
Computing and Informatics, Vol. 42, 2023, 781–804, doi: 10.31577/cai 2023 4 781

PARAMETERIZED REACHABILITY GRAPH
FOR SOFTWARE MODEL CHECKING BASED
ON PDNET

Xiangyu Jia, Shuo Li∗

Department of Computer Science and Technology
Tongji University
Shanghai 201804, China
e-mail: jiaxy1999@163.com, lishuo2017@tongji.edu.cn

Abstract. Model checking is a software automation verification technique. How-
ever, the complex execution process of concurrent software systems and the ex-
haustive search of state space make the model-checking technique limited by the
state-explosion problem in real applications. Due to the uncertain input information
(called system parameterization) in concurrent software systems, the state-explosion
problem in model checking is exacerbated. To address the problem that reachability
graphs of Petri net are difficult to construct and cannot be explored exhaustively
due to system parameterization, this paper introduces parameterized variables into
the program dependence net (a concurrent program model). Then, it proposes a pa-
rameterized reachability graph generation algorithm, including decision algorithms
for verifying the properties. We implement LTL-X verification based on parameter-
ized reachability graphs and solve the problem of difficulty constructing reachability
graphs caused by uncertain inputs.

Keywords: Model checking, PDNet, parameterized reachability graph

Mathematics Subject Classification 2010: 68-Q60

∗ Corresponding author

https://doi.org/10.31577/cai_2023_4_781

782 X. Jia, S. Li

1 INTRODUCTION

With the rapid development of information technology, software systems have be-
come increasingly large and complex, and the number of defects in software systems
has increased dramatically. It has become challenging to verify software programs
solely by manual inspection [1], and it is urgent to develop automated verifica-
tion methods to solve this problem to help programmers quickly discover defects in
software systems [2, 3, 4, 5]. Formal verification methods have received increasing
attention in existing research.

Formal verification techniques include two main approaches, i.e., theorem prov-
ing and model checking [6, 7]. Theorem proving can represent the system and
properties to be verified as logical formulas in a suitable logical system and then use
a theorem prover to prove whether the properties are satisfied in the system [8, 9].
The advantage of theorem proving is that it can be applied to most systems, in-
cluding infinite-state systems. Its disadvantage is that it is not highly automatic
and requires much manual intervention while proving. However, theorem proving
does not provide relevant diagnostic information if the formula is falsified. Model
checking is one of the most promising automatic verification methods for concur-
rent software systems [10, 11], and it is an algorithmic approach to verify whether
a given model satisfies a particular property expressed by a temporal logic formula
using a state space search [7, 12]. For finite state systems, this problem is decidable,
i.e., it can be determined automatically in finite time by using a computer pro-
gram [13, 14, 15, 16]. It verifies the specification through an exhaustive state space
enumeration, aiming to achieve higher reliability, correctness, and satisfiability. The
advantage of model-checking techniques is that they are highly automated and do
not require extensive logic knowledge. When the system does not satisfy a certain
property, the model-checking tool returns a counterexample. The interpretation of
the counterexample gives the reason why the property does not hold and provides
important clues for the correction. There have been many powerful model checkers,
such as SPIN [17] and NuSMV [18]. In addition, many reduction techniques have
been developed to alleviate the state-explosion problem, such as symbolic model
checking, partial order reduction, and symmetry reduction [19, 20].

Petri nets are an important formal model, and they are powerful in describing
the internal execution and external interactions of concurrent systems. In contrast
to other formal models such as automaton and communication sequential process
(CSP), Petri nets can represent true-concurrency rather than interleaving semantics,
and they can provide a compact and comprehensive description of control, synchro-
nization, and data operations [21, 22, 23, 24, 25, 26, 27, 28, 29]. However, since
the exponential growth of the state space with the increase of the actual software
system size, in many cases, the reachability graph analysis method is not feasibly
caused by the calculation complexity. On the other hand, since the reachability
graph is calculated based on the initial marking, if the initial input parameters
are uncertain, a completely different reachability graph may have to be calculated
for each assignment of the input parameters. The uncertainty of the input may

Parameterized Reachability Graph for Software Model Checking 783

not generate a reachability graph, resulting in the inability to analyze the proper-
ties.

To solve the challenge caused by the uncertain input, this paper proposes a pa-
rameterized reachability graph for software model checking based on Program De-
pendence Net (PDNet) [30]. The main contributions of this paper are as follows:

1. Parameterized reachability graph based on PDNet is proposed by introducing
the definition of parameterized variables in PDNet. We define the corresponding
occurrence rules and make it possible to generate parameterized reachability
graphs even for PDNet with uncertain inputs.

2. The generation algorithm for the parameterized reachability graphs is proposed.
It classifies markings using parameterized marking and then uses these param-
eterized reachability graphs to perform a determination for model checking.

3. We implemented the parameterized reachability graph generation algorithm on
DAMER, a concurrent program model checking tool based on PDNet, to enhance
the ability of DAMER to handle uncertain input parameters.

Section 2 presents some related works. Section 3 introduces the definition of
PDNet based on multisets and Color Petri Net (CPN). Section 4 proposes the defi-
nition with parameterized variables, including the corresponding algorithm for gen-
erating parameterized reachability graphs. Section 5 verifies the effectiveness of our
algorithms through comparative experiments. Section 6 concludes the paper and
gives some following works.

2 RELATED WORKS

Model checking is a technique used to automatically verify the correct behavioral
properties of a computer system. The basic approach is to use a state transition
graph to represent the model of the system under test and to describe the correct
behavioral properties of the computer system using computation tree logic (CTL),
and linear temporal logic (LTL). Correct behavioral properties of the computer
system. The main bottleneck of model checking in practical applications is the state
explosion problem. In 1987, McMillan adopted a symbolic approach to representing
a state transition graph that allowed him to check large-scale systems [31]. This
method is based on Bryant’s ordered bifurcation decision diagram (OBDD) [32],
which is more concise than the conjunction or disjunction normal form. His team
also developed an efficient OBDD algorithm and a symbolic model checking system
SMV [33]. Symbolic methods are suitable for hardware system verification with
strong structured features and have achieved many successful cases. Still, software
systems are less structured than hardware, and concurrent software is asynchronous,
so software system verification poses some problems for model checking. Partial
order reduction has made great progress in suppressing the state space explosion
of software systems [34, 35, 36], and the technique is based on the independence
between concurrent events to approximate the state space of a model by reducing

784 X. Jia, S. Li

the number of interleaved sequences. The partial order reduction technique treats
all independent intertwined executions on the transition relations between states
as a set. It selects its subsets to reduce its state space, with significant strategies
such as Peled’s ample sets [35], Valmari’s stubborn sets [36], Godefroid’s solid and
sleeping sets [37], etc. Although symbolic methods and partial order reduction
techniques greatly increase the size of verifiable systems, many practical applications
are too large to handle the problem size caused by uncertain inputs; therefore, it
becomes important to find new techniques to enhance verification in combination
with symbolic methods. Petri nets not only have a rich theoretical foundation but
also have graphical features, which are more intuitive and easier to understand than
algebraic descriptions in textual form. Reachability graphs are the main analysis
method for Petri Net models. Because the classical reachability graph cannot handle
the model of the checked system that contains parameters or uncertain inputs, it
makes the model properties of the checked system becomes very difficult. Usually,
parameterized reachability graph (PRG) and symbolic reachability graph (SRG) is
used to solve this problem.

