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Abstract. Serverless computing and Function-as-a-Service (FaaS) are program-
ming paradigms that have many advantages for modern, distributed and highly
modular applications. However, the process of transforming a legacy, monolithic
application into a set of functions suitable for a FaaS environment can be a com-
plex task. It may be questionable whether the obvious advantages received from
such a transformation outweigh the effort and resources spent on it. In this paper
we present our continuing research aimed at the transformation of legacy appli-
cations into the FaaS paradigm. Our test subject is an airport visibility system,
a sub-class of the meteorological services required for airport operations. We have
chosen to modularize the application, divide it into parts that can be implemented
as functions in the FaaS paradigm, and provide it with a simple cloud-based data
management layer. The tools that we are using are Apache OpenWhisk for FaaS
and Airflow for workflow management, Apache Airflow for workflow management
and NextCloud for cloud storage. Only a part of the original application has been
transformed, but it already allows us to draw some conclusions and especially start
forming a generalized picture of a Function-as-a-Service application.
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1 INTRODUCTION

In this paper we present the initial stages of the construction of an airport visibility
meteorological application based on the Function-as-a-Service paradigm [1]. The
application has been in use by its developer and operator (MicroStep-MIS) for sev-
eral years now at multiple airports, albeit as a monolithic system, without the use
of cloud or serverless computing. Now it is being attempted to transform it into
a serverless application. It is not necessary for the application’s work, but it is seen
by the developer as an investment into the commercial future of the product, as it
will:

• allow the developer to modularize the application, potentially offering several
different deployments with different requirements, functionality and pricing,

• allow to deploy the application without requiring the customer to invest into
hardware and maintenance,

• allow to develop the application into a completely different functionality and
even domains,

• give the developer critical know-how based on modern computing paradigms,
which will allow it to stay current with its products, as more and more cus-
tomers move from dedicated hardware to cloud computing and even serverless
computing.

The re-development of the application in the FaaS paradigm is done in cooperation
with the Institute of Informatics of the Slovak Academy of Sciences – the research
partner. For the research partner the development is of interest because of its long-
standing research in distributed computing, leading to cloud computing and now
serverless computing. While the application’s parameters may not be ideal for the
serverless paradigm, it is still very well usable, and will benefit from the application
of FaaS concepts.

The development of the serverless version of the application is still in its initial,
exploratory stages, and the contents of this article reflects this fact. In the following
chapters we present the general overview of what is Function-as-a-Service, as well as
of the tools we are currently using – OpenWhisk, OSCAR, OpenFaaS and Airflow.
We also describe the general architecture and workings of the application as well as
the challenges it faces during the process of moving towards a serverless architecture
based on FaaS. In the final chapter of the paper we present our future plans for the
application and its further transformation.

2 THE FUNCTION AS A SERVICE PARADIGM

Function as a service (FaaS) is a subset of serverless computing [2] that provides
a platform allowing developers to write and deploy applications without building and
maintaining the underlying infrastructure. Typical tasks related to infrastructure
management like resource provisioning, maintenance and regular update of base
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operating systems are on the responsible Cloud provider. Developers may focus
only on application codes and their logics.

Figure 1. Serverless platform architecture [2]

The architecture of FaaS is shown in Figure 1. The core component of the FaaS
platform is the event dispatcher that receives events from different sources: users’
requests sent to API gateways, mouse clicks on GUI, time alarms, data arrivals on
cloud storages and so on. For each event, application developers can define the
corresponding code that will be executed by the dispatcher on worker nodes when
the event occurs. An event queue is often placed in front of the event dispatcher
for handling high event rates, when all worker nodes are busy in processing other
events.

Whole system, including the dispatcher and worker nodes are managed by the
FaaS provider so application developers may focus only on the codes that are called
by the event dispatcher when an event occurs. The codes corresponding to the events
are typically implemented as functions: stateless small pieces of code, therefore the
platform is called “Function as a Service”. As the code is stateless, dispatchers can
execute multiple instances of the code in parallel with very low overheads, so the
application is scaled easily, and practically limited only by the computation capacity
of the FaaS providers. The billing system is based on the actual resource usage by
the functions, if there is no function call, no cost occurs.

