations carried on with the 

data set from October 19 test, it can be stated that the Base Model has performed better 

on longitudinal and rotational velocity, but in terms of lateral velocity both Calc Fy and Calc 

Fz & Fy models have been markedly superior. 
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December 17, 2023 Test 

 

Figure 31. Longitudinal velocity comparison under December 17 data 

 

As it can be observed, the models studied behave almost identical, following the same 

fluctuations as the real data, though there is a significant offset during almost all the run. In 

addition, within the last part of the simulation the Calc Fy and the Calc Fz & Fy models 

come closer to the reality than the Base Model. 
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Figure 32. Lateral velocity comparison under December 17 data 

 

In relation to the results for the lateral velocity displayed on the figure above, it can be stated 

that both two more complex models behave really similar, following the same steps as 

reality but with some remarkable uniform deviation, whilst the Base Model has a clearly 

different behaviour. It starts reflecting a comparable deviation but then more pronounced 

extreme values, making it more precise in some cases like around the second 36, but 

penalizing it in other moments. 
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Figure 33. Rotational velocity comparison under December 17 data 

 

All three models considered mostly obtain the same estimated rotational velocity values in 

this simulation, with no significant differences between them, and are quite in line with 

reality. However, some values are inaccurate especially at the first peak and around the 

highest and lowest points in the final part of the run. 

 

 Base Model Fy Model Fz & Fy Model 

MSE Longitudinal Velocity 3,8851 3,2510 3,2710 

MSE Lateral Velocity 0,0817 0,0576 0,0563 

MSE Rotational Velocity 0,0947 0,0907 0,0933 

Table 14. Mean Squared Error in velocities under December 17 data by vehicle model 

Considering the errors calculated for the simulated velocities in this run, it can be claimed 

that both the Calc Fy and the Calc Fz & Fy models outperform the Base Model in all three 

velocities. Moreover, the two more complex models receive practically identical MSE 

values, slightly better for the Fy Model in longitudinal and rotational velocity, but with no 

significant differences. It is worth noting that the error for the longitudinal velocity for all the 

models is relatively elevated, yet it might be due to the fact that the longitudinal speeds 

reached are high and some offset appears having a significant effect. 
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December 29, 2023 Test 

 
Figure 34. Longitudinal velocity comparison under December 29 data 

 

The graph shows that in terms of simulating the longitudinal velocity for this specific run, the 

three models contemplated follow more or less the same trajectory, which clearly looks like 

the one from real data as they fluctuate in the same points, but in a smoothed way. In 

addition, none of the models predicts in an accurate manner the final deceleration which 

takes place in the last 5 seconds. Between the Base Model and the more complex models, 

the principal variations reside in the higher values that obtains the Base Model during almost 

all the run. 
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Figure 35. Lateral velocity comparison under December 29 data 

 

For the lateral velocity simulation, it can be seen that the overall trend of the data estimated 

by the models and the real data looks similar, although there are some discrepancies in the 

size and rate of the variations. Comparing the values of the velocity obtained for each 

model, it seems that both Calc Fy and Calc Fz & Fy have a better behaviour specifically 

when the values are small, while the Base Model tends to be imprecise there. 



p. 68  Thesis 

 

 

Figure 36. Rotational velocity comparison under December 29 data 

 

As for the simulation results illustrated in Figure 36, the rotational velocities estimated by 

the models are really close to reality for all of them. Taking a deep look into each model, 

the Base one is more exact, because in the extreme low values the Calc Fy Model tends to 

overestimate them, and so does it the Calc Fz & Fy Model, but to a lesser extent. 

 

 Base Model Fy Model Fz & Fy Model 

MSE Longitudinal Velocity 3,9182 3,5664 3,4725 

MSE Lateral Velocity 0,1828 0,1923 0,1845 

MSE Rotational Velocity 0,0316 0,0533 0,0464 

Table 15. Mean Squared Error in velocities under December 29 data by vehicle model 

With regard to the MSE values obtained for the velocities during this simulation, the Base 

Model offers a more accurate precision in predicting lateral and rotational velocity. However, 

the errors obtained by the Fz & Fy Model are similar in magnitude, and the ones from the 

Fy Model are not so far. For the longitudinal velocity, in all cases is relatively elevated, but 

as stated in the previous simulation, it might be related with an existent offset when high 

speeds are involved. 
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Average results 

Considering each run of the three different sets of data used for the simulations, the 

following averages for the MSE values are obtained:  

 

 Base Model Fy Model Fz & Fy Model 

Avg MSE Longitudinal Velocity 3,0301 2,9109 2,7960 

Avg MSE Lateral Velocity 0,2640 0,2181 0,2115 

Avg MSE Rotational Velocity 0,0579 0,0693 0,0641 

Table 16. Average Mean Squared Error in velocities by vehicle model 

Examining the average MSE values obtained for each model across the three different 

simulations, it is notable that for lateral and rotational velocities the predictions are fairly 

precise for all three models. Regarding the average error obtained for the longitudinal 

velocity, it is undeniable that it is a bit high, but going through its charts (Figures 28, 31 and 

34) it can be concluded that it is caused by the high lateral velocity the car reaches, as the 

simulated data follows almost exactly the same pattern as the data from the tests, but with 

some offset or located missteps on fast speed changes. Taking a deeper look at the error 

values, the lowest one for the rotational velocity is obtained by a small margin by the Base 

Model, whilst for the longitudinal and lateral velocities it goes for the Calc Fz & Fy Model. 