The core idea of PRG is to simplify the reachability graph using state classifica-
tion, and the representation of the state is parameterized. The state classification in
the parameterized approach will depend on whether certain specific conditions hold.
The literature [38] proposes a method for constructing parameterized reachability
graphs based on Petri nets, which defines two kinds of partial order relations for
parameterized state marking: ⊇ and >. It parametrizes the marking can represent
all reachable marking of the verified system and defines the execution of all instanti-
ation procedures; [39] defines a transition implementation rule for PRG, which first
calculates the parametrized marking of each place in the reachability graph based
on the incoming arcs and outgoing arcs of that place, and splits the marking if the
parametrized marking cannot represent the same transition; If the parameterized
marking is larger than one of its ancestors, infinite branching should be avoided.
The relevant properties of the system are verified based on the enabled and occur-
rence rules.

Since this approach uses integers to represent the minimum number of tokens in
a place, it results in its inability to fully express the information in a parallel program
when faced with a parallel program. It requires the definition of new symbolic tokens
for description.

The main idea of SRG [40] is to use the inherent symmetry of the system to
obtain a compressed representation of the reachable states, which is also a simplified
representation of the Well-Formed Colored Petri Net (WN) reachability graph. The
SRG simplifies the state representation based on the symmetry of WN by introducing
a color function syntax definition to reduce the state space. The SRG is constructed
directly by using symbolic marking to represent the equivalence classes in the WN
state space, and by introducing the canonical representation of symbolic marking
and the enabled and occurrence rules, the SRG is constructed by the same algorithm
as the regular reachability graph, except that the SRG uses canonical symbolic
marking instead of initial marking and the ordinary enabled and occurrence rules.

Parameterized Reachability Graph for Software Model Checking 785

Based on SRG and WN theory, [41] defines Stochastic Well-Formed Colored Nets
(SWN), which introduce syntactic restriction rules in SWN to reduce the complexity
of Markov performance evaluation using SRG. SWN allows to represent of any color
function in a structured form so that any unrestricted high-level semantic net can be
transformed into a canonical net; [42] defines Extend Symbolic Reachability Graph
(ESRG), which simplifies the state space of the checked system by exploiting the
partial symmetry in the WN net, and the model analysis and simulation algorithms
automatically exploit the model symmetry to improve their efficiency.

It is worth pointing out that the reduction of the SRG approach for reachability
graphs strongly relies on the symmetry of the model itself. the more equivalent be-
haviors between model objects, the more symbolic marking in the same equivalence
class, and thus the higher the state compression rate of the original state reachabil-
ity graph. SRG does not provide significant gains when asymmetric actions appear
in the behavior description.

The above methods alleviate the problem of difficulty in constructing the reach-
ability graphs of the Petri net model due to the system parameterization, which
leads to the inability of space state exploration, and thus has some limitations in
model checking. Based on the analysis of existing reachability graph methods, we
propose a new reachability graph construction method using parameterized marking
to solve the problem of difficult generation of reachability graph for Petri net caused
by uncertain input.

3 PDNET WITH PARAMETERIZED VARIABLES

3.1 Introduction of PDNet

PDNet is our previously proposed model based on CPN, which combines the control-
flow structure and dependencies. To define PDNet, we first introduce the definition
of multiset and CPN.

Definition 1 (Multiset). Let S be a non-empty set. A multiset ms : S → N on S
is a function that maps each element to a non-negative integer. SMS is the set of all
multisets over S. We use + and − for the sum and difference of two multisets. =,
>, <, ≥, ≤ are comparisons of multisets, which are defined in the standard way.

Also, we give some symbolic terms for the following definitions: BOOL =
{false, true} is the set of Boolean predicates with standard logical operations; EXPR
is the set of expressions; Type[e] is the type of an expression e ∈ EXPR, i.e., the
type of the value obtained when evaluating e; Var(e) is the set of all variables in an
expression e; EXPRV for a variable set V is the set of expressions e ∈ EXPR such
that Var (e) ∈ V . Type[v] is the type of a variable v.

Definition 2 (Colored Petri Nets). CPN is defined by a 9-tuple,

N ::= (Σ, V, P, T, F, C,G,E, I),

786 X. Jia, S. Li

where:

1. Σ is a finite non-empty set of types called color sets;

2. V is a finite set with type variables, ∀v ∈ V , there is Type[v] ∈ Σ;

3. P is a finite set of places;

4. T is a finite set of transitions and T ∩ P = ∅;
5. F ⊆ (P × T) ∪ (T × P) is a finite set of directed arcs;

6. C : P → Σ is a color set function that assigns the color set C(p) belonging to
the type set Σ to each place p;

7. G : T → EXPRV is a guard function, that assigns an expression G(t) to each
transition t, ∀t ∈ T : (Type [G (t)] ∈ BOOL) ∧ (Type [Var (G (t))] ⊆ Σ);

8. E : F → EXPRV is a function, that assigns an arc expression E(f) to each arc
f , ∀f ∈ F : (Type [E (f)] = C (p (f))MS) ∧ (Type [Var (E (f))] ⊆ Σ), where p(f)
is the place connected arc f ;

9. I : P → EXPR∅ is an initialization function, that assigns an initialization expres-
sion I(p) to each place p, ∀p ∈ P : (Type [I (p)] = C (p)MS) ∧ (V ar (I (p)) = ∅).

PDNet is also a 9-tuple, which differs from CPN in P and F .

1. P is divided into three subsets, i.e., P = Pc∪Pv∪Pf . Concretely, Pc is a subset of
control places, Pv is a subset of variable places, and Pf is the subset of execution
places.

2. F is divided into three subsets, i.e., F = Fc∪Frw∪Ff , Concretely, Fc is a subset
of control arcs, Frw is a subset of read-write arcs, and Ff is a subset of execution
arcs.

Except for the two differences, the other definitions and constraints of PDNet are
consistent with CPN, and in the following definitions, we give some basic concepts
of PDNet.

Definition 3 (Basic concepts in PDNet).

