
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(1): 2518–2529.
DOI: 10.3934/math.2024124
Received: 23 October 2023
Revised: 04 December 2023
Accepted: 13 December 2023
Published: 25 December 2023

Research article

Online scheduling on a single machine with one restart for all jobs to
minimize the weighted makespan

Xiaoxiao Liang, Lingfa Lu*, Xueke Sun, Xue Yu and Lili Zuo

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, China

* Correspondence: Email: lulingfa@zzu.edu.cn.

Abstract: In this paper, we consider the online scheduling problem on a single machine to minimize
the weighted makespan. In this problem, all jobs arrive over time and they are allowed to be restarted
only once. For the general case when the processing times of all jobs are arbitrary, we show that there
is no online algorithm with a competitive ratio of less than 2, which matches the lower bound of the
problem without restart. That is, only one restart for all jobs is invalid for improving the competitive
ratio in the general case. For the special case when all jobs have the same processing time, we present
the best possible online algorithm with a competitive ratio of 1.4656, which improves the competitive
ratio of 1+

√
5

2 ≈ 1.618 for the problem without restart.

Keywords: scheduling; restart; the weighted makespan; online algorithm; competitive ratio
Mathematics Subject Classification: 90B35, 68M20, 68Q17

1. Introduction

In this paper, we consider the online scheduling problem with restarts on a single machine, with
the aim of minimizing the weighted makespan, which refers to the maximum weighted completion
time of the jobs. For the majority of online scheduling problems, no online algorithm can generate a
solution that is equally effective as an offline optimal solution because in the online scheduling, the
exact data of each job is unknown until it arrives. In the offline scheduling, the decision maker could
make better decisions since all information about the jobs are given in advance. The arrival of jobs can
be categorized into two groups in online scheduling: Over time and over list. Jobs arriving over time
means that each job has an arrival time, after which it can be processed, and the online algorithm does
not have to schedule this job immediately. Jobs arriving over list means that the next job arrives after
the current job has been scheduled on the machine. In this paper, all jobs arrive over time.

As far as we know, the concept of restarts was first proposed for online scheduling by
Akker et al. [1]. Restart (Hoogeveen et al. [2]) means that a job being processed is interrupted and

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024124

2519

loses all the work already done on it. In other words, the processing time previously spent on the
job is wasted. The interrupted job then becomes available again as an unprocessed job, which can be
subsequently processed and restarted, and we call it a restarted job. As further jobs arrive over time,
we obtain more information about the job instance. Allowing restarts actually prevents us from making
wrong decisions, since we have the opportunity to reconsider the schedule. However, frequent restarts
can result in resource waste and harm jobs in practice. “Limited restart” was first proposed by Fu et
al. [3], in which “limited restart” means that each job can be restarted only once, and “k-limited restart”
supposes that each job cannot be interrupted more than k times, where k can be either a positive integer
or infinity. Different from the definition of “k-limited restart,” the problem we investigate in this paper
is “1-restart”, which means that the total number of restarts allowed for all jobs is 1.

A common approach for assessing the performance of an online algorithm is usually to calculate
and analyze its competitive ratio. Assuming that the instance of an online scheduling problem under
consideration is I, andA(I) is the objective function value obtained by running AlgorithmA, OPT (I)
signifies the offline optimal objective value. For the minimization problem, we say that AlgorithmA is
ρ-competitive if the inequalityA(I) ≤ ρOPT (I) holds. That is, once an online algorithm can generate
a schedule whose objective value is not lower than ρ times the value of the offline optimal schedule, it
will be considered as a ρ-competitive algorithm. The infimum of ρ is regarded as the competitive ratio
of Algorithm A. For the online scheduling problem considered in our paper, the competitive ratio of
the algorithm is the minimum value of ρ such that it is ρ-competitive. Moreover, an online algorithm
is the best possible if no algorithm can be discovered that possesses a smaller competitive ratio than it
does.

Roughly speaking, over the past few decades, there has been a wealth of researches on restarts in
the field of online scheduling. In the model of parallel batch machine, Liu et al. [4] studied the online
scheduling problem with “k-limited restart” on a bounded parallel batch machine with the goal of
minimizing the makespan, and the jobs are equal in length. Depending on the capacity of the parallel
batch, they presented the best possible online algorithm for the corresponding problem when k ≥ 1.
Furthermore, Liu et al. [5] investigated the online scheduling problem on an unbounded parallel batch
machine with “limited restart”, and the delivery time of each job is no longer than its processing time.
The goal is to minimize the transportation completion time. They provided the best possible online
algorithm with a competitive ratio of 3

2 . For the problem that minimizing the makespan using restarts
on a parallel batch processing system, Fu et al. [6] showed that the lower bound is 5−

√
5

2 , and designed
an online algorithm with a competitive ratio of 3

2 . The problem was further investigated and Yuan et
al. [7] solved the gap and gave the best possible online algorithm. Additionally, for online scheduling
problem on two parallel batch machines with “limited restart” to minimize the makespan, Fu et al. [8]
presented the best possible online algorithm with a competitive ratio of

√
3+1
2 under the assumption of

“second-restart”. There are many other outcomes about restarts, details of which can be found in Tian
et al. [9].

