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Abstract: Frequent natural disasters challenge relief network efficiency. This paper introduces
a stochastic relief network with limited path capacity, develops an equilibrium model based on
cumulative prospect theory, and formulates it as a stochastic variational inequality problem to enhance
emergency response and resource allocation efficiency. Using the NCP function, Lagrange function,
and random variables, the model dynamically monitors disasters, enabling rational resource allocation
for quick decision-making. Compared to traditional methods, our model significantly improves
resource scheduling and reduces disaster response costs. Through a random network example, we
validate the model’s effectiveness in aiding intelligent decision-making for relief plans and resource
allocation optimization.
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1. Introduction

Disaster relief is a series of emergency response measures in emergency situations such as natural
disasters. Usually, we need to deploy materials and personnel to the affected area under a limited
cost budget to minimize the damage and casualties caused by disasters. Therefore, this paper studies
an emergency and disaster relief network equilibrium problem with limited path capacity, and takes
minimizing the disaster relief process cost as the optimization goal. Figuratively speaking, it means
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that the total traffic demand on a given network is allocated to the network according to certain
rules. Many scholars have studied this problem [1, 2]. Especially after the user equilibrium principle
was proposed by Wardrop [3], people have obtained rich and perfect theoretical research results and
many successful practical applications for the deterministic traffic allocation problem [4]; but, the
theoretical research on the equilibrium traffic allocation problem with randomness is not enough. In
one such study [5–9], Gwinner and Raciti presented a category of stochastic variational inequalities
involving linear relationships within random sets [7], providing insights into testability, uniqueness,
existence, and procedure under Banach space conditions. Additionally, they presented approximate
solutions for these problems. Another research paper [8], employs the theory of stochastic variational
inequalities to address a particular category of linear stochastic equilibrium problems within network
environments, while [9] addresses nonlinear stochastic traffic equilibrium problems and proposes an
approximation process based on averaging and truncation, ensuring norm convergence; Nagurney et
al. [10] developed a disaster relief network model incorporating mean-square error, stochastic link
costs, and a time target for delivering disaster relief materials to demand points in the presence
of demand uncertainty. In the research conducted by Maugeri et al. [11], they investigated the
general infinite-dimensional complementarity problem. They developed a novel model based on
infinite-dimensional Lagrange theory, established optimality conditions, and simplified the problem
by formulating it as a suitable system of equations and inequalities. It is noteworthy that stochastic
methods have significantly enhanced important financial and economic models. For instance, weighted
traffic equilibrium problems [12], oligopolistic market equilibrium problems [13], financial equilibrium
problems [14], Walras equilibrium problems [15], Internet problems [16], and power supply chain
problems [17] have all benefited from the application of stochastic methods.

So, in this paper, we study the randomness of natural disasters, and transform the stochastic
equilibrium flow distribution model into a stochastic variational inequality model under certain
constraints. However, the prediction error can vary between different models, so we need to find
the optimal prediction model. Hence, this paper introduces the Expected Residual Minimization
model (ERM). In terms of the existence and convergence of solutions, it is worth noting that Ceng et al.
introduced the concepts of lower semi-continuity and pseudo-monotonicity in [18, 19] and established
the solvability of vector mixed variational inequalities and related vector-like variational inequalities
by using Brouwer’s fixed point theorem. In [20, 21], the KKM-Fan lemma and Nadler’s result are
used to derive the solvability of pseudo-monotone generalized vector variational inequalities and
generalized implicit vector equilibrium problems. Finally, the convergence of an algorithm for solving
a class of mixed variational inequalities based on the auxiliary problem principle is given in [22].
The fundamental concept behind ERM is to discover the optimal prediction model by minimizing the
disparity between the observed value and the predicted value. In this way, we can also quickly make
the best decisions in uncertain situations, improve rescue efficiency, and reduce losses. Specifically, in
the random rescue model, we need to predict the value of some variables (such as resource demand,
personnel scheduling, task completion time, etc.) in order to optimize the rescue work plan. In order
to achieve this goal, some predictive models (such as polynomial regression, neural networks, etc.) are
often used to make predictions. However, different models may have different prediction errors, so we
need to find the best model to make predictions.

