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Abstract 

This study aims to predict the possibility of low-rise building construction costs by applying machine learning 

models, and the performance of each model is evaluated and compared with ensemble methods. The artificial neural 

network (ANN) emerges as the top-performing individual model, attaining an accuracy of 0.891, while multiple 

linear regression and decision trees follow closely with accuracies of 0.884 and 0.864 respectively. Ensemble 

methods like maximum voting ensemble (MVE) improve the accuracy beyond individual models with an impressive 

accuracy rate of 0.924. Meanwhile, the stacking ensemble and averaging ensemble also demonstrate competitive 

performance with accuracies of 0.883 and 0.871, respectively. These findings can result in more informed decision-

making, which is valuable for the real estate industry.  
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1. Introduction 

Housing is one of the four essential aspects of human life, and the demand for residential properties and housing upgrades 

is rising owing to the growth of that current population. Therefore, the importance of housing to family well-being cannot be 

overstated with homeownership [1] being seen as a cornerstone of both family stability and wealth creation [2]. On the other 

hand, housing prices serve as a reflection of the overall quality of life within urban environments and a fundamental factor in 

construction and resilient cities [3]. This surge in demand directly impacts the real estate industry, increasing residential 

construction projects including single-family homes, townhouses, commercial buildings, condominiums, etc. Data from the 

National Statistical Office and the National Economic and Social Development Council of Thailand [4] reveals that the number 

of permits issued for building construction exhibited varying patterns with a steady fluctuation from 2011 to 2022. 

However, since 2016, the number of permits granted for building construction has evinced a consistent upward trend. The 

burgeoning real estate sector in Thailand has witnessed remarkable growth, which results in wielding a profound impact on 

the nation’s economy and exerting considerable influence over household consumption and savings. Attaining a judicious and 

well-informed appraisal of real estate assets holds intrinsic advantages for a spectrum of stakeholders, ranging from urban 

policymakers within the government’s purview to real estate vendors and individual purchasers [5].  

Two main construction cost estimation methods are presented. One is the rough estimation or approximate cost estimation 

providing a preliminary rough estimate to study the initial feasibility with less time but a higher margin of error. The other one 

is detailed estimation involving calculating the quantities of work and their corresponding prices, while generally, this type of 
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estimation is performed with the availability of construction designs and specifications. Detailed estimation yields relatively 

accurate results but is more time-consuming. It involves presenting an itemized list of material quantities and construction 

costs, resulting in higher accuracy but a longer estimation process [6]. 

Machine learning (ML) has found widespread application across diverse industrial and business sectors [7-9]. ML 

technologies have evolved significantly and expanded their capabilities across a wide range of applications [10]. Noteworthy 

studies have demonstrated the effectiveness of ML methodologies in predicting or classifying various factors, such as interest 

rates and prices within the real estate domain [11]. Construction cost prediction represents a prominent area of investigation 

where ML capabilities have been thoroughly explored. Moreover, construction cost prediction presents a multifaceted non-

linear challenge influenced by various direct and indirect attributes and construction year [12]. 

The traditional method of estimating residential construction costs, whether rough or detailed, always requires human 

resources such as engineers, architects, estimators, and other resources like computers, printers, paper, etc. Additionally, it 

takes considerable time to obtain accurate and precise cost figures. To address this, researchers are interested in using a new 

approach where computers can learn independently through data or simulations with artificial intelligence (AI). They employ 

the principles of extreme learning machine (XLM), creating models for predicting flat-house construction costs directly from 

the house’s area without the need for architects and engineers to design. Instead, the predicted cost should closely approximate 

the traditional estimation. 

ML is a subfield of AI that works alongside algorithms and technologies to extract useful information from data. ML is 

appropriate for calculations involving data due to the impracticability and inefficiency of manually processing the data in the 

absence of ML. Therefore, it depends on creating algorithms enabling ML to be a predictive algorithm method capable of 

processing quantitative data for forecasting. According to the statement of Xu et al. [13], ML has significantly transformed 

various industries and become a powerful tool in the construction sector as it automates processes. ML technology is substantial 

in processing massive volumes of data to achieve time savings and optimize processing resources. Moreover, it may be 

particularly suitable for the construction industry to predict both financial and time expenditure and attain the maximization 

of efficiency. 

In the realm of construction cost estimation, Tayefeh Hashemi et al. [14] conducted an exhaustive analysis of research 

papers spanning 30 years from 1985 to 2020. These papers were dedicated to the application of ML techniques for cost 

estimation in construction projects. The overarching goal of these studies was to develop predictive models capable of 

providing accurate cost estimates, particularly during the pre-bidding phase, thereby facilitating informed decision-making by 

project managers. Notably, prevalent ML techniques have employed in the reviewed literature including ANNs, regression 

analysis (RA), case-based reasoning (CBR), and support vector machines (SVMs) respectively. This analysis aligns with the 

findings of Elfaki et al. [15], in their survey of construction cost estimation over the past decade, which also underscored the 

enduring prominence of classic ML techniques notably ANNs and SVM within the field. 