In certain service systems, it is imperative to keep service costs low. Hence, this paper draws
inspiration from customers’ desires for lower costs. Customers’ orders often arrive at the service
provider at any time in practice, and the system aims to minimize the highest service costs as low
as possible for each client, so the online scheduling problem discussed in this paper that minimizes
the weighted makespan may also be used to assess the expenses associated with work-in-progress
inventory and customer satisfaction. Therefore, considering the issue that minimizes the weighted

AIMS Mathematics Volume 9, Issue 1, 2518–2529.

2520

makespan is of clear interest. Actually, there are fruitful achievements focused on the objective that
minimize the weighted makespan. Li [10] demonstrated that no deterministic online algorithm has a
competitive ratio of less than 2. Moreover, for the problem on a single machine, he offered a 3-
competitive algorithm. For the problem on parallel machines and jobs with identical processing times,
Li [10] presented the best possible online algorithm. The gap in Li [10] was later solved by Chai
et al. [11]. Lu et al. [12] considered the problem that minimizes the weighted makespan plus the
rejection cost and demonstrated that the problem is NP-hard, as well as provided a 2-approximation
algorithm. For the online scheduling problem on identical bounded parallel batch machines to
minimize the maximum weighted makespan, and the jobs with the same processing time arrive over
time, Li et al. [13] presented the best possible online algorithm with the competitive ratio of

√
5+1
2 .

Furthermore, they also gave the best possible online dense algorithm with a competitive ratio of 2.
Sun [14] considered the single machine scheduling problem with rejection to minimize the weighted
makespan, and showed that the problem is fixed-parameter tractable with respect to some parameters.

For convenience, we present some notations that will be used subsequently. The problem addressed
in our paper may be written as 1|r j, online, 1-restart|WCmax and 1|r j, online, p j = p, 1-restart|WCmax,
where WCmax = max{w jC j : J j ∈ I} if the job instance I is given. Unless ambiguity would result, we
simplify the objective values of an online algorithm and an optimal algorithm by WCon(I) and WCopt(I)
for instance I, respectively. In addition, we use C j to stand for the completion time of job J j. In order to
distinguish the online scheduling with restarts from the offline scheduling, we denote the i-th starting
time of job J j by S ji. Furthermore, since only one restart is considered in this paper, we abbreviate S j1

as S j. Let ε be an infinitely small positive number, and β ≈ 0.4656 is the positive root of equation
x(1 + x)2 = 1.

Throughout this paper, in Section 2, we consider problem 1|r j, online, 1-restart|WCmax and prove
that there is no online algorithm with a competitive ratio of less than 2, which matches the lower
bound of the problem without restart. That is, “1-restart” is invalid for improving the competitive
ratio of problem 1|r j, online|WCmax. In Section 3, we provide the best possible online algorithm
with a competitive ratio of 1 + β ≈ 1.4656 for problem 1|r j, online, p j = p, 1-restart|WCmax.
Li [8] presented the best possible online algorithm with a competitive ratio of 1+

√
5

2 ≈ 1.618 for
problem 1|r j, online, p j = p|WCmax, so in our paper, we improve the result in Li [8]. In Section 4,
we summarize the results of this paper and present some problems that can be investigated in the
future.

2. The general case with the arbitrary processing times

In this section, we consider the problem 1|r j, online, 1-restart|WCmax. For the online scheduling
problem to minimize the weighted makespan, i.e., 1|r j, online|WCmax, Chai et al. [11] gave two best
possible online algorithms with a competitive ratio of 2 based on the preemptive optimal schedule and
the concept of delay, respectively.

It is obvious that the competitive ratio of problem 1|r j, online|WCmax is likely to be improved
with the use of restarts. Hence, for problem 1|r j, online, 1-restart|WCmax, its competitive
ratio may be less than or equal to 2. In the following, we demonstrate that the lower bound
for problem 1|r j, online, 1-restart|WCmax is still 2, which means that “1-restart” does not lead to a
better competitive ratio for problem 1|r j, online|WCmax.

AIMS Mathematics Volume 9, Issue 1, 2518–2529.

2521

Theorem 1. For problem 1|r j, online, 1-restart|WCmax, there is no online algorithm with a competitive
ratio of less than 2.
Proof. For an arbitrary online algorithm H, we construct an online instance I, in which the jobs are
presented by the adversary.

There are four jobs J1, J2, J3, J4 contained in I and the jobs arrive in the non-decreasing order of
weights, i.e., wi ≤ w j if job J j arrives after job Ji. We write Im = {J j : 1 ≤ j ≤ m}. At time 0, job J1

with processing time 1 and weight 1 comes, i.e., (r1, p1,w1) = (0, 1, 1).
Case 1. S 1 ≥ 1.

