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Abstract: The researchers use the SEM-based multivariate approach to analyze the data
in different fields, including management sciences and economics. Partial least square structural
equation modeling (PLS-SEM) and covariance-based structural equation modeling (CB-SEM) are
powerful data analysis techniques. This paper aims to compare both models, their efficiencies
and deficiencies, methodologies, procedures, and how to employ the models. The outcomes
of this paper exhibited that the PLS-SEM is a technique that combines the strengths of structural
equation modeling and partial least squares. It is imperative to know that the PLS-SEM is a powerful
technique that can handle measurement error at the highest levels, trim and unbalanced datasets,
and latent variables. Itis beneficial for analyzing relationships among latent constructs that may not be
candidly witnessed and might not be applied in situations where traditional SEM would be infeasible.
However, the CB-SEM approach is a procedure that pools the strengths of both structural equation
modeling and confirmatory factor analysis. The CB-SEM is a dominant multivariate technique that
can grip multiple groups and indicators; it is beneficial for analyzing relationships among latent
variables and multiple manifest variables, which can be directly observed. The paper concluded
that the PLS-SEM is a more suitable technique for analyzing relations among latent constructs,
generally for a small dataset, and the measurement error is high. However, the CB-SEM is suitable
for analyzing compound latent and manifest constructs, mainly when the goal is to generalize
results to specific population subgroups. The PLS-SEM and CB-SEM have specific efficiencies and
deficiencies that determine which technique to use depending on resource availability, the research
question, the dataset, and the available time.
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Introduction

The researchers use covariance-based structur-
al equation modeling (CB-SEM) and partial least
square structural equation modeling (CB-SEM)
to analyze the data of complicated connec-
tions among the latent and manifest constructs
(Ahmed et al., 2021; Hair et al., 2022). Still, there
are some vital differences between the two mul-
tivariate techniques; for example, PLS-SEM and
CB-SEM modeling handle collinearity differently
(Ahmed et al., 2022; Hair et al., 2019; Sarstedt
et al., 2019). However, the PLS-SEM is very
beneficial for managing data with a high degree
of collinearity because it divides the data into la-
tent variables uncorrelated using the PLS-SEM
method (Sarstedt et al., 2022). On the other
hand, the CB-SEM modeling is founded on mul-
tivariate normality and necessitates the data
to be uncorrelated, as highlighted by Lu et al.
(2020) and Hair Jr. et al. (2017). When the data
is highly correlated, CB-SEM may generate
unreliable or inconsistent results (Becker et al.,
2022; Legate et al., 2022). Another difference
is how the models are estimated, as Sarstedt
et al. (2019) demonstrate. The PLS-SEM mod-
eling uses a technique called bootstrapping
to estimate the model parameters. This method
can be computationally intensive but allows
for a trustworthy approximation of factors
in the presence of outliers and non-normality.
The CB-SEM uses maximum likelihood ap-
proximation, which is computationally efficient
but may not work well with non-normal data or
outliers, according to Hair Jr. et al. (2017) and
Mueller and Hancock (2018). The CB-SEM
bases its assumptions on the multivariate nor-
mality hypothesis and demands that the data
be uncorrelated (Ahmed et al., 2021; Hair et al.,
2019; Hayes et al., 2017). For handling data
with non-normality, outliers, and missing values,
the PLS-SEM is not based on distributional
assumptions and is, therefore, more flexible
(Ringle et al., 2022; Sarstedt & Cheah, 2019).
In light of this, it has been proven by Hwang
et al. (2020), Ringle et al. (2015), and Hair et al.
(2018) that PLS-SEM is a more reliable and
adaptable method for assessing complex and
correlated data than CB-SEM, which is based
on multivariate normality assumptions. Howev-
er, the technique chosen depends on the goals,
research questions, and dataset characteristics
(Hair et al., 2022). The CB-SEM and PLS-SEM
are multivariate methodologies, but each has
strengths and weaknesses.

The PLS-SEM is a statistical technique that
combines the benefits of structural equation
modeling partial and least squares to evaluate
complex associations between latent vari-
ables and observable datasets, as highlighted
by Sarstedt et al. (2019), and Ahmed et al.
(2022). The PLS-SEM is particularly helpful
in handling data with a high degree of collinear-
ity since it uses the PLS-SEM technique to break
the dataset down into uncorrelated latent vari-
ables. The PLS-SEM employs a more suitable
parameter estimation technique for examining
the model’s parameters in the presence of out-
liers and non-normality (Memon et al., 2019).
PLS-SEM has excellent flexibility because
it does not rely on distributional assumptions
and can handle data with non-normality, outli-
ers, and missing values, according to Hair et al.
(2010) and Sarstedt et al. (2021). The PLS-SEM
technique can estimate latent variables that
symbolize unobserved or underlying constructs
in the data (Hair & Sarstedt, 2021; Legate
et al., 2022). The PLS-SEM technique permits
the study of numerous groups/subpopulations
in the data, which can help compare groups
or measurement invariance tests. According
to Sarstedt et al. (2019) claim, the PLS-SEM can
also handle correlations between constructs that
are not linear. The PLS-SEM enables an under-
standing of the interactions between constructs
by providing details on the intensity and direc-
tion of the associations and the comparative
significance of each construct in the considered
model (Legate et al., 2022). The PLS-SEM anal-
ysis can be performed using various programs,
including the Smart-PLS, Warp-PLS, XLSTAT,
and R packages for PLS-SEM (Memon et al.,
2019; Parmar et al., 2022). Hence, it can be
supposed that the PLS-SEM is an effective tech-
nique for evaluating complex, highly connected
data since it enables the modeling and handling
of non-linear relationships in a robust, flexible,
and understandable manner (Hair et al., 2014;
Hair et al., 2019).

The CB-SEM is used by Hayes et al. (2017)
and Lu et al. (2020) to examine a complicated
relationship between latent constructs and
observable data. The CB-SEM uses maximum
likelihood approximation to estimate the model
parameters, which is computationally ef-
ficient as one of its essential characteristics
(Ahmed et al., 2022; Hooper et al.,, 2008).
Given that the CB-SEM technique is founded
on the assumptions of multivariate normality,
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an uncorrelated dataset is needed (Hair et al.,
2018). Latent variables, or unseen or underly-
ing constructs in the data, can be estimated
using CB-SEM (Hair et al., 2011; Hooper et al.,
2008). The CB-SEM offers many fit indices that
could be employed to examine the model fit and
spot any potential issues under consideration
(Bentler, 1990). Several groups or subpopula-
tions can be analyzed using CB-SEM, allowing
for comparing groups or testing invariance
measurements (Sarstedt et al., 2021). Ac-
cording to Sarstedt et al. (2019) and Rigdon
(2016), the CB-SEM enables model adjustment
by introducing or eliminating latent structures
or routes. Various softwares are available for
CB-SEM analysis, including AMOS, LISREL,
and M-Plus (Becker et al., 2022; Hair et al.,
2018). By providing details on the strength and
direction of the link and the relative prominence
of each construct in the model under consider-
ation, CB-SEM enables the analysis of relation-
ships between variables (Parmar et al., 2022).
Thus, it is debated that CB-SEM is a statistical
methodology using the computationally effec-
tive maximum likelihood method to examine
the model’s parameters. It is predicated on mul-
tivariate normalcy and necessitates the ab-
sence of correlation in the data. Additionally,
it offers many goodness-of-fit statistics, allows
for model adjustment and estimation of la-
tent variables, and makes software available
(Hair et al., 2014).

This paper’s goal is to assess and contrast
PLS-SEM vs. CB-SEM modeling. This study
may be helpful to future researchers, who may
use it to decide which approach to use under
particular circumstances. The CB-SEM and
PLS-SEM multivariate approaches are also cov-
ered comprehensively in this study. The CB-SEM
and PLS-SEM multivariate approaches have
also been described in earlier research, but that
literature does not discuss every aspect of both
multivariate techniques (Becker et al., 2022; Hair
et al., 2019; Legate et al., 2022; Ringle et al.,
2022), and several other studies, which had
several drawbacks. Previous literature, for in-
stance, does not address several features, such
as sample size, multicollinearity issues, compo-
nents, types of CB-SEM and PLS-SEM, model
fit indices, measurement, and structural models.
The current study provides an in-depth analy-
sis of the CB-SEM and PLS-SEM multivariate
techniques’ features, benefits, shortcomings,
and methodology.
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The remaining sections of the paper are
divided into numerous sections, such as sec-
tion 2 (Theoretical Background), section 3
(Research methodology), section 4 (Results
and discussion), section 5 (Conclusions), and
Limitations and future research orientations.