Various methodologies are employed to forecast residential prices [7]. In contrast to the classic price prediction 

approaches, ANN-based methods have exhibited promising outcomes in real estate assessment [16]. Their primary advantage 

lies in their capacity to discern non-linear correlations between inputs and outputs, rendering them particularly suitable for 

predicting non-linearities in real estate price assessment [17]. Recent investigations have asserted the effectiveness of ML 

models, including ANNs in real estate price prediction tasks [11]. 

Khalaf et al. [18] initially applied particle swarm optimization (PSO) for cost and construction time estimation in 60 

projects. The study attested that PSO performed well and yielded highly accurate results despite the presence of parameters 

with diverse uncertainties. The strength of this approach lies in its reliance on existing and more reliable projects compared to 

those considered for estimation and testing. Conversely, Jiang [19] investigated the use of ANN for construction project 
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estimation and compared its results with the radial basis function neural network (RBFNN) method and found, that ANN 

outperformed RBFNN. Subsequently, the ANN model’s efficiency and application to other project types were examined, 

considering additional cost factors. 

In a study conducted by Park et al. [20], the crucial importance of accurate cost estimation during the initial stages of 

construction projects is underscored. Particularly in situations where essential data for construction cost prediction is scarce, 

the study introduces an innovative two-level stacking ensemble algorithm incorporating random forest (RF), SVM, and 

CatBoosting. The optimal hyperparameter values for these base models are determined through Bayesian optimization coupled 

with cross-validation. Utilizing cost data from the Public Procurement Service in South Korea, the research demonstrates the 

two-level stacking ensemble model consistently outperforms individual ensemble models in predictive accuracy. 

While classical models employed in prior research exhibit commendable predictive capabilities, ML models have 

demonstrated unsatisfactory performance in comparison. Notably, existing studies focused on real estate valuation and 

prediction in the residential domain primarily rely on readily available ML methods. However, the literature scarcely highlights 

the significance of incorporating ensemble models derived from general models to facilitate collective learning and enhance 

performance levels, thereby bolstering robustness. Significantly, it is noteworthy that there is currently an almost complete 

absence of methods for predicting construction prices in Thailand through the deployment of ensemble learning techniques. 

Moreover, in instances where ensemble learning methods have been employed, a notable dearth of comprehensive comparative 

demonstrations involving multiple ensemble learning approaches is emerged. Consequently, a discernible knowledge gap 

persists in the quest to enhance the efficiency of ML models for real estate price prediction. This current study endeavors to 

bridge these gaps comprehensively and address these issues. 

From the aforementioned discussion, the problem arises when business owners, project managers, or homeowners need 

assistance to estimate construction costs accurately and thoroughly, leading to longer estimation periods and reliance on 

engineers, architects, or estimators. To address these challenges, developing a predictive model for estimating flat-house 

construction costs using extreme ML would be beneficial. This AI technique enables computers to learn autonomously. This 

model could aid in predicting construction costs directly from house area data, reducing the need for human involvement in 

the design process while maintaining a close approximation to traditional estimation methods. 

The research aims to achieve three primary objectives. Firstly, it aims to introduce an innovative approach for horizontally 

estimating low-rise construction costs, employing XLM techniques. Secondly, the study strives to identify the most effective 

and suitable prediction method for estimating low-rise construction costs within this context. Lastly, the research endeavors to 

conduct a comprehensive performance comparison between various ensemble learning methods and the conventional approach 

in predicting low-rise building construction costs. Once achieving these objectives, the study aspires to offer valuable insights 

into housing price estimation, ultimately enhancing the accuracy and efficiency of predictions within the real estate market. 

The rest of this paper follows a structured organization. In Section 2, an overview of the dataset and a comprehensive 

data analysis are provided. Sections 2.1 to 2.3 elucidate the concept of base models, while Sections 2.4 to 2.5 expound upon 

the intricacies of the proposed ensemble learning model. Empirical findings are presented in Section 3, culminating in the 

concluding remarks in Section 4. 

2. Data and Methodology 

Predicting low-rise building prices accurately is paramount in the real estate industry. This article presents a 

comprehensive methodology for low-rise building price prediction, which comprises the following 5 phases, data 

preprocessing, build base predictive model, build ensemble model, evaluation model, and results and conclusions, as depicted 
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in Fig. 1. This section is dedicated to the methodology for the development of algorithms aimed at predicting the construction 

cost of low-rise buildings. 