If S 1 ≥ 1, then no jobs arrive later. In this case, WCopt(I1) = w1 p1 = 1 and the objective value of
algorithm H is WCon(I1) = w1(S 1 +1) ≥ 2 = 2WCopt. Thus, in order to guarantee the competitive ratio,
we assume that S 1 < 1 in the following discussion.
Case 2. S 1 < 1.

When algorithm H processes job J1 at time S 1, then job J2 arrives at time S 1 + ε, and (r2, p2,w2) =

(S 1 + ε, ε,M), where M is a sufficiently large positive integer and ε is a positive number that converges
infinitely to 0. In the following we discuss the scenarios according to the value of S 2. Note that
S 1 < 2S 1 + 3ε ≤ S 1 + 1.
Case 2.1. S 2 ≥ 2S 1 + 3ε.

If S 2 ≥ 2S 1 + 3ε, then we have WCon(I2) ≥ w2(S 2 + p2) = M(S 2 +ε). In an optimal schedule, job J2

has to be processed first at time r2, then job J1 is processed at the completion time of job J2. So, we
have WCopt(I2) = M(S 1 + 2ε), then we conclude that

WCon(I2)
WCopt(I2)

≥
M(S 2 + ε)

M(S 1 + 2ε)
≥

2S 1 + 4ε
S 1 + 2ε

= 2.

Case 2.2. S 2 < 2S 1 + 3ε.
We assume that S 2 < 2S 1 + 3ε ≤ S 1 + 1, then job J3 arrives after jobs J1 and J2 are completed, i.e.,

(r3, p3,w3) = (S 1 + 2ε + 1,M,M). In the following we discuss the scenarios according to the value of
S 3.
Case 2.2.1. S 3 ≥ M − 1.

If S 3 ≥ M − 1, then no jobs arrive. Since all jobs are finished before job J3 arrives, then we
have WCon(I3) = w3(S 3 + p3) ≥ w3(M − 1 + M) = w3(2M − 1). However, for the instance I3, the
optimal schedule will process job J3 at time r3 and jobs J1 and J2 are finished before r3. Thus, we have
WCopt(I3) = w3(r3 + p3) = w3(S 1 + 2ε + 1 + M). Furthermore,

WCon(I3)
WCopt(I3)

≥
w3(2M − 1)

w3(S 1 + 2ε + 1 + M)
=

2 − 1
M

S 1
M + 2ε

M + 1
M + 1

→ 2,

when M → ∞, ε→ 0+. As a result, we assume that 1 < r3 < S 3 < M − 1 in the following discussion.
Case 2.2.2. r3 < S 3 < M − 1.

Once algorithm H processes job J3 at time S 3, job J4 with processing time ε and weight 2M2 comes
at time S 3 +ε, i.e., (r4, p4,w4) = (S 3 +ε, ε, 2M2). Due to the fact that all jobs are allowed to be restarted
only once, then the processing of job J3 cannot be interrupted. Therefore, job J4 will be processed after
the completion of job J3 in algorithm H. We have WCon(I4) = max{w3(S 3 + p3),w4(S 3 + p3 + ε)} =

w4(S 3 + p3 + ε) = 2M2(S 3 + M + ε). The optimal schedule for instance I4 is to process all jobs in the

AIMS Mathematics Volume 9, Issue 1, 2518–2529.

2522

order of J2, J1, J4, J3, and WCopt(I4) = max{w4(S 3 +2ε),w3(S 3 + p3 +2ε)} = max{2M2(S 3 +2ε),M(S 3 +

M + 2ε)}. Note that

2M2(S 3 + 2ε) − M(S 3 + M + 2ε) = M2S 3 + M2S 3 + 4M2ε − MS 3 − M2 − 2Mε

= (M2 − M)S 3 + M2(S 3 − 1) + (4M2 − 2M)ε > 0,

thus, we have WCopt(I4) = 2M2(S 3 + 2ε) and

WCon(I4)
WCopt(I4)

=
2M2(S 3 + M + ε)

2M2(S 3 + 2ε)
→ 1 +

M
S 3

> 1 +
M

M − 1
> 2,

when M → ∞, ε→ 0+. This completes the proof of Theorem 1.

3. A special case with the same processing time

In this section, we consider a special case of problem 1|r j, online, 1-restart|WCmax, in which all
jobs are of equal length. We denote the problem by 1|r j, online, p j = p, 1-restart|WCmax. Without
loss of generality, it’s feasible to consider the problem in which all jobs have the unit processing
time. Thus, we study problem 1|r j, online, p j = 1, 1-restart|WCmax. For this problem, we present
a lower bound of 1 + β, and the best possible online algorithm that matches the lower bound. For
problem 1|r j, online, p j = p|WCmax, Li [10] gave the best possible online algorithm with a competitive
ratio of 1+

√
5

2 ≈ 1.618. Hence we improve the result of Li [10] and this indicates that the competitive
ratio of problem 1|r j, online|WCmax can be improved when all jobs have the same processing time and
the number of restarts allowed for all jobs is 1.