1. Theoretical background

Previous literature has explored the difference
between PLS-SEM and CB-SEM modeling.
The literature differentiated their categories
and demonstrated the efficiencies and de-
ficiencies of both models (Hair et al., 2006;
Hair & Sarstedt, 2021). Several studies have
demonstrated that PLS-SEM is an SEM to ex-
plore complex relationships between numerous
parameters (Hair et al., 2022; Henseler et al.,
2015). Similarly, previous literature exhibited
that CB-SEM models could be used depend-
ing on the research goals, research questions,
and data arrangements. PLS-PM (PLS path
modeling) is a PLS-SEM variant used to evalu-
ate associations between observed and unob-
served elements in the model and to estimate
the path coefficients connecting these vari-
ables. PLS-SEM and CB-SEM modeling come
in a multiplicity of different forms (Memon et al.,
2019; Ringle et al., 2015). According to Hair
et al. (2022) and Sarstedt and Cheah (2019),
PLS-CFA (PLS-confirmatory factor analysis)
is used to gauge theories about the structure
of the measurement model, including theories
about the number of components, factor load-
ings, and measurement errors. The PLS-SEM
is a method to estimate the path coefficients
between constructs and investigate associa-
tions between unobserved elements in a model
(Ringle et al., 2022). PLS-regression is accus-
tomed to evaluating the association among
predetermined predictors of a construct of in-
terest, such as a dependent variable (Hair
& Sarstedt, 2021; Legate et al., 2022). By iden-
tifying the linear blend of components that
maximizes the covariance among constructs,
PLS-canonical analysis is used to categorize
the underlying structure of a dataset, as dem-
onstrated by Richter et al. (2020) and Hair et al.
(2017). A set of data is divided into groups using
PLS-DA (PLS-discriminant analysis), a kind
of PLS-SEM grounded on the values of predic-
tors (Hair et al., 2022). PLS-SEM with small
data is the type of PLS-SEM that is very helpful
when several constructs are more incredibly
associated with a small sample size; missing
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data, non-normality, and multicollinearity can
all be accommodated by it (Matthews, 2017;
Ringle et al., 2015).

According to previous studies, there are
other varieties of CB-SEM modeling, including
confirmatory factor analysis, a sort of CB-SEM
accustomed to testing a considered measure-
ment model based on fixed latent variables and
preset manifest factors (Ahmed et al., 2022;
Hair et al., 2022). It could support or disprove
a scale’s or measure’s factor structure (Hair
et al.,, 2010; Hussain & Ahmed, 2020). Path
analysis assesses the direction, strength,
and correlation between various parameters.
It can evaluate theories of causal relationships
between many components (Hayes et al,
2017). This kind of CB-SEM, known as latent
growth curve modeling (LGCM), looks at how
variables change over time. Examining a vari-
able’s rate of change and its consistency across
time is a common practice (Hair et al., 2011).
Grounded on the provisions of answers to a set
of observed factors, latent class analysis (LCA)
is frequently used to ascertain subdivisions
or classes within a population (Nunkoo et al.,
2020). The CB-SEM method, known as multi-
group SEM, compares an association among
constructs across various groups or populations.
It can be used to look for variations or patterns
in the relationships between variables between
various groups (Cohen, 1992; Hayes et al.,
2017). This kind of CB-SEM, SEM with miss-
ing data, deals with missing data in the analy-
sis. It is customary to look at the parameters
of the model and missing data simultaneously
(Hair et al., 2006). SEM without normality data
is the type of CB-SEM that works with non-
normal data for the analysis. Using reliable
estimating approaches, the model’s parameters
could be evaluated (Henseler et al., 2015).

According to Ringle et al. (2015) and Hair
et al. (2010), the sample size for PLS-SEM
should be sizable to ensure adequate power
for the statistical analysis and to obtain a suit-
able level of generalizability (Hair et al., 2010;
Ringle et al.,, 2015). However, PLS-SEM
sample size recommendations are less ac-
curate than those for traditional SEM (Sharma
et al.,, 2021). PLS-SEM is considered a more
reliable method than traditional SEM regarding
sample size and measurement error because
it can tolerate higher levels of measurement
error (Ahmed et al., 2019; Hair et al., 2019). As
a result, PLS-SEM frequently has more flexible

sample size requirements than typical SEM.
It is vital to keep in mind that sample size
is always determined by the study purpose,
the resources available, and the amount of time
available, even if some studies have shown that
PLS-SEM may be employed with datasets as
low as 50-100 instances (Hayes et al., 2017).
Previous literature also discussed the re-
quired sample for PLS-SEM modeling; accord-
ing to Hussain and Ahmed (2020), Hussain
et al. (2021), and Zaidi et al. (2022), the sample
size required to achieve a specific power level,
for instance, 80% or 90%, can be determined
in various ways, including simulation studies
and power analysis techniques. The sample
size is calculated considering the research
topic, the resources available, and the amount
of time available. It is crucial to remember that
sample size estimations are frequently ap-
proximate. It is also critical to remember that
the PLS-SEM sample size requirements vary
depending on the number of predictors and
model complexity (Sarstedt & Cheah, 2019).
As models become more complicated, sample
sizes become more critical. The sample size
must be proficient at ensuring the accuracy and
objectivity of the estimated values (Shmueli
et al., 2019). Similarly, previous literature also
discussed that the sample size is a vital concern
in the CB-SEM technique since it can affect
the valuation of the considered model’s param-
eters and the model’s capacity to fix the dataset.
A larger sample size will produce more precise
parameter estimates and a better model-data
fit (Hair et al., 2014; Sharma et al., 2021).
According to Hair et al. (2011), the optimal
sample size will depend on the complexity
of the model, the number of indicators, the la-
tent factors quantity, and the level of measure-
ment error. There are numerous methods for
computing the sample size for the CB-SEM.
The recommendations for the sample size
for the CB-SEM depend on various aspects,
among them the number of factors, the num-
ber of estimated parameters, and the amount
of measurement error (Hair et al., 2011). One
of several recommended sample size criteria
is the “10:1 rule”, which describes that the sam-
ple size must be ten times the parameters,
which has to be evaluated. This rule, though,
only functions under certain circumstances
(Hussain & Ahmed, 2020; Streukens & Leroi-
Werelds, 2016). Power analysis techniques
or simulation studies can be used to calculate
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the sample size required to attain a given power
level, for instance, 80% or 90%, to establish
the sample size that provides a high likelihood
of detecting a particular effect. In general,
SEM requires a sample size of 200 or more.
However, this guideline might only apply
to particular models; thus, employing more so-
phisticated sample size estimation techniques
is always a good idea.

According to Kang (2021) and Hoenig and
Heisey (2001), power analysis can decide
the desired sample size to identify a particular
effect size at a specific power level. Power anal-
ysis can consider the magnitude of measure-
ment error, the complexity of the model, and
the number of indicators. Simulators de Monte
Carlo — this method simulates data and figures
out the sample size necessary to accurately
estimate model parameters (Hayes et al., 2017;
Kroese et al., 2014). It can be accomplished
by relating the Akaike information criterion (AIC)
or the Bayesian information criterion (BIC) for
various sample sizes. It is crucial to remember
that sample size is only one consideration when
evaluating the fit of a model. Several additional
elements, for instance, the number of indicators,
the considered model’s complexity, the data
distribution, and the estimation method, impact
the model fit (Hoenig & Heisey, 2001).

Previous literature demonstrated that mul-
ticollinearity is a common problem in PLS-SEM
and CB-SEM, which occurs when two or more
predictor variables are closely associated
(Grewal et al., 2004). It occurs when two or
more independent variables exhibit strong cor-
relations, and estimating models and explaining
their results can be challenging (Wondola et al.,
2020). For example, a correlation matrix can
determine how every independent construct
connects with others to find multicollinear-
ity in PLS-SEM and CB-SEM. Multicollinear-
ity may be present if there is a significant
correlation between two or more independent
constructs (Wondola et al., 2020). The degree
of multicollinearity in a multiple regression
model is measured by the variance inflation
factor (VIF). The VIF of 1 shows the absence
of multicollinearity, while a VIF bigger than 1
specifies the occurrence of multicollinearity.
High multicollinearity is frequently indicated
by a VIF more significant than five (Chan et al.,
2022; Hussain & Ahmed, 2020). The variance
amount in a predictor, which other predictors
cannot describe, is represented by tolerance,
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which is the reciprocal of VIF. There is high
multicollinearity when the tolerance value is be-
low 0.2. The condition index gauges the level
of multicollinearity in a multiple regression mod-
el. Multicollinearity is indicated by a number
higher than 30 (Arminger & Schoenberg, 1989;
Chan et al., 2022). The previous literature has
discussed and identified several positive and
negative aspects of PLS-SEM and CB-SEM
techniques, however, numerous factors are still
missing to establish the differentiation between
both modeling techniques, thus the current
study answers those questions.

