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Abstract. With the development of social networks and hardware devices, many
young people have post a lot of high definition v-logs containing selfie images and
videos to commemorate and share their daily lives. We found that the reflected
image of corneal position in the high definition selfie image has been able to reflect
the position and posture of the selfie taker. The classic localization works estimating
the position and posture from a selfie are difficult because they lack the knowledge
of the environment. The corneal reflection images inherently carry information
about the surrounding environment, which can reveal the location, posture and
even height of the selfie taker. We analyze the corneal reflection imaging process
in the selfie scenario and design a validation experiment based on this process to
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estimate the pose of the selfie in several scenarios to further evaluate the leakage of
the pose information of the selfie taker.

Keywords: Corneal imaging system, location estimation, privacy disclosure, selfie,
social network
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1 INTRODUCTION

Posting v-logs documenting and sharing life on social network sites is very popular
among young people. However, selfie photos and videos often reveal the shooting
time, environment, location, and even the habits of the shooter. In addition, as the
quality of camera imaging has improved, the corneal reflection of the photographer’s
surroundings is much clearer than before. The existing works have demonstrated
that corneal reflecting image can show the gaze and intention of the subject, and
even analyze the environment in which the subject is located.

After a lot of observations, we found that the corneal reflecting images can even
reveal the position and posture of the selfie taker. These information may reveal
the selfie shooting habit even the height of the body. In this paper, we analyze
the corneal imaging process during selfie, and experimentally verify and analyze
that there is a certain correspondence between the corneal reflecting images and the
position, posture of the selfie taker.

The cornea is a transparent semi-ellipsoidal structure located at the very front of
the eye and plays a protective role for the eye, as shown in Figure 1 a). Incident rays
shoot through the cornea, pass through the pupil, lens, and vitreous body to reach
the fovea on the retina, where the light signal is converted into an electrical signal
then transmitted by the optic nerve to the visual center of the brain, so that the body
can perceive its surroundings visual information. The corneal surface is covered with
a thin, reflexible tear film, when the incident rays pass through the cornea, a small
amount of light will be reflected by the tear film. These reflected light can be
captured by the human eye or optical device such as a camera, then form an image,
this image is called corneal image (CI). The incident light – the corneal reflective
surface – the reflected light capture device together form the corneal imaging system
(CIS).

Since a CI can reflect the human surroundings, the CIS has extensive research
and application prospects in the fields of human-machine interaction, computer
graphics, disaster rescue, indoor and outdoor localization, and so on. However,
there are still difficulties in the research of CIS. Because the cornea is a transparent
structure, only a limited amount of incident light can be reflected back into the
camera, creating a CI with little details and texture. In addition, the CI is always
polluted by the color and texture of the iris in the eye image.
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Figure 1. The structure of eye

Despite the poor imaging quality, however, it has been found from daily observa-
tion that the CIS is sensitive to high-light scenes: the high-light incident rays will be
projected as the brightness pattern on the corneal surface, as shown in Figure 1 b).
Therefore, many works based on the CIS require additional pieces of equipment,
such as an infrared camera to determine the location of the high-light pattern in the
CI, or a reliable light source, such as a bright, high-contrast light source as input to
improve the quality of CI.

When taking indoor selfies, in order to obtain better imaging quality, the selfie
taker often chooses a scene with better light distribution, such as facing a win-
dow or a screen being projected, so that an indoor high-light element can be
projected as a bright pattern on the cornea. The projected pattern shape will
change along the corneal pose transformation, we then can estimate the pose vari-
ation of the photographer. As an innovative and challenging work, in this paper,
we will test this innovative hypothesis from both theoretical and experimental as-
pects.
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2 RELATED WORK