Phase 1 – Data preprocessing marks the outset, including comprehensive data preprocessing tasks such as data cleaning, 

handling missing values, addressing outliers, and data splitting.  

Phase 2 – Building base predictive models follows the construction of base predictive models using regression-based models, 

specifically ANNs, SVMs, multiple linear regression (MLR), decision trees (DTs), and RF. A 10-fold cross-

validation approach is deployed in this phase, coupled with hyperparameter tuning for optimizing model performance. 

Phase 3 – While the maintenance of a 10-fold cross-validation strategy, constructing ensemble models leverages the base 

models to create ensemble models through maximum voting, averaging, stacking, boosting, and bagging. 

Phase 4 – Evaluation of predictive model accuracy entails a rigorous assessment concerning the performance of both base model 

and ensemble learning models. Multiple performance metrics, such as mean squared error (MSE), root mean squared 

error (RMSE), mean absolute error (MAE), and R-squared (R2), are employed to ensure a comprehensive evaluation. 

Phase 5 – Results and conclusions emerged by consolidating results, performing model comparisons, conclusions, and 

making recommendations for selecting the optimal model for predicting the construction costs of low-rise buildings. 

This structured approach ensures a systematic analysis throughout all phases of the study. 

 

Fig. 1 Research methodology 
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2.1.   Dataset 

The dataset for the implementation of the proposed model is obtained from the Bureau of Public Works in Bangkok, 

Thailand. It includes drawing data related to a low-rise building and their respective prices. This dataset constitutes carefully 

selected features, chosen through a comprehensive review of existing literature and expert domain knowledge. The dataset and 

its associated features are presented in Table 1, with the left column listing the feature names, the middle column providing 

concise descriptions of each feature, and the right column referencing the corresponding features from the literature review. 

Table 1 The description of the dataset 

Feature Details description of the dataset Reference 

Y The construction cost of low-rise buildings [1, 5-6, 17, 20-22] 

X1 The number of stories [1, 6, 20, 22-25] 

X2 The gross floor area [5-6, 17, 20, 22-24] 

X3 The area of bedrooms [1, 5-6, 21, 25] 

X4 The area of bathrooms [5, 21, 25] 

X5 The area of living rooms or restrooms [5, 21, 25] 

X6 The area of kitchen and dining rooms [21] 

X7 The area for laundry facilities [21] 

X8 The area of balconies [21] 

X9 The area of stairs and corridors [21] 

X10 The area of the roof covered by the concrete roof and awning [1, 6, 23] 

X11 The area of the roof covered by tiled roofing [1, 6] 

X12 The area of the parking lot [20-22] 

X13 The overall height [5-6, 20, 23] 

X14 The height of the roof By professional experience. 

X15 The average height of each story [6, 17, 23]  

2.2.   Data analysis 

 

Fig. 2 Pearson correlation coefficient 

Conducting a comprehensive analysis of the dataset before commencing model construction is a foundational and 

illuminating step in data understanding. To explore the relationships among the dataset’s attributes, an integral aspect of this 

analytical procedure involves the application of a correlation matrix illustrated in Fig. 2. The correlation matrix provides 

coefficients ranging from +1 to -1 [26], shedding light on the level of association between various attribute pairs. A positive 
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coefficient denotes a direct relationship, while a negative coefficient signifies an inverse connection. Meanwhile, a coefficient 

of zero indicates independence among variables [26]. The scrutiny of this matrix yields valuable insights into attribute 

interdependencies, equipping us to make well-informed decisions during the modeling phase. The observations depicted in 

Fig. 2 emphasize certain variables exhibiting noteworthy correlations, specifically including four points as follows: (1) X1:X13 

= 0.95, (2) X2:X3 = 0.83, (3) X2:X4 = 0.78, and (4) X3:X4 = 0.79. 

2.3.   Data pre-processing 

Pivotal data preprocessing steps were meticulously executed, encompassing the removal of missing data and precise data 

segmentation into training and testing sets. These processes seamlessly integrated extensive data visualization and attentive 

data cleaning, which ensures comprehensive management of missing values and outliers before model deployment. In the 

initial stage of the low-rise building price prediction methodology, the focus lies in the selection of a high-quality dataset. 

Curated diligently from reputable sources, it comprises attributes such as room area, building height, and amenities, while all 

these attributes can influence low-rise building prices. Robust data preprocessing techniques further prepare the dataset by 

handling outliers, resolving missing values, and deriving meaningful features. Finally, data splits into training, validation, and 

testing subsets, which facilitates accurate model assessment, model training, hyperparameter fine-tuning, and performance 

evaluation. 