2. Research methodology
21 Research design and estimation
techniques
The undertaking is a comparative study, which
has differentiated PLS-SEM and CB-SEM mod-
eling; the study also considers the efficiencies
and deficiencies of both models in the manage-
ment sciences field. The comparative studies
could be performed qualitatively or quantitative-
ly. However, the research design of this study
is qualitative, and researchers have stated
the pros and cons of PLS-SEM and CB-SEM
techniques; they also compare different param-
eters of both techniques. This study has used
previous literature and thoroughly reviewed
previous studies, books, and other relevant
publications to analyze both models. This study
also used graphical analysis to distinguish be-
tween PLS-SEM and CB-SEM modeling.

The study examined the criteria to validate
measurement models, such as convergent
and discriminant validities, using factor loading
of items, Cronbach’s alpha, composite reliability,
and average variance extracted of constructs
to validate the convergent validity and reliabil-
ity in both PLS-SEM and CB-SEM techniques.
Moreover, this study analyzed HTMT, Fornell-
Larcker criterion, and cross-loading to validate
discriminant validity for both SEM techniques.
Similarly, this study also examined the parame-
ters for validating a structural model for PLS-SEM
modeling. For this purpose, the researchers
used the coefficient of determination (R?), effect
size (f?), path coefficient analysis (direct, indirect
relationship of constructs), goodness of fit mea-
sures, and predictive relevance (Q?).

This research used confirmatory factor
analysis, structural equation modeling, path
coefficient analysis (direct, indirect relationship
of constructs), and goodness of fit measures

2024, DOI: 10.15240/tul/001/2024-5-001 m 5



Information Management

to validate structural models in CB-SEM tech-
niques. This study also used the graphical
analysis to examine the observed, unobserved,
convergent, and discriminant validity to endorse
the measurement model for both PLS-SEM
and CB-SEM techniques. The graphical analy-
sis also defined the path coefficient relationship

Acronyms and full names

(direct and indirect relationship of constructs)
to validate the structural model for both
PLS-SEM and CB-SEM techniques.

2.2 Acronyms and full names
Tab. 1 exhibited the acronyms and full names
of different abbreviations used in this paper.

Acronyms Full names Acronyms Full names
PLS-SEM Partla_l least square structural PLS-CFA Partial least square confirmatory

equation modeling factor analysis
CB-SEM Covar_lance-bas_ed structural PLS-DA Partlal_least square discriminant

equation modeling analysis
SEM Structural equation modeling LGCM Latent growth curve modeling
Smart-PLS | Smart partial least square software | LCA Latent class analysis

Variance-based and factor-based Standardized root mean square
Warp-PLS | structural equation modeling SRMR ; q

residual
software
- Heterotrait monotrait ratio
XLSTAT Excel statistical software HTMT .
of correlation

AMOS Analysis of moment structures AVE Average variance extracted
LISREL Linear structure relations D_ULS The squared euclidean distance
M-Plus Microdia plus software AGFI Adjusted goodness of fit index
RMSEA |00t mean square error RNI Relative non-centrality index

of approximation
CFI Comparative fit index PCFI Parsimonious-adjusted fit index
GFI The goodness of the fit index PNFI Parsimony-adjusted normed fit index
TLI Tucker Lewis index G D Geodesic distance
NFI Normal fit index VIF Variance inflation factor

3. Results and discussion

The results of this study demonstrated the param-
eters of the measurement and structural models
for both PLS-SEM and CB-SEM techniques.

The measurement model in CB-SEM
and PLS-SEM modeling

In PLS-SEM & CB-SEM modeling, validating
the measurement model entails evaluating
the fitness of the dataset and the reliability of in-
dicators chosen to represent the latent variables
(Hair et al., 2019). This procedure includes

3.1

Source: own

the following steps as the factor loadings indi-
cate how intensely indicators and unobserved
factors are linked. Significant factor loadings
show that the indicators and latent variables are
closely connected (Hair et al., 2014; Rigdon,
2016). Factor loadings have a conventional
cut-off of 0.7, which can change depending
on the research environment (Ringle et al.,
2015). The measuring model must be validated
by evaluating the indicators’ reliability and va-
lidity. While validity narrates how well the indi-
cators measure the latent variable, reliability
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refers to the indicators’ consistency across time
(Byrne, 2013; Ringle et al., 2015).

The model must offer a good match for
the dataset; in PLS-SEM modeling, sev-
eral fit indices, including R? and @?, can be
applied to measure how well the model fixes
the dataset. These indices show the percent-
age of the variance in outcome constructs
the model justifications (Henseler et al., 2015;
Parmar et al., 2022). Similarly, many fit indices,
including the RMSEA, chi-square statistic, and
comparative fit index (CFl), can be applied
to measure the model's fitness in CB-SEM
modeling (Hooper et al., 2008). The importance
of path coefficients and the overall model should
be tested by examining the structural model
(Bentler & Bonett, 1980; Hair et al., 2022).

Suppose the factor loadings or the model
do not match the data well. In that case, it may be
essential to re-specify the model by modifying
the path coefficients, adding or removing vari-
ables, or making other modifications (Sarstedt
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et al., 2022). It is essential to remember that
measurement model validation is an iterative
process, and the model should be refined and
re-evaluated as needed until an acceptable lev-
el. It is crucial to remember that when working
with CB-SEM, using multiple data sources, such
as self-report surveys, behavioral observations,
and physiological measures, can increase
the rationality of the measurement model. Ad-
ditionally, the validation process should be done
with the sample used in the study and not just
in the population in general (Hair et al., 2014).
The annotated graphical form of the measure-
ment model of PLS-SEM is provided in Fig. 1
(Ahmed et al., 2021). Fig. 1 demonstrated that
the factor loadings of each item are higher
than 0.70, and the average variance extracted
is more significant than 0.50, which fulfilled
the convergent validity requirement. Moreover,
the path analysis between the construct validat-
ed the discriminant validity; thus, this endorsed
the measurement model.
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The annotated graphical form of the mea-
surement model of CB-SEM is provided in Fig. 2
(Ashraf et al., 2018). Fig. 2 also demonstrated
that each observed variable has a factor load-
ing of more than 0.70, values of path coef-
ficient between the unobserved variables,
and values of goodness of fit measures have
followed the cut-offs. Thus, Fig. 2 demonstra-
tes that the measurement model is validated
in CB-SEM modeling.

3.2 The structural model in CB-SEM and
PLS-SEM modeling

In CB-SEM and PLS-SEM modeling, validating
the structural model entails analyzing the mod-
el's fitness to the dataset, determining the im-
portance of the path coefficient, and reviewing
the overall model (Kline, 2015). This procedure
includes several steps; for example, the path
coefficients show how strong and in what di-
rection the latent variables are related. High

positive path coefficients indicate a strong posi-
tive relationship between the latent variables,
while high negative path coefficients indicate
a strong negative relationship (Hair et al., 2019;
Raza et al., 2021). T-tests or bootstrapping tech-
niques can be used to conclude the significance
of the path coefficients. If the path coefficient
is significant, the latent variables must be sta-
tistically related (Hair et al., 2014; Hayes et al.,
2017; Henseler et al., 2015).

In PLS-SEM modeling, fit indices like R?
and Q? could be applied to measure the overall
fitness of the model. These indices indicate
the variance proportion in dependent factors that
the model explains (Bentler, 1990). The overall
fitness of the CB-SEM model can be evalu-
ated using fit indices such as the RMSEA, chi-
square statistic, and comparative fit index (CFl;
Hooper et al., 2008). Discriminant validity ex-
amines how little latent variables connect with
measurements of unrelated constructs. It can

Full Model with mediation
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be assessed by contrasting the latent variables’
average variance extracted with their squared
correlation to unrelated factors (Ahmed et al.,
2021; Fornell & Larcker, 1981; Hair Jr. et al.,
2017; Malhotra et al., 2006).