3.1. The lower bound

Recall that β ≈ 0.4656 is a positive real solution of equation x(1 + x)2 = 1.
Theorem 2. There exists no online algorithm with a competitive ratio of less than 1 + β for the
scheduling problem 1|r j, online, p j = 1, 1-restart|WCmax.
Proof. By the contradiction, suppose that there exists an online algorithm H with a competitive ratio
of less than 1 + β. We consider the following job instance I provided by the adversary.

At time r1 = 0, job J1 with w1 = 1 arrives. Suppose that algorithm H starts to process it at time S 1.
In order to guarantee the competitive ratio of algorithm H, we discuss the value of S 1.
Case 1. S 1 ≥ β.

If S 1 ≥ β, then the adversary will inform us that no jobs arrive later, so WCopt = w1 p1 = 1 and
WCon = w1C1 = S 1 + p1 ≥ 1 + β = (1 + β)WCopt.
Case 2. S 1 < β.

In this case, job J2 with w2 = 2 arrives at time S 1 + ε. Suppose that algorithm H starts to process it
at time S 2.
Case 2.1. S 2 ≥ S 1 + 1.

If S 2 ≥ S 1 + 1, i.e., algorithm H does not restart the job J1, then no other jobs arrive. In this case,
we have WCon = w2C2 = w2(S 2 + p2) ≥ 2(S 1 + 2). In the offline schedule, we can process job J2 before
job J1 and WCopt ≤ max{w2(r2 + p2),w1(r2 + p2 + p1)} = max{2(S 1 + ε+ 1), S 1 + ε+ 2} = 2(S 1 + ε+ 1).

AIMS Mathematics Volume 9, Issue 1, 2518–2529.

2523

Thus, we have

WCon

WCopt
≥

2(S 1 + 2)
2(S 1 + ε + 1)

→
S 1 + 2
S 1 + 1

= 1 +
1

S 1 + 1
> 1 +

1
β + 1

> 1 + β.

Case 2.2. r2 ≤ S 2 < S 1 + 1 < 1 + β.
Consequently, in this case, algorithm H restarts job J1 at time S 2. In the following we discuss the

scenarios according to the value of S 2.
Case 2.2.1. S 2 ≥ (1 + β)2 − 1.

If S 2 ≥ (1 + β)2 − 1, then no jobs appear subsequently because algorithm H restarts job J1 too late.
Hence, we have WCon = w2C2 = w2(S 2+p2) ≥ 2(1+β)2, and as mentioned above, WCopt ≤ 2(S 1+ε+1).
This implies that

WCon

WCopt
≥

2(1 + β)2

2(S 1 + ε + 1)
>

(1 + β)2

1 + β
= 1 + β, ε→ 0+.

Case 2.2.2. r2 ≤ S 2 < (1 + β)2 − 1.
If r2 ≤ S 2 < (1 + β)2 − 1, then job J3 with w3 = 4 arrives at time S 2 + ε. Job J3 cannot start to be

processed until job J2 is completed, since all jobs are allowed to be restarted only once. Assume that
the starting time of job J3 under algorithm H is S 3, then S 3 = S 2 + 1 and WCon = w3C3 = 4(S 2 + 2).
Note that the optimal schedule will process these jobs on the machine in the order of J3, J2, J1, then by
comparison, we can obtain WCopt = 4(S 2 + ε + 1). Hence,

WCon

WCopt
=

4(S 2 + 2)
4(S 2 + ε + 1)

→ 1 +
1

S 2 + 1
> 1 +

1
(1 + β)2 = 1 + β, when ε→ 0+.

This completes the proof of Theorem 2.

3.2. An online algorithm

In this subsection, we will present an online algorithm for problem
1|r j, online, p j = 1, 1-restart|WCmax and analyze its competitive ratio.

In the present moment t, we use U(t) to denote the set of jobs that have arrived but not yet been
processed. Furthermore, if U(t) , ∅, we find the job with the largest weight in U(t) and denote
it as job Jk, i.e., wk = max{w j : J j ∈ U(t)}. The following algorithm A is provided to solve
problem 1|r j, online, p j = 1, 1-restart|WCmax.
AlgorithmA
Step 1. Set t := β and the machine is idle in [0, β).
Step 2. At time t, if U(t) , ∅ and the machine is idle, then schedule job Jk non-preemptively on the
machine. Otherwise, go to Step 4.
Step 3. In the time interval (t, t + 1), if no jobs arrive, then set t := t + 1 and go to Step 2. Otherwise,
let F be the set of all jobs arrive in the time interval (t, t + 1), i.e., F = {J j | t < r j < t + 1}, then we
write rmin = min{r j | J j ∈ F } and do the following:
Step 3.1. If rmin > (1 + β)2 − 1, reset t := t + 1, go to Step 2.
Step 3.2. If rmin ≤ (1 + β)2 − 1, let F̃ = {J j | t < r j ≤ (1 + β)2 − 1}. If there exists some jobs J j in F̃
satisfying the condition w j > (1 + β)wk, then find the job with the largest weight from these jobs and
schedule it at time (1 + β)2 − 1, then go to Step 3. Otherwise, continue to process the job Jk until it is
completed, reset t := t + 1 and go to Step 2.