As for Fy Model, there is not much to highlight, as its MSE values fluctuate in between the 

others and do not stand out either positively or negatively. 

Then, it can be stated that the overall performance of the Calc Fz & Fy Model is slightly 

better than the Base Model in almost all situations, the one from which it is derived. While 

it is true that in predicting rotational velocity the Base Model is somewhat superior, in terms 

of longitudinal and lateral velocity, where the accuracy obtained through the simulations is 

notably lower, the Calc Fz & Fy Model unquestionably prevails. 

It is also important to highlight that within the BCN eMotorsport team, some inaccuracies 

have been identified in specific sensor calibrations in the CAT15x. Consequently, potential 

for errors might have been manifested in the raw data obtained directly from the tests, 

particularly in relation to lateral velocity (Vy). Additionally, reviewing all the graphs obtained 

during the simulations, it becomes apparent that the displayed real data exhibits a 

considerable amount of noise, which is attributed to the absence of robust noise filtering in 

the current data acquisition process. 
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6.6. Optimisation of the Model 

In pursuit of enhancing the predictive capabilities of the vehicle model, an optimisation 

strategy is explored to try to refine its performance across longitudinal, lateral and rotational 

velocities. The previous evaluations, as detailed in the preceding sections, pointed out the 

strengths and weaknesses of different models. Notably, the Calc Fz & Fy Model 

demonstrated a slightly superior overall performance compared to the other models 

studied. However, through the analysis of mean squared error values it was clear that there 

still exists room for improvement, specifically in addressing anomalies during rapid speed 

changes and mitigating observed offsets. 

The optimisation process is centred on reducing the error in estimating longitudinal velocity, 

given its considerable deviation obtained in comparison to lateral and rotational velocity. 

The strategy is to fine-tune the parameters related with friction, the drag coefficient (Cd), 

and the rolling coefficient (Cr). These crucial constants used in the models are currently 

provided by the team, and are said to come from tests carried out with the CAT15x car. 

However, the origin of these values remains unclear, and as their precision is subject to 

question, the main aim is to potentially recalibrate them. 

As a reminder, the values of the coefficients used on the previous simulations, as detailed 

on the Friction section, were the following: 

𝐶𝑑 = 1,793 

𝐶𝑟 = 0,0045 

Optimisation method 

The process is executed using the Pattern Search function in MATLAB, a greatly effective 

tool for finding optimal points by iteratively exploring the parameter space [16]. Specifically, 

Pattern Search operates by establishing a sequence of points (x0, x1, x2, …) that converge 

toward an optimal point, ensuring that the objective function decreases or at least remains 

constant during the progression. The procedure is conducted across the same three 

datasets collected from the real tests performed with the car in the previous simulations, as 

it enables to replicate the exact same simulations facilitating a consistent comparison of the 

model’s performance before and after the optimisation. In this particular case, the function 

is set to find the best combination of Cd and Cr values in a maximum of 50 iterations, in 

order to obtain the minimum longitudinal velocity MSE when running simulations with the 

model. 

To ensure that the obtained values for the coefficients are realistic and applicable, specific 

ranges based on typical values observed in formula cars are established. These aim to 

comprise values that are both practical and reflective of the dynamics commonly 
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encountered in motorsport scenarios. The range assigned for the drag coefficient (Cd) is 

[0,6; 1,8] and for the rolling coefficient (Cr) is [0,0045; 0,003]. 

Optimisation results 

After executing the optimisation process three times, each employing the data collected 

from one of the real-life tests as done before with the simulations, the resulting optimised 

values for the coefficients are detailed in the next table: 

 

 Cd Cr 

Test 19 October 2023 0,7930 0,0199 

Test 17 December 2023 1,7928 0,0228 

Test 29 December 2023 1,7930 0,0050 

Average 1,4596 0,0159 

Table 17. Optimised drag and rolling coefficients for each test data 

The optimised coefficient values exhibit some variability across the different tests involved. 