The model may need to be re-specified
by adding or removing variables, changing
the path coefficients, or modifying the model
in other ways if it does not fit the data well
or if the path coefficients are not significant
(Kaufmann & Gaeckler, 2015; Sarstedt et al.,
2022). It is crucial to remember that struc-
tural model validation is an iterative process.
The model must be polished and reexamined
until an acceptable fit level and significance
are achieved (Sarstedt et al., 2019). It is es-
sential to remember that when working with
CB-SEM, using multiple data sources, such
as self-report surveys, behavioral observa-
tions, and physiological measures, can
increase the validity of the structural model.
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Additionally, the validation process should be
done with the sample used in the study and not
just in the population in general (Malhotra et al.,
2006). The annotated graphical form depicted
the structural model of PLS-SEM in Fig. 3
(Ahmed et al., 2021). Fig. 3 demonstrated
the path coefficient between the constructs
(direct and indirect relationship), which shows
significant values; moreover, R-square values
showed the impact of exogenous variables
on endogenous variables. Thus, Fig. 3 validat-
ed the structural model in PLS-SEM modeling.

The annotated graphical shape of the
structural model of CB-SEM is provided
in Fig. 4 (Ashraf et al., 2018). Fig. 4 demon-
strates the path coefficient between the con-
structs (direct and indirect relationship), which
shows significant values. Moreover, fit in-
dices values meet the required threshold.
Thus, Fig. 4 validated the structural model for
CB-SEM modeling.
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3.3 Threshold values to validate
the CB-SEM and PLS-SEM modeling

When validating a measurement or structural
model in PLS-SEM or CB-SEM, several thresh-
old values are commonly used to measure
the accuracy, model, and reliability. Now, we
have an overview of some of the most common-
ly used threshold values; for instance, a stan-
dard threshold for factor loadings is 0.70, but
it can vary depending on the research context
(Henseler et al., 2015; Kline, 2015). The typical

Source: Ashraf et al. (2018)

Cronbach’s alpha threshold is 0.70; however,
it may change depending on the research situ-
ation (Hair et al., 2014; Miles & Shevlin, 2007).

Composite reliability depends on the re-
search environment; the composite reliability
criterion of 0.70 is typically adequate (Ringle
et al., 2015). The AVE cut-off is often set at 0.50
but might change depending on the research
environment. Good discriminant  validity
is often indicated by values higher than 0.50
(Fornell & Larcker, 1981; Hair et al., 2009).

Threshold values of reliability and validity

Measures

Threshold values

Factor loading (FL)

Equal and higher 0.70

Cronbach’s alpha (CA)

Equal and higher 0.70

Composite reliability (CR)

Equal and higher 0.70

Average variance extracted (AVE)

>0.50

Source: own
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The typical correlation threshold is 0.70; how-
ever, it can change depending on the research
circumstances. Correlations above 0.70
generally indicate a strong relationship be-
tween two variables (Hussain & Ahmed, 2020;
Maydeu-Olivares et al., 2018). Tab. 2 exhibited
the threshold values of factor loading, Cron-
bach’s alpha, composite reliability, and average
variance extracted.

3.4 The PLS-SEM modeling goodness
of fit measures

In PLS-SEM, model fitness could be evaluated
using a multiplicity of metrics, such as R?, which
gauges the proportion of the outcome con-
struct’s variance that could be accounted for
by independent constructs (Hair et al., 2019).
The variance amid the perceived projected
covariance matrix is measured by the RMSEA,
with readings nearer to 0 signifying a better
fit (Hooper et al., 2008). The goodness-of-fit
index (GFl) measures how considerably
the variance in the observed variables can be
accounted for by the model, with values nearer 1
suggesting a good fit (Hu & Bentler, 1999; Hair
et al., 2019). The normal fit index (NFI), a vari-
ant of the GFI that accounts for the parameters
in the considered model, has values closer to 1
than those that indicate a better fit (Ringle et al.,
2022). The SRMR, a well-known measure
fit of the overall model, is used in PLS-SEM.
The SRMR measures the difference between
observed and predicted covariance matrices.
It varies from 0 to 1, where a value of 0 desig-
nates a complete fit, and a value of 1 specifies
that the model cannot replicate the observed
covariance matrices (Bollen & Davis, 2009).
Less than 0.08 is the suggested cut-off value for
the SRMR, which denotes an acceptable model
fit to the dataset. However, the research field
and sample size can affect the allowable value
of SRMR (Ringle et al., 2015).

It is imperative to remember that SRMR
is a sample-based measure calculated based
on the sample, not the population. Moreover,
it takes into account both structural and mea-
surement models. It is not sensitive to the sam-
ple size; thus, it is a more robust gauge for model
fit than other fit statistics such as RMSEA or CFI
(Henseler et al., 2015; Kline, 2015). The CFI
should be 1 for saturated models, and the
RMSEA should be close to 0. It means that
the model accurately describes all variations
in the observed variables and is a perfect fit for
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the dataset (Hair et al., 2019; Mouri, 2005).
RMSEA < 0.08 and CFI > 0.95 are the suggest-
ed cut-off values for estimated models. These
results demonstrate that the model demonstra-
tes the relationship among variables in the data
and fits the data very well. These cut-off num-
bers, however, may change based on the re-
search area and circumstance (Memon et al.,
2019; Raza et al.,, 2021). CFl (comparative
fit index) is comparable to NFI but also justifies
the complexity of the model compared to a null
model, with values closer to 1 suggesting a bet-
ter match (Bentler, 1990; Bollen & Davis, 2009).
It is worth noting that no one metric is a silver
bullet, and it is consistently substantial to evalu-
ate different metrics for different purposes (Hair
et al., 2018; McDonald & Ho, 2002).

3.5 Discriminant validity in PLS-SEM
Discriminant validity in PLS-SEM refers
to a construct’s or latent variable’s capacity
to stand out from other constructs or unob-
served constructs’ in the considered model.
It ensures that the factor measures what it in-
tends to measure and not some other construct
(Cheah et al., 2019; Raza et al., 2021). There
are various techniques to evaluate the discrimi-
nant validity of PLS-SEM,; for instance, the cor-
relation ratio relates the connection between
two factors to the square root of the AVE of one
component. The ratio must be more significant
than one to prove discriminant validity (Chin,
2010; Fornell & Larcker, 1981).

The Fornell-Larcker criterion equates
the squared correlation between an indicator
and the unobserved construct to the product
of the unobserved construct’s AVE, the indica-
tor’s squared loading on the latent variable
(Cohen, 1994; Fornell & Larcker, 1981).
D_ULS (discriminant validity — uniqueness) and
D_G (discriminant validity — Fornell-Larcker
criterion) are measures of the degree to which
a factor’s variance is unique, meaning other
factors do not explain it in the model. A high
D_ULS or D_G value indicates a construct’s
uniqueness, which is desirable for good dis-
criminant validity (Franke & Sarstedt, 2019;
Henseler et al., 2015).

The suggested cut-off value for D_ULS
and D_G is typically more than 0.5. However,
the acceptable value of D_ULS and D_G may
change based on the investigation area,
the size of the sample, and the research cir-
cumstances (Ringle et al., 2022). It is significant
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to remember that D_G and D_ULS are not
the only processes for discriminant validity.
Other measures can be used, such as cross-
loadings, AVE (average variance extracted), or
the Fornell-Larcker criterion (Fornell & Larcker,
1981; Henseler, 2021). While these techniques
can aid in establishing discriminant validity,
it is essential to keep in mind that they should
be used in conjunction with other approaches,
for instance, Factor loading evaluation, cross-
loading, correlation matrix evaluation, and mod-
el-specific theoretical construct and relationship
analysis (Ahmed et al., 2020; Hult et al., 2018).