2.4.   Machine learning techniques base model 

ML algorithms offer the capability to model intricate and ill-defined systems even in the presence of unknown nonlinear 

relationships. Within the scope of this study, a set of five distinguished ML algorithms including ANNs, SVMs, MLR, DT, 

and RF are deployed to develop the proposed ensemble models. The inclusion of these varied algorithms bolsters the predictive 

potency of the approach. Furthermore, comprehensive elucidations of the design parameters for each algorithm are presented 

in detail. 

2.4.1.   Artificial neural networks (ANNs) 

ANNs are a class of ML models inspired by the structure and functioning of the human brain. They are utilized to solve 

complex problems, particularly pattern recognition, classification, and regression. Moreover, ANN consists of interconnected 

nodes, known as neurons, which are organized into layers. These layers include an input layer to receive data, while single or 

multiple hidden layers are for intermediate processing, and an output layer is employed to produce the final result. Each neuron 

in the network is connected to every neuron in the adjacent layers, and these connections have associated weights that 

determine the strength of the connection. During the training process, ANNs learn from input data to adjust the weights and 

biases, enabling them to capture intricate relationships in the data and make accurate predictions. The advantage of using ANN 

for low-rise building price prediction is their ability to capture nonlinear relationships and patterns in the data, which traditional 

linear regression models may need assistance to handle. In summary, ANNs can generalize well to new, unseen data, making 

them well-suited for real estate data’s dynamic and diverse nature. 

2.4.2.   Support vector machine (SVM) 

The SVM method is employed to transform the predicted low-rise building price parameters into a high-dimensional 

feature space using a Kernel function like linear, polynomial, or Gaussian. A linear regression function is subsequently 

computed to confirm the deviation from the actual model outputs by at most ε for all training data while maintaining the 

function to the maximum flat extent. The asymmetrical loss function is utilized to train the SVM model to create a flexible 

cylinder with a minimal radius symmetrically wrapped around the regression function, which effectively omits absolute errors 

smaller than ε. The selected Kernel function for the SVM model is Laplace, which is a versatile choice suitable for regression 
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tasks. A trial-and-error approach is applied to determine the cost of constraint violation and the value of ε, yielding optimal 

values of 10 and 0.1, respectively [27]. These parameter settings contribute to the robustness and accuracy of the SVM model 

in predicting low-rise building prices. 

Support vectors represent essential data points positioned closest to the decision boundary or hyperplane, distinctly 

classifying categories. Their strategic arrangement profoundly affects boundary placement and orientation. The margin, the 

space between these support vectors, and the decision boundary, critically gauges the generalization and resilience of SVM. A 

broader margin signifies heightened class segregation, enhancing predictions for unobserved data. The objective of SVM 

employment is to identify the hyperplane maximize this margin and efficiently separate data. In a two-class scenario, the 

hyperplane acts as the class-separating threshold. The optimal choice of SVM advances the margin gauged by the hyperplane-

to-support-vector distance. Non-linearity management employs kernel functions and elevated-dimensional space conversion. 

2.4.3.   Multiple linear regression (MLR) 

Linear regression is a statistical method for modeling the relationship between a dependent variable (also known as the 

target or outcome variable) and single or multiple independent variables (also known as predictor variables or features). It is a 

simple and widely used technique in statistics and ML for predicting continuous numeric values. In linear regression, the goal 

is to find the best-fit line representing the linear relationship between the independent and dependent variables. The equation 

of the line is described as: 

0 1 1 2 2= + + + + +⋯ n ny b b x b x b x  (1) 

where y is the dependent variable or low-rise building prices b0 is the intercept or bias term, representing the value of y when 

all independent variables are 0, b1, b2, …, bn are the coefficients or weights associated with each independent variable, and x1, 

x2, …, xn are the independent variables. 

The coefficients (b1, b2, …, bn) are estimated during the training process, such that the line minimizes the sum of squared 

differences between both predicted and actual values in the training data. This process is commonly known as “fitting the 

model” to the data. 

Once the model is trained, predictions for new data can be made by plugging in the values of the independent variables 

into the equation. Linear regression is particularly effective when a linear relationship is rendered between the dependent and 

independent variables. Furthermore, it remains suitable for various applications, including predicting low-rise building prices, 

analyzing economic trends, and understanding the impact of different factors on a particular outcome. 

2.4.4.   Decision tree (DT) 

DT regression is a robust and interpretable algorithm for predicting numeric values in regression tasks. The algorithm 

constructs an arborescent model by recursively partitioning the dataset into subsets based on the values of its features. The 

feature and split point that minimize the variance or MSE of the target variable within the subset are selected at each node. 