In summary, this paper makes significant contributions in the following key areas: (1) Model
Transformation: This paper innovatively transforms the stochastic network equilibrium model into
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a stochastic variational inequality problem. In contrast to existing approaches, the proposed method
incorporates a novel algorithm specifically designed to address uncertain constraints; (2) Existence of
Solutions: The paper enhances existing results by providing additional insights into the existence of
solutions. Leveraging the KKM theorem and a variation of Brouwer’s fixed point theorem, this study
establishes the existence and convergence of solutions; (3) Computational Feasibility: To demonstrate
the practical applicability of the proposed model, this paper employs the classical Sample Average
Approximation (SAA) method for solving the problem. This not only showcases the feasibility of the
model, but also highlights its potential for disaster relief implementation.

The organization of this paper is outlined as follows: In the second part, the stochastic disaster
relief traffic flow equilibrium model is introduced in detail, the equilibrium conditions of stochastic
generalization are proposed, and the variational characteristics of the equilibrium are given. In the
third part, in a Hausdroff topological vector space, combing the conditions of lower semi-continuity
and pseudo-monotonicity, the existence of the optimal solution to the random variational inequality has
been proved through a variant of the KKM theorem and Brouwer’s fixed point theorem; considering the
existence of random variables in normed linear space, the deterministic expected residual minimization
model (ERM) is established by introducing the Lagrange function and the NCP function, and the Quasi-
Monte Carlo method is used to solve the stochastic variational inequality problem and analyze its
convergence. In the fourth part, a numerical example is given to verify the feasibility and effectiveness
of the model. Finally, in the fifth part, we summarize our research results and look forward to the future
work.

2. The model

For the convenience of the readers, we provide a detailed introduction to the disaster relief
equilibrium model. The network comprises three key variables: O, A, and W. Under such a
background, O is defined as the collection of disaster-affected nodes, denoted as O = (O1,O2, . . . ,Op),
A represents the set of directed routes connecting the affected pairs, expressed as A = (A1, A2, . . . , An),
and W is a collection of rescue center-disaster site pairs (C/D), represented as W = w1,w2, . . . ,wl ⊂

O×O. The flow on each route Ai is denoted as Xi, and we establish the vector X as X = (X1, . . . , Xn). A
road is a sequence of consecutive routes, and we assume that each of the rescue center-disaster-affected
area pairs is connected by at least r j ≥ 1 paths, and the set of paths connecting them is denoted by R j,
where j = 1, . . . ,m. All roads in the network can be organized into a vector denoted as (R1, . . . ,Rm).
The structure of routes associated with these roads is represented using an route-road incidence matrix
denoted as 4 = {δir}, for i = 1, . . . , n and r = 1, . . . , l, and, taking into account some road damage, the
value is 1 when the disaster point can be reached through this section, and if this section cannot reach
the disaster point, the value is 0. Each road Rr corresponds to a flow xr, and these flows are collectively
grouped into a vector referred to as the road flow vector (x1, . . . , xm). The flow denoted as fi along
route Ai is equivalent to the cumulative flow across roads that incorporate the route Ai, and therefore
Xi = ∆xi. Now we propose the cost of the rescue si ≥ 0 associated with Ai, considering that, in practical
problems, this function is assumed to be continuous, bounded and convex in the domain. Therefore, the
vector s(X) = (s1(X), . . . , sn(X)) can be employed to denote the expenses associated with arcs within
the network. Typically, S r(X) =

∑i=1
n δir si(X) or S (x) = ∆T s(∆x). Rather than making assumptions

about paths with infinite capacity, we assume that the existence of two road rescue capacity vectors
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a, b where a ≤ b, such that
0 ≤ a ≤ x ≤ b.

Each pair denoted as w j is associated with a known random material demand Q j ≥ 0, which
collectively forms the demand vector (Q1, . . . ,Qm). Specifically, this entails that the demand Q j

satisfies the conservation law, and
m∑

r=1

ϕ jr xr = Q j j = 1, . . . ,m.

