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ABSTRACT 

Emotion analysis, a subset of sentiment analysis, involves the study of a wide array of 
emotional indicators. In contrast to sentiment analysis, which restricts its focus to pos-
itive and negative sentiments, emotion analysis extends beyond these limitations to a 

diverse spectrum of emotional cues. Contemporary trends in emotion analysis lean to-
ward multimodal approaches that leverage audiovisual and text modalities. However, 
implementing multimodal strategies introduces its own set of challenges, marked by a 

rise in model complexity and an expansion of parameters, thereby creating a need for 
a larger volume of data. This thesis responds to this challenge by proposing a robust 
model tailored for emotion recognition, speci cally focusing on leveraging audio and 

text data. Our approach is centered on using audio spectrogram transformers (AST), 
and the powerful BERT language model to extract distinctive features from both au-
ditory and textual modalities followed by feature fusion. Despite the absence of the 

visual component, employed by state-of-the-art (SOTA) methods, our model demon-
strates comparable performance levels achieving an f1 score of 0.67 when benchmarked 

against existing standards on the IEMOCAP dataset [1] which consists of 12-hour audio 

recordings broken down into 5255 scripted and 4784 spontaneous turns, with each turn 

labeled by emotions such as anger, neutral, frustration, happy, and sad. In essence, We 

propose a fully attention-focused multimodal approach for e ective emotion analysis for 
relatively smaller datasets leveraging lightweight data sources like audio and text high-
lighting the e cacy of our proposed model. For reproducibility, the code is available at 
2AI Lab’s GitHub repository: https://github.com/2ai-lab/multimodal-emotion. 

Thesis Advisor: 
KC Santosh, Ph.D. 
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Chapter 1 

Related work: Sentiment and emotion 

analysis 

Summary: Emotion analysis and detection is a sub-domain in sentiment analysis. Sentiment anal-
ysis is where we try to measure the degree of positive and negative emotions in data. Emotion 
analysis (interchangeably also called sentiment analysis) is an application of AI where we go one 
step further and classify or predict emotions. Mostly sentiment and emotion analysis used to be 
related to text processing [2], [3], [4]. However, as we understand, emotions can be expressed 
not only through texts but also through spoken language or visual [5] cues—anger in a dialogue 
may not fully be captured only by textual data. Consider the sentence, “You like ice cream?”. A 
rising intonation at the end may suggest that the person who asked the question is surprised that 
you like ice cream, but a neutral intonation may suggest that the person is just curious to know 
whether you like ice cream or not. The added tone to the sentence can provide more context to 
make more informed decisions. 

Key topics: Motivation, goal, and contribution. 

Organization: The chapter is structured as follows. In section 1.1, we will give a detailed expla-
nation of the context and problem of our thesis work. After that, we will explain the motivation 
of our work in section 1.2. We will then discuss our research hypothesis and contribution in 1.3 
and 1.4. Finally, section 1.5 describes the overall organization of the thesis. 

1.1 Background 

Emotion analysis has applications in diverse domains, such as health, business and marketing, 
and cybercrime. In the domain of health and medicine, emotion analysis can be used for mental 

1 



            

              

               

             

              

               

            

              

              

                

              

               

           

              

             

               

               

              

              

              

    

             

             

            

           

             

            

           

           

              

 

               

             

            

   

           

            

            

 

    

   

health monitoring [6], [7], patient satisfaction feedback [8], and stress management. Significant 
research is also being conducted to minimize cybercrime and the risk of cybercrime. Intelligent 
algorithms are being used to detect cyberbullying [9] and cyber threats [10] on the internet. 
Although textual data have been dominantly used for emotion analysis, the addition of audi-
tory data can significantly boost the performance of NLP models. Speech intonation, pitch, and 
other vocal cues can convey subtle emotional nuances that are often lost in text-based analysis. 
By incorporating auditory data, emotion analysis can gain a more comprehensive understanding 
of the emotional state of the speaker, leading to more accurate emotion classification. Auditory 
analysis can capture non-verbal cues such as laughter, sarcasm, and irony, which can significantly 
impact the overall sentiment of a conversation or utterance. These cues are often difficult to detect 
in text-based analysis, but they can provide valuable insights into the speaker’s true intentions 
and emotions. The tone of voice, accent, and speech patterns can reveal information about the 
speaker’s demographic characteristics, such as age, gender, and cultural background. This infor-
mation can be useful for tailoring emotion analysis models to specific audiences and improving 
their accuracy in different contexts. Auditory cues can provide clues about the speaker’s emo-
tional state, which can be used to detect deception or manipulation. For example, changes in 
pitch, hesitation, or unusual vocal patterns may indicate that the speaker is being dishonest or 
trying to conceal their true intentions. Auditory analysis can help bridge cultural gaps in emo-
tion analysis. Non-verbal cues and intonation patterns can convey cultural nuances that may not 
be reflected in the text, allowing emotion analysis models to better understand and interpret ex-
pressions from different cultures. 

In recent years, researchers have become more interested in multimodal features to perform 
sentiment analysis [11], [12], [13]. Textual features along with audiovisual features have been 
widely used to demonstrate the robustness of multimodal representation learning for sentiment 
analysis. The current state-of-the-art method for emotion analysis leverages a cutting-edge ap-
proach known as Emformer[14], [15], which seamlessly integrates auditory, visual, and text data 
to enhance the accuracy and robustness of sentiment predictions. Emformer represents a pioneer-
ing step towards multimodal sentiment analysis, recognizing the importance of incorporating 
diverse modalities to capture a more comprehensive understanding of human expression. How-
ever, despite its advancements, the Emformer model is not without its limitations, as highlighted 
below: 

Challenge of Large Video Data: One significant drawback lies in the handling of video data, 
which can be inherently voluminous. The storage and processing requirements for large video 
datasets pose practical challenges, potentially hindering the scalability and efficiency of the sen-
timent analysis system. 

Unavailability of Pretrained Weights: Another notable limitation is the unavailability of pre-
trained weights for Emformer models. This absence of readily accessible pre-trained weights 
impedes the reproducibility of results for researchers and practitioners. Reproducing the exact 

2 



             

   

  

            

               

           

           

              

           

              

            

     

          

             

       

           

               

 

   

            

            

           

             

            

              

             

            

               

            

             

    

 

  

    

     

   

conditions and outcomes of the original study becomes challenging without a standardized set 
of pre-trained weights. 

1.2 Motivation 

While multimodal techniques like Emformer have emerged as a promising approach to emo-
tion analysis, it is essential to recognize its inherent limitations. The processing of large video 
datasets can pose significant computational challenges, while the scarcity of pre-trained mod-
els hinders reproducibility and collaboration. These limitations demand further research efforts 
to provide an alternative method to match SOTA performance. Our approach seeks to address 
these challenges by employing spectral representation for auditory signals and simplifying train-
ing algorithms for smaller datasets by eliminating the visual component. This strategy aims to 
enhance and foster the continued advancement of multimodal sentiment analysis. Our strategy 
focuses on two key aspects: 

Spectral Representation for Auditory Signals: By employing spectral representation for au-
ditory signals, we can effectively capture the emotional cues embedded within speech, reducing 
the computational burden while preserving relevant information. 

Simplified Training Algorithms for Smaller Datasets: By eliminating the visual component 
during training, we can simplify the training algorithms and make them more efficient for smaller 
datasets. 

1.3 Research hypothesis 

Our research hypothesizes that the integration of audio spectrogram features and contextual in-
formation extracted from a BERT language model will significantly enhance emotion analysis 
accuracy compared to relying on either modality independently. Audio spectrograms effectively 
capture acoustic patterns in audio data, providing valuable insights into emotions and emotions 
conveyed through speech intonation, pitch variations, and pauses. BERT language models, on 
the other hand, excel at understanding the nuances of human language and extracting sentiment 
from text. Further, we consider a fully attention-focused architecture that is superior in perfor-
mance for sequential data in comparison to convolutional methods. By seamlessly integrating 
these two modalities, we can harness the strengths of each to achieve superior emotion analysis 
performance. This hypothesis can be tested by conducting a comprehensive comparative analysis 
of emotion analysis accuracy using audio spectrogram features, the BERT language model, and 
the proposed multimodal approach. 