Functions have to be implemented in a programming language supported by the
FaaS platforms and using libraries provided by the providers. That limits portability
of the code and makes potential vendor lock-in. Some FaaS platforms, e.g. Open-
Whisk, can support Docker containers as functions so developers can implement the
functions in any programming language and with custom libraries. Loading Docker
containers at each execution causes much higher costs than function calls, so the
containers are often cached and used repeatedly. The FaaS paradigm is also well
suited for low-code [3] programming, as the serverless concept frees the developer of
a whole class of details (code and data location, connections, etc.).
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In summary, the main advantages of FaaS:

Automatic scaling: With FaaS, functions are scaled automatically, independently,
and instantaneously according to the actual demands. That will relieve develop-
ers from concerns of high traffic or heavy use. The cloud providers will handle
all issues related to scaling, e.g. allocating computing resources, replicating the
codes and so on.

Cost efficiency: Users have to pay only for the computing resources they re-
ally use, not for idle resources that are often reserved for handling possible
high demands in the typical IaaS (Infrastructure as a Service). As mentioned
above, functions are scaled up automatically on high demands and scaled back
down on low demands. If there are no demands or events, no costs are in-
curred.

Quick development: As developers do not need to manage infrastructure, they
can focus only on the code, reducing the cost of development and the time to
market.

FaaS also have some disadvantages:

Potential vendor lock-in: The application codes are built on the top of a concrete
FaaS platform and difficult to port to another vendor.

Difficulties for testing: The codes are running on the top of a FaaS platform, it
may make difficulties for creating local test environments for applications.

FaaS is very suitable for applications that have dynamic or volatile loads as it
can scale easily and handle very high demands without big issues, and also has no
cost when the application is idle. For applications with constant loads, the cost of
FaaS may be higher than typical IaaS solutions.

The first commercial provider offering FaaS is Amazon AWS with AWS Lambda
platform [4], followed by Google with Google Cloud Functions [5], Microsoft with
Azure Functions [6]. In this paper, we will focus on the open-source FaaS platform
OpenWhisk from IBM (described in Section 4).

3 THE APPLICATION – AIRPORT VISIBILITY USING CAMERAS

An important element in the safety of all kinds of transport is good visibility. Poor
visibility can cause fatal accidents [7]. Visibility measurement is therefore a rele-
vant issue for air transport during the whole flight but especially when the aircraft
is maneuvering on or near the ground [8]. Aircraft accidents due to bad weather
conditions comprise almost 50% of all cases and the main cause of weather-related
accidents is reduced visibility [9]. Good visibility information can significantly de-
crease the risk of accidents, number of redirected flights, save fuel and decrease
negative economic consequences.
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Figure 2. Architecture of the airport visibility application

There exist dedicated sensors for measuring visibility at airports [10], but:

1. they are usually costly to obtain,

2. their coverage is often insufficient,

3. they can only measure visibility at an exact measuring point.

Another approach to determine visibility is based on the research of remote
and automatic visibility observation using camera images [11, 12]. This approach
addresses all above mentioned problems, as:

1. the required cameras are cheaper than dedicated sensors,

2. cameras can cover larger environment,

3. cameras are often already present at airports and can be re-tasked for visibility
measurements.

Visibility measurement using cameras includes instant processing of large number of
images from various sources, with image recognition and automatization of modeling
processes as well as the application of multiple parallel functionalities and check-
ing mechanisms. Therefore a more sophisticated and highly flexible information
infrastructure is necessary.

In our system for visibility determination, the camera images are the basis for
a remote observer to estimate visibility with the help of reference points. In the
automatic version images taken during good visibility are used to construct reference
objects. Then during measurement the system determines which reference objects
are visible and which are not, and from that information it can make the decision
on visibility conditions. This system can monitor visibility according to aviation
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rules for human observers, which is preferable to other arbitrary solutions. Since
the responsibility of the system is depending on the capacity of the underlying
infrastructure, it can be increased by expanding this infrastructure. It is possible to
achieve frequency of visibility measurements of one minute or even less for critical
situations – and by altering the frequency requirements, resources and costs can be
saved when high frequency is not necessary.

The processes of our visibility measurement application are depicted in Fig-
ure 2. Camera configurations for image capture during a day and during a night
differ, as there are differences in visibility reporting process by meteorological ob-
servers during day and night. Overall the cameras mimic manual observations.
Images covering full horizon are taken and processed by the Image visibility han-
dler module. This module finds visible reference points by comparison with the
database of available reference points for every image, using edge detection as poor
visibility presents itself with loss of contrast and thus loss of edges in the obtained
images. Then the Visibility information module determines the minimal and prevail-
ing visibility using recognized reference points. Prevailing visibility is the maximum
distance visible throughout at least half of the horizon. Then information about
prevailing visibility is displayed as in the METAR1 reporting tool and results are
stored in a database. In parallel runs the process of stitching panorama for remote
observers to have better conditions for visibility observations remotely is run and
outputs from these observations are also fitted in a METAR report and stored in
the results database. We also plan to create new deep learning visibility model that
could run in parallel to Image visibility handler module so we can evaluate this
method.