This process sustains until a stopping criterion, such as a maximum tree depth or a minimum number of samples per leaf, is 

satisfied. The prediction for each data point is generated by traversing the DT from the root node to a leaf node, where the 

numeric value associated with the leaf node serves as the final prediction for the target variable. 

Given these facts, DT for regression is highly interpretable due to the enablement of a clear understanding of the decision-

making process and the realization of the rationale influencing the predicted numeric outcomes. Moreover, their adaptability 

to nonlinear relationships attains suitability for various applications, ranging from financial forecasting to medical diagnosis, 

where precise numeric predictions are required. However, to prevent overfitting, pruning techniques, and hyperparameter 

tuning are often employed to control the complexity of the model and maintain robust generalization performance. 
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2.4.5.   Random forest (RF) 

RF is a potent ensemble learning technique for regression tasks. It is constituted as an extension of the DT algorithm 

combining multiple decision trees to optimize the accuracy of predictions. In an RF for regression, a collection of DTs is 

established with random subsets of both the training data and features. Each DT in the forest independently makes predictions, 

and the final prediction is obtained by averaging or taking the median of the predictions from all the individual trees. This 

ensemble approach mitigates the risk of overfitting and augments the model’s ability to generalize well to new, unseen data. 

RF for regression offers several advantages, such as handling nonlinear relationships between features and the target 

variable, capturing complex interactions, and impact reduction of noisy data. The randomness introduced in building the trees 

also strengthens the model against outliers and stabilizes per se. Additionally, RF proffers a feature importance score, 

indicating the relative importance of each feature in the prediction process. This information is perceived to be valuable for 

understanding which features are most influential in determining the regression outcome. Overall, RF is a versatile and 

effective algorithm for regression tasks. It is a popular choice in various domains, including finance, healthcare, and retail, 

where accurate numeric predictions are essential for decision-making. 

2.5.   Ensemble learning model 

Ensemble learning is a powerful technique in ML where multiple models are combined to improve predictive performance, 

robustness, and generalizability compared to using a single model. Each ensemble method utilizes a different strategy to 

combine the predictions of individual base models, utilizing techniques such as maximum voting ensemble, averaging 

ensemble, stacking ensemble, bagging ensemble, and boosting ensemble. 

2.5.1.   Maximum voting ensemble (MVE) 

Ensemble models for predicting low-rise building prices using the maximum voting method typically involve combining 

the predictions from multiple individual models to attain the final prediction. In this approach, several aforementioned base 

models, such as ANNs, SVMs, MLR, DTs, or RFs, are trained independently on the same dataset. Once the individual models 

are trained, predictions for the target variable are made, which, in this case, is the low-rise building price. The MVE method 

takes the mode of all the predictions provided by the individual models. The mode value is selected as the final prediction for 

the low-rise building price, as demonstrated in Fig. 3. 

 

Fig. 3 Ensemble techniques - MVE 

The rationale behind the MVE is to leverage the collective wisdom of diverse models. Both strengths and weaknesses are 

rendered in each base model, and with the combination of predictions, the ensemble aims to mitigate the impact of individual 

model errors and produce more accurate and robust predictions. This method is particularly effective when low correlation has 

emerged in the individual models, i.e., they make errors in different instances. By taking the mode, it enables the ensemble to 

employ the most frequently agreed-upon prediction among the models, leading to a more reliable overall forecast for low-rise 

building prices. 
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2.5.2.   Averaging ensemble 

Averaging ensemble is another popular method for combining predictions from multiple individual models to make a 

final prediction in regression tasks, as illustrated in Fig. 4, such as predicting low-rise building prices. In this approach, several 

base models, such as ANNs, SVMs, MLR, DTs, or RFs, are trained independently on the same dataset. 

 

Fig. 4 Ensemble techniques - averaging ensemble 

After being trained, the individual models predict the target variable (low-rise building construction cost). In the averaging 

ensemble, the final prediction is obtained by averaging the predictions from all the individual models. Mathematically, it can 

be presented as: 

1 2
Prediction_Model Prediction_Model Prediction_Model

Final prediction
+ + +

=
⋯

N

N
 (2) 

where N is the total number of individual models used in the ensemble. 

The rationale behind the averaging ensemble is to leverage the collective knowledge of diverse models and reduce the 

variance of predictions. Given the presence of strengths and weaknesses in each mode and the average of predictions, the 

ensemble aims to create a more stable and accurate final forecast. Averaging conduces to smoothing out individual model 

errors and the improvement of overall predictive performance. Approximated to maximum voting, the averaging ensemble 

functions best when the individual models have relatively low correlation, i.e., producing errors in different instances. With 

averaged predictions, the ensemble can benefit from the collective insights of the models and attain a more reliable and precise 

forecast for low-rise building prices. 