For the drag parameter, the obtained value derived from the inputs of the real data obtained 

in October is considerably lower than the original one, whilst the ones involving the tests 

done in December are pretty close to it. On the other hand, in the case of the rolling 

resistance, the optimised coefficient nearer to the original one is the corresponding to the 

December 29 test, whereas regarding the values achieved with the other two tests are 

significantly higher. Moreover, the Cd average value obtained is inferior than the one used 

before, but for the Cr is the opposite case.  

As declared, the ultimate objective of the optimisation is to enhance a model that 

demonstrates an overall improved performance. So even though there is variability between 

the obtained coefficients, the average values of them will be considered in all subsequent 

simulations and analyses, with the intention to achieve generalized better outcomes. With 

this approach, the focus is centred in evaluating the new model’s efficacy in delivering 

consistent upgrades in estimating velocities across diverse scenarios. 

6.7. Optimised Model performance 

With the intention of analysing the behaviour of the Optimised Model (which is, in fact, the 

Calc Fz & Fy Model with the friction coefficient values derived from the optimisation 

process), a comprehensive comparison with the original model (Calc Fz & Fy Model) is 

conducted. To this end, the simulations carried out earlier with all the other models are 

mirrored, but in this case displaying the predicted longitudinal, lateral and rotational 

velocities from both models on the same graph, alongside the real data values. Therefore, 

a comparative analysis can be conducted both visually and quantitatively with the aim to 
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determine the extent of improvement achieved throughout the optimisation process. 

October 19, 2023 Test 

 

Figure 37. Longitudinal and lateral velocity comparison under October 19 data 

 

Figure 38. Rotational velocity comparison under October 19 data 

Regarding the figures above it seems that the Optimised Model draws practically an 

identical pattern as the original one for all three velocities, there are no visually appreciable 

major differences for any of them. In any case, it does appear to be some small 

dissimilarities at certain points in the final part of the run, but not enough significant to form 

conclusions. 

 

 Original Model Optimised Model Improvement 

MSE Longitudinal Velocity 1,6444 1,6599 -0,94% 

MSE Lateral Velocity 0,3937 0,4116 -4,55% 

MSE Rotational Velocity 0,0526 0,0517 1,71% 

Table 18. Mean Squared Error in velocities under October 19 data for the original and Optimised 

Model, and percentage of improvement 



Autonomous guidance of a Formula Student car  p. 73 

 

Considering the MSE values obtained, it is clear that in this particular case the Optimised 

Model does a worse job in predicting the longitudinal and lateral velocity, which, as shown 

in Table 18, there is no improvement but the opposite, especially for the lateral velocity 

where the setback is close to a 5%. In contrary, it does provide a slightly better estimation 

of the rotational velocity, representing a 1,71% refinement. However, it can be concluded 

that involving the data collected from October 19, the model does not improve with the 

proposed optimisation. 

December 17, 2023 Test 

 
Figure 39. Longitudinal and lateral velocity comparison under December 17 data 

 
Figure 40. Rotational velocity comparison under December 17 data 

It can clearly be seen that the Optimised Model is much more accurate in predicting the 

longitudinal velocity than the original one, as its values are aligned more closely with the 

real data. For the rotational velocity also seems to perform way better with the optimised 

parameters, specifically in the extremes, where it is less deviated. Whereas, the values 

projected in the lateral velocity diagram are more or less the same for both models, maybe 

even a bit better for the original model, but without notable differences. 
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 Original Model Optimised Model Improvement 

MSE Longitudinal Velocity 3,2710 2,3097 29,39% 

MSE Lateral Velocity 0,0563 0,0595 -5,68% 

MSE Rotational Velocity 0,0933 0,0760 18,54% 

Table 19. Mean Squared Error in velocities under December 17 data for the original and Optimised 

Model, and percentage of improvement 

Taking into account the MSE values obtained during the simulation, the progress made in 

reducing the error is remarkable in terms of longitudinal and rotational velocity, being close 

to 30% and around 18% respectively. Although it is true that a step back is done in the 

prediction of the lateral velocity, it is of a much smaller magnitude. Therefore, it is 

undeniable that in this scenario the improvement of the model with the optimised 

coefficients is vastly substantial. 

December 29, 2023 Test 

 

Figure 41. Longitudinal and lateral velocity comparison under December 29 data 

 

Figure 42. Rotational velocity comparison under December 29 data 
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Based on the results plotted on the graphs for this simulation, it can be stated that the model 

with both the original and the optimised parameters performs in a really similar way. Taking 

a closer look, it appears that for the longitudinal velocity the original model offers a bit better 

approximation at elevated values, whilst for the rotational velocity seems to be the opposite. 