Here we define the pair-incidence matrix Φ := (ϕ jr), j = 1, . . . ,m, r = 1, . . . , l. The elements ϕ jr

assume a value of 1 when the road Rr connects the pair ω j, and 0 otherwise.
So, based on the above, we can now provide the following equilibrium definition:

Definition 1. [23] A distribution x ∈ K is considered an equilibrium distribution from the user’s
perspective if and only if it meets the following conditions:

〈S (x), y − x〉 ≥ 0 (2.1)

where K = {x ∈ L2(Ω, P,Rm) : a ≤ x ≤ b,Φx = Q}.

It is crucial to bear in mind that equilibrium distributions can be described through variational
inequalities.

However, given the suddenness and uncertainty of disasters, and in order to better simulate the
problem, this article considers the following problem of stochastic variational inequalities, denoted as
SVIP (S ,Kp): Determine a vector x ∈ Kp such that, P-a.s.

〈S (x(ω)), y(ω) − x(ω)〉 ≥ 0. (2.2)

Then, the random feasible set is defined by the following equation and P-a.s.

KP = {x(ω) ∈ L2(Ω, P,Rn) : a(ω) ≤ x(ω) ≤ b(ω),Φx(ω) = Q} (2.3)

where Ω represents the fundamental sample space, which is a finite space. The mapping S :
Rn × Ω → Rm, and “P-a.s.” stands for almost surely under the specified probability measure.
Model (2.2) is evidently an expansion of the random complementarity problems previously investigated
in references [8, 9, 23–26]. Without loss of generality, we limit the background of the problem to a
Banach space, so we make the assumption that x(ω) ∈ L2(Ω, P,Rn), Q(ω) ∈ L2(Ω, P,Rm), and the
stochastic expenditure function S (x(ω)) : (Ω, P,Rn) → (Ω, P,Rn). In this context, (Ω, P,Rn) denotes
the set of functions that map from the probability space Ω to Rm, and these functions are required
to be Lebesgue integrable under the probability measure. Moreover, the symbol 〈·, ·〉 is employed to
represent the standard inner product in Rm.

Definition 2. [24] The distribution x ∈ KP is regarded as an equilibrium distribution, if and only if it
is for any w j ∈ W,∀Rq,RS ∈ R j and

S q(x(ω)) < S s(x(ω))⇒ xq(ω) = bq(ω) or xs(ω) = as(ω), P − a.s.

Then we have for each w j ∈ W, there exists a variable S j(ω) such that for any Rr ∈ < j and P-a.s.

S r(x(ω)) < S j(ω)⇒ xr(ω) = br(ω),∀r ∈ R−j ,

S r(x(ω)) > S j(ω)⇒ xr(ω) = ar(ω),∀r ∈ R+
j .
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3. Analysis of the existence and convergence

There are two standard ways to determine the existence of optimal disaster relief decisions, with
and without the monotonic requirement. We will use the following definition.

Definition 3. [25] Assuming that E is a linear space, X is a nonempty subset of E, and G : X → 2E is
a set value mapping, then G is called a KKM mapping if for any finite set x1, . . . , xn, there is

con{x1, . . . , xn} ⊂ ∪
n
i=1G(xi).

Here “con”stands for convex hull.

Definition 4. [27] Consider X and Y as Hausdorff spaces, and let T be a set-valued mapping from X
to Y, x0 ∈ X, if for any y0 ∈ Tx0 and any y0 neighborhood Ny0 there is a neighborhood Nx0 of x0 such
that, for any x0 ∈ Nx0 , T (x)

⋂
N(y0) , ∅. Then, T is said to be lower semi-continuous at x0. If for any

y ∈ X, T is the lower semi-continuous function limited to line segment [x0, y], then T is said to be the
lower semi-continuous function along the segment.

Theorem 1. [26] KKM Theorem: Let X be a Hausdorff space, and consider K as a nonempty subset
of X, and T a set-valued mapping from X to Y such that for every x ∈ K T (x) is a closed subset in X,
and there is

con{x1, x2, . . . , xn} ⊂ ∪
n
i=1T (xi).