2.1 Monocular Camera Based Localization

The monocular RGB camera positioning works enlighten our work. By recording
the center displacement of the camera and simultaneously extracting and matching
the affine invariant features between frames (e.g., SIFT [1], corner point [2]), or with
the help of the scene geometry knowledge [3] (e.g. parallel lines, surfaces), to achieve
the estimation of the change of the target object’s pose. Monocular RGB cameras
are widely used in AR [4, 5], visual SLAM [6, 7, 8], 3D reconstruction [9, 10], and
other fields. The way the camera estimates the scene depth relies heavily on the
feature matching between frames. The localization accuracy will be poor when the
input light is weak. To improve the localization accuracy of monocular cameras,
existing works try to find effective matching features among the matchable feature
clusters with algorithms such as RANSAC [11], or artificially introduce distinctive
markers in the scene, such as AprilTag [12], ARToolkit [13] to improve the feature
extraction and matching accuracy. However, since the CI contain little texture, and
details and lacks a sufficient number of effective feature points, the above methods
cannot be applied in the localization method of this paper.

2.2 The CIS Researches and Applications

The subject’s behavior and awareness can be inferred from the environmental images
reflected from the cornea. This is the force that drives the research of the CIS.
In order to analyze the light distribution around the subject, Tsumura et al. [14]
calculate the source of light by analyzing the light spot reflected from the cornea to
reconstruct the face model. Nishino and Nayar [15] view the cornea as a light probe
to percept the light distribution of the scene then relighting the given 3D face.

To improve the imaging quality of CIS, Wang et al. [16] propose a CIS separation
algorithm with two eye images as input. Nitschke and Nakazawa [17], based on the
corneal and eye models through the super-resolution has proposed a method for CI
enhancement.

Nishino and Nayar [18] reference and extend the work of Swaminathan et al. [19]
to the field of CIS, and fully explain the relationship between scenes, corneas and
cameras involved in CIS. As a complementary work to Nishino and Nayar [18],
Nitschke et al. [20] propose a calibration method for CIS based on an infrared camera
and an LED light array. Based on the above theory of CIS, Suda et al. [21] propose
an algorithm for matching the CI to the scene in order to avoid the calibration
process. Nakazawa et al. [22] propose a gaze-tracking algorithm based on the CIS
using a bendable LED dot matrix system assisted by an infrared camera. Lander
et al. [23] propose a work for computing 3D gaze from the 2D gaze with the help of
infrared cameras and scene cameras. Ohshima et al. [24] try to match the CI with
the scene pictures in the database by neural network, showing the possible privacy
security risk and the prospect of human-machine interaction for CIS. Du et al. [25]
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propose a gaze tracking method based on CIS with the help of an AprilTag marker,
which makes it possible to use gaze as an AR interaction method.

As a catadioptric imaging system, the CIS has been developed in the past two
decades, and its main objectives are focused on assisting gaze-tracking and the
analysis and recognition of reflection scenes. As an important component of CIS, the
posture of the cornea is critical to the imaging process, and in addition, the posture
of the cornea is often closely related to the posture of the person. However, there
is less existing related work. By analyzing the relationship between scene, corneal
pose and head pose, we try to verify the feasibility of CIS-based indoor localization
and show the possibility of privacy leakage risk of selfies in social network in this
paper.

3 THEORETICAL ANALYSIS OF CORNEAL IMAGING PROCESS
DURING SELF-TIMER

The imaging process of the CIS is shown in Figure 2. The incident ray vi ∈ VI

is reflected by the cornea as reflected light vr ∈ VR, and part of the reflected ray
set VC ⊂ VR can be captured by the camera to participate in the corneal imaging
process. When the subject is indoors and facing the high-light L, the set of incident
corneal rays VH ⊂ VI from the L, of which the partially reflected rays VHR ⊂ VC ,
are captured by the camera and become the bright pattern of the CI. The rest of
the CI comes from the partially reflected rays VSR ⊂ VC which are the reflected rays
of incident rays VS in the scene.

There are two projection processes in CIS. Firstly, the incident rays VI are pro-
jected to the corneal surface. Secondly, the reflected rays VC are projected to the
camera imaging plane. The corneal imaging process can be expressed as Equa-
tion (1).