1. M : P → EXPR∅ is a marking function that assigns an expression M(p) to each
place p, ∀p ∈ P : Type [M (p)] = C (p)MS ∧ (V ar (M (p)) = ∅); for convenience,
the marking of N is denoted by M or M with subscript, and in particular, M0

represents the initial marking ∀p ∈ P :M0 (p) = I (p);

2. Var (t) ⊆ V is the variable set of a transition t. It consists of the variables
appearing in the expression G(t) and arc expressions of all arcs connected to the
transition t;

3. B : V → CON is a binding function that assigns a constant value B(v) to each
variable v. B[t] is the set of all bindings of a transition t, that maps V ∈ Var (t)
to a constant value, and b ∈ B [t] is a binding of a transition t;

4. A binding element (t, b) is a pair where t ∈ T and b ∈ B [t], B[t] is a set of all
binding elements of a transition t.

Parameterized Reachability Graph for Software Model Checking 787

3.2 Parameterized Variables

Formally, e⟨b⟩ represents the evaluation result of expression e in binding b by as-
signing a constant to each variable v ∈ Var(e) through binding b. Therefore, under
the binding element (t, b), the evaluation result of G(t) (or E(f)) is represented by
G(t)⟨b⟩ (or E(f)⟨b⟩), where f is the arc connected to the transition t. Here, we
specifically use vs to denote parameterized variables and Vs to denote the set of
parameterized variables, where vs ∈ VS, VS ⊆ V .

Definition 4 (Parameterized variables for PDNet).

1. es: assuming that the assignment operator to the parameterized variable vs is
vs := ω, es is an expression obtained by computing ω based on the current
execution state and is any expression involving a unitary or binary operator
with symbols and specific values;

2. EXPRs: any finite set of expressions involving variables v ∈ V and constants
o ∈ CON for unitary or binary operators, es ∈ EXPRs;

3. σ: denotes the symbolic state, a mapping from a variable to a symbolic expres-
sion es, denoted σ : vs 7→ es, i.e. σ(vs) = es;

4. SS : Vs 7→ EXPRs, the set of symbolic storage functions σ ∈ SS.

In particular, since the parameterized variables do not have a definite value,
making it difficult to determine the relationship between their value intervals and
the constraints, we also need to define the function SAT (), whose input is a string
of first-order formulas without quantifiers, which uses the constraint solver [43] to
solve for the existence of a solution to the input quantifier-free first-order formulas,
with the output being true or false; if a solution exists for PC ∧ σ(G(t)), then it is
written as SAT (PC ∧ σ(G(t))) = true.

In the existing PDNet, P is divided into three subsets, P = Pc ∪Pv ∪Pf , where
Pc is a subset of the control place, Pv is a subset of the variable place, and Pf is
a subset of the execution place. We refer to the structure of the original variable
place Pv to add a new class of parameterized variable place, denoted as Ps. That is,
P is divided into four subsets P = Pc ∪ Pv ∪ Pf ∪ Ps, where Ps is defined.

Definition 5 (Parameterized variable place in PDNet). The parameterized vari-
able place Ps is used to store the unassigned variables vs. The parameterized variable
place consists of a triple ⟨σ, PC, id⟩, where:

1. σ is a symbolic state representing the mapping from variables to parameterized
expressions es;

2. PC is a quantifier-free first-order formula consisting of the expressions in G(t) on
the path and the truth-value selection of the expressions connected to describe
the path constraints;

3. id is a unique marking of the Ps place.

788 X. Jia, S. Li

where the initial value of the symbolic state σ is null and the initial value of the
path constraint PC is true.

Definition 6 (Parameterizedmarking and parameterized binding). Parameterized
markingMs : P → EXPR∅ is a parameterized marking function that specifies an ex-
pression Ms(p) for each variable place p:

∀p ∈ P : Type[Ms(p)] = C(p)MS ∧ (Var(Ms(p)) = ∅).

For simplicity of representation, the parameterized marking of N is represented
by Ms or Ms with subscript when Ms(p) is present.

For a PDNet N whose variables are all non-parameterized, the marking func-
tion is M : (P \ Ps) → EXPR∅, specifying an expression M(pv) for each non-
parameterized variable banked by pv:

∀pv ∈ (P \ Ps : Type[M(pv)] = C(pv)MS ∧ (Var(M(pv)) = ∅).

For convenience, the marking of N whose variables are all non-parameterized
is denoted by M or M with subscripts. At the same time, we cannot determine
a fixed binding element (t, b) for the transition t associated with the parameterized
variable place by Ps; since the values of the parameterized variables represented
by the parameterized variable place by Ps are jointly represented by σ and PC,
there does not exist a specific value to take, and we can consider the range of
values as a concatenation of one or more intervals; Since it costs more time and
space to solve the value interval of each variable using the constraint solver, we
do not directly calculate the value interval of the variables, but determine whether
the transition can be enabled under the parameterized markingMs by analyzing the
relationship between σ and PC; define the parameterized binding element (t, σ, PC),
where t ∈ T, σ ∈ SS; if the symbolic states and path constraints recorded in the
parameterized binding element are covered by Ms(p) after analysis, it is written as
E(p, t)⟨σ, PC⟩ ≤Ms(p).

Definition 7 (Parameterized enabled and occurrence rules). Let N be a PDNet,
(t, b) be a binding element on N , M be a marking on N , and the binding element
(t, b) is enabled under the marking M , denoted M [(t, b)⟩, when and only when:

1. G(t)⟨b⟩ = true;

2. ∀p ∈ •t : E(p, t)⟨b⟩ ≤M(p);

When (t, b) is enabled underM , triggering the transition t leads to the generation
of a new marking M1, denoted as M [(t, b)⟩M1, such that:

3. ∀p ∈ P :M1(p) =M(p)− E(p, t)⟨b⟩+ E(t, p)⟨b⟩.

For parameterized variables, when (t, σ, PC) is enabled under Ms, it may lead
to the generation of a new marking Ms1, denoted as Ms[(t, σ, PC)⟩Ms1, when and
only when:

Parameterized Reachability Graph for Software Model Checking 789

1. SAT (PC ∧ σ(G(t))) = true;

2. ∀p ∈• t : E(p, t)⟨σ,PC⟩ ≤Ms(p);

3. ∀p ∈ P :Ms1(p) =Ms(p)− E(p, t)⟨σ, PC⟩+ E(t, p)⟨σ,PC⟩.

The intuition of this rule is to update the path constraint and symbolic state
stored in each token, PC = PC ∧ σ(G(t)), and not to update if G(t) does not
contain symbolic variables, see Algorithm 1 for the specific update algorithm. In
particular, the two operation cases that we may encounter in the process of updating
the symbolic state σ information in Algorithm 1 to define the variable vs are the
input operation and the assignment operation, where the input operation is an
external input to the parameterized variable vs in the form vs := sym input() and the
assignment operation is an assignment of a value or expression to the parameterized
variable vs in the form vs := ω. The symbolic states and path constraints in the
parameterized variable place are updated continuously as the parameterized binding
elements are enabled and occur.