3 



   

      

            

          

              

  

           

     

   

        

  

              

            

            

               

            

                

   

  

              

           

          

             

             

             

            

         

  

                

           

              

 

   

   

  

  

  

1.4 Research contribution 

Our research contributions are listed below: 

1. Propose a purely attention-based architecture for multimodal feature fusion learning using 
Mel-filterbanks and BERT encoding for audio and text data respectively. 

2. Propose a robust and lightweight model without the use of visual components for multi-
modal learning. 

3. Propose an architecture that achieves comparable results to state-of-the-art methods with-
out the need for pretraining. 

1.5 Thesis outline 

The thesis is organized into the following sections: 

Chapter 1 

In this chapter, we have established a foundational understanding of the research context through 
the introduction. The overarching theme of sentiment and emotion analysis, underscoring its 
significance in contemporary research, has been elucidated in the background. The motivation 
behind the study, serving as the driving force, has been presented, and the research hypothesis, 
outlining the key questions guiding the investigation, has been introduced. The chapter con-
cludes with an overview of the organization of the thesis, providing readers with a roadmap for 
the subsequent chapters. 

Chapter 2 

In this chapter, we have surveyed the landscape of sentiment and emotion analysis, examining 
various methodologies. Lexicon-based methods have been introduced, and shallow and deep 
learning-based approaches have been explored, categorized into textual, acoustic, and multi-
modal methods. A research gap has been identified, underscoring the unique contributions of 
this research. Notably, a literature review covering both unimodal and multimodal sentiment and 
emotion recognition has been provided, assessing their strengths and limitations. This sets the 
groundwork for the subsequent chapters, offering a concise overview of existing methodologies 
and motivations for the novel contributions in this thesis. 

Chapter 3 

In this chapter, the foundational concepts and tools employed in the study have been laid out. 
Deep neural networks, encompassing their activation functions and artificial neural network ar-
chitecture, have been discussed. The chapter delves into transformers, with an emphasis on the 

4 



           

           

           

            

 

  

               

              

             

               

            

  

  

               

             

             

             

        

  

            

          

 

  

  

  

attention mechanism and the utilization of BERT. Additionally, convolutional neural networks 
are introduced, along with an overview of audio spectrograms, including Mel-frequency spectro-
grams and audio spectrogram transformers. Evaluation metrics, loss functions, and optimization 
techniques have also been presented, providing the theoretical underpinnings for the subsequent 
methodology. 

Chapter 4 

In this chapter, the research design has been outlined, providing details on the training and val-
idation processes. The purpose and description of data collection have been elucidated, with a 
particular emphasis on the significance of a custom dataset. Preprocessing steps have been dis-
cussed to ensure data quality. The training setup has been defined, introducing the approach to 
unimodal learning and outlining the construction of a multimodal learning model through fea-
ture fusion. 

Chapter 5 

In this chapter, the findings of the research are presented. The examination begins with an ex-
ploration of unimodal approaches, followed by an in-depth analysis of the proposed multimodal 
model. Research limitations are candidly discussed, providing a transparent view of the study’s 
constraints. Future work is proposed, offering potential directions for expanding and refining the 
research. Additionally, the chapter incorporates an ablation study. 

Chapter 6 

In this concluding chapter, the study’s crucial findings are summarized, emphasizing the contri-
butions made to the field of sentiment and emotion analysis. 

5 



  

     

 

               

             

           

 

      

                

              

               

            

                

   

             

               

             

                

                  

             

                  

               

                

             

                  

 

  

     

 

 

  

 

Chapter 2 

Related work: Sentiment and emotion 

analysis 

Summary: In this chapter, we delve into the historical development of emotion analysis. We start 
with sentiment analysis and dive deeper into emotion analysis. We discuss lexicon-based and ma-
chine learning methods for sentiment analysis and study contemporary emotion analysis meth-
ods. 

Key topics: Sentiment analysis, Emotion analysis. 

Organization: The rest of the chapter is structured as follows: In section 2.1, a thorough review 
of lexicon-based methods for sentiment analysis is presented. In section 2.2, we reviewed related 
work so far that has been done by using shallow learning/deep learning methods for sentiment 
and emotion analysis. We also discuss contemporary emotion analysis techniques. Finally, in 
section 2.3 we explore and analyze the existing body of research to identify areas where further 
investigation is needed. 

While sentiment analysis has a long-established history, the concept of emotion analysis is 
new. It is worthwhile to explore how sentiment analysis served as a foundational framework in 
the evolution of emotion recognition and analysis, representing a more advanced and nuanced 
approach. In 1964, Philip Stone et al.[16] the General Inquirer, a statistical tool that uses a dictio-
nary of words and phrases to identify the sentiment of the text. It was used to analyze various 
text sources, including news articles, government documents, and medical records. This was one 
of the first attempts to extract sentiment from textual data. Up until the 1990s there were not any 
significant developments in sentiment analysis. The rise of the internet and social media in the 
1990s and early 2000s led to a surge of interest in sentiment analysis. Businesses and organizations 
realized the potential of sentiment analysis to understand public opinion and behavior. WordNet 
[17], a lexical database that was published by George A. Miller in 1995 is still being used today 

6 



            

               

                 

             

            

         

   

             

                 

               

             

          

               

                

            

              

               

              

           

              

                

             

          

            

           

               

             

            

             

             

               

            

         

 

   

by researchers and developers for sentiment analysis. In 1997, Hatzivassiloglou and McKeown 
[18]the use of semantic roles for sentiment analysis. Elkan [19] published a patent for text classi-
fication that included sentiment analysis as one of the possible class labels in 2001. Pang et al.[20] 
published a seminal paper on sentiment classification, introducing the notion of subjectivity and 
neutrality in sentiment analysis in 2002. Subsequent research developed into emotion analysis, 
where we now use various modalities to detect emotions. 

2.1 Lexicon-based methods 

Lexicon-based methods rely on a dictionary or lexicon of words associated with positive, nega-
tive, or neutral sentiment. The sentiment of a text is then determined by counting the number of 
positive, negative, and neutral words in the text. In 2006, Andrea Esuli and Fabrizio Sebastiani 
published their work SENTIWORDNET [21], which was a significant contribution to the field 
of sentiment analysis. SENTIWORDNET associated each WORDNET sysnet with three numeri-
cal scores Pos(s), Neg(s), and Obj(s) for positive, negative, and objective scores. In recent years, 
there has been a great deal of research on lexicon-based sentiment analysis. One of the most 
important developments has been the creation of more sophisticated sentiment lexicons. These 
lexicons include more domain-specific words and phrases [22], and they have also assigned more 
nuanced sentiment scores to each word or phrase. This has led to more accurate sentiment anal-
ysis results. Works such as [23], and [24] have developed domain-specific lexicons for financial 
and neural domains. Lexicon-based sentiment analysis is a straightforward and interpretable 
approach that relies on predefined sets of lexicons or dictionaries. The simplicity of these meth-
ods lies in their ability to be applied to various languages, given the availability of appropriate 
lexicon resources. Despite their universality, a significant challenge arises in the creation of high-
quality lexicons, as developing comprehensive and accurate dictionaries requires considerable 
effort and linguistic expertise. While lexicon-based methods offer advantages in terms of sim-
plicity and cross-language applicability, they exhibit limitations in handling nuanced language 
elements such as sarcasm and irony. The inherent rigidity of lexicons may lead to suboptimal 
performance when confronted with these complex linguistic constructs, as the fixed sets of pre-
defined sentiments may struggle to capture the subtle, often contradictory, meanings inherent 
in sarcastic or ironic expressions. In summary, lexicon-based sentiment analysis provides a clear 
and understandable approach to analyzing sentiment in text, and its adaptability to multiple lan-
guages is a notable advantage. However, the quality of lexicons and the method’s vulnerability to 
nuances like sarcasm and irony present challenges that researchers and practitioners must con-
sider when employing these methods in sentiment analysis tasks. 
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2.2 Shallow and deep learning-based methods 