I = PcVI , (1)

where Pc is the projection matrix, which can be expressed as Equation (2):

Pc = Kc [Rc|tc] , (2)

where

tc = −RcC̃c,

where Kc, Rc and C̃c are the intrinsic parameter, rotation matrix and the inhomo-
geneous coordinate of the camera center position, respectively.

As the extrinsic camera parameters, Rc and C̃c described the posture and posi-
tion of the CIS in the world coordinate system Ow. Without loss of generality, the
head pose can be considered to represent Rc. In this paper, the subject posture and
position we try to estimate can be represented by Rc as well as C̃c.
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Image Plane

Figure 2. Imaging process of CIS. The incident ray set VI is reflected by the cornea, and
a portion of the reflected ray set VC is captured by the camera to form a CI.

3.1 Intrinsic Parameter of CIS

The intrinsic parameter Kc of the CIS can be expressed as

Kc = PePsRg,

where Pe is the projection matrix of the camera, which takes the form Pe = Ke [Re|te],
where Ke is the intrinsic parameter of the camera, te = −ReC̃e, Re and C̃e are the
extrinsic parameters of the camera.

The form of Ke is as in Equation (3), without loss of generality, assuming that
the camera pixels are square fx = fy = f , skew parameter s = 0, and the camera
center is at the center of the imaging plane cx = cy = 0.

Then Ke in the projective transformation mainly scales the incident light and
reduces the dimension.

Ke =

 fx s cx
0 fy cy
0 0 1

 =

 f 0 0
0 f 0
0 0 1

 . (3)

Re is the rotation matrix of the camera, and C̃e is the position of the CIS
represented in inhomogeneous coordinate form in the world coordinate Ow.

The Z component of C̃e affects the size of the face in the image, which is mainly
affected by the subject’s shooting habits and arm length, while theX, Y components
mainly affect the position of the bright pattern in the CI. The C̃e has less influence
on the position of the bright pattern in the CI when the face area is often centered
in the selfie.
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In order to estimate the effect of Re on the CIS when taking a selfie, we invite
9 subjects sit in front of the screen in turn, complete the selfie with the front lens
of the phone and keep the phone position still, and then take the AprilTag marker
photo which displayed on the screen with the rear lens, calculate the orientation of
the phone at this moment, and repeat five times for each person, record and count
the data, as shown in Figure 3. It can be seen that the camera imaging plane is
basically parallel to the screen plane, and Re has little effect on the CIS.
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Figure 3. Camera pose distribution when taking selfies of different subjects

Rg = {yaw , pitch, roll} is the rotation of the eyeball during corneal reflection
imaging, yaw , pitch, and roll are the rotation angles of the eyeball around the Y ,
X, and Z axes under the coordinate system Oc, respectively. The eyeball rotation
affects the pose of the corneal reflective surface Ps.

We refer to the work of Nishino and Nayar [18] to model the corneal geometry
structure and analyze the influence of the corneal reflective surface posture Ps during
the corneal imaging process, as shown in Figure 4. The corneal geometry can be
described as

S(t, θ) = (Sx, Sy, Sz) = (λ cos θ, λ sin θ, t) ,

where t ∈ [0, 2.18], θ ∈ [0, 2π] and

λ =
√
−pt2 + 2Rt.

Based on the anatomical work of Kaufman and Alm [26], the shape of the cornea
is found to be essentially the same in different adults. The radius of curvature at
the vertex R = 7.8mm, the mean eccentricity e = 0.5, and p = 1− e2. The tangent
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Figure 4. Modeling the geometric structure of the cornea. Corneal height was 2.18mm,
limbus as the outermost edge, which can be considered as a circle, has a radius of 5.5mm.