Algorithm 1 Parameterized variable place information update

Step 1. Determine whether σ, PC in the parameterized variables vs satisfy
the conditions in G(t): SAT(PC ∧ σ(G(t))) = true;

Step 2. Update the value stored in the path constraint PC.
If SAT(PC∧¬σ(G(t))) = false or G(t) does not contain constraints
associated with the parameterized variables vs Then

Not updating the contents stored in the PC;
Else

PC′ = PC ∧ σ(G(t));
Step 3. Update symbol status σ.

If Performing input operations on variables vs Then
Update the mapping σ in vs to: vs → vsi, where the initial

value of i is 0 and the value of i takes increasing values with the
update of the input mapping;
If Assign a value to the variable vs in the form a := ω Then

Substitute the existing mapping σ in vs into the formula ω to
calculate the new mapping expression, and update σ with the new
mapping expression.

The following example shows the update process of symbolic state σ and path
constraint PC in the parameterized place, as detailed in Figure 1.

Definition 8 (Occurrence sequence of PDNet). Let N be a PDNet, M0 be the ini-
tial marking of N , and (t, b) be the binding elements of N . The sequence of occur-
rences in N can be defined by induction:

1. M0[ε⟩M0,(ε is a null sequence);

2. M0[ω⟩M1 ∧M1[(t, b)⟩M2 :M0[ω(t, b)⟩M2.

790 X. Jia, S. Li

The sequence of occurrences ω in N is maximal when and only when:

1. ω is infinite, e.g., (t1, b1), (t2, b2), . . . or

2. M0[ω⟩M1 ∧ ∀t ∈ T,∄(t, b) ∈ BE(t) :M1[(t, b)⟩.

Figure 1. The update process of the parameterized variable place

4 MODEL CHECKING PDNET WITH PARAMETERIZED
VARIABLES

4.1 Propositions and LTL of PDNet with Parameterized Variables

LTL describes linear temporal properties. Our approach can support the LTL-X
formulae, so we formalize the following particular definition of propositions in PDNet
with parameterized variables.

Definition 9 (Proposition of PDNet with LTL-X formula representation). LetN be
a PDNet containing parameterized variables, po a proposition, Po the set of proposi-
tions, and ψ an LTL-X formula, the syntax of a proposition containing parameterized
variables can be defined:

po ::= is-fireable(t)(t ∈ T)|token-value(ps)ropc(ps ∈ Ps, c ∈ C(p)MS,

rop ∈ {<,≤, >,≥}).

Parameterized Reachability Graph for Software Model Checking 791

Under a parameterized marking Ms, proposition semantics is defined:

is-fireable(t) =

true, if ∃b :Ms[(t, b)⟩,

false, otherwise,

token-value(ps) rop c =

true, if M(ps) rop c holds,

false, otherwise.

LTL-X syntax on Po: ψ ::= Po|¬ψ|ψ1∧ψ2|ψ1∨ψ2|ψ1 ⇒ ψ2|Fψ|Gψ|ψ1Uψ2 (¬,∧,
∨ and ⇒ are usual propositional, F , G, U are temporal operators.

For example, G is-fireable(t) ⇒ F token-value(p) = 0 implies that the number
of tokens of p will be equal to 0 in some subsequent states regardless of when the
transition is enabled.

4.2 Parameterized Reachability Graph for PDNet

The parameterized approach is attractive in solving the problem of parameterized
variables in model checking. To enhance the expressive and analytical capabilities
of PDNet, we propose a parameterized reachability graph with the following for-
mal definitions of parameterized reachable marking and parameterized reachable
marking set.

Definition 10 (Parameterized reachable marking). Let N = (Σ, V, P, T, F, C,G,
E, I) be a PDNet with parameterized variables if there exists a sequence of change
occurrences σs such that the initial parameterized markingMs0 can get a new param-
eterized marking Ms after the occurrence of σs, then the parameterized marking Ms

is said to be reachable from the initial parameterized marking Ms0, i.e., Ms0
σs→Ms.

Definition 11 (Parameterized reachable marking set). The parameterized reach-
able marking set R(Ms0) of a PDNet system N = (Σ, V, P, T, F, C,G,E, I) con-
taining parameterized variables is a minimal set of marking satisfying the following
conditions: M(s0) ∈ R(Ms0); if Ms ∈ R(Ms0) and there exists t ∈ T , such that

Ms
t→M ′

s, then there is M ′
s ∈ R(Ms0).

Definition 12 (Parameterized reachability graph). LetN be a PDNet with param-
eterized variables. The parameterized reachability graph of N is a directed graph
PRG(N) = (V,E), where the set of nodes of the directed graph V = R(Ms0), defin-
ing ES as the execution sequence ⟨t, σ, PC⟩, and the set of edges of the directed

graph E = {⟨Ms, t,M
′
s⟩ ∪ ES|Ms,M

′
s ∈ R(Ms0) ∧Ms

t→M ′
s}; i.e., a directed graph

is a graph composed of nodes identified with arcs labeled by elements in the set of
variables of N .

For the parameterized reachability graph in PDNet, the process of determin-
ing whether the parameterized reachable marking is old, updating the information

792 X. Jia, S. Li

stored in the parameterized reachable marking, and updating the path constraints
are all different from the traditional methods of constructing reachability graphs
because the parameterized reachable marking is defined. Determining whether the
parameterized reachable marking is old or not by Algorithm 2. And the selection of
upper bound k will be a difficult problem. Here, we use the cyclic dependency judg-
ment algorithm [44, 45, 46] to give the upper bound k. The selection of upper bound
k will significantly affect the processing efficiency of this algorithm in programs con-
taining unbounded loops, loops, and boundary conditions of simple nested loops,
which can alleviate the path explosion problem in loops to some extent. However,
this loop-dependent judgment algorithm also has certain limitations: it cannot han-
dle nonlinear loops and complex nested loops that contain dynamic boundary loops,
branching conditions inside the loop, etc. The optimization of the algorithm for
calculating the upper bound k will also be an important research direction for this
topic in the future. The construction algorithm of the parameterized reachability
graph PRG is proposed in Algorithm 2.