AIMS Mathematics Volume 9, Issue 1, 2518–2529.

2524

Step 4. If there are still some jobs arriving, set t be the earliest arrival time of these jobs, go to Step 2.
Otherwise, do nothing but wait.

From AlgorithmA, we have the following observations.
Observation 1. If job i is restarted and job i + 1 is processed at time (1 + β)2 − 1, then we write the job
that is processed immediately after job i + 1 as job i + 2. If the arrival time of job i + 2 is less than β,
then job i + 2 is job i. Otherwise, the arrival time of job i + 2 is greater than β.
Observation 2. If the starting time of job i satisfies that S i < (1 + β)2 − 1, then we have S i ≤ ri + β.
Theorem 3. For problem 1|r j, online, p j = 1, 1-restart|WCmax, algorithmA is the best possible online
algorithm with the competitive ratio of 1 + β.
Proof. Let σ be the schedule obtained by algorithm A, S j(σ) and C j(σ) be the starting time and the
completion time of job J j, respectively. Denote the offline optimal schedule as π, and we can use WCon

and WCopt to represent the objective function values of schedule σ and π, respectively.
For each j = 1, · · · , n, we assume that Jσ[j] is the j-th completed job in schedule σ. Moreover, in

the following proof, we can suppose that Jσ[k] is the critical job that assumes the objective value of
schedule σ. That is,

WCmax(σ) = max{w jC j(σ) : j = 1, · · · , n} = wσ[k]Cσ[k](σ).

In schedule σ, let job Jσ[i] with 1 ≤ i ≤ k be the job with the smallest index such that
jobs Jσ[i], · · · , Jσ[k] are processed consecutively. Similarly, let S σ[i](σ) be the starting time of job
Jσ[i], then we have Cσ[k](σ) = S σ[i](σ) +

∑k
j=i pσ[j]. In the following, we distinguish two cases in

our discussion.
Case 1. wσ[k] = min{wσ[j] : i ≤ j ≤ k}.

In this case, we assume that job Jσ[x] with i ≤ x ≤ k is the final completed job among Jσ[i], · · · , Jσ[k]

in an optimal schedule π. Hence, we have Cσ[x](π) ≥
∑k

j=i pσ[j], then WCopt ≥ wσ[x]Cσ[x](π) ≥
wσ[k]

∑k
j=i pσ[j]. Since WCon = wσ[k]Cσ[k](σ) = wσ[k](S σ[i](σ)+

∑k
j=i pσ[j]), we can prove the competitive

ratio of algorithm A by discussing the value of S σ[i] in the subcases. From algorithm A, we have
S σ[i](σ) ≥ β.
Case 1.1. S σ[i](σ) = β.

Note that S σ[i](σ) = β holds if and only if job Jσ[i] arrives at and before time β, i.e., 0 ≤ rσ[i] ≤ β,
then we have

WCopt ≥ wσ[i]Cσ[i](π) ≥ wσ[i](rσ[i] + 1) ≥ wσ[k],

thus,

WCon = wσ[k]Cσ[k](σ) = wσ[k](S σ[i](σ) +

k∑
j=i

pσ[j]) = wσ[k](β +

k∑
j=i

pσ[j]) ≤ (1 + β)WCopt.

Case 1.2. S σ[i](σ) = (1 + β)2 − 1.
There are two possible reasons for S σ[i](σ) = (1 + β)2 − 1: One in which a restart occurs at time

(1 + β)2 − 1 and the other in which there is no restart occurance and the arrival time of job Jσ[i] is
(1 + β)2 − 1.
Case 1.2.1. A restart occurs at time S σ[i](σ).

We can assume that job Jσ[h] is the one that being processed when job Jσ[i] arrives, and it is easy
to find that rσ[i] > β. By algorithm A, we conclude that the restart occurs when condition wσ[i] >

AIMS Mathematics Volume 9, Issue 1, 2518–2529.

2525

wσ[h](1 + β) holds. In this case, we have

WCon = wσ[k]Cσ[k](σ) = wσ[k](S σ[i](σ) +

k∑
j=i

pσ[j]) = wσ[k]((1 + β)2 − 1 +

k∑
j=i

pσ[j]),

then we estimate the optimal objective function value WCopt.
If |{Jσ[j] : i ≤ j ≤ k}| = 2 and h ∈ {i + 1, · · · , k}, then we have h = i + 1 = k and wσ[h] = wσ[k]. In an

optimal schedule π, if job Jσ[k] is scheduled before job Jσ[i], we can conclude that

WCopt ≥ wσ[i](rσ[k] + 2) > 2wσ[h](1 + β) = 2wσ[k](1 + β) > wσ[k](2 + β).

If job Jσ[i] is scheduled before job Jσ[k], then we have

WCopt ≥ wσ[k](rσ[i] + 2) > wσ[k](2 + β).