2.2.1 Textual data 

These methods use machine learning algorithms to learn to identify sentiment from text data. 
The algorithms are trained on a large dataset of labeled text, where each text has been manu-
ally assigned a sentiment label. Once trained, the algorithm can be used to predict the sentiment 
of new text data. Research by Rathi et al.[25] employs information gathered from microblog-
ging platforms like Twitter and Facebook, utilizing a combination of Support Vector Machines 
(SVM) and decision trees for the categorization of expressed opinions into positive, negative, or 
neutral sentiments. Although traditional machine learning algorithms such as Naı̈ve Bayes and 
support vector machines (SVMs) have been used for sentiment analysis [26], [25], research has 
shown that deep learning-based methods such as LSTMs, RNNs, and transformers outperform 
the nonsequential models [26], [27, 28, 29]. Wang Y et. al [28]. propose RNN-capsule, based 
on Recurrent Neural Network (RNN), where they demonstrate that RNN-based models out-
perform state-of-the-art sentiment classification models without a linguistic model. This demon-
strates the superiority of deep learning models over traditional lexicon-based models. Research 
[30, 31, 32] suggests using hashtags and emojis in the text as labels to determine the emotions of 
the given text. The mentioned research shows the importance of additional dimensions to suc-
cessfully detect and analyze emotions. In this case, the added dimensions are ASCII characters 
and not a different modality. In their work [30], the authors investigate the correspondence be-
tween emoticons, emoji, and hashtags that are associated with certain emotions. In another work 
[31], the authors propose a tool called Linguistic Inquiry and Word Count (LIWC), which is a 
word counting software that uses a dictionary of grammatical, psychological, and content word 
categories to efficiently classify texts along these verticals. In a different research paper [32], the 
authors employ self-labeling using the hashtags in Twitter posts that outperformed manually 
crafted WordNet. In 2019 [33], researchers used a graph convolutional neural network for emo-
tion recognition in conversation. The authors identify two major context types: sequential and 
speaker-level context. Subsequently, they create graphs with nodes and edges that represent in-
dividual utterances and dependency between the speaker utterances respectively. Finally, the 
constructed graph is passed through a graph convolutional network. In their recent work [34], 
the authors proposed InstructERC, an emotion recognition tool that employed large language 
models. This work is currently an LLM-based SOTA model for the IEOMOCAP dataset. 

2.2.2 Acoustic data 

The sentiment analysis can also be done using spoken language. As we have already discussed 
in the background section of the thesis, acoustic speech signals can be useful in detecting nu-
ances and emotional cues in spoken language. These acoustic signals can either be used in raw 
form or transformed form. Since acoustic signals are sequential data, it is common to see the use 
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of sequential models [35], [36]. The research shows that the use of sequential models like Long 
Short-Term Memory (LSTM), a variant of RNN performs better than classical feed-forward deep 
neural networks. Concrete results using auditory modality are yet to be seen for sentiment anal-
ysis. However, there is research in the domain of multimodal learning where auditory modality 
is used along with other modalities to build speech models [15]. In 2018 in their paper [37], the 
authors introduce an approach called Speech SIMCLR that uses augmented raw audio and its 
spectrogram in combination with contrastive loss to maximize agreement between differently 
augmented samples. 

2.2.3 Multimodal approach 

Recent advancements and research in emotion analysis have shifted its focus to multimodal rep-
resentation and learning. Research shows robust performance in multimodal learning [38]. In 
their work, Stappen et al. [12] use a multimodal approach by combining audiovisual, language, 
and biological signal modalities to analyze emotional and physiological-based stress. The scope 
of sentiment analysis has broadened beyond text-based modalities to include multimodal analy-
sis. CLAP [39], another significant contribution, presents a two-stage framework for multimodal 
sentiment analysis utilizing language-audio modality. The methodology involves employing Hu-
BERT and RoBERTa to extract both auditory and textual encodings. These encodings are subse-
quently fused and input into transformer models. In a different paper [40], the authors design a 
custom feature extractor that extracts embeddings from Mel-spectrograms and visual data. Sub-
sequently, they fuse the extracted features, fuse them, and pass them to a multi-headed trans-
former network. The feature extractor is based on the triplet loss function. The EmoCaps [15] 
model proposed in 2022, utilizes audio, text, and visual modalities. The text features are ex-
tracted using BERT, and the auditory features are extracted using an open-source Library called 
OpenSmile [41]. Then the authors use Emformer (a transformer-based architecture) to extract 
subsequent embeddings create a fusion of features and finally pass it through a feed-forward 
network. 

2.3 Research gap 

The rapid research on different transformer-based models has given rise to an architecture of 
transformers called audio spectrogram transformers (AST), which has not yet been used for 
emotion recognition. The authors of the work AST [42] claim that the architecture is superior 
to CNN-based architectures in analyzing audio spectrograms. More studies by [43], [44], [45] 
also show promising results using spectral analysis rather than analysis of raw audio signals. 
In our work, we aim to employ AST to process the speech dataset for emotion recognition. To-
gether with encoded BERT embeddings, we propose a multimodal approach using text and audio 
datasets. In the later section of the thesis, we demonstrate that our proposed architecture gener-
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ates comparable performance to the SOTA emotion recognition architectures. We also compare 
our proposed model with other SOTA algorithms that utilize only audio and text modality. 
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Chapter 3 

Materials 

Summary: In this chapter, we give a detailed overview of the foundational blocks for the pro-
posed model. We discuss foundational blocks of deep learning such as neurons, artificial neural 
networks, convolutional neural networks, and transformers. 

Key topics: Deep neural network, Transformers, CNN. 

Organization: The rest of the chapter is structured as follows: In section 3.1.1 we neurons and 
activation functions. Then in 3.1.2, we describe the artificial neural network. And then in 3.1.3 
and 3.1.4, we shed light on important topics such as loss functions and optimizers. In further 
sections 3.2, 3.3, we discuss convolutional neural networks and transformers. Finally, in 3.4, we 
discuss some important evaluation metrics for classification. 

3.1 Basics of neural network 

3.1.1 Neurons and activation functions 

We employ a deep neural network for the classification of input signals and texts, and in this 
section, we will provide a brief overview of deep learning. Deep learning is a machine learning 
approach founded on artificial neural networks (ANNs), which aim to mimic the functioning 
of the human brain. Neurons, the fundamental units of a neural network, receive inputs and 
produce outputs through mathematical computations. These artificial neurons are comparable 
to the neurons found in the human brain. Following the mathematical operations, the output 
undergoes activation through a function, leading to the activation or firing of the neuron if a 
specific threshold is attained. 

The inputs will be the numeric values x1, x2, and so on. w1, w2, and so on are the weights of 
the neurons that tell us how important that input is: 
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Figure 3.1: Basic structure of neuron. 

z = x0 ∗ b + x1 ∗ w1 + x2 ∗ w2 + . . .  + xn ∗ wn, (3.1) 

We pass the output through a function called the activation function which decides whether 
the neuron should be fired or not: y=f(z). 

Activation functions introduce non-linearity to models, enabling them to effectively capture 
highly nonlinear data when enough neuron layers are present. Some common activation func-
tions [46, 47, 48, 49] are shown in Figure 3.2. In theory, the described neurons can be combined 
in diverse configurations to approximate any type of function, forming what is known as neural 
networks. However, these neural networks necessitate a larger volume of data for training com-
pared to the shallow learning techniques discussed in earlier sections. 