The technologies used in the original application have to be modified to fit
Function-as-a-Service infrastructure in order to be executed using OpenWhisk or
OSCAR frameworks. Image data are acquired using the ONVIF standard. The user
interface is provided through a web application server integrated within the IMS [13]
software. The UI for IMS is built using industry proven standards: HTTP/HTTPS
protocol, HTML and XML formats, JavaScript and AJAX technologies, which
makes them well suitable for cloud deployment. The backend implementation uses
Java. The UI, since it is HTTP based, is ready for access over the network. The
IMS system is also accessible through a web browser. The basic IMS server software
also allows for both edge and cloud deployment.

4 APACHE OPENWHISK

OpenWhisk is a free and open implementation of the Function-as-a-Service paradigm
described in Section 2. The history of OpenWhisk is tied to the Amazon Web
Services’ Lambda service, first presented in November 2014. According to Rodric
Rabbah, then working at IBM Research, his research group quickly realized the

1 Standardized message for reporting meteorological conditions obligatorily emitted
every half an hour by airports and meteorological institutions.
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Lambda’s value and the overall value of the serverless computing premise. He saw it
as a transformation of computing native to cloud, and the future of the architectures
of cloud applications [14]. Therefore, IBM Research started working on a competing
product called Whisk. Whisk was later renamed OpenWhisk, open-sourced and
transferred to the Apache Software Foundation Incubator [15]. Nowadays it is an
open-source alternative to AWS Lambda [4], Microsoft Azure Functions [6] and
Google Cloud Functions [5].

4.1 The OpenWhisk Programming Model

OpenWhisk is an event-driven system, in which events from an event source feed into
triggers, and via rules cause the execution of actions (functions). The production
of event can be done via a command-line tool, via a HTTP call to the OpenWhisk
installation, or from numerous existing plugins for various tools, messaging services,
and software systems that produce events. One OpenWhisk installation can serve
several independent systems of actions, rules and triggers, each in its own namespace.
The schema of this process is shown in Figure 3.

Runtime

Namespace

Namespace

Event source Event Feed

Namespace

Trigger Rule Action FunctionJSON

Figure 3. The event-driven programming model of OpenWhisk

The action itself (the principal function that is to be executed as a result of an
event occurring) is provided by the developer of the system which uses OpenWhisk.
It is a self-contained section of programming code, written in one of several supported
programming languages:

1. Java,

2. Javascript,

3. Python,

4. PHP,

5. Go,

6. .NET,

7. Ruby,

8. Swift.
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These languages are supported by their own runtime environments, implemented
as docker images. Apart from support for functions implemented in these lan-
guages, a developer can also provide an action designed as a black box, via provid-
ing a specifically constructed docker image based on a provided Docker Runtime2

image.
As we can infer from this description, each action is instantiated and executed

in its own docker container, which contains the necessary software to compile and
execute code in the programming language in which the action is written. In the
case of a black-box docker action, the docker image itself contains the function, and
the OpenWhisk execution system does not provide support with its compilation, it
only calls the code implementing the action via an established mechanism.

Independently of which language (and, consequently, which runtime) is used,
the process of execution of the action’s code is similar:

• The runtime (docker image) contains a REST-enabled server.

• This server receives a JSON3 structure with input data and the code of the
action itself.

• The code of the action is compiled (if necessary) and executed, with the received
input data provided to it.

• If the code of the action finishes in certain pre-set time, its result is packaged in
JSON, and returned as the result of the initial call to the REST server.

• If the code of the action takes more time, the REST server returns a result
indicating that the action is still executing. In that case, the result of the action
can be queried later via the action’s ID.

In the case of the black box action based on Docker Runtime, no compilation of
code is done in the 3rd step and the input data is fed directly to an executable place
already present in the docker image.