All in all, we can find that WCopt > wσ[k](2 + β), then

WCon = wσ[k]((1 + β)2 − 1 +

k∑
j=i

pσ[j]) = wσ[k](β(β + 2) +

k∑
j=i

pσ[j]) ≤ (1 + β)WCopt.

If |{Jσ[j] : i ≤ j ≤ k}| = 2 and h < {i + 1, · · · , k}, then by Observation 1, job Jσ[i] and job Jσ[k] arrive
after time β. Thus, we can obtain WCopt ≥ wσ[x]Cσ[x](π) ≥ wσ[k](β +

∑k
j=i pσ[j]) = wσ[k](β + 2), then

WCon = wσ[k]((1 + β)2 − 1 +

k∑
j=i

pσ[j]) = wσ[k](β(β + 2) +

k∑
j=i

pσ[j]) ≤ (1 + β)WCopt.

If |{Jσ[j] : i ≤ j ≤ k}| ≥ 3, i.e., the number of jobs in {Jσ[i], · · · , Jσ[k]} is at least 3 and wσ[j] ≥ wσ[k]

holds for each i ≤ j ≤ k, then we can obtain that WCopt ≥ 3wσ[k] > wσ[k](2 + β); thus,

WCon = wσ[k]((1 + β)2 − 1 +

k∑
j=i

pσ[j]) = wσ[k](β(β + 2) +

k∑
j=i

pσ[j]) ≤ (1 + β)WCopt.

Case 1.2.2. No restart occurs at time S σ[i](σ).
If no restart occurs at time S σ[i](σ), which indicates that S σ[i](σ) = rσ[i], then it can be seen that

job Jσ[i] is the first job that arrives among Jσ[i], · · · , Jσ[k]. Therefore,

WCopt ≥ wσ[x]Cσ[x](π) ≥ wσ[k](rσ[i] +

k∑
j=i

pσ[j]) = wσ[k](S σ[i](σ) +

k∑
j=i

pσ[j]) = WCon.

In this case, schedule σ is obviously the optimal schedule.
Case 1.3. S σ[i](σ) > (1 + β)2 − 1 or β < S σ[i](σ) < (1 + β)2 − 1.

In either situation, we have S σ[i](σ) = rσ[i]. Similar to Case 1.2.2, we can deduce that σ is indeed
the optimal schedule.
Case 2. wσ[k] > min{wσ[j] : i ≤ j ≤ k}.

AIMS Mathematics Volume 9, Issue 1, 2518–2529.

2526

In this case, we suppose that job Jσ[y] with i ≤ y ≤ k is the last one such that wσ[y] < wσ[k]. From the
definition of Jσ[y], we have wσ[j] ≥ wσ[k] > wσ[y] for each j = y + 1, · · · , k. By algorithm A, job Jσ[y]

is picked out and processed at time S σ[y](σ), then job Jσ[y] must have the largest weight in U(t), where
t = S σ[y](σ). Furthermore, since wσ[j] ≥ wσ[k] > wσ[y], then we have rσ[j] > S σ[y](σ) ≥ β. Otherwise,
job Jσ[y] will be processed after job Jσ[j] for each j = y + 1, · · · , k. We assume that job Jσ[z] with
y + 1 ≤ z ≤ k is the last finished job among Jσ[y+1], · · · , Jσ[k] in an optimal schedule π, then we have
Cσ[z](π) ≥ S σ[y](σ) +

∑k
j=y+1 pσ[j] and

WCopt ≥ wσ[z]Cσ[z](π) ≥ wσ[k](S σ[y](σ) +

k∑
j=y+1

pσ[j]).

If S σ[y](σ) ≥ (1 + β)2 − 1 or at least one job from set {Jσ[j] : j = y + 1, · · · , k} has an arrival time of
greater than or equal to (1 + β)2 − 1, we can estimate that

WCopt ≥ wσ[k]Cσ[k](π) ≥ wσ[k](rσ[k] + 1) > wσ[k](S σ[y](σ) + 1) ≥ wσ[k](1 + β)2.

As a result, the objective value of schedule σ satisfies

WCon = wσ[k]Cσ[k](σ) = wσ[k](S σ[y](σ) + pσ[y] +
∑k

j=y+1 pσ[j])
= wσ[k](S σ[y](σ) +

∑k
j=y+1 pσ[j] + β(1 + β)2) ≤ (1 + β)WCopt.

So, we only need to consider the case that S σ[y](σ) < (1 + β)2 − 1 and the arrival time of all jobs in set
{Jσ[j] : j = y+1, · · · , k} is less than (1+β)2−1. In this case, we can deduce that no restart occurs at time
(1+β)2−1 and the condition wσ[j] > (1+β)wσ[y] in algorithmA is not satisfied, i.e., wσ[j] ≤ (1+β)wσ[y]

for each j = y + 1, · · · , k. Let Γ = {J j : wσ[j] > wσ[y], j = y + 1, · · · , k}, and we have the following two
cases.
Case 2.1. Γ = {Jσ[k]}.