Algorithm 2 Construct PRG(N)

Use M0 as the root node of PRG(N) and label it as “new”, with
path constraint PC = true;
Step 1. While the Existence of nodes marked as “new” Do

Choose any node labeled “new” and set it to M ;
Step 2. If There is a node on the directed path fromM0 toM whose mark-

ing is equal to M , For parameterized reachable marking M , reach
a maximum upper bound k or terminate when identical parame-
terized marking exists Then

Change the label of M to “old” and return to Step 1;
Step 3. If ∀t ∈ T : ¬M [t⟩ Then

Change the label of M to “endpoint” and return to Step 1;
Step 4. For identifies each t ∈ T in M that satisfies M [⟩ Do

If Lv(t) ̸= ∅ Then;
PC = PC ∩ Lv(t);
4.1 According to Algorithm 1, calculate M ′ in M [t⟩M ′;
4.2 Introduce a “new” node in PRG(N), draw a directed

arc
from M to M ′, and label this arc with t;

Step 5. Erase the “new” label of node M , reset the path constraint PC to
true, and return to Step 1;

4.3 Product Automaton for Parameterized Reachability Graph

For the parameterized reachability graph PRG, in the process of synthesizing the
product automata, since the parameterized reachability graph nodes contain param-
eterized propositional states, it is not possible to solve directly whether they can be

Parameterized Reachability Graph for Software Model Checking 793

synthesized as in the traditional product automata judgment algorithm, so here the
SAT () function is used to determine whether there is a feasible solution to make the
parameterized propositional states synthesizable, and the constraints contained in
the propositions are also added to the parameterized The constraints contained in
the proposition are also added to the path constraints of the parameterized proposi-
tional state. The product automata synthesis judgment algorithm for parameterized
graphs is shown in Algorithm 3, where Label(v) denotes the propositional state in
the parameterized reachability graph node and L(s) is the set of propositions on
state s in the labeled Büchi automata:

Algorithm 3 The product automaton generation algorithm for parameterized
reachability graph

1: For Each proposition l(s) in L(s) Do
2: For Label(v) for each node v in the set of nodes Do
3: If l(s) contains the parameterized variable a Then
4: Find σ and PC stored in the parameterized variable a in
Label(v);
5: If SAT (a.σ ∧ a.PC ∧ l(s) ̸= false Then
6: a.PC = a.PC ∧ l(s);
7: Synthetic product-state;
8: Else Non-synthetic;
9: If Proposition l(s) does not contain parameterized variables
Then
10: If lable(v) ∧ l(s) ̸= false Then
11: Synthetic cross-state;

To show more concretely the differences between Algorithm 2, Algorithm 3, and
the traditional algorithms, we give an example of an LTL verification problem with
parameterized variables in Section 4.4, which shows in detail the example graphs
of the parameterized reachability graphs constructed in that case with a product
automaton.

4.4 Verification Problems Based on PDNet with Parameterized Variables

Traditionally, the automata-theoretic approach for explicit model checking exhaus-
tively explores all possible executions of the state space. The model-checking prob-
lem of LTL-X is converted into an emptiness-checking problem [30] with the following
steps:

Step 1. First model the system with parameterized variables using PDNet and
construct the parameterized reachability graph PRG(N) with parameterized
variables;

Step 2. Describe the characteristics of the system subject to model checking using
the linear temporal logic formula φ;

794 X. Jia, S. Li

Step 3. Constructing Büchi automata that recognize linear temporal logic formulas
φ that contain all sequences of states that violate the semantics of p;

Step 4. Constructing the parameterized reachability graph PRG(N) and the prod-
uct automata SP describing the Büchi automata of ¬φ, which accepts all infi-
nite sequences of the system that are also acceptable to both the parameterized
reachability graph and the Büchi automata;

Step 5. Testing whether the product automaton SP is empty, i.e., testing whether
it does not accept any sequence. If SP is empty, it is proved that all runs of
the system satisfy the specification p; otherwise, the system does not satisfy the
specification p. Among them, Steps 4 and 5 can be handled dynamically, i.e.,
checking the emptiness while yielding the product automaton.

PDNet can apply an automata-theoretic approach [30], for which the marking of
PDNet with parameterized variables can be generated from the initial parameterized
marking and the initial state of the Büchi automaton. The acceptable paths from
the initial product are extended until a product state is reached (e.g., a combined
state with Büchi states). To yield the product automaton, the judgment of product
automaton needs to be performed especially using Algorithm 3. Finally, all paths
constitute the language accepted by the product automaton.

This example focuses on the LTL verification problems for a program containing
parameterized variables. In the example program in Figure 2 a), the error location is
at line 6. ERROR() is an error location for safety property. Figure 2 b) represents the
path branch of the example program. Here, the values of x and y are input variables
by the user from the outside, and the value of z is taken concerning y. Therefore, the
three variables x, y, and z are parameterized variables. The execution path of the
program is shown in Figure 2 b), which is divided into three main branches, among
which, if the path conditions of x == z and x > y + 10 are satisfied at the same
time, it will reach ERROR(). In contrast, the other two branch paths are correctly
executed.

The PDNet of the example program is shown in Figure 3, with all labels on the
arcs omitted for simplicity. Each transition can simulate the execution of a statement
by its occurrence, and the corresponding transition occurrence can manipulate the
variables represented by the place.

The state space of this PDNet is the reachability graph in Figure 4. The labeled
nodes are represented by rectangles with the name of the place, and the names of
the arrows on the state-labeled reachability graph correspond to the names of the
transition corresponding to the occurrence of transition in the PDNet. The labels
on all arcs are also omitted here for simplicity. In addition, since LTL-X model
checking is based on infinite paths, arcs pointing to themselves are added as dashed
arrows for M3, M5, and M7 in Figure 4.

The LTL-X formula G¬error() to specify the safety properties of the example
program, G¬error() is first converted to is − fireable(t3) in Figure 5. The node
marked as is−fireable(t3) can only synchronize with the reachable marking enabled
by the enabled transition t3. The final product automaton is shown in Figure 6, and

Parameterized Reachability Graph for Software Model Checking 795

a) Example program
in C language

b) Path branch of the example program

Figure 2. Example program with parameterized variables

it can be concluded that the example program violates the security property. The
occurrence sequence tb, t

′
1, t

′
2, t3 is a counterexample path in this example.

Figure 3. PDNet for the example program

796 X. Jia, S. Li

Figure 4. Parameterized state reachability graph

5 EXPERIMENTAL VERIFICATION

5.1 Experimental Benchmarks

To verify the validity of the definitions and algorithms in this paper, we construct
eight typical benchmarks to evaluate the analysis capability of the system. The
source code of these benchmarks includes multiple branching condition judgments
on parameterized variables, repeated input judgments on parameterized variables,
simple and complex computation judgments on parameterized variables, loops re-
lated to the values of parameterized variables, etc. The basic conditions are shown
in Table 1 for this experiment. The benchmark is mainly judged by two aspects the
tool running time and output results. In Table 1, Lines, Variables, Branches, Loops,
Transitions, and Places denote the number of lines of code, variables, branches,
loops, transitions, and places, respectively.

Parameterized Reachability Graph for Software Model Checking 797

Figure 5. Büchi automaton

No. Test program Lines Variables Branches Loops Transitions Places

1 Sym Basictype 17 1 1 0 20 37
2 Sym Branch 22 3 2 0 25 47
3 Sym Year 21 1 1 0 23 43
4 Sym Sum 21 2 1 0 23 44
5 Sym Reinput 19 2 1 0 22 42
6 Sym Loop 1 22 1 – – 26 48
7 Sym Loop 2 24 1 80 80 29 55
8 Sym Loop 3 23 1 200 200 29 55

Table 1. Parameters of test program

5.2 Experimental Comparison

For each benchmark given in Table 1, the average value is taken as the experimental
result after 10 runs of each benchmark algorithm because of the relatively small
variation in time consumption between different runs of the same algorithm during
the test. The experimental results are shown in Table 2.