2.5.3.   Stacking ensemble 

The stacked ensemble, often referred to as stacked generalization, represents a sophisticated ensemble learning approach 

showcased in Fig. 5. It amalgamates predictions from various individual models to enhance the comprehensive predictive 

performance across ML tasks, encompassing the prediction of low-rise building prices. Stacking goes beyond simple averaging 

or voting methods by introducing a meta-model learning to combine the outputs of the base models. 

 

Fig. 5 Ensemble techniques - stacking ensemble 
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The stacking ensemble involves the following steps: 

(1) Base models: Several diverse base models are trained independently on the same dataset. These base models can be 

different or the same algorithm with different hyperparameters. 

(2) Hold-out validation set: A hold-out validation set is created from the training data. The base models make predictions on 

this validation set as input to the meta-model. 

(3) Meta-model: A meta-model, also called the “blender” or “aggregator,” is trained with the predictions from the base models 

on the validation set as its input features. The meta-model learns how to combine these predictions to generate the final 

prediction for the target variable (low-rise building price). 

(4) Final prediction: Once the meta-model is trained, predictions are made herein. The final forecast for low-rise building 

prices is obtained from the output of the meta-model. 

The key advantage of the stacking ensemble is the ability to capture higher-order relationships between the base models’ 

predictions. It learns from trusting each base model and assigning different weights to their predictions based on their performance 

on the validation set. This enables stacking to outperform individual models and simple averaging/voting ensembles by the 

augmentation of the strengths. Stacking is a flexible and powerful technique but correspondingly requires careful implementation 

and tuning to prevent overfitting. Properly executed stacking can enhance predictive accuracy and robustness, popularizing itself 

in various ML competitions and real-world applications, including low-rise building price prediction. 

2.5.4.   Bagging ensemble 

Bagging, the abbreviation for bootstrap aggregating, is a widely deployed ensemble learning technique to improve the 

accuracy and robustness of ML models, including those used for predicting low-rise building prices. It involves creating 

multiple diverse copies of the same base model, training each copy on a different random subset of the training data, and then 

combining their predictions to make the final prediction [28], as depicted in Fig.6. 

 

Fig. 6 Ensemble techniques - bagging ensemble 

The bagging ensemble works as follows: 

(1) Base model: A single base model, such as a DT or RF, is selected as the base learner. 

(2) Bootstrap sampling: It creates multiple random subsets (samples) from the training data, which involves randomly 

selecting data points from the training set with replacements. Each subset may contain some duplicate data points and 

miss some others. 

(3) Base model copies: For each subset, a separate copy of the base model is trained using the corresponding subset of the 

training data. As a result, multiple base model copies with slightly different training data are created. 

(4) Aggregation: To make predictions for new data, each base model copy generates its forecast. In bagging, the final 

prediction is obtained by aggregating (averaging for regression tasks or voting for classification tasks) the estimates from 

all the base model copies. 
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The key advantage of bagging is to reduce the variance and overfitting in the predictions by leveraging the wisdom of 

diverse model copies trained on different subsets of the data. By combining multiple forecasts, bagging produces a more stable 

and robust final prediction that tends to generalize well to new, unseen data. Meanwhile, RF is a paradigm of the bagging 

ensemble, where multiple decision trees are trained on different bootstrapped subsets of the training data, and their predictions 

are aggregated to make the final prediction. Bagging is widely deployed in ML due to its simplicity and effectiveness in 

improving model performance and reducing overfitting. 

2.5.5.   Boosting ensemble 

Boosting is another potent ensemble learning technique for improving ML models’ predictive performance, including 

those used for predicting low-rise building prices. Unlike bagging focusing on training multiple models independently and 

combining their predictions, boosting builds a concatenation of models sequentially, where each model tries to correct the 

errors made by its predecessors [28], as depicted in Fig. 7. 

 

Fig. 7 Ensemble techniques - boosting ensemble 

The boosting ensemble works as follows: 

(1) Base model: A weak base model, often called a “weak learner,” is selected as the base learner. Weak learners slightly 

prevail over random chance models, such as simple decision stumps (one-level DTs) or shallow DTs. 

(2) Weighted data: The training data is initially given equal weight for all data points. In each boosting iteration, the weights 

of misclassified data points increase, while the weights of correctly classified data points decrease. This enables the 

subsequent weak learners to focus on the previously misclassified data points and improve the overall model performance. 

(3) Sequential learning: Boosting builds a concatenation of weak learners, where each model is trained on the modified version 

of the training data from the previous step. The predictions of each weak learner are combined with a weight, and the final 

prediction is obtained by summing up the weighted predictions. 