τ (t, θ) =
[
∇Sx ,∇Sy ,∇Sz

]T
to any point S(t, θ) on X, Y , Z

∇Sx =
cos θ

2
√
−1.5t+ 15.6

− sin θ
√
−0.75t2 + 15.6t,

∇Sy =
sin θ

2
√
−1.5t+ 15.6

+ cos θ
√
−0.75t2 + 15.6t,

∇Sz = 1.

For any point S(t, θ) on the corneal surface, its normal vector n(t, θ) = [Fx, Fy, Fz]
T .

The n(t, θ) and τ (t, θ) satisfy

nT (t, θ) · τ (t, θ) = Fx∇Sx + Fy∇Sy + Fz∇Sz = 0.

The projection of an incident ray on the corneal surface can be expressed by
Equation (4):

Ps = Ks [Rs|ts] , (4)

where ts = −RsC̃s, Ks as the intrinsic parameter has similar values for different
C̃s. Rs and C̃s are the extrinsic parameters of Ps. The rotation matrix Rs can be
obtained from n(t, θ) by the Rodriguez rotation formula.

C̃s is the position of the optical center in Ow for a single corneal reflecting surface
expressed in inhomogeneous form. C̃s is determined jointly by the incident light vi

and the corneal surface S(t, θ) involved in the reflection. Different surface involved
in the corneal imaging process will have its viewpoint. All viewpoints will form the
viewpoint trajectory envelope:

V (t, θ, r) = S(t, θ) + rvi(t, θ),

where r is the distance between S(t, θ) and C̃s, which can be obtained by

detJ(V (t, θ, r)) = 0,
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where J is the Jacobi matrix.

The factors act on Ps include three points, namely Rg, Rc and C̃c. Eye rota-
tion Rg has the same effect on Rs as the subject’s head posture change Rc, but when
Rg changes, it is accompanied by the corresponding change in the position of the
cornea, iris, etc. in the eye. Therefore, we can analyze Rg by the position of cornea
in the eye image, and then detach the effect of Rg from Ps to avoid its influence
on the estimation of Rc. So far, the CI is unique for a given position Rc, C̃c, and
a given Rg, in the same scene. In fact, shooting CI is often accompanied by the
freedom of eyeball rotation, so that for any Rc, C̃c corresponds to a set of CIs with
different projection bright patterns and iris positions.

3.2 Pose and Position Estimation of CIS

The image quality of CI acquired during self-photography is poor. In addition, the
high-light L may be projected incompletely on the corneal reflective surface due to
the effect of eyeball rotation, even though the subject is facing L. These two aspects
lead to difficulties in solving the exact Rc, C̃c by stripping the projection matrix Kc

in Equation (1).

We have known that there exists a set of CIs corresponding to the subject in
any one of the poses Rc and position C̃c. These CIs are not the same due to the
influence of Pe, Rg. As described in Section 3.1, Pe has less effect on the selfie
imaging process, and in our experiments, we have focused on the role of Rg on
indoor localization.

We try to test our work in different high-light scenes and take a set of CIs with
different Rg for the given subject’s pose and position. We will use these CIs with
various positions and poses to train the neural network and ensure that the neural
network can predict the positions and poses of the subjects in the CIs.

In addition, the size of the high-light L is another factor that affects the po-
sitioning performance. Different sizes of L will have different positioning accuracy
and effective positioning range. Based on the above hypothesis, we try to design
an experiment to verify our idea and also estimate the accuracy performance under
different high-light source sizes.

To observe the performance of localization, we find the effective indoor ground
range S, and divide S into 64 equal regions, each region is centered at Ci ∈ C. In the
data acquisition process, we let the subject take a selfie in Rci pose at three different
locations in region i and record the location data Cci = {Cix, Ciy, Hs} containing
the subject’s height Hs, the pose data Rci and the eye part of the selfie image.
Next, we record the test set data at the center Ci in the same data acquisition
manner.

We use eye photos and high-light size of the DTrain as input and pose, posi-
tion information as output to complete the training of VGG16 network. Using the
eye photos and high-light size from the DTest as the input of the trained VGG16,
we then compare the output of VGG16 network with the ground truth data to
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verify the feasibility of localization by CIs and analyze the effective localization
range.