After generating the output, it is essential to calculate the loss, which serves as a measure of 
the disparity between the real values and the predicted values. The selection of the loss function is 
contingent on the nature of the problems being addressed. Generally, a loss function L is denoted 
by loss = L (y, ytarget). Once the loss for the network is calculated, a mathematical algorithm 
called backpropagation is used. 

Backpropagation is a mathematical method utilized for training neural networks, and it en-
tails calculating the gradient of the loss function concerning the network’s weights and biases. 
This gradient is then employed to modify the weights and biases, to minimize the loss function. 
To compute the gradient of the loss concerning the output at a given point, partial derivatives 
are employed: 

∂L ∂L ∂y 
= · , (3.2)

∂z ∂y ∂z 
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Figure 3.2: Sigmoid (upper-left), ReLU (upper-right), Leaky ReLU (lower-left), Tanh 
(lower-right) activation functions. 

− α.∂L .hn−1,Using this gradient, we can update the weights at the nth layer, wnnew = wn ∂z 

where α is the learning rate and yn−1 is the output from the last layer. The non-trainable param-
eter α plays a crucial role in determining the learning speed of algorithms. If set too high, it may 
result in non-optimal solutions, while setting it too low can lead to extremely slow convergence. 
Therefore, it is advisable to experiment with various learning rates for different problems. In this 
method, the entire weight of the neural network is re-calibrated, and this process is iteratively 
repeated until the desired level of loss is achieved. 

Sigmoid function 

The sigmoid function produces output values within the range of 0 to 1, making it suitable for 
binary classification where the output is either 0 or 1. While the sigmoid function is a classic 
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example of an activation function, it is prone to a challenge known as the vanishing gradient 
problem1. 

ReLU 

ReLU (Rectified Linear Unit) produces an output equal to the input when the input is positive. 
For negative values, the output is zero. Since it assigns zero for negative inputs, certain neurons 
become inactive, leading to a simplification of computation. This not only reduces computational 
complexity but also aids in preventing overfitting and enhancing generalization. 

Leaky ReLU 

Leaky ReLU is a modified form of ReLU. Rather than discarding negative inputs, it produces an 
output with a specified magnitude. Typically, this value is small and regulated by a constant (see 
formula in Figure 3.2). Both the variants (ReLU and leaky ReLU) do not suffer from the vanish-
ing gradient to the same extent as the sigmoid function. Because of this reason, this activation 
function has been employed in the fully connected layers of our architecture. 

Tanh function 

The hyperbolic tangent function, known as tanh, generates output values ranging from -1 to 1 for 
any given input. This characteristic proves valuable in tasks that demand a distinct differentia-
tion between positive and negative inputs. Tanh activation is commonly applied in tasks such as 
recurrent neural networks (RNN), natural language processing (NLP), and speech recognition 
[50]. 

3.1.2 Artificial neural network 

An artificial neural network (ANN) in deep learning consists of many such neurons connected 
(as shown in Figure 3.3). The initial layer is termed the input layer, while the concluding layer is 
known as the output layer. The intermediary layers are referred to as hidden layers. The quantity 
of these layers and the neurons within them is directly linked to the complexity of the model. 
Such neural networks are also recognized as universal function generators. 

These neural networks can effectively address problems such as classification and regression 
like traditional algorithms, often with minimal tuning. Various configurations can be applied 
for classification and regression tasks. For instance, a single output for regression can predict a 
continuous value. In the case of binary classification, a single probabilistic value can still suffice. 
Moreover, multiple output nodes can be employed to represent different classes. 

1a problem in deep neural networks where gradients become extremely small during training, making 
it challenging for the network to learn effectively. 
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Figure 3.3: ANN architecture. 

Yet, certain considerations demand caution when employing deep learning models. These al-
gorithms operate as black boxes, making it exceptionally challenging to elucidate the reasoning 
behind the results, resulting in a loss of explainability. Deep learning models necessitate a sub-
stantially larger amount of data compared to traditional machine learning models. Overfitting 
these deep learning models is a common risk. Additionally, there is no universal rule dictating 
the ideal number of layers or neurons required for a specific task. 

3.1.3 Loss function 

A loss function (interchangeably also known as cost function or objective function) is a measure 
of error in the predicted and ground truth values. Its significance lies in guiding deep learning 
algorithms to minimize this error during the iterative process of backpropagation. The selection 
of an appropriate loss function is contingent upon the nature of the problem at hand. In our 
specific application, we opt for a loss function known as cross-entropy loss, which draws inspira-
tion from information theory. Cross-entropy loss penalizes the model more when it is confident 
about incorrect predictions and rewards it when it is confident about correct ones. This charac-
teristic makes cross-entropy loss a valuable metric for training models in classification tasks. We 
especially use a variant of cross-entropy loss called categorical crossentropy loss for multiclass 
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classification. The categorical cross-entropy loss L is defined as: 
N � 

L (p, y) = − yi.log (pi) , (3.3) 
i=1 

where y is the ground truth vector, p is the predicted probability distribution produced by 
the model, and N is the number of classes. The loss is computed for each prediction and averaged 
during the training. The logarithm penalizes confidently wrong predictions than the less confi-
dent predictions as the logarithm yields large negative numbers when the prediction probability 
reaches close to zero. The negative sign in the equation ensures that the loss is minimized during 
the training process. 

3.1.4 Optimizer 
In addition to defining the loss function, it’s crucial to specify the learning process in deep learn-
ing. While deep neural networks are learned by iteratively calculating and adjusting gradients, 
the optimization algorithm dictates how the model minimizes the loss function. One widely used 
optimizer is the stochastic gradient descent (SGD) [51] algorithm, which straightforwardly up-
dates the weights to minimize the loss. The term ”stochastic” refers to the randomness introduced 
by the algorithm, as it selectively and randomly samples a subset of data during each iteration 
to compute gradients and update the model parameters. For our architecture, we use an opti-
mizer called Adam optimizer [52]. It stands for ADAptive Moment estimation. It is an adaptive 
learning rate optimizer that learns from historical gradients, in contrast to selecting gradients 
randomly. The Adam optimizer requires initialization of two moving average variables m (first 
momentum) and v (second momentum). To update the weights w of the model, the following 
equations are used: 

2 mt = β1.mt−1 + (1 + β1) .gtandvt = β2.vt−1 + (1 + β2) .gt , (3.4) 

mt vtThen corrections are calculated as δmt = , δvt = . Finally, the weights are updated 
1−βt 1−βt 

1 2 
δmtas wt + 1 =  wt − α.√ , where t is the time step (or iteration), α is the learning rate, β1 and δvt+ 

β2 control exponential decay rates for first and second moments, mt and vt are first and second 
moment estimates at iteration t, δmt and δvt are the correction terms, gt is the gradient of the 
objective function concerning weights w, and is a small constant to avoid zero division. 

3.2 Convolutional neural network 

Spectral features alone can serve as a basis for emotion classification by employing Convolutional 
Neural Networks (CNNs) or ConvNets [53]. CNNs, a prevalent architecture in Artificial Neural 
Networks, are extensively utilized in computer vision applications like object detection, classifi-
cation, segmentation, and identification. Their effectiveness in computer vision tasks stems from 
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Figure 3.4: Convolution process. 

their ability to capture spatial and temporal dependencies in an image through convolutional 
filters. Additionally, CNNs lead to a substantial reduction in trainable parameters, resulting in 
a notable improvement in performance metrics. The convolution process is illustrated in Figure 
3.4. The term convolution comes from the convolution operation in signal processing [54], [55]. � ∞)Mathematically, the convolution operation is given by (x ∗ h) (t) =  x( )h(t − ) . In signal −∞ 
processing, x (t) and h (t) are input signals which are analogous to the image and the filter in the 
CNN process. * (usually asterisk or circled asterisk) denotes the convolution operation and is 
the integration variable representing time shift represents the amount of pooling in CNN (more 
about pooling in next sections). 