Among them, the three methods used to perform comparative testing are the
methods that outputs a series of test cases using the symbolic execution tool CREST
and brings the benchmarks into DAMER separately for model checking, which is de-
noted as SymbolicExec in Table 2, the symbolic reachability graph SRG (Symbolic
Reachability Graph) based model checking tool GreatSPN [47], and model checking
tool CPN-AMI [48] based on Parameterized Reachability Graph PRG (Parameter-
ized Reachability Graph).

798 X. Jia, S. Li

Figure 6. Product automation

t and V in the following table denote time and output results, respectively. Con-
cretely, T and F in Table 2 denote the output result True and False, respectively.

Test case
SymbolicExec GreatSPN CPN-AMI Our method

Truth
t V t V t V t V

Sym Basictype 127.321 F 86.352 F 57.020 F 20.496 F F
Sym Branch 168.257 F 101.367 F 61.265 F 24.923 F F
Sym Year 126.395 F 88.215 F 58.895 F 20.586 F F
Sym Sum 136.257 F 93.012 F 57.958 F 21.505 F F
Sym Reinput 118.354 T 84.210 F 56.364 F 19.880 F F
Sym Loop 1 – – – – – – –
Sym Loop 2 764.258 F 397.352 T 251.035 T 104.084 T T
Sym Loop 3 – – 742.362 T 422.238 F 241.715 F F

Table 2. Comparison of experimental results

From the test results listed in Table 2, it can be seen that the SymbolicExec
method misjudged or failed to judge in four test cases, including Sym Reinput,
Sym Loop 1, Sym Loop 2, and Sym Loop 3; the GreatSPN method misjudged or
failed to judge in two test cases, including Sym Loop 2 and Sym Loop 3; The CPN-
AMI method does not have any misjudgment, but it also fails to judge Sym Loop 1;
the method in this paper makes correct judgments for the test cases and takes the

Parameterized Reachability Graph for Software Model Checking 799

least time, but it also fails to judge Sym Loop 1, which is mainly caused by the fact
that the loop-dependent algorithm used in this experiment fails to judge the symbolic
boundary. This is mainly caused by the fact that the loop-dependent algorithm
used in this experiment cannot determine the symbolic boundary loop. It can be
seen that this paper can detect programs with parameterized variables and output
correct test results, which has obvious advantages in terms of test time consumption.
Moreover, it can deal with branching conditions, operations, repeated input, and
bounded loops of parameterized variables in programs containing parameterized
variables.

For Sym Loop 1, Sym Loop 2, and Sym Loop 3, all three test cases have a more
serious path explosion problem, mainly caused by the loop structure present in the
test cases. In Algorithm 2, the choice of the upper bound k of the loop can greatly
affect the processing efficiency of this algorithm in programs containing loops. In
this comparison experiment, the loop test cases are divided into the following two
types according to the boundary conditions:

1. Symbolic boundary: the boundary condition expression of the loop contains
parameterized variables, and the number of executions is indeterminate;

2. Constant boundary: the boundary condition expression of the loop does not
contain parameterized variables, and the number of executions is constant.

Although constant-bounded loops do not execute an indeterminate number of
times as symbolic-bounded loops, they also generate redundant paths leading to
multiple loop expansions. In the test case, a loop dependency is implied between
the parameterized variable x and the variable a such that in each loop, there are
{xn = x− n}, {an = n}, where, n is the number of loops. At present, we have only
used a simple cyclic dependency judgment algorithm to give the cyclic upper bound
k. The optimization of this algorithm will also be an important research direction
for this topic in the future.

6 CONCLUSION AND FUTURE WORK

This paper improves PDNet to support parameterized variables of concurrent pro-
grams. To address the problem that it is difficult to construct the reachability
graph caused by the system parameterization, we propose a new method for con-
structing a fully parameterized reachability graph of PDNet. We define parameter-
ized variables on PDNet and improve the corresponding rules. The corresponding
parameterized reachability graph generation algorithm is given. A PDNet-based
model-checking tool that supports parameterized variables is implemented based on
DAMER. The experimental results show the effectiveness of our method.

Due to parameterized variables with path information to avoid problems such
as repeated execution, the amount of information in a single node of the gener-
ated reachability graph can be large. If the reachability graph is fully generated
and combined with Büchi automata, the state-explosion problem is aggravated. Fu-

800 X. Jia, S. Li

ture research will consider using cyclic recursive processing methods to solve this
problem.

REFERENCES

[1] Mei, H.—Wang, Q.X.—Zhang, L.—Wang, J.: Software Analysis: A Road Map.
Chinese Journal of Computers, Vol. 32, 2009, No. 9, pp. 1697–1710 (in Chinese).

[2] Clarke, L.A.: A System to Generate Test Data and Symbolically Execute
Programs. IEEE Transactions on Software Engineering, Vol. SE-2, 1976, No. 3,
pp. 215–222, doi: 10.1109/TSE.1976.233817.

[3] Weber, S.—Karger, P.A.—Paradkar, A.: A Software Flaw Taxonomy: Aim-
ing Tools at Security. ACM SIGSOFT Software Engineering Notes, Vol. 30, 2005,
No. 4, pp. 1–7, doi: 10.1145/1082983.1083209.

[4] Binkley, D.: Source Code Analysis: A Road Map. Future of Software Engineering
(FOSE ’07), IEEE, 2007, pp. 104–119, doi: 10.1109/FOSE.2007.27.

[5] Sekar, R.—Bendre, M.—Dhurjati, D.—Bollineni, P.: A Fast Automaton-
Based Method for Detecting Anomalous Program Behaviors. Proceeding 2001
IEEE Symposium on Security and Privacy (S&P 2001), 2001, pp. 144–155, doi:
10.1109/SECPRI.2001.924295.

[6] Schumann, J.M.: Automated Theorem Proving in Software Engineering. Springer,
2001, doi: 10.1007/978-3-662-22646-9.

[7] Clarke, E.M.—Emerson, E.A.—Sifakis, J.: Model Checking: Algorithmic
Verification and Debugging. Communications of the ACM, Vol. 52, 2009, No. 11,
pp. 74–84, doi: 10.1145/1592761.1592781.

[8] Boulton, R. J.: Efficiency in a Fully-Expansive Theorem Prover. Technical Report.
University of Cambridge, Computer Laboratory, 1994, doi: 10.48456/tr-337.

[9] Rajan, S.—Shankar, N.—Srivas, M.K.: An Integration of Model Checking
with Automated Proof Checking. In: Wolper, P. (Ed.): Computer Aided Verifica-
tion (CAV ’95). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 939, 1995, pp. 84–97, doi: 10.1007/3-540-60045-0 42.