For every finite subset in K, if there is x0 ∈ K such that T (x0) is compact, then there is ∩
y∈KP

T (xi) , ∅.

Theorem 2. If S : L2(Ω, P,Rn) → L2(Ω, P,Rn) is a set-valued mapping and pseudo-monotonic for all
x, y ∈ KP, and

〈S (y(ω)), y(ω) − x(ω)〉 ≥ 0⇒ S (x(ω)), y(ω) − x(ω)〉 ≥ 0, P − a.s.

If every pair of points x, y ∈ KP on the line segment [x, y] exhibits lower semi-continuity, then a
feasible solution exists for the variational inequality (2.2).

Proof of Theorem 2. ∀y ∈ KP, ω ∈ Ω, define the mapping F,G : L2(Ω, P,Rn)→ L2(Ω, P,Rn)

F(y(ω)) = {x ∈ KP}|〈S (x(ω)), y(ω) − x(ω)〉 ≥ 0},
G(y(ω)) = {x ∈ KP}|〈S (y(ω)), y(ω) − x(ω)〉 ≥ 0}

Second, ∀y ∈ KP, ω ∈ Ω, define a mapping,

H(y(ω)) = {x ∈ KP}|〈S (x(ω)), y(ω) − x(ω)〉 ≥ 0}.

Obviously, x ∈ ∩
y∈KP

F(y(ω)) is true. In that case, x complies with the variational inequality, and

F(y(ω)) ⊆ H(y(ω)).
Step 1. Verifing that H is a KKM mapping.
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Let x̄ =
∑m

j=1 λ jy j ≥ 0,
∑m

j=1 λ j = 1, 1 ≤ j ≤ m, if x̄ < ∪m
j=1H(y j(ω)), ∀ j = 1, . . . ,m, and for

S (x̄(ω)) we have 〈S (x̄(ω)), y j(ω) − x̄(ω)〉 < 0. Furthermore, ∃λ j > 0 such that

λ1〈S (x̄(ω)), y1(ω) − x̄(ω)〉 = 〈S (x̄(ω)), λ1y1(ω) − λ1 x̄(ω)〉 < 0
...

λm〈S (x̄(ω)), ym(ω) − x̄(ω)〉 = 〈S (x̄(ω)), λmym(ω) − λm x̄(ω)〉 < 0.

Then, summing the m equations and
∑m

j=1 λ j = 1, we obtain

〈S (x̄(ω)),
m∑

j=1

y j(ω) −
m∑

j=1

x̄(ω)〉 = 〈S (x̄(ω)), x̄(ω) − x̄(ω)〉 = 0.

Contradictorily, x̄ < ∪m
j=1H(y j(ω)). So, x̄ ∈ ∪m

j=1H(y j(ω)),∀ j = 1, . . . ,m, and therefore H is a KKM
mapping. Similiary, G is a KKM mapping.
Step 2. Next we prove ∩

y∈KP
G(y(ω)) ⊆ ∩

y∈KP
F(y(ω)).

If x0 ∈ ∩
y∈KP

G(y(ω)), then we have 〈S (y(ω)), y(ω) − x0(ω)〉 ≥ 0. Assuming x0 < ∩
y∈KP

F(y(ω)), then

there exists x0 ∈ KP such that 〈S (x0(ω)), y(ω) − x0(ω)〉 < 0. Furthermore, due to C being pseudo-
monotonic, there exists yt0 ∈ KP, and we have

〈S (x0(ω)), yt0(ω) − x0(ω)〉 < 0⇒ 〈S (yt0(ω)), y(ω) − x0(ω)〉 < 0.

So, we have 〈S (yt0(ω)), yt0(ω) − x0(ω)〉 < 0, which contradicts with x0 ∈ ∩
y∈KP

G(y(ω)), and then

∩
y∈KP

G(y(ω)) ⊆ ∩
y∈KP

F(y(ω)) exist.