Convolution layer 

The convolution layer is the core block of CNN. In this layer, a filter (or feature detector) is sided 
over the image to calculate the dot product (see Figure 3.4) to give feature maps. These are the 
learnable parameters that learn the local features of the image. 

Pooling layers 

Pooling layers involve a filter moving across the image, generating a single output per stride. 
These layers summarize the features present in that specific location without incorporating any 
trainable parameters. The primary purpose of pooling layers is to decrease the number of train-
able parameters within the feature maps. 
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Flattening 

The flattening layers transform the 2-dimensional arrays of feature maps from the max pool lay-
ers into a single-dimensional array. This alteration is necessary to feed the data into the model, 
particularly a fully connected Artificial Neural Network (ANN). 

Fully connected layers 

Fully Connected Layers are the ANN that we already discussed in section 3.1.2. 

3.3 Transformers 

To extract text encoding, we will employ BERT encoders, a widely used transformer architecture. 
Transformers are neural network architectures designed for addressing sequence-to-sequence 
natural language processing (NLP) challenges. In sequence-to-sequence tasks, the model takes 
a sequence (e.g., a sequence of words) as input and produces a sequence (e.g., another sequence 
of words) as output. 

Transformers rely on self-attention layers, making them particularly effective in dealing with 
long-range dependencies. To illustrate, consider the task of translating a sentence from French to 
English. This task demands that, regardless of the sentence’s length, each word should have con-
text and relevance to the words preceding it. Traditional architectures for sequence analysis, such 
as RNNs, LSTMs, and GRUs, struggle to handle larger sentences in comparison to transformers 
[50]. Transformers can effectively handle sequences of any length with sufficient computational 
power. Additionally, transformers do not necessitate the input to be in a sequential format, en-
abling parallelism—a challenge in models like RNN and its derivatives. The architecture of the 
transformer is depicted in the Figure 3.5 [50]. 

3.3.1 Attention mechanism 

The transformer architecture utilizes the self-attention mechanism for handling sequential data. 
It comprises an encoder and a decoder, each composed of multiple layers. The self-attention 
mechanism enables transformers to grasp relationships and dependencies among each element 
in a sequence, irrespective of their positions. This capability empowers transformers to excel in 
natural language processing (NLP) tasks, enabling them to capture the context of lengthy and 
complex sentences. Below, we outline some essential components of transformers. 

Self-attention mechanism 

Self-attention, also referred to as scaled dot-product attention, serves as the fundamental ele-
ment in transformers, enabling the model to assign significance to crucial segments of the input 
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Figure 3.5: Transformer architecture. 
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sequence. This mechanism empowers the model to recognize and comprehend intricate relation-
ships within sequential data. It involves three trainable parameter vectors known as query (Q), 
key (K), and value (V). Query represents the token’s2 importance in relation to other tokens in 
the sentence, the key vector helps to identify the relationship between the current token with 
all other tokens, and the value vector contains the information about the content of the token. 
Mathematically, the attention for a given token at position i is calculated as: 

Qi.K
T 

Attention(Q, K, V )i = softmax( √ ).V, (3.5)
dk 

where dk is the dimension of the key vector. Because the output of the dot product can be a very 
large value, it is scaled by dividing the dot product with the square root of dk. 

Multi-head attention 

In the original paper [50], the authors use eight attention heads (Figure 3.6 shows the stack-
ing of multiple attention heads), enabling transformers to improve performance by acquiring 
diverse representations of K, Q, and V. Consequently, transformers can learn even more intri-
cate dependencies. Furthermore, because these learners operate independently, parallelization 
becomes feasible. 

3.3.2 Encoder-Decoder architecture 

Transformers are commonly observed in an encoder-decoder architecture, although they can also 
be employed in either only-encoder or only-decoder configurations. In a machine translation sce-
nario, the encoder takes the source language, and the decoder generates the translation. However, 
for our proposed framework, we exclusively utilize the encoder segment of the transformer. An 
architecture like BERT can be used to extract encoding from the text. Fortunately, pre-trained 
BERT models are readily accessible in the English language. Since our proposed model does not 
require us to generate texts, the decoder portion of the Transformer (see right side of figure 3.5 
is not necessary. 

3.4 Evaluation metrics 

After the models have been trained, it is crucial to verify whether they are performing accord-
ing to expectations during testing. The underperformance of the models may be caused due to 
various reasons, such as underfitting or overfitting [56, 57], poor model choice or poor feature se-
lection/engineering [58]. The easiest and most comprehensive tool to visualize the performance 
of a binary classifier is through a confusion matrix. The confusion matrix is a special type of 
contingency table (as shown in Figure 3.7), where the rows and columns represent classes of 

2a ”token” refers to a unit of text that a model can work with. 
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Figure 3.6: Multi-head attention. 

predicted and ground truth values. An example of a confusion matrix for a binary classification 
is shown in Figure 3.7. For N classes, the matrix would be an NXN matrix. Some important in-
formation that can be extracted from the confusion matrix are: 

• True Positive: Number of instances correctly classified as positive. 

• True Negative: Number of instances correctly negative instances. 

• False Negative: Number of instances incorrectly classified as negative. 

• False Positive: Number of instances incorrectly classified as positive. 

Figure 3.7 shows the confusion matrix for binary classification problems and derived evalu-
ation metrics. Using these elements, we can calculate various evaluation metrics: 

• Accuracy: It is the overall correctness of the classification model. 

• Precision: Precision, also known as positive predictive value, represents the ratio of cor-
rectly predicted positive instances by the model out of all instances predicted as positive. 
It is a suitable metric when the goal is to minimize the occurrence of false positives. 
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Figure 3.7: Confusion matrix for binary classification. 

• Recall (Sensitivity or True Positive Rate): Recall, or sensitivity, measures the accuracy of 
the model in identifying actual positive instances correctly. It is applicable in situations 
where the emphasis is on avoiding false negatives. 

• Specificity (True Negative Rate): Specificity is the metric used to measure the ability of the 
model to correctly identify negative instances. 

• F1 Score: The F1 score is the harmonic means of recall and precision. By incorporating both 
metrics, the F1 score offers a balanced assessment as recall and precision exhibit an inverse 
relationship. 

To be consistent with the benchmark results for the IEMOCAP dataset [1], we have used 
weighted F1 scores as our primary evaluation metrics. The weighted F1 score is calculated using 
the following formula: 

n � 
F 1score = Weighti ∗ F 1scorei, (3.6) 

i=1 

where N is the number of classes, Weighti is the weight of each class based on their distribu-
tion, and F1scorei is the individual F1 score calculated for each class using the equation shown 
in Figure 3.7. 

22 



  

               

              

               

            

           

             

              

           

           

             

              

             

      

 

  3.5 Summary 

In this chapter, we explore the fundamental concepts of deep learning and their application to 
multimodal analysis tasks. We begin by introducing deep neural networks, a powerful class of 
machine learning models inspired by the structure of the human brain. We delve into the in-
tricacies of transformers, a specialized architecture that excels at natural language processing 
tasks. Next, we investigate convolutional neural networks, particularly suited for image recogni-
tion applications. To effectively analyze audio data, we introduce audio spectrograms, a visual 
representation of the audio signal. We discuss Mel frequency spectrograms, a variant tailored to 
human perception. To process audio spectrograms efficiently, we introduce audio spectrogram 
transformers, a specialized transformer architecture. Finally, we explore evaluation metrics and 
tools for assessing the performance of machine learning models. Throughout the chapter, we em-
phasize the theoretical side of these concepts, showcasing their ability to tackle complex auditory 
and textual processing tasks. We also discuss the categorical cross-entropy and Adam optimizer 
used in the proposed model architecture. 
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Chapter 4 

Multimodal focused attention 

architecture 

Summary: In this chapter, we will delve into the proposed model, exploring its architecture, com-
ponents, and underlying principles. We will dissect the model’s layers, unraveling the intricate 
mechanisms that enable it to learn and make predictions. Along the way, we will shed light on 
the model’s strengths and limitations, providing insights into its suitability for various applica-
tions. 