 

 Original Model Optimised Model Improvement 

MSE Longitudinal Velocity 3,4725 3,6116 -4,01% 

MSE Lateral Velocity 0,1845 0,1841 0,22% 

MSE Rotational Velocity 0,0464 0,0448 3,45% 

Table 20. Mean Squared Error in velocities under December 29 data for the original and Optimised 

Model, and percentage of improvement 

Given the values of MSE derived from the estimation of the velocities, it is visible that the 

Optimised Model is more effective on predicting the rotational velocity, though for the 

longitudinal velocity is the opposite situation. For both cases the percentage rate change is 

similar, marginally greater in longitudinal velocity, but as in terms of lateral velocity there is 

also a minimal improvement after the optimisation. In general, it can be claimed that there 

are no substantial changes when using the theoretically more optimal parameters. 

Average Results 

Considering each run of the three different sets of data used for the simulations, the 

following averages for the MSE values are obtained:  

 

 Original Model Optimised Model Improvement 

Avg MSE Longitudinal Velocity 2,7960 2,5271 9,62% 

Avg MSE Lateral Velocity 0,2115 0,2184 -3,26% 

Avg MSE Rotational Velocity 0,0641 0,0575 10,30% 

Table 21. Average MSE for the original and Optimised Model, and percentage of improvement 

Quantitatively analysing the average error values obtained considering all three simulations 

performed, the model with the optimised coefficients shows a noticeable performance 

increase of about 10% when approximating both longitudinal and rotational velocity. In 

contrast, there is a modest setback for lateral velocity, around a 3% decrease in accuracy. 

Therefore, it can be stated that the overall performance of the model significantly increases 

after the optimisation process, thus demonstrating that it has been successful. In addition, 

as described before, the main goal was to reduce the error in estimating longitudinal 

velocity, due to its considerable value, and it has been accomplished. 

However, it is true that the impact of the model optimisation varies for different velocity 

components and appears to depend on the specific characteristics of the sets of real test 

data used for the simulations. A recommended next step might be to run more simulations 



p. 76  Thesis 

 

involving datasets coming from other real-life tests, further exploring if the optimised values 

obtained through this process also provide an improved fitment with respect to the original 

model. 
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7. Model applications 

In this section, the Optimised Model that represents the CAT15x car developed throughout 

this thesis is integrated with various control systems to test and validate its utility in more 

complex situations simulating real scenarios. 

7.1. Lane following using model predictive control 

In this first application context, the Optimised Model that represents the CAT15x car 

developed throughout this thesis is adapted as a Non-Linear Model Predictive Control 

(NMPC) for integration into a lane-following controller. A lane-following system is a control 

system that keeps the vehicle traveling along the centreline of a highway lane, while 

maintaining a user-set velocity. The application of the model in this scenario provides a 

practical context for assessing its performance within a well-defined control system. 

As the design of a complete lane-following controller is beyond the scope of this project, a 

predefined example from MathWorks built on MATLAB and Simulink is used as a starting 

point [17]. 

Example description 

The lane-following system proposed in the example manipulates both the longitudinal 

acceleration and front steering angle of the vehicle to: 

• Keep the lateral deviation (e1) and relative yaw angle (e2) small. 

• Keep the longitudinal velocity (Vx) close to a driver set velocity. 

• Balance the above two goals when they cannot be met simultaneously. 

 

Figure 43. Lane-following scenario in the example [17] 
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That is, the lane-following system of the example involves the manipulation of both the 

longitudinal acceleration and front steering angle to ensure the vehicle remains centred 

within a highway lane while adhering to a defined velocity. 

In order to perform the simulation and analyse the behaviour of the control system, a 

Simulink model and some MATLAB functions are used in the example. 

 

Figure 44. Overview of the Simulink model from the pre-built example [17] 

As it can be seen in the figure above, the Simulink model contains four main components: 

• Vehicle Dynamics: Apply a bicycle mode of lateral vehicle dynamics, and 

approximate the longitudinal dynamics using a time constant. 

• Sensor Dynamics: Approximate a sensor such as a camera to calculate the lateral 

deviation and relative yaw angle. 

• Lane Following Controller: Simulate nonlinear MPC. 

• Curvature Previewer: Detect the curvature at the current time step and the curvature 

sequence over the prediction horizon of the MPC controller. 

In summary, the example is prepared to run a simulation in order to test how a vehicle 

(represented with a simple bicycle model) behaves through some curvature in a highway 

when a lane following controller is acting. The vehicle model employed only considers the 

lateral dynamics, taking as inputs the acceleration and the steering angle, and as outputs 

both longitudinal and lateral velocity, and the yaw rate. 

First simple adaptation 

A first adaptation of the lane-following system from the example with the Simplified Model 

developed in this thesis is done, given its closer resemblance to the vehicle model used. 

Since both models only consider lateral dynamics, the adaptation is not overly complicated, 
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and it becomes useful in gaining understanding and familiarity with the system. 