The indoor space S includes some indistinguishable regions, and we exclude the
above locations from the effective space S in order to speed up the convergence of
the training network and reduce the possibility of over-fitting. For locations very
close to the high-light L, the bright pattern of the high-light projection completely
occupies the CI, and in this case, the shape of the bright pattern does not reflect
the position of the subject. When the subject is far away from L, the shape of the
bright pattern does not reflect the change of pose and position, both of which are
indistinguishable regions.

4 POSITION AND POSE ESTIMATION PERFORMANCE

We looked for 60 volunteers with different heights, ages and genders as subjects. We
measured the height of the subject as shown in Figure 5. We conducted experiments
in three experimental fields S = {S1, S2, S3} with three different high-light areas
L = {L1, L2, L3}, respectively, to observe the effect of different high-light areas on
the localization. The sizes of L1, L2, L3 are 280 × 160 cm2, 130 × 120 cm2 and
55× 33 cm2. Each experimental field was divided into 64 regions with 90 cm, 50 cm
and 25 cm sides, as described in Section 3.2.

For subject s, the head pose is Rcs = {yaw , pitch, 0◦}, where yaw and pitch are
the rotation angles of s around the Y and X axes in world coordinates, respectively.
The yaw angle range is

yaw ∈ {−60◦,−45◦,−30◦,−15◦, 0◦, 15◦, 30◦, 45◦, 60◦}

and pitch angle range is
pitch ∈ {−30◦, 0◦, 30◦} .

At different Rc, C̃c, the subject s holds a camera and takes a selfie video with
different eyeball rotations for at least 15 seconds at 60 fps, 4 k resolution to collect
data from the training and test dataset. To ensure that the eye image was less
affected by the subject’s motion and pose, we asked the subjects to maintain as
stable a pose as possible, and also asked them to rotate their eyes at will when they
could see the high-light plane to ensure the presence of a more complete light spot
in the CI. We then segmented the video into images and split the eye images by
frame.

Nevertheless, there were some unusable images, especially when subjects stand
in the edge regions of S and were asked to collect experimental data in extreme poses
(e.g., yaw = 60◦, pitch = 30◦). As in Figure 6, when the eye image has severe motion
blur, or when the reflected spot is heavily obscured, such an eye image is invalid
and needs to be removed from the dataset. After the experimental data collection
and collation process, we get 34 209 294 valid images from 41 472 000 eye images in
three experimental spaces, accounting for 82.48%. The efficient distribution of data



Location Estimation from an Indoor Selfie 1223

[110,125) [125,140) [140,155) [155,170) [170,185)

Height range of subjects

0

5

10

15

N
u
m

b
e
r

Figure 5. Height distribution of the subjects

in each region is shown in Figure 7. We can see that the closer to the center of S,
the more efficient the data are, and the least efficient the data are located at the
four corners.

a) Light spot is heavily covered b) Severe motion blur c) Limited spot reflected

Figure 6. Types of video frames that need to be removed from the dataset

After collecting the dataset, we trained and tested the VGG16 network according
to Section 3.2.

During the experiment, we find that the key factor affecting the localization
accuracy is the size of the spot. Small spots require a wide range of subject’s move-
ment and position changes to produce significant deformation. The vertical distance
from the measured object to the high-light plane and the orientation angle of the
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Figure 7. Distribution of available data in each region of the experimental space S as a
percentage of the collected data

measured object relative to the high-light plane have a significant effect on the spot
size. Similar to the performance measurements of Olson Edwin for AprilTag [12], we
measured and demonstrated the experimental performance in terms of the vertical
distance from the subject to the high-light plane and the angle between the subject
direction and the normal vector of the high-light plane, respectively.