3.6 F-square values in PLS-SEM

F-square values are frequently used in PLS-SEM
to measure the relative significance of predic-
tors. The F-square value gauges how much
of a dependent variable’s variance each predic-
tor contributes to (Henseler et al., 2015; Hwang
et al., 2020). Each predictor in the model has
an F-square value ranging from 0 to 1, with
1 denoting that the predictor fully explicates
the variance in an outcome construct (Ringle
et al.,, 2015). F-square values can be used
to compare the relative weights of several
model predictors. For example, a predictor with
an F-square value of 0.8 would be consid-
ered more critical than one with an F-square
value of 0.2 (Sarstedt et al., 2022). It is critical

Predictive relevance (Q?)

to remember that F-square values are relative
measurements determined by the proportion
of variance explicated through the model’'s
predictors, not by the total amount of variance
explicated (Ahmed et al., 2019). Moreover,
PLS-regression (PLS-R) is the only version that
supports it; PLS-path modeling (PLS-PM) does
not (Henseler et al., 2015).

3.7 Predictive relevance (Q2) in PLS-SEM
Predictive relevance, sometimes referred
toas Q?,isused in PLS-SEM to assess the mod-
el’s capacity for prediction. It is a measurement
of the percentage of an outcome construct’'s
variation that the latent constructs in the model
can accurately predict (Henseler et al., 2015;
Liengaard et al., 2021). The PLS-SEM model’s
foreseen values for an outcome variable are
compared to the actual values for the depen-
dent variable to determine Q2. The relevant
research subject and environment will deter-
mine the appropriate value of Q* (Hair et al.,
2017; Ringle et al., 2015; Shmueli et al., 2019).
It is crucial to remember that Q? is a relative
measure, meaning that the proportion of devia-
tion determines it explained through the model
rather than the total variance (Henseler, 2021;
Shi & Maydeu-Olivares, 2020). Tab. 3 indicates
the interpretations of predictive relevance
(@?) values.

Predictive relevance (Q?) values Interpretations
Q=0 A @Q? value of 0 means the model cannot forecast any
deviation in an outcome construct
>05 Q@2 values of 0.5 or above have good predictive power
- in real-world applications
=1 A @Q? value of 1 means the model can perfectly forecast
all deviations in an outcome construct

3.8 Confirmatory factor analysis (CFA)
in CB-SEM modeling

A statistical technique called CFA is employed
in (CB-SEM) to examine a measurement model
structure. A latent variable estimate based
on several indications is possible using CB-SEM.
The factor structure of the indicators and the con-
nection between the unobserved variables and
the indicators are tested using CFA (Zhang et al.,

Source: own

2020). By contrasting the manifest covariance
matrix with the projected covariance matrix based
on loadings and error variances of indicators,
CFA is modified to assess the measurement
structure of the model in CB-SEM. If the obser-
ved and projected covariance matrices match,
the model is deemed a well-fit (Raza et al., 2021).

CB-SEM also uses CFA to examine a mea-
surement model invariance through clusters
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or time. It denotes the predicted consistency
of the element configuration and the link be-
tween the unobserved variables and the indica-
tors across groups or time (Ahmed et al., 2022;
Bollen & Davis, 2009). It is vital to remember that
CFA is a confirmatory technique that examines
a particular theory regarding the factor structure
and the relationship between the unobserved
variables and indicators. Also, it is crucial to note
that CFAis a typical and crucial stage in CB-SEM
modeling, earlier touching on the structural
model component (Hair et al., 2019).

3.9 Structural equation modeling
in CB-SEM modeling

CB-SEM uses structural equation modeling,
a statistical approach to examine the structural
links between latent and observable variables.
Complex models with numerous unobserved
constructs and indicators for every construct
can be estimated using SEM (Ahmed et al.,
2019; Hair et al., 2022). CB-SEM uses SEM
to measure the structural links between the la-
tent and observable variables by estimating
the path coefficients and error variances of un-
observed constructs and indicators. If the ob-
served and projected covariance matrices
match, the considered model fits well.

A range of hypotheses can be tested using
CB-SEM, including those involving direct and

Fit indices and threshold values
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indirect effects, mediation and moderation ef-
fects, and latent interactions. CB-SEM can also
be attuned to test for measurement invariance
across groups or time (Hair et al., 2019; Raza
et al., 2021; Zhang et al., 2020). In order to test
a specific hypothesis about the structural as-
sociations among the unobserved and observ-
able constructs, SEM is a confirmatory method,
which is essential to note. Moreover, after es-
tablishing the measurement framework and as-
sociations among the unobserved constructs,
SEM is a typical and crucial stage in CB-SEM
modeling (Kline, 2015).

3.10 The CB-SEM modeling goodness
of fit measures

The goodness-of-fit of the measurement
and structural models is measured through
fit indices in CB-SEM. They indicate how well
the model captures the data and can be used
to pinpoint areas where the model requires im-
provement (Byrne, 2013; Hooper et al., 2008).
Several fit indices in CB-SEM, such as x?/df and
probability, are known as the absolute fit indices
in CB-SEM modeling (Bentler & Bonett, 1980;
Bollen, 1989; Lu et al., 2020). The goodness-of-fit
index (GFI) indicator evaluates an association
between the model’s justified covariance and
the data’s total covariance (Byrne, 2013; Hu
& Bentler, 1999). The adjusted goodness-of-fit

Fit-indices Threshold values
X?/df and probability ¥?/df > 5.0 and p < 0.05
GFI Range of 0 to 1, with values around 1 (>0.95) a solid fit
AGFI AGFI varies from 0 to 1, with a reading close to 1 (>0.95) satisfactory fit
RMSEA <0.05 good fit, between 0.05 and 0.10 acceptable, and >0.10 poor fit
A good fit is indicated by values less than 0.08, a good fit is shown
SRMR by readings ranges 0.08-0.10, and a poor fit is indicated by readings
higher than 0.10
The RNI index is 0 to 1, with values nearer 1 (>0.95), indicating a better
RNI )
model-to-data fit
CFI >0.90 acceptable and >0.95 good fit
The NFl index is 0 to 1, with values nearer 1 (>0.95), indicating a better
NFI )
model-to-data fit
PCFI 0.75 or higher
PNFI 0.75 or higher

Source: own
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index (AGFI), an amended form of the GFlI,
takes into account the model’s independent
variable count, the absolute fit indices, also
known as the GFl and AGFI (Barbi¢ et al., 2019;
Bentler, 1990). The RMSEA measures the in-
consistency amid the manifest and anticipated
covariance matrix (Tanaka, 1993). The stan-
dard root mean square residual (SRMR) metric
contrasts the model’s residuals with the vari-
ances of the observed variables (Hooper et al.,
2008; Ringle et al., 2015). The RNI (relative
non-centrality index) fit index is a statistical met-
ric to assess how sound a model fits a specific
dataset collection. Considering the variance
of the observed values, it calculates the vari-
ance amid the actual values and values fore-
casted through the model (Ahmed et al., 2021;
Oliver, 2014). Other frequently used fit indices
in CB-SEM are the comparative fit index (CFl),
Trucker-Lewis index (TLI), and normal fit in-
dex (NFI). These are comparable to traditional
SEM’s goodness-of-fit index (GFI) and adjusted
goodness-of-fit index (AGFI) (Hair et al., 2019;
Raza et al., 2021; Tucker & Lewis, 1973).

To calculate PCFI (parsimonious-adjusted
fit index), subtract the model’s CFI from the CFI
of a null model, then divide the outcome
by the change in degrees of freedom between
the two models (Barbi¢ et al., 2019; Bentler,
1990; Blackwell et al., 2001; Byrne, 2013).
The difference between the model’s normalized
fit index and the normalized fit index of a null
model is used to produce the PNFI (parsimony-
adjusted normed fit index), which is then divided
by the variance in degrees of freedom between
the two models (Hu & Bentler, 1999). It is critical
to understand that many fit indices must be cali-
brated to estimate the model and that no single
fit index is considered the best. The context
of the research topic and the study’s objectives
must be justified while assessing the fit indices
(Astrachan et al., 2014; Hair et al., 2019; Tucker
& Lewis, 1973). Threshold values of fit indices
are exhibited in Tab. 4.