All the simulation structure is maintained the same because of the similarity of the model to 

adapt with the one from the example, as they both just consider lateral dynamics, so they 

can be simulated considering two inputs and three outputs. However, there are some 

crucial changes, particularly in the input parameters considered. Now, they are the force 

provided by the engines located to the rear axis (Fm) (instead of the acceleration), and the 

steering angle (δ), whilst the outputs remain the same (longitudinal velocity (Vx), lateral 

velocity (Vy), and yaw rate (�̇�)). 

The study of the behaviour of the model adapted to the lane-following system is carried 

through the analysis of two key performance indicators, lateral deviation (e1) and relative 

yaw angle (e2), which are illustrated in the lane-following scenario example (Figure 43). 

These are basically the errors in predicting lateral velocity and yaw angle, and the ultimate 

goal is to minimize them or, in other words, obtain a lateral velocity and yaw rate (or 

rotational velocity) as similar as possible to the expected one. Then, to get another graphical 

perspective, the simulated lateral and rotational velocity are displayed against time, 

together in the same diagram with their respective theoretically expected values. Thereby, 

the effectiveness of the adapted system in maintaining the vehicle within the desired 

trajectory is reflected in a clear way through these results. 

The simulation is aimed to represent a simplified version of the CAT15x on a 10 seconds 

drive around a curved two-lane highway. The results obtained are the following: 

 

Figure 45. Lateral deviation and relative yaw angle for the simple lane-following system adaptation 

Both lateral deviation and relative yaw angle are close to zero during all the course of the 

simulation, which essentialy means that the performance offered by the adapted system 

with the model in maintaining the car in its lane is actually really good. Around the last 

seconds of the run some little increased deviation appears, especially for the lateral term, 
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but despite this it is certain that the overall precision of the adapted lane-following system 

is rather respectable. 

 

Figure 46. Lateral and longitudinal velocity comparison for the simple lane-following system 

adaptation 

Taking a closer look at the deviations through the visual comparison of the expected values 

with the simulated ones, it seems that the accuracy is really high for both lateral and 

longitudinal velocity during the first 7 seconds. Whereas, it is not that decent for the last part 

of the simulation, as the precision decreases, especially for rotational velocity where some 

fluctuations appear in the final seconds. 

In summary, the analysis of both lateral deviation and relative yaw angle reveals that the 

adapted system, incorporating the Simplified Model presented in this project, generally 

behaves appropriately in maintaining the vehicle within the desired lane. Although, towards 

some specific moments, some minor deviations exist. 

Optimised Model adaptation 

The process of adapting the Optimised Model to the lane-following system in the example 

requires way more changes than the first approach done. Here, the model continues to take 

the same inputs as the simplified version, which include the force provided by the engines 

located to the rear axis (Fm) (instead of the acceleration in the example), and the steering 

angle (δ). But the complexity comes because the Optimised Model considers all the states 

employed by the lane-following controller. 
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Therefore, in this case the need for a sensor dynamics block is eliminated, as the outputs 

of predicted by the Optimised Model directly provides the information needed to obtain the 

values for the relative yaw angle (e1) and lateral deviation (e2). Another notable 

modification involves the curvature previewer, which now transfers the information straight 

to the car model, allowing it to incorporate curvature in real-time as no sensors are used. 

All these changes underscore the sophisticated integration of the Optimised Model with the 

lane-following system from the example, aiming to reflect a more realistic approach 

capturing the dynamics of the scenario. 

 

 

Figure 47. Overview of the Simulink scheme with the Optimised Model adapted 

The performance of the Optimised Model adapted to the lane-following system is analysed 

mirroring the same approach used with the first simple adaptation. Lateral deviation (e1) 

and relative yaw angle (e2), which in practice are the errors in predicting lateral and 

rotational velocity, are examined. In addition, charted comparisons of simulated and 

expected for both velocities against time are displayed for complementary interpretation. 

Hence, insights into the system’s accuracy in keeping the car within the desired trajectory 

can be studied. 

As before, the scenario replicates the CAT15x on a 10 second drive around a curved two-

lane highway. 
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Figure 48. Lateral deviation and relative yaw angle for the lane-following system Optimised Model 

adaptation 

Observing the results obtained for the lateral deviation and relative yaw angle, it is 

undeniable that in this case the precision of the lane-following system is far from being 

perfect. Despite the errors being big, it seems that the intention of the system in all times is 

to minimize them, as they fluctuate around zero (with remarked outliers). Moreover, the 

system appears to follow the centre-line during the first part of the simulated curved 

highway, but then in the middle and last section of it, the accuracy decreases in a 

considerable way. 

 

Figure 49. Lateral and rotational velocity accuracy comparison for the lane-following system 

Optimised Model adaptation 
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Through the comparison of both lateral and rotational velocity simulated values with the 

expected ones, it looks like that until half the time elapsed, the simulated values are pretty 

much right on target. Nonetheless, from the middle to the end of the run the accuracy 

decreases drastically, as extreme values without any reasonable sense appear. 