We take the average of the prediction results of valid test data collected from
region R(i, j) under pose p as the prediction result of Pred(i, j, p)

Pred(i, j, p) = {Pred(i, j, p)L,Pred(i, j, p)P} ,

where

Pred(i, j, p) =

∑60
n=0 Est(i, j, p)n

60
,

Est(i, j, p)n =

∑m
k=0 e(i, j, p)k

m
,

where m is the number of valid video frames of the nth video of test data acquired at
R(i, j) and e(i, j) = {e(i, j, p)L, e(i, j, p)P} is the prediction result of video frames.

The localization offset range of region R(i, j) under pose p can be decoupled into
position estimation offset ranges and pose estimation offset ranges. We keep the pose
of the subject equal to 0◦ when measuring the position estimation performance, while
we analyze the pose prediction data collected from a fixed region when measuring
the pose estimation performance.



Location Estimation from an Indoor Selfie 1225

We count the average range of the position localization offset ranges for all
regions with distance i to the high-light plane as LOffset(i).

LOffset(i) =

∑8
0 |GT (i, j, 0)L − Pred(i, j, 0)L|

8
,

where GT (i, j, p)L is the location ground truth under the pose p in the R(i, j). To
illustrate the ability of our method to cope with different high-lighting environ-
ments, we have calculated the position localization offset ranges in L1, L2 and L3

highlighting environment, respectively.
Figure 9 shows the relationship between i and LOffset(i). It can be seen that

the value of LOffset(i) increases with i in the three different highlighting areas.
As show in Figure 8, we found that the area of the corneal reflection spot decreased
rapidly with increasing distance between the subject and the high light plane. When
the subject was in row 7, the area of the spot was too small and insensitive to
changes in position and posture. As a result, the prediction offset ranges located
here becomes larger, the standard deviation of the predicted data increases, and the
dispersion of the data becomes more pronounced.

a) 5th row b) 6th row

c) 7th row d) 8th row

Figure 8. The eye images are shot while the subject is standing in rows 5, 6, 7 and 8.
By comparison, it can be found that the spot area in the eye image in rows 5 and 6 has
a clear shape change, compared to the spot in rows 7 and 8, where the shape change is
not obvious enough.

As shown in Figure 7, the proportion of valid data is highest at R(4, 4), which
means that the performance of pose estimation is more representative than other
regions. We convert the pose from the Euler angle to the orientation vector v,
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Figure 9. The average location positioning offset ranges increases when the subject is far
away from the high-light plane

then we can get the angle between the normal vector of the high-light plane and v
is

{0◦, 15◦, 30◦, 33.22◦, 41.4◦, 45◦, 52.2◦, 60◦, 64.3◦} .
We count the pose estimation offset ranges POffset(p)

POffset(p) = |GT (4, 4, p)P − Pred(4, 4, p)P |,

where GT (i, j, p)P is the pose ground truth in R(i, j). The performance is shown in
Figure 10.

We still examined the performance in L1, L2 and L3 high-light scenes, respec-
tively. Similar to the offset ranges distribution of the position estimation, the offset
range increases with the orientation angle. However, the incremental gradient is
much smaller than the gradient of the position estimation. After examining the
original data and the prediction results, we found that at larger orientations, some
subjects’ eye images were not complete enough, which could easily lead to significant
offset ranges in predictions.

5 DISCUSSION

The privacy disclosure risk existing in the social network sites has become a hot
topic of concern in recent years. In this paper, we analyze the corneal imaging
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Figure 10. The estimated offset ranges of the postural in the region R(4, 4) indicated that
the offset range grows slowly as the pose of the subjects increased

process in a selfie scenario, and design a validation experiment to the subjects with
different heights in different indoor scenes. Experiments show that selfies and videos
taken in high-light scenes on social media do carry some risk of privacy disclosure for
location, posture, height, and lifestyle habits. Our work contributes to the privacy
protection of v-loggers and also provides theoretical support for privacy-sensitive
groups.