Conclusions

The CB-SEM is a powerful technique for
analyzing complex relationships among mul-
tiple variables. Both methods have advantages
and disadvantages, and the approach relies
on the study issue, the availability of resources,
and the time available. PLS-SEM is a robust
technique that can handle high levels of mea-
surement error and can be applied to small and

unbalanced datasets. It helps look at correlations
between unobserved factors that are one, which
could not be observed directly. When conven-
tional SEM is not practical, PLS-SEM is es-
pecially helpful. On the other hand, CB-SEM
is a powerful technique that can handle numer-
ous groups and various signs. It helps examine
connections between several manifest factors,
or those that can be directly observed, and nu-
merous latent variables (Henseler et al., 2015;
Kline, 2015). CB-SEM is especially helpful when
the objective is to generalize findings to spe-
cific demographic subgroups. PLS-SEM and
CB-SEM are valuable tools for examining
structural equation models. The study question
and the characteristics of the population being
investigated influence the technique selection.
When selecting the best technique for their
research, researchers must consider both ap-
proaches’ drawbacks and underlying assump-
tions. The research issue and the features
of the population being examined determine
the theoretical implications of the comparison
between CB-SEM and PLS-SEM (Ahmed et al.,
2021). PLS-SEM is a data-driven approach that
does not rely on a priori postulations regarding
the structure of the associations among factors.
Researchers can use PLS-SEM to uncover la-
tent relationships among variables that may not
be immediately apparent from the data. It can
benefit researchers interested in exploring
new or complex relationships among variables
(Hair et al., 2022). Contrarily, CB-SEM is more
theory-driven and is based on presumptions
about the structure of the correlations among
factors. To test particular propositions regarding
the relationships between factors, research-
ers can employ CB-SEM. Researchers inter-
ested in putting tested theories or hypotheses
to the test may find it helpful. PLS-SEM offers
greater flexibility and exploration of the data,
whereas CB-SEM offers greater rigor and
testing of particular hypotheses. Both meth-
ods have advantages and limitations, and
the choice of which technique to use depends
on the characteristics of the population re-
search question being studied (Hair et al.,
2019; Zhang et al., 2020).

Additionally, PLS-SEM is more robust
to multicollinearity and measurement error,
which can be anissue in CB-SEM, where the as-
sumptions of independence among the pre-
dictors and measurement invariance across
groups should be met. PLS-SEM is viewed as
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a more recent and less well-established tech-
niqgue than CB-SEM; despite this, PLS-SEM
is becoming more and more well-liked and com-
mon in use, particularly in industries like mar-
keting, psychology, and management (Ahmed
et al., 2022; Hair et al., 2022). The study is-
sue and the characteristics of the population
will determine the managerial implications
of the comparison between CB-SEM and
PLS-SEM. PLS-SEM is a dominant procedure
that can handle high measurement error levels,
small and unbalanced datasets, and latent vari-
ables. PLS-SEM could be used in conditions
where traditional SEM would be infeasible.
Even when the sample size is unbalanced or
small, and the measurement error is signifi-
cant, PLS-SEM can be particularly valuable for
managers and practitioners interested in un-
derstanding the underlying relationships among
factors (Wondola et al., 2020). On the con-
trary, CB-SEM is a powerful technique that
can handle numerous groups and various
signs. CB-SEM can be applied when the goal
is to generalize results to specific population
subgroups. CB-SEM can be particularly use-
ful for managers and practitioners interested
in understanding associations between multiple
unobserved and manifest factors and general-
izing results to specific population subgroups.
PLS-SEM offers greater flexibility and data
exploration, whereas CB-SEM allows for more
incredible rigors and testing of particular hy-
potheses, which has managerial consequences.
The decision of which methodology to employ
relies on the research issue and the character-
istics of the population being examined. Both
methods offer benefits and drawbacks (Kline,
2015). Additionally, PLS-SEM is more robust
to multicollinearity and measurement error, which
can be an issue in CB-SEM, where the assump-
tions of independence among the predictors
and measurement invariance across groups
should be met. It is also significant to note that
PLS-SEM can be helpful in practice, particu-
larly in industries like marketing, psychology,
and management, where practitioners and
researchers must deal with complicated and
unbalanced datasets and where an explor-
atory approach is required (Henseler, 2021; Shi
& Maydeu-Olivares, 2020).

Limitations and future research orientations
PLS-SEM and CB-SEM are powerful techni-
ques for analyzing complex relationships
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among multiple variables; however, they also
have some limitations. Some of the limitations
of PLS-SEM include the following: PLS-SEM
is less established and less well-known than
traditional SEM, which may be less familiar
to some researchers (Wondola et al., 2020).
PLS-SEM does not rely on a priori supposi-
tions regarding the structure of the relation-
ships among the factors, making interpreting
the results challenging (Hair et al., 2022). Thus,
itis recommended that future researchers study
this limitation. PLS-SEM is sensitive to outliers
and extreme observations, which can affect
the analysis results. PLS-SEM does not offer
atestforoverall modelfit. The following are some
CB-SEM drawbacks: when a priori postulations
vis-a-vis the nature of interactions between
the factors are not achieved, CB-SEM is used,
making it challenging to interpret the results.
Thus, it is recommended that future research-
ers carry out their studies on this topic. Another
critical limitation of PLS-SEM & CB-SEM mod-
eling is not to provide a cause-effect between
the constructs (Ahmed et al., 2022). Therefore,
it is recommended that the researchers estab-
lish cause and effect between the variables;
they must use some additional models, includ-
ing Toda and Yamamoto (1995).

References

Ahmed, R. R., Hussain, S., Pahi, M. H.,
Usas, A., & Jasinskas, E. (2019). Social media
handling and extended technology acceptance
model (ETAM): Evidence from SEM-based mul-
tivariate approach. Transformations in Business
& Economics, 18(3), 246-271.

Ahmed, R. R., Streimikiene, D., Chan-
nar, Z.A., Soomro, R. H., & Streimikis, J. (2021).
E-banking customer satisfaction and loyalty: Ev-
idence from serial mediation through modified
E-S-QUAL model and second-order PLS-SEM.
Engineering Economics, 32(5), 407-421.
https://doi.org/10.5755/j01.ee.32.5.28997

Ahmed, R. R., Streimikiene, D., Rolle, J. A.,
& Due, P. A. (2020). The COVID-19 pandemic and
the antecedents for the impulse buying behavior
of US citizens. Journal of Competitiveness, 12(3),
5-27. https://doi.org/10.7441/joc.2020.03.01

Ahmed, R. R., Streimikiené, D., & Streimi-
kis, J. (2022). The extended UTAUT model and
learning management system during COVID-19:
Evidence from PLS-SEM and conditional process
modeling. Journal of Business Economics and

2024, DOI: 10.15240/tul/001/2024-5-001 m 15



Information Management

Management, 23(1), 82-104. https://doi.org/
10.3846/jbem.2021.15664

Arminger, G., & Schoenberg, R. J. (1989).
Pseudo maximum likelihood estimation and
a test for misspecification in mean and covari-
ance structure models. Psychometrika, 54(3),
409-425. https://doi.org/10.1007/bf02294626

Ashraf, M., Vveinhardt, J., Ahmed, R. R,,
Streimikiené, D., & Mangi, R. A. (2018). Explor-
ing intervening influence of interactional justice
between procedural justice and job perfor-
mance: Evidence from South Asian countries.
Amfiteatru Economic, 20(47), 169-184. https://
doi.org/10.24818/ea/2018/47/169

Astrachan, C. B., Patel, V. K., & Wanzen-
ried, G. (2014). A comparative study of CB-SEM
and PLS-SEM for theory development in family
firm research. Journal of Family Business Strate-
gy, 5(1), 116-128. https://doi.org/10.1016/j.jfbs.
2013.12.002

Barbi¢, D., Lugi¢, A., & Chen, J. M. (2019).
Measuring responsible financial consump-
tion behaviour. International Journal of Con-
sumer Studies, 43(1), 102-112. https://doi.org/
10.1111/ijcs. 12489

Becker, J.-M., Proksch, D., & Ringle, C. M.
(2022). Revisiting Gaussian copulas to handle
endogenous regressors. Journal of the Acade-
my of Marketing Science, 50(1), 46—66. https://
doi.org/10.1007/s11747-021-00805-y

Bentler, P. M. (1990). Comparative fit in-
dexes in structural models. Psychological Bul-
letin, 107(2), 238-246. https://doi.org/10.1037/
0033-2909.107.2.238

Bentler, P. M., & Bonett, D. G. (1980).
Significance tests and goodness of fit in the
analysis of covariance structures. Psycho-
logical Bulletin, 88(3), 588—606. https://doi.org/
10.1037/0033-2909.88.3.588

Blackwell, R. D., Miniard, P. W., & Engel, J. F.
(2001). Consumer behavior. Harcourt College
Publishers. https://doi.org/10.2307/1250212

Bollen, K. A. (1989). Structural equations
with latent variables. John Wiley. https://doi.org/
10.1002/9781118619179