[10] Clarke, E.M.: Model Checking. In: Ramesh, S., Sivakumar, G. (Eds.): Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS 1997).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 1346, 1997,
pp. 54–56, doi: 10.1007/BFb0058022.

[11] Atlee, J.M.—Gannon, J.: State-Based Model Checking of Event-Driven Sys-
tem Requirements. IEEE Transaction on Software Engineering, Vol. 19, 1993, No. 1,
pp. 24–40, doi: 10.1109/32.210305.

[12] Clarke, E.M.—Emerson, E.A.: Design and Synthesis of Synchronization Skele-
tons Using Branching Time Temporal Logic. In: Kozen, D. (Ed.): Logic of Programs
(Logic of Programs 1981). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 131, 1982, pp. 52–71, doi: 10.1007/BFb0025774.

[13] Jensen, K.—Kristensen, L.M.—Wells, L.: Coloured Petri Nets and CPN
Tools for Modeling and Validation of Concurrent Systems. International Journal on

https://doi.org/10.1109/TSE.1976.233817
https://doi.org/10.1145/1082983.1083209
https://doi.org/10.1109/FOSE.2007.27
https://doi.org/10.1109/SECPRI.2001.924295
https://doi.org/10.1007/978-3-662-22646-9
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.48456/tr-337
https://doi.org/10.1007/3-540-60045-0_42
https://doi.org/10.1007/BFb0058022
https://doi.org/10.1109/32.210305
https://doi.org/10.1007/BFb0025774

Parameterized Reachability Graph for Software Model Checking 801

Software Tools for Technology Transfer, Vol. 9, 2007, No. 3-4, pp. 213–254, doi:
10.1007/s10009-007-0038-x.

[14] Yang, R.—Ding, Z.—Guo, T.—Pan, M.—Jiang, C.: Model Checking of
Variable Petri Nets by Using the Kripke Structure. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, Vol. 52, 2022, No. 12, pp. 7774–7786, doi:
10.1109/TSMC.2022.3163741.

[15] Jensen, K.—Kristensen, L.M.: Colored Petri Nets: A Graphical Language
for Formal Modeling and Validation of Concurrent Systems. Communications of
the ACM, Vol. 58, 2015, No. 6, pp. 61–70, doi: 10.1145/2663340.

[16] Kheldoun, A.—Barkaoui, K.—Ioualalen, M.: Formal Verification of Complex
Business Processes Based on High-Level Petri Nets. Information Sciences, Vol. 385-
386, 2017, pp. 39–54, doi: 10.1016/j.ins.2016.12.044.

[17] Holzmann, G. J.: The Model Checker SPIN. IEEE Transactions on Software Engi-
neering, Vol. 23, 1997, No. 5, pp. 279–295, doi: 10.1109/32.588521.

[18] Cimatti, A.—Clarke, E.—Giunchiglia, E.—Giunchiglia, F.—
Pistore, M.—Roveri, M.—Sebastiani, R.—Tacchella, A.: NuSMV 2:
An Open Source Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K.G.
(Eds.): Computer Aided Verification (CAV 2002). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 2404, 2002, pp. 359–364, doi: 10.1007/3-
540-45657-0 29.

[19] Bolton, M. L.—Bass, E. J.—Siminiceanu, R. I.: Using Formal Verification to
Evaluate Human-Automation Interaction: A Review. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, Vol. 43, 2013, No. 3, pp. 488–503, doi:
10.1109/TSMCA.2012.2210406.

[20] Bolton, M. L.—Bass, E. J.: Generating Erroneous Human Behavior from Strate-
gic Knowledge in Task Models and Evaluating Its Impact on System Safety with
Model Checking. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
Vol. 43, 2013, No. 6, pp. 1314–1327, doi: 10.1109/TSMC.2013.2256129.

[21] Katsaros, P.: A Roadmap to Electronic Payment Transaction Guarantees and
a Colored Petri Net Model Checking Approach. Information and Software Technology,
Vol. 51, 2009, No. 2, pp. 235–257, doi: 10.1016/j.infsof.2008.01.005.

[22] Ding, Z.—Qiu, H.—Yang, R.—Jiang, C.—Zhou, M.: Interactive-Control-
Model for Human-Computer Interactive System Based on Petri Nets. IEEE Transac-
tions on Automation Science and Engineering, Vol. 16, 2019, No. 4, pp. 1800–1813,
doi: 10.1109/TASE.2019.2895507.

[23] Yin, X.—Lafortune, S.: On the Decidability and Complexity of Diagnosability for
Labeled Petri Nets. IEEE Transactions on Automatic Control, Vol. 62, 2017, No. 11,
pp. 5931–5938, doi: 10.1109/TAC.2017.2699278.

[24] Yang, R.—Ding, Z.—Pan, M.—Jiang, C.—Zhou, M.: Liveness Analysis
of ω-Independent Petri Nets Based on New Modified Reachability Trees. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, Vol. 47, 2017, No. 9,
pp. 2601–2612, doi: 10.1109/TSMC.2016.2524062.

[25] Ding, Z.—Yang, R.: Modeling and Analysis for Mobile Computing Systems
Based on Petri Nets: A Survey. IEEE Access, Vol. 6, 2018, pp. 63038–68056, doi:

https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1109/TSMC.2022.3163741
https://doi.org/10.1145/2663340
https://doi.org/10.1016/j.ins.2016.12.044
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1109/TSMCA.2012.2210406
https://doi.org/10.1109/TSMC.2013.2256129
https://doi.org/10.1016/j.infsof.2008.01.005
https://doi.org/10.1109/TASE.2019.2895507
https://doi.org/10.1109/TAC.2017.2699278
https://doi.org/10.1109/TSMC.2016.2524062

802 X. Jia, S. Li

10.1109/ACCESS.2018.2878807.

[26] Jensen, K.—Kristensen, L.M.: Colored Petri Nets: A Graphical Language
for Formal Modeling and Validation of Concurrent Systems. Communications of
the ACM, Vol. 58, 2015, No. 6, pp. 61–70, doi: 10.1145/2663340.

[27] He, C.—Ding, Z.: More Efficient On-the-Fly Verification Methods of Colored
Petri Nets. Computing and Informatics, Vol. 40, 2021, No. 1, pp. 195–215, doi:
10.31577/cai 2021 1 195.

[28] Ding, Z.—Yang, R.—Cui, P.—Zhou, M.—Jiang, C.: Variable Petri Nets for
Mobility. IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 52,
2022, No. 8, pp. 4784–4797, doi: 10.1109/TSMC.2021.3103072.

[29] Drakaki, M.—Tzionas, P.: A Colored Petri Net-Based Modeling Method for
Supply Chain Inventory Management. Simulation, Vol. 98, 2022, No. 3, pp. 257–271,
doi: 10.1177/00375497211038755.