4.2 Installation and Use of OpenWhisk

OpenWhisk can be installed in several ways, as detailed in OpenWhisk documen-
tation4. We have chosen to use Kubernetes installation. OpenWhisk is already
available as a Helm chart, so deployment in Kubeapps is very straightforward. Ad-
ditionally a local installation of the wsk command-line tool is required on the ma-
chine, from which the OpenWhisk installation is to be used. The installation and
configuration of this tool is also described in OpenWhisk documentation5.

2 Apache OpenWhisk runtimes for docker, https://github.com/apache/

openwhisk-runtime-docker#readme
3 What is JSON, https://www.w3schools.com/whatis/whatis_json.asp
4 OpenWhisk documentation: deployment options, https://openwhisk.apache.org/

documentation.html#openwhisk_deployment
5 OpenWhisk documentation: OpenWhisk CLI (wsk), https://openwhisk.apache.

org/documentation.html#wsk-cli

https://github.com/apache/openwhisk-runtime-docker#readme
https://github.com/apache/openwhisk-runtime-docker#readme
https://www.w3schools.com/whatis/whatis_json.asp
https://openwhisk.apache.org/documentation.html#openwhisk_deployment
https://openwhisk.apache.org/documentation.html#openwhisk_deployment
https://openwhisk.apache.org/documentation.html#wsk-cli
https://openwhisk.apache.org/documentation.html#wsk-cli
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4.3 Using OpenWhisk for Airport Meteorology

In the course of our work, we will implement all the modules of the application
as shown in Figure 2 as OpenWhisk actions, to be managed and executed either
programatically, or via a workflow orchestration system (see Section 5 for one such
system which we intend to use).

So far, we have implemented 3 functions:

1. ImageVisibilityHander, as a Java action,

2. Visibility info from 8 xmls, also as a Java action,

3. Panorama stitch, as a black-box docker action, since we use a third party soft-
ware (Hugin6).

In the case of the Panorama stitch action, we have created a specific docker
image, based on the above described Docker Runtime image. Our image contains
also the Hugin software and a program, which:

1. receives the JSON input structure from the Docker Runtime proxy via the HTTP
protocol,

2. decodes it into a set of parameters, including input file URLs,

3. downloads the input files,

4. executes panorama stitching on the downloaded input files using the Hugin
software’s capabilities,

5. uploads the resulting stitched panorama to cloud storage,

6. indicates success or failure of the panorama stitching operation on output.

The details of the modification of the original Docker Runtime from OpenWhisk
are detailed by J. Thomas in [16].

In the case of the two Java-based actions from the above list, we also had to
perform additional steps. The software that is necessary to execute the actions re-
quires several third party libraries, including OpenCV7, which are quite large. The
maximum size of an action in OpenWhisk is 48MB, and this is not sufficient to
transfer the software and all the required libraries. Therefore, we had to create our
own specific Java Runtime for OpenWhisk actions, based on the standard Open-
Whisk Java Runtime8 provided by the OpenWhisk project. The building of the
docker image of all OpenWhisk runtimes is managed by the Gradle9 build tool. The
libraries can be added from an external repository, as shown in [17], or as local files,
according to the rules of Gradle build files. In our case we have used local JAR files

6 Hugin – Panorama Photo Stitcher, https://hugin.sourceforge.io/
7 The Open Source Computer Vision Library, https://opencv.org/
8 OpenWhisk Java Runtime, https://github.com/apache/

openwhisk-runtime-java#readme
9 Gradle build tool, https://gradle.org/

https://hugin.sourceforge.io/
https://opencv.org/
https://github.com/apache/openwhisk-runtime-java#readme
https://github.com/apache/openwhisk-runtime-java#readme
https://gradle.org/
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provided by the developers of the application. The resulting source code for our
application-specific Java Runtime is available in our GitHub repository10.

5 SERVERLESS FUNCTIONS ORCHESTRATION
WITH APACHE AIRFLOW

Many scientific applications are so complex that they are often described by complex
workflows requiring efficient management and coordination of jobs. They process
and analyze large volumes of data through numerous interconnected tasks. The
management and organization of the tasks are challenging due to their complexity
and their need for scalability and reliability.

Function as a Service (see Section 2) changes the development of applications,
allowing developers to focus on code instead of infrastructure management. Apache
AirFlow [18] is an open source11 framework for the management of lightweight server-
less functions. It amalgamates individual tasks into a workflow that is expressed as
a directed acyclic graph (DAG) representing the workflow structure and dependen-
cies between tasks. Each task within the DAG can be associated with a serverless
function, enabling the integration of the FaaS paradigm into workflows.