Every coin has two sides. Although the CI can cause the privacy disclosure
trouble to selfie taker, the CIS based localization method can be applied in other
fields, like disaster rescue, crime tracking, human-machine interaction and computer
graphics modeling. In addition, thanks to the weak quality of corneal reflection
imaging, a balance of privacy protection and convenience can be achieved when CIS
based positioning methods are used in daily life.

Our research is innovative and enriches the research and application scenarios
of the CIS. It has been experimentally demonstrated that corneal reflection can
reveal the approximate pose and position of the photographer in the room. With
the development of social media, there are a large number of selfie videos and photos
on Youtube, Twitter and TikTok, including a large number of photos and videos
of faces facing windows, screens, etc. These images and videos contain corneal
reflection areas that contain information about the subject’s pose, which can be
used to improve human-machine interaction and expand the application scenarios
of human-machine interaction under the constraints of the law. The corneal images
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can be shot easily with non-aggressive to others, and as wearable hardware devices
evolve, CIS-based positioning efforts can be senselessly integrated into existing smart
devices, such as smart glasses, as well as AR and VR devices while being non-
intrusive to personal space.

From the above experimental results, we can see that the performance of the CI
in the indoor position and posture estimation is related to the area of the high-light
and the position of the distance from the high-light. We depend on the solid angle
to evaluate the influence of these two aspects.

The solid angle Ωc presents the reflectable range of the cornea. Let the angle
between the normal vector n(0,0) of the corneal curvature vertex Oc and the direction
of the optical axis of the camera be σ, Ωc decreases with increasing σ. For any
reflected infinitesimal space δA, the solid angle is

ΩA =
δA cos3 ϕ(i, j)

z2
,

where ϕ(i, j) is the angle between n(0,0) and the normal nA of δA. Then the solid
angle of the corneal reflectable scene C and the high-light L are

ΩC =
∑ δC cos3 ϕ(m,n)

z2
,

ΩL =
∑ δL cos3 ϕ(i, j)

z2
,

where i ∈ [0,m], j ∈ [0, n], then the scale of the bright pattern in the CI can be
expressed as

p = ΩL/ΩC . (5)

It is known that ΩC is constant when σ is constant, and for the sake of calculation, it
is assumed that δL = 1. In general, since the ΩC > 2π of the cornea, the FOV of the
corneal reflection is larger than that of the hemispherical reflective surface. However,
due to the influence of the corneal geometry, the resolution at the edge of the cornea
decreases sharply compared to that above the pupil. The projected image of the
scene at the edge of the cornea piles up and compresses [18]. Therefore, in this paper,
when measuring the proportion of the bright pattern in the CI by Equation (5), the
value of ΩC should be less than 2π, and the ratio of the area of the light pattern
formed by the projection of the high-light on the cornea to the area of the whole
cornea reflectable range is shown in Figure 11.

L1, L2 and L3 are high-light scenes with different sizes that have been used in
the experimental section. The size of the bright pattern in the CI changes slowly
with increasing Z-axis compared to the position near the high-lights. Also, regions
with the same Z value have different localization accuracy. When the distance d
between the subject s and Ow increases, the rate of change of ΩL decreases and p is
too similar to be distinguished from nearby regions.

Our work can estimate the posture and position of the subject without additional
devices. However, our method can only estimate the posture of head instead of
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Figure 11. The effect of the subject position to the size of the bright pattern in CI

the whole body. Moreover, from the experimental results, our method cannot be
applied to fine body motion tracking applications. Besides, the accuracy of pose and
position estimation can hardly be improved without the assistance of the additional
equipment.

6 CONCLUSION

In this paper, we demonstrate theoretically and experimentally that selfie images
contain private information such as the position and pose of the selfie taker. Our
work can help users of social networks to protect their privacy further. In addition,
indoor localization by CI is promising in the field of low-accuracy indoor localiza-
tion, which is less intrusive and less equipment friendly than existing methods. In
our future work, we will focus on how to improve the accuracy of CIS for indoor
positioning and try to further develop and expand its application.
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