[30] Ding, Z.—Li, S.—Chen, C.—He, C.: Program Dependence Net and Its Slice for
Verifying Linear Temporal Properties. CoRR, 2023, doi: 10.48550/arXiv.2301.11723.

[31] Burch, J. R.—Clarke, E.M.—McMillan, K. L.—Dill, D. L.—Hwang, L. J.:
Symbolic Model Checking: 1020 States and Beyond. Information and Computation,
Vol. 98, 1992, No. 2, pp. 142–170, doi: 10.1016/0890-5401(92)90017-A.

[32] Bryant, R. E.: Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, Vol. C-35, 1986, No. 8, pp. 677–691, doi:
10.1109/TC.1986.1676819.

[33] McMillan, K. L.: Symbolic Model Checking: An Approach to the State Explosion
Problem. Ph.D. Thesis. Carnegie Mellon University, Pittsburgh, 1992.

[34] Godefroid, P.—Pirottin, D.: Refining Dependencies Improves Partial-Order
Verification Methods. In: Courcoubetis, C. (Ed.): Computer Aided Verification (CAV
1993). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 697,
1993, pp. 438–449, doi: 10.1007/3-540-56922-7 36.

[35] Peled, D.: Combining Partial Order Reductions with On-the-Fly Model-Checking.
Formal Methods in System Design, Vol. 8, 1996, No. 1, pp. 39–64, doi:
10.1007/BF00121262.

[36] Valmari, A.: A Stubborn Attack on State Explosion. Formal Methods in System
Design, Vol. 1, 1992, No. 4, pp. 297–322, doi: 10.1007/BF00709154.

[37] Godefroid, P.: Using Partial Orders to Improve Automatic Verification Methods.
In: Clarke, E.M., Kurshan, R. P. (Eds.): Computer-Aided Verification (CAV 1990).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 531, 1991,
pp. 176–185, doi: 10.1007/BFb0023731.

[38] Ma, Z.—Zhu, G.—Li, Z.: Marking Estimation in Petri Nets Using Hierarchical
Basis Reachability Graphs. IEEE Transactions on Automatic Control, Vol. 66, 2021,
No. 2, pp. 810–817, doi: 10.1109/TAC.2020.2983088.

[39] Cousot, P.—Cousot, R.: Refining Model Checking by Abstract Interpreta-
tion. Automated Software Engineering, Vol. 6, 1999, No. 1, pp. 69–95, doi:
10.1023/A:1008649901864.

[40] Abid, C.A.—Zouari, B.: Synthesis of Controllers for Symmetric Systems.
International Journal of Control, Vol. 83, 2010, No. 11, pp. 2354–2367, doi:

https://doi.org/10.1109/ACCESS.2018.2878807
https://doi.org/10.1145/2663340
https://doi.org/10.31577/cai_2021_1_195
https://doi.org/10.1109/TSMC.2021.3103072
https://doi.org/10.1177/00375497211038755
https://doi.org/10.48550/arXiv.2301.11723
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/3-540-56922-7_36
https://doi.org/10.1007/BF00121262
https://doi.org/10.1007/BF00709154
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1109/TAC.2020.2983088
https://doi.org/10.1023/A:1008649901864

Parameterized Reachability Graph for Software Model Checking 803

10.1080/00207179.2010.520415.

[41] Chiola, G.—Dutheillet, C.—Franceschinis, G.—Haddad, S.: Stochastic
Well-Formed Colored Nets and Symmetric Modeling Applications. IEEE Transac-
tions on Computers, Vol. 42, 1993, No. 11, pp. 1343–1360, doi: 10.1109/12.247838.

[42] Chiola, G.—Franceschinis, G.—Gaeta, R.: Modeling Symmetric Computer
Architectures by SWNs. In: Valette, R. (Ed.): Application and Theory of Petri
Nets 1994 (ICATPN 1994). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 815, 1994, pp. 139–158, doi: 10.1007/3-540-58152-9 9.

[43] Lahiri, S.—Qadeer, S.: Back to the Future: Revisiting Precise Program Verifica-
tion Using SMT Solvers. ACM SIGPLAN Notices, Vol. 43, 2008, No. 1, pp. 171–182,
doi: 10.1145/1328897.1328461.

[44] Tsitovich, A.—Sharygina, N.—Wintersteiger, C.M.—Kroening, D.: Loop
Summarization and Termination Analysis. Vol. 6605, 2011, pp. 81–95, doi:
10.1007/978-3-642-19835-9 9.

[45] Godefroid, P.—Luchaup, D.: Automatic Partial Loop Summarization in Dy-
namic Test Generation. Proceedings of the 20th International Symposium on Software
Testing and Analysis (ISSTA ’11), 2011, pp. 23–33, doi: 10.1145/2001420.2001424.

[46] Brumley, D.—Wang, H.—Jha, S.—Song, D.: Creating Vulnerability Signatures
Using Weakest Pre-Conditions. Proceedings of the 20th IEEE Computer Security
Foundations Symposium (CSF ’07), 2007, pp. 311–325, doi: 10.1109/CSF.2007.17.

[47] Vernier, I.: Symbolic Executions of Symmetrical Parallel Programs. Proceedings
of 4th Euromicro Workshop on Parallel and Distributed Processing (PDP ’96), IEEE,
1996, pp. 327–334, doi: 10.1109/EMPDP.1996.500604.

[48] Hamez, A.—Hillah, L.—Kordon, F.—Linard, A.—Paviot-Adet, E.—
Renault, X.—Thierry-Mieg, Y.: New Features in CPN-AMI 3: Focusing on
the Analysis of Complex Distributed Systems. Sixth International Conference on Ap-
plication of Concurrency to System Design (ACSD ’06), IEEE, 2006, pp. 273–275,
doi: 10.1109/ACSD.2006.15.

https://doi.org/10.1080/00207179.2010.520415
https://doi.org/10.1109/12.247838
https://doi.org/10.1007/3-540-58152-9_9
https://doi.org/10.1145/1328897.1328461
https://doi.org/10.1007/978-3-642-19835-9_9
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1109/CSF.2007.17
https://doi.org/10.1109/EMPDP.1996.500604
https://doi.org/10.1109/ACSD.2006.15

804 X. Jia, S. Li

Xiangyu Jia received her B.Sc. in computer science and tech-
nology from the Shandong University of Science and Technology,
Qingdao, China, in 2021. She is currently pursuing her M.Sc.
degree with the Department of Computer Science and Technol-
ogy, Tongji University, Shanghai, China. Her current research
interests include model checking and machine learning.

Shuo Li received her B.Sc. in software engineering from the
Shandong University of Science and Technology, Qingdao, Chi-
na, in 2017. She is currently pursuing her Ph.D. degree with the
Department of Computer Science and Technology, Tongji Uni-
versity, Shanghai, China. Her current research interests include
model checking, Petri nets, and formal methods.