Otherwise, F(y(ω)) ⊆ H(y(ω)),H(y(ω)) ⊆ G(y(ω)) ⇒ F(y(ω)) ⊆ G(y(ω)), and we can obtain
∩

y∈KP
G(y(ω)) = ∩

y∈KP
F(y(ω)).

Step 3. Prove that ∀y ∈ KP,G(y(ω)) is a compact subset.
∀y ∈ KP, suppose {xk} ⊆ G(y(ω)) and {xk} converges to a point x̄ in set KP. For all k, and we have

〈S (y(ω)), y(ω) − xk(ω)〉 ≥ 0. Furthermore, {xk} converges to x̄, and we have

〈S (y(ω)), y(ω) − xk(ω)〉 → 〈S (y(ω)), y(ω) − x̄(ω)〉.

Therefore, we conclude that 〈S (y(ω)), y(ω) − x̄(ω)〉 ≥ 0, therefore x̄ ∈ G(y(ω)).
Step 4. From Step 3, it can be concluded that, ∀y ∈ KP,G(y(ω) is a compact subset. According to
Step 2 and Definition 3.1, it is known that

∩
y∈KP

G(y(ω)) , ∅.

Furthermore, it is known that
∩

y∈KP
F(y(ω)) , ∅.

Hence, there exists x̄ ∈ KP such that, for any x̄∗ ∈ Cx̄,

〈S (x̄(ω)), y(ω) − x̄(ω)〉 ≥ 0,∀y ∈ KP.

Absolutely, the conclusion is established, and the stochastic variational inequality has a solution. Now
we show that the solution can converge to a saddle point. �
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Definition 5. [24] Consider the set at x∗ ∈ KP

T (x∗) = {αd|α > 0, αd = lim
k→∞

ζk(xk − x∗), xk → x∗, xk , x∗}.

Call this set the tangent cone at x∗.

we can then deduce the following conclusions.

Theorem 3. If x∗ ∈ KP is the optimal solution to problem (2.2), then

D(x∗) ∩ T (x∗) = ∅

if and only if D(x∗) = (−∞, 0) is chosen as the descent direction.

Proof of Theorem 3. ∀αd ∈ T (x∗), there is

ζk

∑
r∈R j

lim
k
{[(yr(ω) − x∗r(ω))T S r(x∗(ω))] − [(yr(ω) − xk

r(ω))T S r(xk(ω))]}

= ζk

∑
r∈R j

lim
k
{[(yr − x∗r)T (S r(x∗(ω)) − S r((xk(ω))) + (yr − x∗r)T S r((xk(ω))]

− [(yr − xk
r)

T S r((xk(ω))]}

= ζk

∑
r∈R j

lim
k
{[(yr − x∗r)T (S r(x∗(ω)) − S r((xk(ω))) + (xk

r − x∗r)T S r((xk(ω))]}.

By Definition 2.2 and Eq (2.3), we get

ζk

∑
r∈R j

lim
k

[(yr − x∗r)T (S r(x∗(ω)) − S r((xk(ω)))]

= ζk

∑
r∈R+

j

lim
k

(yr − a∗r)T (S r(x∗(ω)) − S r((xk(ω)))

+
∑
r∈R−j

lim
k

(yr − b∗r)T (S r(x∗(ω)) − S r((xk(ω)))

≥ 0.

And,
ζk

∑
r∈R j

lim
k

[((xk
r(ω) − x∗r(ω))T S r(xk(ω))] = 0.

�

Next, we review some concepts. We start by reviewing the Lagrange function, and consider the
optimization problem

min f (x(ω))
s.t. gi(x(ω)) ≤ 0, i = 1, . . . , n,

h j(x(ω)) = 0, j = 1, . . . ,m,
(3.1)

where f (x(ω)) = 〈S (x), y− x〉, f ∈ L2(Ω, P,Rn), x ∈ KP satisfies the variational inequality (2.2), and we
also introduce some of the following concepts, since the next goal is to give a reasonable restatement
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of S VIP(S ,KP). Then, by introducing the NCP function, combined with the Lagrange multiplier
introduced in the previous section, we have