Bollen, K. A., & Davis, W. R. (2009). Causal
indicator models: Identification, estimation, and
testing. Structural Equation Modeling: A Multidis-
ciplinary Journal, 16(3),498-522. https://doi.org/
10.1080/10705510903008253

Byrne, B. M. (2013). Structural equation
modeling with AMOS: Basic concepts, applica-
tions, and programming (2nd ed.). Routledge.
https://doi.org/10.4324/9780203805534

Chan, J. Y.-L., Leow, S. M. H., Bea, K. T.,
Cheng, W. K., Phoong, S. W., Hong, Z.-W.,
& Chen, Y.-L. (2022). Mitigating the multicol-
linearity problem and its machine learning ap-
proach: A review. Mathematics, 10(8), 1283.
https://doi.org/10.3390/math10081283

Cheah, J. H., Ting, H., Ramayah, T,
Memon, M. A., Cham, T. H., & Ciavolino, E.
(2019). A comparison of five reflective-forma-
tive estimation approaches: Reconsideration
and recommendations for tourism research.
Quality & Quantity, 53(3), 1421-1458. https://
doi.org/10.1007/s11135-018-0821-7

Chin, W. W. (2010). Bootstrap cross-
validation indices for PLS path model assess-
ment. In V. W. W. Esposito Vinzi, J. Henseler,
& H. Wang (Eds.), Handbook of partial least
squares: Concepts, methods and applications
(Springer Handbooks of Computational Statis-
tics Series) (Vol. 2, pp. 83-97). Springer. https://
doi.org/10.1007/978-3-540-32827-8 4

Cohen, J. (1992). A power primer. Psycho-
logical Bulletin, 112(1), 155-159. https://doi.org/
10.1037/0033-2909.112.1.155

Cohen, J.(1994). The earthis round (p <.05).
American Psychologist, 49(12), 997-1003.
https://doi.org/10.1037/0003-066x.49.12.997

Fornell, C., & Larcker, D. F. (1981). Structur-
al equation models with unobservable variables
and measurement error: Algebra and statistics.
Journal of Marketing Research, 18(3), 382-388.
https://doi.org/10.1177/002224378101800313

Franke, G., & Sarstedt, M. (2019). Heu-
ristics versus statistics in discriminant validity
testing: A comparison of four procedures. Inter-
net Research, 29(3), 430—447. https://doi.org/
10.1108/intr-12-2017-0515

Grewal, R., Cote, J. A., & Baumgartner, H.
(2004). Multicollinearity and measurement error
in structural equation models: Implications for
theory testing. Marketing Science, 23(4), 519-529.
https://doi.org/10.1287/mksc.1040.0070

Hair, J. F., Anderson, R. E., Babin, B. J,,
& Black, W. C. (2010). Multivariate data analy-
sis: A global perspective. Pearson Education.

Hair,J.F.,Babin,B.J.,&Krey,N.(2017).Cova-
riance-based structural equation modeling in the
Journal of Advertising: Review and recommen-
dations. Journal of Advertising, 46(1), 163-177.
https://doi.org/10.1080/00913367.2017.
1281777

Hair, J. F., Black, W. C., Babin, B. J., & An-
derson, R. E. (2018). Multivariate data analysis.
Cengage.

16 m 2024, DOI: 10.15240/tul/001/2024-5-001



Hair, J. F., Black, W. C., Babin, B. J., Ander-
son, R. E., & Tatham, R. L. (2006). Multivariate
data analysis. Pearson Prentice Hall.

Hair, J. F., Hult, T., Ringle, C., & Sarstedt, M.
(2014). A primer on partial least squares struc-
tural equation modeling (PLS-SEM). Sage
Publications.

Hair, J. F., Hult, G. T, Ringle, C. M,
& Sarstedt, M. (2022). A primer on partial
least squares structural equation modeling
(PLS-SEM). Sage Publications.

Hair, J. F.,Ringle, C. M., & Sarstedt, M. (2011).
PLS-SEM: Indeed, a silver bullet. Journal of
Marketing Theory and Practice, 19(2), 139-151.
https://doi.org/10.2753/mtp1069-6679190202

Hair, J. F., Risher, J. J., Sarstedt, M., & Ring-
le, C. M. (2019). When to use and how to report
the results of PLS-SEM. European Business
Review, 31(1), 2-24. https://doi.org/10.1108/
ebr-11-2018-0203

Hair, J. F., & Sarstedt, M. (2021). Explana-
tion plus prediction: The logical focus of project
management research. Project Management
Journal, 52(4), 319-322. https://doi.org/
10.1177/8756972821999945

Hayes, A. F., Montoya, A. K., & Rock-
wood, N. J. (2017). The analysis of mecha-
nisms and their contingencies: PROCESS
versus structural equation modeling. Austral-
asian Marketing Journal, 25(1), 76-81. https://
doi.org/10.1016/j.ausm;.2017.02.001

Henseler, J. (2021). Composite-based
structural equation modeling: Analyzing latent
and emergent variables. Guilford Press.

Henseler, J., Ringle, C. M., & Sarstedt, M.
(2015). A new criterion for assessing dis-
criminant validity in variance-based structural
equation modeling. Journal of the Academy of
Marketing Science, 43(1), 115-135. https://doi.
org/10.1007/s11747-014-0403-8

Hoenig, J. M., & Heisey, D. M. (2001).
The abuse of power. The American Statisti-
cian, 55(1), 19-24. https://doi.org/10.1198/
000313001300339897

Hooper, D., Coughlan, J., & Mullen, M.
(2008). Structural equation modeling: Guide-
lines for determining model fit. Electronic
Journal of Business Research Methods, 6(1),
53-60. https://doi.org/10.21427/D7CF7R

Hu, L. T., &Bentler, P. M. (1999). Cut-off crite-
riaforfitindexes in covariance structure analysis:
Conventional criteria versus new alternatives.
Structural Equation Modeling, 6(1), 1-55.
https://doi.org/10.1080/10705519909540118

Information Management

Hult, G. T. M., Hair, J. F., Proksch, D.,
Sarstedt, M., Pinkwart, A., & Ringle, C. M.
(2018). Addressing endogeneity in international
marketing applications of partial least squares
structural equation modeling. Journal of Inter-
national Marketing, 26(3), 1-21. https://doi.
org/10.1509/jim.17.0151

Hussain, S., & Ahmed, R. R. (2020). Smart-
phone buying behaviors in a framework of brand
experience and brand equity. Transformations
in Business & Economics, 19(2), 220-242.

Hussain, S., Ahmed, R. R., & Shamsi, A. F.
(2021). Technology confirmation is associated
to improved psychological well-being: Evidence
from an experimental design. Transformations
in Business & Economics, 20(53), 177-196.

Hwang, H., Sarstedt, M., Cheah, J. H,,
& Ringle, C. M. (2020). A concept analysis of
methodological research on composite-based
structural equation modeling: Bridging PLSPM
and GSCA. Behaviormetrika, 47(1), 219-241.
https://doi.org/10.1007/s41237-019-00085-5

Kang, H. (2021). Sample size determina-
tion and power analysis using the G*Power
software. Journal of Educational Evaluation
for Health Professions, 18, 17. https://doi.
org/10.3352/jeehp.2021.18.17

Kaufmann, L., & Gaeckler, J. (2015).
A structured review of partial least squares in
supply chain management research. Journal
of Purchasing and Supply Management, 21(4),
259-272. https://doi.org/10.1016/j.pursup.2015.
04.005

Kline, R. B. (2015). Principles and prac-
tice of structural equation modeling (4th ed.).
The Guilford Press.