If Γ = {Jσ[k]}, then we have WCon = wσ[k](S σ[y] + 2).
When job Jσ[y] is scheduled before job Jσ[k] in an optimal schedule π, we have WCopt ≥

wσ[k](rσ[y] + 2). If rσ[y] = S σ[y](σ), it is clear that σ is the optimal schedule. If rσ[y] , S σ[y](σ),
because S σ[y](σ) < (1 + β)2 − 1, then from Observation 2 we have S σ[y](σ) ≤ rσ[y] + β. Thus,

WCon

WCopt
≤

S σ[y](σ) + 2
rσ[y] + 2

≤
rσ[y] + β + 2

rσ[y] + 2
≤ 1 +

β

rσ[y] + 2
< 1 + β.

When job Jσ[k] is scheduled before job Jσ[y] in an optimal schedule π, we have WCopt ≥

wσ[y](rσ[k] + 2). Note that rσ[k] > S σ[y](σ) and wσ[k] ≤ (1 + β)wσ[y], then we have

WCon

WCopt
≤

wσ[k](S σ[y](σ) + 2)
wσ[y](rσ[k] + 2)

< 1 + β.

Case 2.2. Γ , {Jσ[k]}.
If Γ , {Jσ[k]}, in this situation, there exists at least one job that satisfies wσ[j] ≥ wσ[k] for each

j = y + 1, · · · , k − 1. Moreover, at least two jobs have arrival times that are larger than β, so we have

WCopt ≥ wσ[k](β + 2)⇒ βWCopt ≥ wσ[k],

AIMS Mathematics Volume 9, Issue 1, 2518–2529.

2527

and

WCon = wσ[k]Cσ[k](σ) = wσ[k](S σ[y](σ) + pσ[y] +

k∑
j=y+1

pσ[j]) ≤ (1 + β)WCopt.

From the above discussion, we complete the proof of Theorem 3.
Next, we present a numerical example to demonstrate the working of Algorithm A. The details of

this example can be found in Table 1.

Table 1. Example for problem 1|r j, online, p j = 1, 1-restart|WCmax.

Jobs (J j) J1 J2 J3

Release time (r j) 0 1 3
Weights (w j) 6 10 20

Note that algorithmAwill process job J1 at time β. When job J1 is being processed, job J2 arrives at
time 1 and w2 > (1+β)w1, then job J2 will interrupt the processing of job J1 and starts at time (1+β)2−1.
Thus, job J1 will become a restarted job. After the completion of job J2, the machine is idle and only job
J1 is currently available, so algorithmA will process job J1 at time (1 + β)2, and process job J3 at time
(1 +β)2 + 1. We then deduce that the objective value of algorithmA is w3C3 = 20× [(1 +β)2 + 2] ≈ 83.
The optimal schedule is to process job J1 at time 0, then process job J2 and job J3 in turn. Thus, the
optimal objective value is w3(r3 + 1) = 20 × 4 = 80, and the competitive ratio is 83

80 ≈ 1.0375 < 1 + β.

4. Conclusions

In this paper, we have shown that allowing all jobs to be restarted only once will not improve
the competitive ratio of problem 1|r j, online|WCmax. However, when all jobs are of equal length,
the competitive ratio can be revised from 1+

√
5

2 ≈ 1.618 to 1 + β ≈ 1.4656 by using “1-restart”. In
subsequent investigations, the problem with “k-restart”(k ≥ 2) and the jobs with the same processing
time is still open. As proposed by Fu et al. [8] and Nouinou et al. [15], the same problem with “limited
restart” or “semi-online” is worthy of further research. It is also interesting to consider the online
scheduling problem with other kinds of objectives.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

We are grateful to the editor and three anonymous reviewers for their constructive comments and
helpful suggestions.

This work was supported by the National Natural Science Foundation of China under Grant
Numbers 12271491 and 11971443.

AIMS Mathematics Volume 9, Issue 1, 2518–2529.

2528

Conflict of interest

The authors declare that they have no competing interests.

References

1. M. V. D. Akker, H. Hoogeveen, N. Vakhania, Restarts can help in the on-line minimization
of the maximum delivery time on a single machine, J. Scheduling, 3 (2000), 333–341.
https://doi.org/10.1002/1099-1425(200011/12)3:6<333::AID-JOS53>3.0.CO;2-8

2. H. Hoogeveen, C. N. Potts, G. J. Woeginger, On-line scheduling on a single machine: Maximizing
the number of early jobs, Oper. Res. Lett., 27 (2000), 193–197. https://doi.org/10.1016/S0167-
6377(00)00061-4

3. R. Y. Fu, J. Tian, J. J. Yuan, C. He, On-line scheduling on a batch machine
to minimize makespan with limited restarts, Oper. Res. Lett., 36 (2008), 255–258.
https://doi.org/10.1016/j.orl.2007.07.001

4. H. L. Liu, J. J. Yuan, Online scheduling of equal length jobs on a bounded parallel
batch machine with restart or limited restart, Theor. Comput. Sci., 543 (2014), 24–36.
https://doi.org/10.1016/j.tcs.2014.05.021