L(x(ω), λ, µ) = ∇ f (x(ω)) +

n∑
i=1

λi∇gi(x(ω)) +

m∑
j=1

µ j∇h j(x(ω)), (3.2)

λi ≥ 0, gi(x(ω)) ≤ 0, λigi(x(ω)) = 0, h j = 0,∀i = 1, . . . , n, j = 1, . . . ,m, (3.3)

L( f , α1, α2, β) = f + 〈λ1, a − x〉 + 〈λ2, x − b〉 + 〈µ,Φx(ω) − Q(ω)〉. (3.4)

So, the conclusion is proven, and we have that λ∗1, λ
∗
2 ∈ L2(Ω, P,Rn

+) and µ∗ ∈ L2(Ω, P,Rm), where
(x∗, λ∗1, λ

∗
2, µ) is a optimal solution of the Lagrange function, i.e.,

L(x∗, λ1, λ2, µ) ≤ L(x∗, λ∗1, λ
∗
2, µ

∗) ≤ L(x, λ∗1, λ
∗
2, µ

∗).

And,
〈λ∗1, a − x∗〉 = 0, 〈λ∗2, x

∗ − b〉 = 0.

In order to solve the stochastic nonlinear complementarity problem (SLCP), we proposed an
expected residual minimization (ERM) method based on the work of Chen and Fukushima [28]. Given
our expected residual minimization model where our objective is to locate a vector x∗ ∈ KP that
minimizes the expected residuals for both (3.5) and (3.6), and in order to build the model smoothly, we
give the following definition.

A function φ : R2 → R is classified as an NCP function when it demonstrates the following
characteristic:

φ(u, v) = 0⇔ u ≥ 0, v ≥ 0, uv = 0.

Two commonly used NCP function are the “min” function

φ(u, v) = min(u, v),

and the Fischer-Burmeister (FB) function from Fischer [29]

φ(u, v) = u + v −
√

u2 + v2.

Formulation (3.3) are a complementarity constraints, so with the NCP function, the Eq (3.3) can be
converted to

Ψ(x(ω)) = 0, (3.5)

where Ψ : Rl × Rm → Rm is defined by

Ψ(x(ω), λ) =


φ(−g1(x(ω), λ1))

...

φ(−gn(x(ω), λn))

 . (3.6)

Here, we take φ(u, v) = u + v −
√

u2 + v2.

AIMS Mathematics Volume 9, Issue 2, 2657–2671.



2665

Based on these facts, we can build a desired residual minimization model

minx(ω),λ,µP(x(ω), λ, µ) : = E[‖∇ f (x(ω)) +

n∑
i=1

λi∇gi(x(ω)) +

m∑
j=1

µ j∇h j(x(ω))‖2

+ ‖Ψ(x(ω), λ)‖2]

=

∫
Ω

[‖∇ f (x(ω)) +

n∑
i=1

λi∇gi(x(ω)) +

m∑
j=1

µ j∇h j(x(ω))‖2

+ ‖Ψ(x(ω), λ)‖2]ρ(ω)dω,

(3.7)

where ρ : Ω→ [0,+∞) represents the satisfied probability density function and∫
Ω

ρ(ω)dω = 1.

Due to the existence of random variables, the expected value of E is not easy to calculate, so in order
to overcome this problem, we can employ the SAA method to address the following approximation
problem. Consider a collection of observations Ωk = {ωq|q = 1, . . . ,Nk} generated via the Quasi-
Monte Carlo method [28] such that Ωq ⊆ Ω and k → ∞ have Nk → ∞. For every x ∈ KP, we call
problem (3.8) an SAA problem, and we have

min
x∈KP

P(x(ω), λ, µ) :=
1
Nk

∑
ωq∈Ωq

[‖(∇ f (x(ωq)) +

n∑
i=1

λi∇gi(x(ωq)) +

m∑
j=1

µ j∇h j(x(ωq))‖2)

+ ‖Ψ(x(ωq), λ)‖2]ρ(ωq).

(3.8)

In addition, the observations produced by the quasi-Monte Carlo method have the following
properties.