To conclude, considering the analysis of the simulation results for the adaptation of the 

lane-following system with the Optimised Model studied in this thesis, it can be stated that 

it does not excel in terms of performance. Despite the fact that in the first half of the 

proposed scenario the system is effective in keeping the car around the centre-line as 

desired, from that moment onwards it seems to collapse causing the car to follow a 

completely wrong trajectory.  

The observed significant errors in the lane-following system with the Optimised Model 

adapted may be due to several factors, including potential issues such as imperfect 

calibration, or not having achieved a perfect fit between the model and the example 

considered. Despite these pronounced discrepancies, it is worth noting that from the results 

obtained the system appears to be on a consistent effort to minimize the errors, indicating 

its intention to adhere to the objective. This suggests that the vehicle model employed might 

not be the main issue. Recommended next steps involve following up with further studies 

focused on the connection and adaptation of the example with the Optimised Model, as well 

as on calibration and refining of the system itself. These aspects are of strong importance 

in trying to increase the existent potential to deliver accurate performance, aligning the car 

more closely with the intended trajectory. 

7.2. Lane change assist using model predictive control 

In a second application scenario, the Optimised Model that represents the CAT15x car 

developed throughout this thesis is adapted as a NMPC similarly as done above, but in this 

case, it is integrated into a lane-change assist controller. 

Following the same way as before, due to the design of the lane-change system being 

beyond the scope of this thesis, an example from MathWorks is employed as a foundation 

[18]. Then, the Optimised Model is adapted to the example structure and simulations are 

performed to examine the results. 

Example description 

A lane change assist control system autonomously steers an ego vehicle to an adjacent 

lane when there is another vehicle moving slower in front of it, as shown in the following 

figure. 
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Figure 50. Representation of the lane-change scenario [18] 

The lane change controller in this example is designed to work when the ego vehicle is 

driving on a straight road at a constant velocity, though it can be extended to other driving 

scenarios with appropriate modifications. 

In this example: 

• A driving scenario is used to model the environment such that a situation requiring 

a lane change arises. The scenario was created and exported using the Driving 

Scenario Designer app from the Automated Driving Toolbox. 

• Based on this scenario, a discrete occupancy grid is populated, which is then used 

by the path planner to plan a collision-free reference path for the ego vehicle. 

• Once the reference path is generated, the controller performs the autonomous lane 

change maneuver by controlling the steering angle of the ego vehicle to track the 

lateral position of the planned path. 

 

Figure 51. Overview of the Simulink model from the pre-built example [18] 
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The Simulink model contains four main components: 

• Nonlinear MPC — Lane change controller, which controls the front steering angle 

of the ego vehicle 

• Vehicle and Environment — Models the motion of the ego vehicle and models the 

environment 

• Occupancy Grid Generator — Generates a discrete grid that contains information 

about the environment and cars surrounding the ego vehicle 

• AStar Path Planner — Plans a collision-free path for the ego vehicle considering the 

dynamic behavior of other cars 

Inside the Vehicle and Environment subsystem, the Vehicle Dynamics subsystem models 

the vehicle dynamics using the Bicycle Model - Velocity Input block from the Automated 

Driving Toolbox. 

Summarising, the example represents a scenario where a car (represented with a bicycle 

model) changes from its lane to another autonomously by making use of its lane change 

controller, without hitting any other existent vehicle on the road. 

Optimised Model adaptation 

To be able to integrate the Optimised Model into the complex control system structure of 

the lane change assist example, few adjustments need to be made given that the vehicle 

model considered there is way simpler. The most noticeable distinctions lie in how the 

Optimised Model represents the dynamics compared to the example. However, no major 

changes are needed as the example does not incorporate sensors for measuring vehicle 

dynamics. Consequently, the model just executes iterations to generate the information 

required by the controller, allowing its proper functioning. 

Despite these variations, the Simulink scheme is maintained the same because the main 

input considered is the steering angle (δ), and the outputs can easily be adapted, 

considering the absence of direct vehicle dynamics data obtained from sensors in this case. 

Therefore, concerning the Simulink scheme, the only block modified is the “Velocity and 

Environment”, accompanied by the script defining the model. In that new script, a 

substantial modification is made, replacing the initial considerations from the example with 

more complex ones that represent the Optimised Model. 

In contrast to the previous application example based on a lane following controller, in this 

case the results displayed are more visual. Apart from an individual plots showing the lateral 

position throughout the course of the simulation and the error of this position with respect 

to the expected one (lateral deviation), a representation of the scenario is displayed, where 
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it can be seen the car in question driving around the highway and how it performs the lane 

changes while avoiding other vehicles. 