Kroese, D. P., Brereton, T., Taimre, T,
& Botev, Z. I. (2014). Why the Monte Carlo
method is so important today. WIREs Compu-
tational Statistics, 6(6), 386—392. https://doi.
org/10.1002/wics.1314

Legate, A. E., Hair, J. F., Chretien, J. L.,
& Risher, J. J. (2022). PLS-SEM: Prediction-
oriented solutions for HRD researchers. Hu-
man Resource Development Quarterly, 34(1),
91-109. https://doi.org/10.1002/hrdq.21466

Liengaard, B. D., Sharma, P. N,
Hult, G. T. M., Jensen, M. B., Sarstedt, M.,
Hair, J. F., & Ringle, C. M. (2021). Prediction:
Coveted, yet forsaken? Introducing a cross-
validated predictive ability test in partial
least squares path modeling. Decision Sci-
ences, 52(2), 362-392. https://doi.org/10.1111/
deci.12445

2024, DOI: 10.15240/tul/001/2024-5-001 m 17



Information Management

Lu, J., Ren, L., Zhang, C., Rong, D.,
Ahmed, R. R., & Streimikis, J. (2020). Modified
Carroll's pyramid of corporate social responsi-
bility to enhance organizational performance
of SME industry. Journal of Cleaner Produc-
tion, 271, 122456. https://doi.org/10.1016/
j.jclepro.2020.122456

Malhotra, N. K., Kim, S. S., & Patil, A.
(2006). Common method variance in IS re-
search: A comparison of alternative approaches
and a reanalysis of past research. Management
Science, 52(12), 1865-1883. https://doi.org/
10.1287/mnsc.1060.0597

Matthews, L. (2017). Applying multi-group
analysis in PLS-SEM: A step-by-step process.
In H. Latan & R. Noonan (Eds.), Partial least
squares path modeling (pp. 219—-243). Springer
International Publishing. https://doi.org/10.1007/
978-3-319-64069-3_10

Maydeu-Olivares, A., Shi, D., & Rosseel, Y.
(2018). Assessing fit in structural equation mod-
els: A Monte-Carlo evaluation of RMSEA versus
SRMR confidence intervals and tests of close
fit. Structural Equation Modeling: A Multidisci-
plinary Journal, 25(3), 389—-402. https://doi.org/
10.1080/ 10705511.2017.1389611

McDonald, R. P., & Ho, M.-H. R. (2002).
Principles and practice in reporting statisti-
cal equation analyses. Psychological Meth-
ods, 7(1), 64-82. https://doi.org/10.1037/
1082-989x.7.1.64

Memon, M. A., Cheah, J.-H., Ramayah, T.,
Ting, H., Chuah, F., & Cham, T. H. (2019). Mod-
eration analysis: Issues and guidelines. Journal
of Applied Structural Equation Modeling, 3(1),
i—xi. https://doi.org/10.47263/jasem.3(1)01

Miles, J., & Shevlin, M. (2007). A time and
a place for incremental fit indices. Personal-
ity and Individual Differences, 42(5), 869-874.
https://doi.org/10.1016/j.paid.2006.09.022

Mouri, N. (2005). A consumer-based assess-
ment of alliance performance: An examination of
consumer value, satisfaction and post-purchase
behavior. University of Central Florida.

Mueller, R. O., & Hancock, G. R. (2018).
Structural equation modeling. The reviewer’s
guide to quantitative methods in the social sci-
ences. Taylor & Francis Group, Routledge.

Nunkoo, R., Teeroovengadum, V., Ring-
le, C. M., & Sunnassee, V. (2020). Service qual-
ity and customer satisfaction: The moderating
effects of hotel star rating. International Journal
of Hospitality Management, 91, 102414. https://
doi.org/10.1016/j.ijhm.2019.102414

Oliver, R. L. (2014). Satisfaction: A behav-
ioral perspective on the consumer. Routledge.
https://doi.org/10.4324/9781315700892

Parmar, V., Channar, Z. A., Ahmed, R. R,,
Streimikieng, D., Pahi, M. H., & Streimikis, J.
(2022). Assessing the organizational commit-
ment, subjective vitality and burnout effects on
turnover intention in private universities. Oeco-
nomia Copernicana, 13(1), 251-286. https://doi.
org/10.24136/0c¢.2022.008

Raza, S.A.,Qazi,W.,Khan,K.A., & Salam, J.
(2021). Social isolation and acceptance of the
learning management system (LMS) in the time
of COVID-19 pandemic: An expansion of the
UTAUT model. Journal of Educational Comput-
ing Research, 59(2), 183-208. https://doi.org/
10.1177/0735633120960421

Richter, N. F., Schubring, S., Hauff, S,
Ringle, C. M., & Sarstedt, M. (2020). When pre-
dictors of outcomes are necessary: Guidelines
for the combined use of PLS-SEM and NCA.
Industrial Management and Data Systems,
120(12), 2243-2267. https://doi.org/10.1108/
imds-11-2019-0638

Rigdon, E. E. (2016). Choosing PLS path
modeling as analytical method in European man-
agement research: A realist perspective. Euro-
pean Management Journal, 34(6), 598-605.
https://doi.org/10.1016/j.em].2016.05.006

Ringle, C. M., Wende, S., & Becker, J. M.
(2015). SmartPLS 3. SmartPLS GmbH
Boenningstedt.

Ringle C. M., Wende, S., & Becker J. M.
(2022). SmartPLS 4. SmartPLS Oststeinbek.

Sarstedt, M., & Cheah, J.-H. (2019). Par-
tial least squares structural equation modeling
using Smart-PLS: A software review. Journal of
Marketing Analytics, 7(3), 196—202. https://doi.
org/10.1057/s41270-019-00058-3

Sarstedt, M., Hair, J. F., Cheah, J.-H., Beck-
er, J.-M., & Ringle, C. M. (2019). How to specify,
estimate, and validate higher-order constructs
in PLS-SEM. Australasian Marketing Jour-
nal, 27(3), 197-211. https://doi.org/10.1016/
j-ausm;j.2019.05.003

Sarstedt, M., Radomir, L., Moisescu, O. I,
& Ringle, C. M. (2022). Latent class analysis
in PLS-SEM: A review and recommendations
for future applications. Journal of Business Re-
search, 138, 398—407. https://doi.org/10.1016/
j.jousres.2021.08.051

Sarstedt, M., Ringle, C. M., & Hair, J. F.
(2021). Partial least squares structural equa-
tion modeling. In C. Homburg, M. Klarmann,

18 m 2024, DOI: 10.15240/tul/001/2024-5-001



& A. E. Vomberg (Eds.), Handbook of market re-
search(pp. 1-47). Springer International Publishing.
https://doi.org/10.1007/978-3-319-05542-8_15-2

Sharma, P. N., Shmueli, G., Sarstedt, M.,
Danks, N., & Ray, S. (2021). Prediction-orient-
ed model selection in partial least squares path
modeling. Decision Sciences, 52(3), 567—607.
https://doi.org/10.1111/deci.12329

Shi, D., & Maydeu-Olivares, A. (2020).
The effect of estimation methods on SEM fit in-
dices. Educational and Psychological Measure-
ment, 80(3), 421-445. https://doi.org/10.1177/
0013164419885164

Shmueli, G., Sarstedt, M., Hair, J. F.,
Cheah, J.-H., Ting, H., Vaithilingam, S.,
& Ringle, C. M. (2019). Predictive model as-
sessment in PLS-SEM: Guidelines for using
PLSpredict. European Journal of Marketing,
53(11), 2322-2347. https://doi.org/10.1108/
ejm-02-2019-0189

Tanaka, J. S. (1993). Multifaceted con-
ceptions of fit in structural equation models.
In K. A. Bollen & J. S. Long (Eds.), Testing
structural equation models. Sage Publications.

Toda, H. Y., & Yamamoto, T. (1995). Sta-
tistical inference in vector autoregressions
with possibly integrated processes. Journal of

Information Management

Econometrics, 66(1-2), 225-250. https://doi.
org/10.1016/0304-4076(94)01616-8

Tucker, L. R., & Lewis, C. (1973). A reli-
ability coefficient for maximum likelihood factor
analysis. Psychometrika, 38(1), 1-10. https://
doi.org/10.1007/bf02291170

Wondola, D. W., Aulele, S. N., & Lem-
bang, F. K. (2020). Partial least square (PLS)
method of addressing multicollinearity prob-
lems in multiple linear regressions (Case
studies: Cost of electricity bills and factors af-
fecting it). Journal of Physics: Conference Se-
ries, 1463, The 5th International Conference on
Basic Sciences, 1463(1), 012006. https://doi.
org/10.1088/1742-6596/1463/1/012006

Zaidi, E. Z., Ahmed, R. R., & Raza, S.
(2022). Role of social media marketing in
SME sector performance. Transformations in
Business & Economics, 21(56), 275-304.

Zhang, M. F., Dawson, J. F., & Kline, R. B.
(2020). Evaluating the use of covariance-
based structural equation modelling with
reflective measurement in organizational and
management research: A review and recom-
mendations for best practice. British Journal
of Management, 32(2), 257-272. https://doi.
org/10.1111/1467-8551.12415

2024, DOI: 10.15240/tul/001/2024-5-001 m 19