5.1 AirFlow Architecture

Apache Airflow is composed of the following components (see Figure 4):

Scheduler: orchestrates the execution of tasks defined by a DAG. Execution order
is defined by their dependencies, and tasks are triggered according to them.

Workers: execute tasks within a specific environment (e.g. local machine, cluster,
or cloud).

Web server: provides a user interface for AirFlow. Users can view and manage
workflows, monitor task execution, logs, and metadata of workflow runs.

Metadata database: stores and manages information related to DAGs, tasks,
workflows and their executions. It maintains the state and history of workflows.

5.2 Using AirFlow for Airport Meteorology

In our case, the tasks are serverless functions, since the requirements for AirFlow
tasks are atomicity and no resource sharing, which the serverless functions meet.
The resulting workflow characterizes the relations between its tasks and also defines
their execution order.

The paper presents the Airflow workflow (see Figure 5) for the airport meteo-
rology application (see Section 3). The whole application is divided into individual

10 https://github.com/IISAS/openwhisk-runtime-java
11 Under Apache-2.0 license.

https://github.com/IISAS/openwhisk-runtime-java
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Figure 4. Schematic overview of the process involved in developing and executing pipelines
as DAGs using Airflow [19]

tasks which are implemented as Docker containers. The workflow is divided into the
following tasks:

1. day or night: determines whether the captured images fall within the day or
night period. This task plays a crucial role in optimizing operational procedures
and decision making in aviation workflows.

2. image from camera: retrieves airport visibility data from selected airport
camera data sources. The task integrates real-time visual data into the workflow,
allowing further analysis, processing, or decision-making based on the captured
images. The images are sent to the following tasks: DL model markers, Im-
age filter 1, Panorama stitch, and Image Visibility Handler.

3. DL model markers: applies deep learning (DL) models to detect and analyze
markers or specific features within the images.

4. Image filter 1: applies a specific image filter (in this case filter #1) to enhance
or modify the images from the camera. This task enables the integration of image
processing algorithms to manipulate them.

5. Panorama stitch: is responsible for stitching multiple overlapping images to-
gether to create a seamless panoramic image. This task uses image processing
algorithms and computer vision techniques to align and blend the input images,
producing a panoramic view of the airport.
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6. Image Visibility Handler: analyzes and assesses the visibility conditions in
images covering the full 360° horizon. This task takes advantage of image pro-
cessing techniques and visibility assessment algorithms to determine the level of
visibility or clarity in the input images.

7. Visibility informations: gathers and provides relevant visibility-related infor-
mation to observers. This task collects data, generates insights, and presents
visibility metrics or indicators derived from the camera images.

8. Metar generation: produces a METAR (Meteorological Aerodrome Report)
data based on relevant meteorological parameters. This task gathers weather
information, processes it, and generates a standardized METAR report that
provides essential weather observations for an airport.

9. Remote Observer View: enables remote monitoring and observation of an
airport area using visual data captured from remote cameras. This task facil-
itates real-time or near-real-time viewing of the airport, allowing monitoring,
anomaly detection, and gathering information without physically being present
at the site.

10. Store results: task within the workflow orchestration system is responsible
for storing and persisting the outputs generated by previous tasks within the
workflow.

Figure 5. Workflow for the airport meteorology application in AirFlow

One of the key advantages of our Airflow-based workflow orchestration system
is the flexibility between data-driven and computation-driven serverless functions.
This allows the workflow to efficiently scale the functions based on their utilization,
which is a vital aspect of such applications. By dynamically allocating resources to
functions as needed, Airflow ensures optimal performance and resource utilization
within the workflow.



890 O. Habala, M. Bobák, M. Šeleng, V. Tran, L. Hluchý
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6 THE ARCHITECTURE OF A FUNCTION-AS-A-SERVICE
APPLICATION

Based on our experiments with adapting the airport visibility application to FaaS
concepts, we have acquired enough experience to be able to start formulating a ge-
neric architecture of a Function-as-a-Service application – see Figure 6.

The whole application is sitting in a cluster of nodes managed by a container
management system. We are using the Kubernetes containerization system, but
any other system able to manage a cluster of Docker (or others) containers can be
used instead of Kubernetes. Inside this cluster is deployed a function management
system, able to create parametrized function instances, execute them, provide them
with input parameters and communicate their output back to the function caller.
In our case we are using the Apache OpenWhisk as the function manager, but
OpenFaaS [20] could be also used, for example. To actually create an application
out of a group of functions, they need to be orchestrated. For this the architecture
containes a function orchestration component, which is able to create workflows of
functions, provide them with inputs and store or display their outputs. In our case,
we are using the Apache Airflow. Additionally, the cluster contains a deployment of
a storage management system. In our case we are using the NextCloud system and
its WebDAV server, but this can be replaced by any other cloud storage management,
providing other data access protocols – FTP, NFS, SMB and others. The choice
of a concrete cloud storage management is dependent on the requirements of the
application itself.