Key topics: Focused attention, Dataset, Preprocessing. 

Organization: The chapter is structured as follows: dataset and preprocessing techniques are 
discussed in 4.1 used in 4.2. Then in 4.3 we discuss basic setup for experimentation. Further in 4.4 
and 4.5 we describe the unimodal and proposed model, exploring its architecture, components, 
and underlying principles. Finally, we also discuss how the ablation study is conducted in 4.6. 

4.1 Dataset 
The dataset we use for this extension is the Interactive Emotional Dyadic Motion Capture (IMEO-
CAP) dataset [1]. The dataset stands as a rich resource in the field of emotional communication 
research. Compiled at the SAIL lab at the University of South Carolina, this database is a curated 
collection of approximately 12 hours of audiovisual content. Encompassing video footage, speech 
recordings, facial motion capture data, and text transcriptions, the dataset is designed to offer a 
comprehensive understanding of human emotional expression. The dataset offers a diverse range 
of modalities for analysis, including motion capture face information, speech recordings, videos, 
head movement, head angle information, and dialog transcriptions. Notably, it provides align-
ment at various linguistic levels, such as word, syllable, and phoneme. The IEMOCAP database 
comprises dyadic sessions where actors participate in both improvised and scripted scenarios. 
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Figure 4.1: Multi-Histogram showing the number of words per turn in percentage for 
the scripted and spontaneous session (left to right) [1]. 

Figure 4.2: Distribution of emotion category in scripted and spontaneous sessions (from 
left to right) [1]. 

These scenarios are carefully selected to elicit a diverse range of emotional responses, offering a 
detailed exploration of human expression. What sets this database apart is not just its extensive 
content but also its integration of various modalities, including speech, facial expressions, and 
body language. The database’s value is further elevated by meticulous annotations from multiple 
annotators. Emotions are categorized into labels like anger, happiness, sadness, and neutrality, 
while additional dimensional labels such as valence, activation, and dominance provide a more 
nuanced understanding of the emotional dynamics captured in the dataset. For professionals 
and researchers in the field of multimodal and expressive human communication, the IEMO-
CAP database proves to be an indispensable resource. With its comprehensive motion capture 
data, utilization of interactive scenarios for genuine emotional responses, and considerable size, 
the dataset stands out as a noteworthy contribution to the available resources in the research com-
munity. This collection of data holds the potential to drive ongoing investigations and progress 
in the understanding and modeling of human emotional communication. Interested parties can 

25 



               

             

              

 

             

              

             

           

              

                

            

              

             

              

                

       

  

               

             

             

             

             

               

                 

            

                 

              

      

      

                

            

                

             

 

 

  

      

obtain and download the dataset through their website1 by making a request. Two datasets are 
available: one includes visual recordings, while the other does not. To simplify reproducibility 
and for demonstration purposes, we opt to utilize the dataset that exclusively contains auditory 
recordings. 

The 12-hour audiovisual recordings have been divided into sentences or turns, resulting in 
10,039 segments. Among these, 5,255 turns are scripted, and 4,784 turns are from spontaneous 
sessions. The annotations include categorical labels for emotions (such as anger, happiness, and 
sadness) and continuous value-based annotations (valence, activation, and dominance). In this 
chapter, our focus is on emotion classification using categorical labels. The average duration of 
the turns is 4.5 seconds. The number of words per turn is shown in Figure 4.1. 

The data distribution for each emotion category is generally well-balanced, except for sur-
prise and fear. The distribution patterns for scripted and spontaneous sessions are depicted in 
Figure 4.2. The charts indicate a higher proportion of individuals expressing positive emotions 
like happiness and excitement compared to negative emotions such as sadness and anger. Fear 
is the least prevalent emotion category, accounting for less than one percent of the total emotion 
categories in both scripted and spontaneous sessions. 

4.2 Preprocessing 

Preprocessing is a very important step for building deep learning models. For our approach, we 
under-sampled the majority classes as imbalanced classes can introduce bias in classification. To 
achieve this, we use under-sampling functions from the imblearn library [59]. Following the un-
dersampling process, approximately 1100 samples remained for each class. Most of the related 
work only uses major emotions like happiness, sadness, neutrality, anger, and frustration. Thus, 
in total, we have 5500 records after undersampling. It is not necessary to convert these categori-
cal classes to numerical labels, but we map the mentioned classes to numerical values from 0 to 
4 respectively for reproducibility. The average length of sentences after undersampling is illus-
trated in Table 4.1. Since we are using pre-trained encoders from BERT, it was not necessary to 
perform preprocessing for the text data. The audio samples also did not require preprocessing 
before extracting the Mel frequency banks. 

4.2.1 Extracting spectral features from audio 

Research [60, 61, 62, 63, 64] show that the use of spectrograms significantly aids in waveform 
analysis and recognition. The spectrograms can capture minute changes in frequencies. This con-
sequently allows to detection of emotional cues that may not be apparent from the raw signals. 
The extracted spectral features may be used in combination with CNNS [63]. Recently, advance-

1https://sail.usc.edu/iemocap/index.html 
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Table 4.1: Average length of sentences in each class after undersampling. 
Label Average length 

happiness (0) 
Sadness (1) 
Neutral (2) 
Anger (3) 
Frustration (4) 

54.80 
58.06 
54.10 
63.50 
71.49 

Figure 4.3: Conversion of raw audio (left) to spectral representation (right). 

ments in visual transformers (VIT), research have also shown that audio spectrogram transform-
ers (AST) [42],[65] are better able to capture both emotional cues and temporal information. 

We are accustomed to seeing audio in the form of waveform (see left of Figure 4.3). The 
waveform shows a change in the signal’s amplitude (y-axis) over time (x-axis). In contrast, spec-
trograms illustrate the alterations in frequency over time, using the x-axis for time, the y-axis for 
frequency, and brightness or color to signify amplitude. Spectrograms provide a detailed view 
of the frequency components of a signal across time, making them valuable for tasks such as 
audio processing and speech recognition, offering a more comprehensive perspective compared 
to waveform. In waveforms, slight variations in higher frequency ranges are typically less notice-
able compared to equivalent changes in lower frequency ranges. However, spectrograms depict 
frequency changes consistently across all frequency ranges, providing a spectral representation 
that aligns with human perception of waveforms. In our approach, we use Mel-filter banks as a 
feature and pass it to subsequent layers (with and without fusing it to other features). 
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Figure 4.4: Audiospectrogram transformer architecture for extracting features from spec-
trograms. 
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Mel frequency spectrograms and audio spectrogram transformer 

Mel frequency spectrograms are one of the methods used to create spectral representation from 
audio waves. Let’s consider an audio waveform x(t), where t ranges from 0 to t seconds. First, we 
apply the hamming window function h(t) to the waveform, to obtain the windowed segments� � 

2πt xh : xh (t) =  x (t)∗h (t). The hamming window is defined as h (t) = 0.54−0.46cos , where N−1 

0 <= t <= N − 1, N is the window length. Other window functions may also be used, but 
the Hamming window function is a standard one for speech-processing tasks. The windowed 
segments are divided into frames with some time duration and shift. Then, the discrete Fourier 
Transform (DFT) of each window is calculated to obtain the magnitude spectrum X(f), where f 
is the frequency index: X (f) =  DFTxh (t). It is necessary to apply the window function before 
performing the Fourier transformation to address the assumption made by the Fourier transform 
(like data being infinite) and to reduce spectral leakage. Then we apply a Mel-filterbank to X(f) 

to obtain Mel-filterbank energies Em. 
� 

Em = Hm (f) . |X (f)|2 , (4.1) 

where Hm are triangular filters that are applied to approximate the frequency of audio signals 
to the frequency response of the human auditory system. The parameters of this filter are deter-
mined based on the Mel Scale, which reflects the nonlinear relationship between frequency and 
perceived pitch. The audio can be converted to the Mel scale from the decibel scale and vice versa 
using the following relationship: � � �f 

10m/2595 − 1m = 2595log10 1 +  andf = 700 , (4.2)
700 

where m and f are Mel and Hertz scale. 