The simulation conducted involves the car driving through a road during 10 seconds. It 

starts its journey from one lane, then changes to another where it remains some seconds, 

and subsequently it maneuvers back to the initial lane. Throughout this simulated driving, 

the vehicle also focuses on avoiding collision with other virtual vehicles. 

   

   

Figure 52. Visual sequence of the lane change simulation with the Optimised Model integrated 

In Figure 52 a visual sequence of the performed simulation is represented (order from left 

to right, up to bottom), where it can clearly be seen how the car (represented in dark blue) 

makes a first lane change followed by a second one back to the initial lane. The lane change 

system with the Optimised Model does a really good job, as the vehicle performs the two 

lane changes maintaining the car within the delimited lines, and without hitting any other 

vehicle on the road. Anyway, it is true that it does appear to behave a bit abruptly when 

changing lanes, and as can be seen in the fourth photo of the sequence, the car is close to 

crash into another car. 
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Figure 53. Lateral deviation for the lane change system Optimised Model adaptation 

Regarding the figure above, where the error in the lateral position of the car is displayed, it 

can be seen that it fluctuates around zero during all time. While it is undeniable that at the 

beginning and at the end of the run the deviation is considerably bigger, this is justified 

because this is when lane changes are made. Thus, it can be said that the performance of 

the controller is very accurate, although as been before, in certain moments it seems to be 

a bit abrupt. 

 

Figure 54. Lateral position accuracy comparison for the lane change system 

For the lateral position results obtained from the simulation of the Optimised Model 

integrated with the lane change system, it is plain that the overall accuracy is really high in 

terms of lateral position. This means that the car drives around where it is supposed to 

throughout all the simulated scenario, approaching closely the expected values. Whereas, 

after moving from one lane to another, slightly more extreme values for its position are 

obtained, which seems to be caused by a brusquer behaviour when changing lanes. In 

addition, the ideally expected is that after changing from one lane to another, the car stays 
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immediately completely straight in the same position, but regarding the chart it is noticeable 

that this is not exactly the case, as there exist some minimum fluctuations for a short amount 

time before remaining stable. 

In conclusion, through the analysis of the simulation results obtained for the lateral position 

and its deviation from the planned values, it can be stated that the lane change adapted 

system, incorporating the Optimised Model developed in this project, presents an overall 

high precision in guiding the car autonomously executing lane changes without crashing 

into others. The notable success in applying the model within a control system structure 

stands as a valuable validation of its accuracy in representing vehicle dynamics. 

Furthermore, this accomplishment contributes as well to the overall confidence in the 

model’s utility when considering it alongside complex control structures. 
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8. Economic assessment 

The costs involved during the development of the project are detailed in this section to 

reflect its financial implications. MATLAB and Simulink licenses were indispensable tools in 

the simulation and modelling processes, and the same applies to Microsoft Office, that 

facilitated the comprehensive documentation of it. Regarding the hardware setup needed 

to be able to run the processing of data, perform development tasks, and run simulations, 

computer and several peripherals were employed. In any case, the big money is involved 

in the testing phases with the car and the cost of personnel. 30 hours of testing were 

conducted, which led to significant costs, as they include the wage of all the engineers that 

work in it (usually 6 or 7), costs for running the car itself, and the ones regarding the renting 

of the test track and the transfers of both the engineers and the car to it. Moreover, the 

average salary of a junior engineer in Barcelona is considered to determine what cost it 

represents in relation to the hours spent working in this thesis. 

Concept Quantity Cost per unit Cost 

MATLAB License 1              900,00 €               900,00 €  

Simulink License 1           1.360,00 €            1.360,00 €  

Microsoft Office License 1              150,00 €               150,00 €  

Computer and peripherals 1           1.000,00 €            1.000,00 €  

Testing with the car 30 h              114,00 €            3.420,00 €  

Junior Engineer 700                14,00 €            9.800,00 €  

Total         16.630,00 €  

Table 22. Summary of the costs involved in the project 

This comprehensive economic assessment, totalling 16.630 € encompasses all expenses 

incurred. However, it is crucial to note that the execution of this work did not directly incur 

all the outlined above, as several resources were generously provided by the university and 

sponsors of the BCN eMotorsport team. Specifically, all licenses of the software used were 

supplied by the UPC because of the enrolled student status, reducing the software-related 

expenses to zero. Additionally, a substantial portion of the testing costs were sponsored by 

external entities in the form of letting the team rent the track free of charge, and also should 

be noted that the engineers working there were from the team, further easing the financial 

burden of the thesis. 

Therefore, the actual direct cost of the project has been as detailed in the table below: 

Concept Quantity Cost per unit Real Cost 

Computer and peripherals 1           1.000,00 €            1.000,00 €  

Testing with the car 30 h                30,00 €               900,00 €  

Total           1.900,00 €  

Table 23. Summary of the real costs involved in the project 
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9. Environmental assessment 

Due to the nature of the work done, which predominantly involved modelling, simulation, 

and analysis through software-based tools, a notably low ecological footprint is revealed. 