(4) Adaptive learning: The sequential nature of boosting enables it to learn from its mistakes adaptively. The subsequent weak 

learners are encouraged to focus on the challenging data points incorrectly predicted by the earlier weak learners. 

The key advantage of boosting is the capability of improving the predictive accuracy compared to a single weak learner. 

By building a sequence of models correcting each other’s errors, boosting creates a robust ensemble model that can capture 

complex relationships in the data. Gradient boosting machines and AdaBoost are two typical examples of boosting algorithms. 



Advances in Technology Innovation, vol. 9, no. 1, 2024, pp. 12-27 23

Gradient boosting machines iteratively minimize the loss function by adding weak learners, while AdaBoost assigns higher 

weights to misclassified data points, enabling subsequent weak learners to focus on those points. Boosting is a widely used 

technique in ML, and it often outperforms individual models and other ensemble methods. Given this virtue, it is acknowledged 

as a valuable tool for low-rise building price prediction and other complex regression tasks. 

2.6.   Performance measure 

MAE measures the average of the absolute differences between predicted and actual low-rise building prices. This metric 

is beneficial in dealing with uniform forecast errors, as it equalizes the discrepancies in the data. It is frequently employed for 

regression problems and to evaluate the overall accuracy of forecasts. A smaller MAE indicates better forecasting performance 

in predicting low-rise building prices, reflecting a closer alignment between the predicted values and the actual costs. 

( ) ( )
1

1

=

= −
N

i pred i actual
i

MAE y y
N

 (3) 

where yi(actual) is the actual low-rise building prices, N is the total number of observations, and yi(pred) is the predicted low-rise 

building prices [29]. 

MSE is a metric used to assess the accuracy of predicting low-rise building prices. It is computed by taking the average 

of the squared differences between the actual and predicted values. In other words, the method encompasses the calculation of 

the squared discrepancy between the projected and actual prices of low-rise buildings for each prediction instance. After this 

computation, an averaging procedure is applied to these squared discrepancies, yielding the resultant MSE. The MSE penalizes 

large prediction errors more severely than small ones, providing a way to quantify the overall accuracy of the prediction model. 

Lower MSE values indicate better predictive performance, indicating smaller differences between predicted and actual low-

rise building prices [22]. 
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RMSE is a widely used metric for the accuracy evaluation of low-rise building price predictions. It is calculated by taking 

the square root of the average of the squared differences between the predicted and actual low-rise building prices. RMSE is 

highly regarded for its ability to handle outliers in the data effectively [22], enabling the identification and elimination of 

extreme discrepancies to emerge in predictions. Moreover, RMSE puts more emphasis on larger errors. Consequently, it is 

recognized as a valuable primary error metric for assessing the performance of low-rise building price-prediction models. 
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Determination coefficient (R2) is a critical metric that gauges the proportion of variance in predicted low-rise building 

prices attributed to the model’s predictions. With values ranging from 0 to 1 [22], an R2 value of 0 suggests poor model 

performance, while 1 indicates a perfect fit between forecast and actual values. This metric provides insights into the goodness-

of-fit of a low-rise building price prediction model and conduces to understanding the model’s ability to capture variations in 

the data. 

Low-rise building price prediction success hinges on choosing the most suitable algorithm. The performance assessment 

of different algorithms is conducted with meticulous consideration, employing relevant evaluation metrics such as MSE or 

MAE on the validation dataset. The algorithm demonstrating superior predictive performance and robust generalization 

capability is selected as the prediction model. 
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In summary, the methodologies including encompassing critical stages from data selection, preprocessing to model 

training, and algorithm choice comprehensively address low-rise building price prediction. By following this systematic 

approach, real estate professionals, investors, and analysts can confidently make informed decisions based on accurate low-

rise building price predictions. 

2.7.   Hyperparameter tuning 

With the data preprocessing phase, the performance of the base models underwent a comparative analysis. To assess the 

effectiveness of these base models, it becomes imperative to identify the most suitable hyperparameters for each model. 

Initially, the raw dataset is randomly divided into two distinct subsets, comprising a training set and a testing set. The optimal 

hyperparameter values for the base models, as determined by the highest R2 score during the search in the hyperparameter 

space, are presented in Table 2. 

Table 2 The hyperparameter tuning 

Base ML models Hyperparameter Values 

Artificial neural networks (ANNs) 

Activation function ReLU 

Learning rate 0.001 

Number of epochs 1000 

Initializer Normal 

Optimizer Adam 

Support vector machines (SVMs) 

Kernel Linear 

C (Regularization parameter) 1000 

Gamma (Kernel coefficient) Scale 

Epsilon 0.05 

Decision trees (DTs) 

Criterion Gini impurity 

Max depth Unlimited 

Min samples per leaf 2 

Random forest (RF) 

Number of trees 100 

Max depth Unlimited 

Min samples per leaf 2 

Max features Auto 

To evaluate and compare the performance of these base models, a ten-fold cross-validation technique was applied, known 

for its established effectiveness in cross-validation practices. The hyperparameters, crucial for each model, were employed 

with the values derived through a grid search, conducted in the preceding phase. 