The original paper [42] describes an audio spectrogram transformer (AST) as a convolution-
free and purely attention-based model. The model architecture is shown in Figure 4.4. The AST 
utilizes Mel-filter bank features described in Mel frequency spectrograms. Instead of relying on 
CNN to process spectral representation, the AST architecture relies on the sequential information 
provided by the spectral features. The AST architecture is also independent of the input sequence 
length. The input spectrogram is divided into a sequence of N 16X16 overlapping patches. Em-
beddings are generated from the linear projection of these patches using transformer-inspired 
architecture. The output of this transformer can be used for downstream tasks and thus is used 
in our proposed model. 

4.2.2 Extracting text encoding using BERT 

Bidirectional Encoder Representations from Transformers (BERT) [66, 67] is an architecture based 
on transformers by Google AI. BERT is specifically designed for pre-training deep bidirectional 
representations by leveraging unlabeled text, taking into account both left-to-right and right-to-
left context across all layers. As a result, the pre-trained BERT model can attain state-of-the-art 
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performance in diverse tasks, such as question answering and language inference, with minimal 
adjustments to the task-specific architecture. Often, only the inclusion of a single output layer is 
needed for fine-tuning. This training approach is commonly referred to as transfer learning. 

To load the dataset, we utilized PyTorch’s Dataset and Dataloader classes. During dataset 
loading, we extract the Mel frequency-banks from the raw audio signals using the ASTFeature-
Extractor module. We limit the length of the signals to 1024 and produce 128 Mel frequency bins. 
We also normalize the Mel features using the mean and standard deviation of -4.2677393 and 
4.5689974. These are the default parameters for the feature extractor class. The sampling rate is 
set to 16Khz which is also the sampling frequency of the input audio signals. The spectrogram 
that is derived has dimensions of [1024, 128]. 

For the text transcripts, we use the pre-trained BERT tokenizer. Little to no preprocessing is 
required before this step. We use the uncased BERT encoder, which is trained on large unlabelled 
English dataset. The maximum limit for the encoder is chosen to be 50 which is close to the 
average length of the texts. Both preprocessing (for audio and text) is done on the fly using the 
Dataset and Dataloader classes. 

4.3 Experimental setup 

The implementation of the proposed model is done using the PyTorch lightning framework, 
which is one of the popular deep learning frameworks based on Python. We utilize a pre-trained 
BERT-base-uncased encoder and a pre-trained AST model from the Hugging face repository. We 
chose Lightning over vanilla PyTorch due to its high modularity and reproducibility. We also 
use PyTorch’s audio spectrogram extractor to extract mel-filterbanks. To train the model we use 
a single-node HPC2. 

4.4 Unimodal learning 

Our experiments involve unimodal learning with both audio and text datasets. For the first ex-
periment using the audio dataset, we utilize custom CNN models, where we extract features 
from the spectral data using specialized CNN filters. We use two convolution layers followed by 
maxpool, activation, and normalization layers. These features undergo flattening and are then 
processed through a feedforward network. In a separate experiment, we employ pre-trained 
AST models for audio. In this strategy, we extract Mel-filter banks with a sampling rate set to 
16Khz and 128 Mel-bins. The max length of the audio signals is clipped to 1024 and the output 
is normalized. The resulting filter banks are of the shape (1024, 128). This is the input for AST 
transformer architecture initialized with a finetuned audioset dataset. We modify the model by 

2Computation was performed on Lawrence Supercomputer at the University of South Dakota awarded 
by NSF.1626516. 
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Figure 4.5: 12 Audiospectrogram model architecture using CNN (only trainable param-
eters). 
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Figure 4.6: Audio spectrogram model architecture using AST (only trainable parame-
ters). 

replacing the last layer and introducing a custom linear layer that aligns with the total number 
of emotion classes, tailoring it to our specific classification needs. 

For textual modality, we use the pre-trained BERT encoder. The inputs for the BERT encoder 
model are the tokenized sentences. BERT provides the weights for both the last hidden layer and 
the pooled layer in its outputs. The pooled layer, often favored for classification tasks, offers a 
lower-dimensional representation and is considered a general overview of the input sequence. 
This reduced dimensionality and summarization make it a commonly employed choice for clas-
sification purposes. The output for pre-trained BERT is 764 encoded vectors. The pooled layers 
are passed through the feed-forward network with five outputs. 

The trainable parameter for the considered text model is shown in Figure 4.7. Compared to 
other architecture, this model has only 8.6K trainable parameters. This is because we leverage 
transfer learning techniques to extract the vector embeddings of the sentences. Thus, the need 
for training an encoder is eliminated. 

4.5 Focused attention architecture 

We propose a multimodal learning model using audio spectrogram transformers and the BERT 
language model. The architecture is shown in Figure 4.8. The overall architecture is implemented 
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Figure 4.7: Language model architecture (only trainable parameters). 

using PyTorch Lightning. We have taken advantage of pre-trained BERT and pre-trained AST 
classifiers from Huggingface. To process raw audio input, we have employed Torchaudio and for 
reading textual data, we have used Python’s basic IO functions. The input for the architecture is 
16Khz raw audio (in .wav format) and their respective text transcripts. The audio is converted to 
spectral representation, i.e., mel-filterbanks. The audio spectrogram is a visual representation of 
the audio data, showing the frequency and intensity of the sound waves over time. It is created 
by performing a Fourier transform on the audio data. Then the audio feature extractor extracts 
features from the audio spectrogram. These features are numerical quantities that represent the 
characteristics of the audio. The audio transformer transforms the audio features into a format 
that is suitable for the machine learning algorithm that will be used. The feature from audio is 
fused together with encoded text (using BERT). This helps the machine learning algorithm to 
learn more complex relationships between the data and the target variable. Then a fully con-
nected combines all the input features into a single output. The output of the fully connected 
layer is then fed to a classifier, which predicts one of the target emotions: neutral state, frustra-
tion, happiness, sadness, and anger. 

The detailed feed-forward architecture of the proposed model is shown in Figure 4.8 and 
Figure 4.9. The feature extracted from the spectrogram undergoes processing through linear lay-
ers comprising 128 neurons each. Simultaneously, the encoded textual information undergoes a 
similar transformation through a linear layer consisting of 128 neurons. The reason behind the 
reduction of layers to 128 neurons is to balance the contribution of each modality. The extracted 
audio spectral features Fspec = [fs1, fs2, . . . , fs128] and text features Ftext = [ft1, ft2, . . . , ft128] 

are fused or concatenated and passed through an additional linear layer containing 256 neurons. 
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Figure 4.8: Proposed multimodal learning architecture. 

Figure 4.9: Multimodal architecture using text and audio modality (only trainable pa-
rameters). 
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Table 4.2: Number of trainable and non-trainable parameters for each model considered 
for experimentation. 
Model architecture No. of non-trainable parameters No. of trainable parameters 

Audio (Custom CNN) 
Audio (AST) 
Text (BERT) 
Multimodal (AST+BERT) 

0 
86.2 M 
109 M 
195 M 

3.4 M 
398 K 
3.8 K 
331 K 

i.e., The concatenated features F = Fspec + Ftext is the fused features. Finally, an output layer 
with 5 classes is introduced to complete the model. Table 4.2 lists the number of trainable and 
non-trainable parameters for each of the models considered for experiments. 