The environmental impact of these activities is minimal, with the main consideration being 

the energy consumption associated with the operation of computers and peripherals 

throughout all the hours dedicated on the project. However, it is important to highlight that 

the real-life tests carried on with the car introduced some environmental impact, particularly 

during transfers to test tracks with combustion vehicles. Also, even though the formula 

student car from BCN eMotorsport team is fully electric-powered, which reduces direct 

emissions, an existent impact coming from energy consumption when running the car is 

there. 

Furthermore, considering the potential for future advancements in the direction of this 

thesis, negative environmental impacts of the team could be reduced. The exploration and 

implementation of virtual testing through advanced simulation techniques offer the prospect 

of significantly reducing the required physical testing hours, thus aligning with the goals of 

minimising the overall ecological impact. 
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10.   Conclusions and further work 

10.1.   Conclusions 

This thesis has taken significant steps towards achieving its objectives, driven by a profound 

passion for automotive engineering and a commitment to enhancing the tools and 

methodologies employed by the BCN eMotorsport team. The primary aim of implementing 

and optimising an effective model for the CAT15x Formula Student electric car was largely 

achieved, as evidenced throughout the analysis of the results obtained throughout this 

work. 

Regarding all the specific objectives proposed, these have been practically fully satisfied. 

The comprehensive literature review undertaken in the initial stages of the research have 

not only served to identify but also to understand the principles of racing car dynamics and 

control systems, specifically in relation to Formula Student electric vehicles. This 

foundational knowledge has been a crucial initial base for subsequent stages of the project. 

Real-world data acquisition and processing from the race car has been carried out 

meticulously, providing invaluable insights into its dynamics and performance. This step 

has been pivotal in ensuring the accuracy and relevance of the later simulations and 

analyses. 

The development of a software-based tool has been a huge challenge, but after large 

efforts, a completely functional setup structure composed of scripts and functions able to 

simulate the vehicle models and provide graphical and quantitative comparisons of them 

and real data was achieved. This tool has been the main reason for being able to simulate, 

analyse and compare all the different models considered. Additionally, testing and 

comparison of the accuracy of these car models through simulation, showcased the 

effectiveness of the developed software. Thus, the robustness of the models in capturing 

the dynamics of the car across different scenarios has been demonstrated. 

The optimisation process to calibrate the model that offered better precision in previous 

stages has been a complete success. The adjusted parameters derived from this method 

have resulted in improved precision, bringing the performance of the model closer to the 

reality of the CAT15x racing car. 

The utility of the developed and Optimised Model in complex situations has been partly 

validated through simulations with car model integrated into control system structures. It 

has to be noted that the fitment and the results obtained in some stages of this section are 

far from perfect, as some challenges were identified in adapting the model to a lane-

following system. However, the results suggest that the primary issue may not be the 

vehicle model itself, and these findings contribute valuable information for future 
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improvements and refinements, which are recommended in this area. 

In addition, through the comprehensive and accessible way this thesis has been carried on, 

it can serve as a valuable reference for current members of the BCN eMotorsport team and 

for engineering students with a keen interest in the use of simulation, benchmarking, and 

data acquisition and analysis methods in the development of race cars. 

In conclusion, the objectives of this project have been, to large extent, fulfilled. Nearly 

everything planned has been accomplished, as well as the designated timelines proposed 

for each phase have been respected. Consequently, the outcome is comprehensive and 

engaging piece of work on the subject, encompassing a wide range of related aspects as 

envisioned from the beginning. 

10.2.   Further work 

Despite all the things achieved and developed during the course of this project, there are 

areas that warrant further exploration and refinement. Some challenges still existent in the 

adaptation of the vehicle model to several control systems suggest potential avenues for 

improvement. Future studies delving deeper into system calibration and integration into 

control systems and structures are recommended to address discrepancies and enhance 

the performance. Moreover, as the impact of the parameters obtained from the optimisation 

process varied depending on each simulation, further exploration with more datasets from 

real-life tests to continue validating and generalising the optimal coefficients could be useful. 

This also would contribute to a more comprehensive understanding of the model’s 

adaptability across diverse circumstances. Additionally, given the complexities of real-world 

racing environments, future research could involve the exploration of more realistic 

scenarios and the inclusion of additional parameters for an even more realistic of the car 

dynamics. 

Starting from the model developed, some other work could involve its implementation 

across diverse fields. For instance, focusing on studying the performance of the car with 

control algorithms derived from simulations using the model, or estimating the lap time of 

the car on a specific track. Continuous collaboration with the BCN eMotorsport team, along 

with ongoing advancements in technology, may uncover new challenges and opportunities 

to continue researching in the field of the use and development of software for Formula 

Student electric vehicles. 
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