Above this software infrastructure are the functions themselves. In the termi-
nology of Apache OpenWhisk, which we have adopted in our research, a prepared
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function is called an action. An action can be activated, thus executing the function
which it contains on concrete input data. The whole function is executed inside
a runtime environment – in the case of Apache OpenWhisk, and any other FaaS
framework using containerization, a runtime environment is a pre-prepared Docker
container, containing all the necessary software to execute the function code. So
the concrete runtime environment is selected based on the characteristics of the
function. A generic Apache OpenWhisk installation distinguishes functions only by
the programming language in which they are written, and provides runtime envi-
ronments – Docker images – for functions written in Java, JavaScript, PHP, GO,
Python, .NET, Swift and Ruby. It also provides a ”black-box” runtime environ-
ment for functions not written in a managed programming language. However, this
Docker image is just a template, and has to be modified for every such a func-
tion.

Each runtime environment provides certain APIs and interfaces which allow
the function to interact with the user, the orchestration system, and the storage
management system. Most important of these is a REST API receiving the function
code and input data, compiling, executing the function code, and returning its result.
In the case of Apache OpenWhisk this REST API is provided by a pre-prepared
server, which is part of each runtime environment.

Another important part of the function infrastructure is the access to storage
management. In our architecture, we have divided the storage management infras-
tructure available to functions into two layers. The lower layer, named Storage API
in Figure 6, is pre-configured with the actual storage end-point information (the
server data, so to say). The higher layer, through which the function code accesses
data, called Data API in Figure 6, is server-agnostic, or serverless. Its structure and
method signatures depend on the application’s domain, not on the actual underly-
ing storage technology. For example in the case of our application, dealing mainly
with large collections of time-coded images, the data are identified by date, time,
image origin and image resolution – all metadata. The resulting data structure
created in the Storage System and its translation from/to the metadata coordinate
system is the responsibility of the Data API, and the function itself is unaware of
it.

The runtime environment may contain other APIs or interfaces, depending on
the requirements of the application. For example an application which uses a cam-
era system may require that the runtime environment provides an abstract API
for accessing these cameras. An application using distributed networked sensors
may require an IoT API, and an application using artificial intelligence and ma-
chine learning methods will require APIs which will give it access to specialized
hardware. All these APIs should follow the pattern used by the storage API –
a lower level API configured for the specific external environment (camera net-
work, IoT network, GPU cluster), and a higher-level API used by the function
itself, agnostic of the hardware specifics and using only metadata to express task
parameters. This will allow the function developer to actually work in a serverless
environment.
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7 SUMMARY AND FUTURE WORK

In this paper we have described the process of transforming a legacy application into
the Function-as-a-Service paradigm. The application is used for measuring visibility
at airports. We have described how it has been divided into modules, and how these
modules are being transformed into serverless cloud functions. We have also shown
the use of OpenWhisk to manage and run those functions (actions in OpenWhisk
terminology), and how to manage the actions using Apache AirFlow.

Most importantly, we have been able to derive from this work a partial architec-
ture of such a serverless cloud application. The architecture includes data access,
which is not being handled by OpenWhisk or any of the other FaaS tools we use.
The architecture of the data access subsystem adheres to the serverless principle –
the action code accesses data by their metadata, not by their location.

In our future work, we will continue to transfer more of the application’s blocks
into the serverless cloud as OpenWhisk functions. We will also extend the generic
architecture, to encompass more of the application’s components, and if possible
include other methods of data storage, like NoSQL [21]. We will try to extract
a generalized methodology for the transformation of legacy applications into the
serverless cloud paradigm, and use it to transfer another application to which we
have access, for example [22].

Another goal of our future work is to try and apply a cloud risk assessment
method to the application [23].
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Camera-Based Approach to Increase the Quality, Objectivity and Efficiency of
Aeronautical Meteorological Observations. Applied Sciences, Vol. 12, 2022, No. 6,
Art. No. 2925, doi: 10.3390/app12062925.
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