4.6 Ablation study 

We perform an ablation study and investigate each of the model architectures listed in Table 4.2. 
We have tried to keep the models as consistent as possible for the ablation study. In evaluating the 
models, we compute the average F1 score and loss metrics across all experiments for each model. 
The goal of this study is to analyze each model architecture individually and investigate the 
results of combining diverse architectures. The IEMOCAP dataset is employed for this purpose. 
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Chapter 5 

Results and discussion 

Summary: In this chapter, we present the results for unimodal and proposed focused attention 
architecture. We discuss and disect the results obtained in ablation study as well as compare 
our proposed architecture with benchmark models on IEMOCAP dataset. Each model is cross-
validated 5 times with an 80:20 split ratio for training and validation. We display the mean and 
standard deviation of the F1 score for each run. The evaluation of our models is based on the 
weighted F1 score, aligning with the metric utilized by the IEMOCAP benchmark. 

Key topics: Results, Discussion, Analysis. 

Organization: The chapter is organized as follows: In 5.1 and 5.2 unimodal and proposed focused 
attention architecture is discussed. Then deliberation on research limitation and future work is 
presented in 5.3 and 5.4 respectively. A summary of F1 evaluation metrics is shown in Table 5.1. 

5.1 Unimodal approaches 

The results of the experiments for all the architectures are presented in table 5.1 At first look, 
both the audio models show promising results that significantly score higher than the SOTA 
architecture [15] The state-of-the-art (SOTA) architecture achieves a notable score of 71.77 on 
the weighted F1 score metric, while our audio-based architecture surpasses 80 on the F1 score 
metric. Despite these seemingly impressive results, a more in-depth examination reveals that 
the audio model is generating predictions with a lack of confidence. The validation set does not 
conclusively indicate whether the model is overfitting, as both the validation loss and F1 score 
show improvement over time. However, there are concerns that the model may not generalize 
well to real-world datasets, indicated by the escalating loss function for these audio models. This 
problem is more evident in custom CNN-based architecture than in the AST-based model. This 
problem is also illustrated in Figure 5.1. 

To delve into the underlying issues, we can scrutinize the loss function equation (see Figure 
5.1. This function involves taking the logarithm of the prediction probabilities. As the predicted 
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Table 5.1: Average length of sentences in each class after undersampling. 
Model architecture Average F1 score Standard deviation of F1 scores 
Audio (CNN) 
Audio (AST) 
Text (BERT) 
Multimodal (AST+BERT) 

0.83 
0.82 
0.42 
0.67 

0.009 
0.005 
0.010 
0.001 

probability approaches zero, the loss increases substantially. This suggests that while the mod-
els are enhancing performance metrics, they are simultaneously making fewer assured predic-
tions as the iterations progress. Another reason for such performance could be the high number 
of trainable parameters for a relatively smaller training dataset. The custom CNN model with 
3.4 million trainable parameters has the highest F1 score, but its loss function exponentially de-
grades compared to the AST model with just 398 K parameters. In contrast, BERT-based models 
exhibit greater stability, although their performance, as indicated by the F1 score metric, is com-
paratively lower. Both the validation F1 score, and validation loss follow a typical trend, yet the 
F1 score hovers just above 40, a significant deviation from benchmark results. This subdued F1 
score can be attributed to the smaller number of trainable parameters, which stands at a mere 
3.8K. This reduction in trainable parameters is achieved through the implementation of transfer 
learning techniques. Specifically, the last layer of the pre-trained BERT model is removed, and a 
linear layer is subsequently added to the output of the pre-trained BERT encoder. The observed 
normal behavior in the training process of these BERT-based models, marked by stable trends in 
validation metrics, is a positive indication. The strategy of leveraging transfer learning not only 
reduces the overall number of parameters but also contributes to the model’s stability during 
training. 

5.2 Focused attention model 
The proposed multimodal architecture with auditory and textual modality offers a fine tradeoff 
between the independent audio-based and text-based models. Both the F1 score and loss metrics 
for validation sets improve throughout the iterations. The evaluation metric is comparable to the 
benchmark result achieving .67 on the F1 score metric. This puts the proposed model in the top 
10 of the benchmark results using auditory and textual modality. The comparison results are 
shown in Table 5.2. 

From Table 5.2, we can see that the proposed model is still behind the SOTA architectures. 
However, our model achieves comparable results (places third) among the audio-textual model 
architectures. Through our research, we can demonstrate that attention-based architectures used 
in parallel with spectrographic features can achieve comparable results with SOTA architectures. 
We also demonstrate the superior performance of convolution-free models over classical CNN 
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Figure 5.1: Validation and training F1 score and loss (averaged results from cross-
validation of 5 experiments). 
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Table 5.2: Average length of sentences in each class after undersampling. 
Model F1 score Audio + Text 
EmoCaps [15] 71.77 71.39 
InstructERC [34] 71.39 -
CFN-ESA [68] 71.04 68.46 
UniMSE [69] 70.66 -
M2Fnet [40] 69.86 66.32 
Proposed model 67.78 67.78 

methods for spectrogram analysis for emotion recognition in speech. Additionally, our research 
demonstrates that multimodal learning exhibits increased resilience and produces predictions 
with higher confidence levels. 

5.3 Research limitation 

The study utilizes openly accessible datasets, leading to a lack of control over both the quality 
and quantity of the data. Our findings suggest that while intricate models can effectively capture 
nuanced emotional cues, they exhibit sensitivity to overfitting. Conversely, simpler models may 
struggle to accurately capture concealed emotional nuances. The necessity for additional data 
sources, preferably from primary sources, is crucial for fine-tuning the model. Transfer learning 
expedites and improves model convergence, but it’s essential to consider that pre-trained models 
were designed for comparable purposes. A larger dataset and the capability to train a custom net-
work, rather than depending on pre-trained models that may not align with the specific problem 
statement, could lead to enhanced model performance. As trained facial marker models were not 
accessible, their integration into our architecture was not feasible. Developing a custom model 
would have resulted in architectures with millions of parameters, an impractical approach due 
to the constraints posed by the dataset’s limitations. The inclusion of video datasets also poses 
similar problems. Our investigation exclusively centered on the IEMOCAP dataset, which is spe-
cific to the English language. Consequently, we were unable to assess whether the model would 
exhibit comparable performance across various languages and datasets. 

5.4 Future work 

Most state-of-the-art (SOTA) models optimize their performance by utilizing tailor-made datasets. 
Likewise, our approach stands to gain substantial advantages through fine-tuning with a custom 
dataset sourced from primary or secondary channels. Moreover, the expanded dataset will en-
able the integration of additional modalities into our methodology. Additionally, incorporating 
datasets featuring diverse languages and scenarios is vital to ensuring the resilience of the ar-
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chitecture, representing an intriguing avenue for further research. The architecture can also be 
tuned by experimenting with different numbers of fully connected layers, and other pre-trained 
models. To tackle the problem of data availability, we can apply techniques such as active learn-
ing [70]. Using active learning, we do not require a lot of data and we also eliminate the need for 
expensive annotators. 
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Chapter 6 

Conclusion 

In conclusion, our thesis introduces a novel multimodal attention focused approach to emotion 
classification. This innovative method leverages fully attention-based mechanisms, integrating 
spectral and text embeddings to enhance the model’s understanding of emotional content. The 
architecture is intentionally crafted for the development of robust models, especially tailored for 
scenarios with smaller datasets, eliminating the necessity for fine-tuning datasets. The integra-
tion of audio spectrogram transformers and BERT encoders in our methodology facilitates the 
extraction of meaningful features from both audio and text data, contributing to a comprehen-
sive understanding of emotional nuances. 

Our study culminates in the presentation of results using the F1 score metric, a robust mea-
sure of precision and recall. Notably, our approach achieves performance levels comparable to 
well-established state-of-the-art (SOTA) models in the field of emotion classification. This val-
idation underscores the efficacy and competitiveness of our proposed multimodal framework, 
positioning it as a noteworthy contribution to the evolving landscape of sentiment and emotion 
analysis. 
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