3. Results and Discussion 

In this section, the outcomes of the model development and the subsequent training using the pre-processed dataset are 

presented. A thorough performance comparison among ten machine-learning algorithms has been conducted, complemented 

by comprehensive parameter tuning for meticulous performance analysis and evaluation. Additionally, an in-depth insight into 

the experimental setup employed for the entire task is provided. 

The primary aim of this study was to forecast low-rise building construction costs, employing a diverse set of ten machine-

learning models. To evaluate their efficacy, four distinct statistical metrics outlined in Table 3 were applied to gauge the 

accuracy of each model. 

As shown in Table 3, the ANN emerged as the highest-performing base model, boasting an accuracy of 0.891. MLR 

closely followed, achieving an accuracy of 0.884, while DTs demonstrated an accuracy of 0.864. The RF model achieved an 

accuracy of 0.830, whereas the SVM displayed the lowest accuracy at 0.446. Concerning the ensemble models, a diverse array 

of techniques was employed to amalgamate predictions from individual models. The MVE demonstrated the highest accuracy, 
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reaching 0.924, thus surpassing all individual models and other ensemble methods. The stacking ensemble secured second 

place with an accuracy of 0.883, while the averaging ensemble achieved an accuracy of 0.871. Regarding the boosting 

ensemble, it delivered an accuracy of 0.846, and the bagging ensemble yielded an accuracy of 0.832. 

Table 3 The summary of the algorithms that have been used in the research 

Model R2 MSE RMSE MAE 

Base model 

ANN 0.891 47564120000.00 218092.00 165705.68 

SVM 0.446 242250000000.00 492189.90 322532.74 

MLR 0.884 50560550000.00 224856.74 146446.13 

DT 0.864 59522890000.00 243973.13 126901.04 

RF 0.830 74476350000.00 272903.56 164069.51 

Ensemble model 

Max. voting 0.924 33325570000.00 182552.93 127356.65 

Averaging 0.871 56266850000.00 237206.35 140085.86 

Stacking 0.883 51074880000.00 225997.52 152669.31 

Bagging 0.832 73493900000.00 271097.58 155363.36 

Boosting 0.846 67425130000.00 259663.50 147838.86 

To visually convey the comparative accuracy across all models, Fig. 8 is presented as follows. This visualization 

highlights the promising performance exhibited by most algorithms in regression tasks, underscoring their potential for precise 

low-rise building cost prediction. 

 

Fig. 8 Comparison of accuracy among the models 

In summary, the research harnessed the predictive power of ten machine-learning models coupled with an array of 

ensemble techniques to anticipate low-rise building prices. The results underscore the remarkable efficacy of the MVE, 

situating it as a compelling choice for practical applications within this domain. Furthermore, individual models including 

ANN, MLR, and DT demonstrated notable accuracy which solidifies their status as valuable options for consideration. 

4. Conclusions 

This study harnessed the predictive potential of ten diverse ML models to anticipate low-rise building prices. The 

identification of top-performing models, both within ensemble methods and individual algorithms, was achieved through a 

rigorous and exhaustive analysis. Meanwhile, the ANN emerged as the most accurate individual model, underscoring its 

adeptness in addressing the intricacies of the prediction task with a remarkable accuracy of 0.891. 

Concerning MLR and DTs, they are closely followed and exhibit robust predictive capabilities with accuracies of 0.884 

and 0.864, respectively. Furthermore, the evaluation of ensemble models underscored the prominence of the MVE, securing 

the highest accuracy of 0.924 among all models tested. This ensemble technique adeptly amalgamates predictions from 
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individual models, harnessing their collective strengths and simultaneously mitigating their shortcomings. The stacking 

ensemble and averaging ensemble also demonstrated competitive accuracy, achieving scores of 0.883 and 0.871, respectively. 

These results affirm the significant performance enhancements which are attainable through ensemble methods, surpassing the 

capabilities of individual models. 

In a broader context, the findings from this study deliver valuable insights into real estate industry practitioners and 

stakeholders. The utilization of ML models, notably the ANN and MVE, possesses the potential to enhance the accuracy of 

low-rise building price predictions, facilitating more informed decision-making and strategic investments. As the evolution of 

ML burgeons, ongoing research, and enhancements in model architecture and ensemble techniques promise even more precise 

and dependable predictions across diverse real-world applications. 
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