5. H. L. Liu, X. W. Lu, Online scheduling on a parallel batch machine with delivery times and
limited restarts, J. Oper. Res. Soc. China, 10 (2022), 113–131. https://doi.org/10.1007/s40305-
021-00356-7

6. R. Y. Fu, T. Ji, J. J. Yuan, Y. X. Lin, Online scheduling in a parallel batch processing
system to minimize makespan using restarts, Theor. Comput. Sci., 374 (2007), 196–202.
https://doi.org/10.1016/j.tcs.2006.12.040

7. J. J. Yuan, R. Y. Fu, C. T. Ng, T. C. E. Cheng, A best online algorithm for unbounded
parallel-batch scheduling with restarts to minimize makespan, J. Scheduling, 14 (2011), 361–369.
https://doi.org/10.1007/s10951-010-0172-2

8. R. Y. Fu, T. C. E. Cheng, C. T. Ng, J. J. Yuan, Online scheduling on two parallel-batching machines
with limited restarts to minimize the makespan, Inform. Process. Lett., 110 (2010), 444–450.
https://doi.org/10.1016/j.ipl.2010.04.008

9. J. Tian, R. Y. Fu, J. J. Yuan, Online over time scheduling on parallel-batch machines: A survey, J.
Oper. Res. Soc. China, 2 (2014), 445–454. https://doi.org/10.1007/s40305-014-0060-0

10. W. J. Li, A best possible online algorithm for the parallel-machine scheduling to minimize
the maximum weighted completion time, Asia-Pac. J. Oper. Res., 32 (2015), 1550030.
https://doi.org/10.1142/S021759591550030X

11. X. Chai, L. F. Lu, W. H. Li, L. Q. Zhang, Best-possible online algorithms for single machine
scheduling to minimize the maximum weighted completion time, Asia-Pac. J. Oper. Res., 35
(2018), 1850048. https://doi.org/10.1142/S0217595918500483

12. L. F. Lu, L. Q. Zhang, J. W. Ou, Single machine scheduling with rejection to minimize the weighted
makespan, In: Algorithmic Aspects in Information and Management, AAIM 2021, Lecture Notes
in Computer Science, Springer, Cham, 13153 (2021), 96–110. https://doi.org/10.1007/978-3-030-
93176-6 9

AIMS Mathematics Volume 9, Issue 1, 2518–2529.

http://dx.doi.org/https://doi.org/10.1002/1099-1425(200011/12)3:6$<$333::AID-JOS53$>$3.0.CO;2-8
http://dx.doi.org/https://doi.org/10.1016/S0167-6377(00)00061-4
http://dx.doi.org/https://doi.org/10.1016/S0167-6377(00)00061-4
http://dx.doi.org/https://doi.org/10.1016/j.orl.2007.07.001
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2014.05.021
http://dx.doi.org/ https://doi.org/10.1007/s40305-021-00356-7
http://dx.doi.org/ https://doi.org/10.1007/s40305-021-00356-7
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2006.12.040
http://dx.doi.org/ https://doi.org/10.1007/s10951-010-0172-2
http://dx.doi.org/ https://doi.org/10.1007/s10951-010-0172-2
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2010.04.008
http://dx.doi.org/https://doi.org/10.1007/s40305-014-0060-0
http://dx.doi.org/https://doi.org/10.1142/S021759591550030X
http://dx.doi.org/https://doi.org/10.1142/S0217595918500483
http://dx.doi.org/https://doi.org/10.1007/978-3-030-93176-6_9
http://dx.doi.org/https://doi.org/10.1007/978-3-030-93176-6_9

2529

13. W. H. Li, X. Chai, Online scheduling on bounded batch machines to minimize the
maximum weighted completion time, J. Oper. Res. Soc. China, 6 (2018), 455–465.
https://doi.org/10.1007/s40305-017-0179-X

14. R. Q. Sun, On the parameterized tractability of single machine scheduling with rejection
to minimize the weighted makespan, In: Theoretical Computer Science, NCTCS 2022,
Communications in Computer and Information Science, Springer, Singapore, 1693 (2022), 236–
247. https://doi.org/10.1007/978-981-19-8152-4 17

15. H. Nouinou, T. Arbaoui, A. Yalaoui, Minimising total weighted completion time for semi-online
single machine scheduling with known arrivals and bounded processing times, Int. J. Prod. Res.,
2023, 1–14. https://doi.org/10.1080/00207543.2023.2217294

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 1, 2518–2529.

http://dx.doi.org/https://doi.org/10.1007/s40305-017-0179-X
http://dx.doi.org/https://doi.org/10.1007/978-981-19-8152-4_17
http://dx.doi.org/ https://doi.org/10.1080/00207543.2023.2217294
http://creativecommons.org/licenses/by/4.0

	Introduction
	The general case with the arbitrary processing times
	A special case with the same processing time
	The lower bound
	An online algorithm

	Conclusions