Lemma 1. [30] Suppose Γ : Ω→ R is integrable over Ω. In that case, we obtain the following:

lim
q→∞

1
Nq

∑
ωq∈Ωk

Γ(ωq)ρ(ωq) = E[Γ(ω)]. (3.9)

In the following we assume that both the f (x(ω)) function and the function g are continuously
differentiable, and we let S ∗ and S ∗k be the optimal solution sets for problems (3.7) and (3.8).

Theorem 4. For each k, assuming that (xk, λk, µk) ∈ S ∗k and (x∗, λ∗, µ∗) is a convergence of the sequence
{(xk, λk, µk)}, then there is (x∗, λ∗, µ∗) ∈ S ∗.

Proof of Theorem 4. For the convenience of proof, let limk→∞ xk = x∗, limk→∞ λ
k = λ∗, limk→∞ µ

k =

µ∗, then there exist compact sets U, V, W containing the sequences {xk}, {λk}, {µk}, and the functions
f (x(ωq)), gi(x(ωq)), i = 1, . . . , n and functions h j(x(ωq)), j = 1, . . . ,m, ωq ∈ Ωk are twice continuously
differentiable on the closed interval, then there is the Lipschitz constant M1,M2,M3 such that

‖∇ f (xk
r(ω

q)) − ∇ f (x∗r(ωq))‖ ≤ M1‖(xk
r(ω

q)) − (x∗r(ωq))‖, (3.10)

‖∇gi(xk
r(ω

q)) − ∇gi(x∗r(ωq))‖ ≤ M2‖(xk
r(ω

q)) − (x∗r(ωq))‖, (3.11)

‖∇h j(xk
r(ω

q)) − ∇h j(x∗r(ωq))‖ ≤ M3‖(xk
r(ω

q)) − (x∗r(ωq))‖. (3.12)
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Next, we have

‖

n∑
i=1

λk
i∇gi(xk

r(ω
q)) −

n∑
i=1

λk
i∇gi(x∗r(ωq))‖

≤ ‖

n∑
i=1

λk
i∇gi(xk

r(ω
q)) −

n∑
i=1

λk
i∇gi(x∗r(ωq))‖ + ‖

n∑
i=1

λk
i∇gi(x∗r(ωq)) −

n∑
i=1

λ∗i∇gi(x∗r(ωq))‖

≤

n∑
i=1

λk
i ‖∇gi(xk

r(ω
q)) − ∇gi(x∗r(ωq))‖ + ‖

n∑
i=1

(λk
i − λ

∗
i )∇gi(x∗r(ωq))‖

≤ nM2M5‖(xk
r(ω

q)) − (x∗r(ωq))‖ + M5

n∑
i=1

|λk
i − λ

∗
i |,

(3.13)

where M5 = max{supV, ‖∇gi(x∗r(ωq))|}, i = 1, . . . , n. Then the same is true that

‖

m∑
j=1

µk
j∇h j(xk

r(ω
q)) −

m∑
j=1

µ∗i∇h j(x∗r(ωq))‖

≤ mM3M6‖(xk
r(ω

q)) − (x∗r(ωq))‖ + M6

l∑
j=1

|µk
j − µ

∗
j |,

(3.14)

where M6 = max{supW, ‖∇h j(x∗(ωq))‖}, j = 1, . . . ,m.
Otherwise, due to

|‖(∇ f (xk
r(ω

q)) +

n∑
i=1

λk
i∇gi(xk

r(ω
q)) +

m∑
j=1

µk
j∇h j(xk

r(ω
q))‖2

− ‖(∇ f (x∗r(ωq)) +

n∑
i=1

λ∗i∇gi(x∗r(ωq)) +

m∑
j=1

µ∗j∇h j(x∗r(ωq))‖2|

≤ [‖(∇ f (xk
r(ω

q)) +

n∑
i=1

λk
i∇gi(xk(ωq)) +

m∑
j=1

µk
j∇h j(xk

r(ω
q))‖

+ ‖(∇ f (x∗r(ωq)) +

n∑
i=1

λ∗i∇gi(x∗r(ωq)) +

m∑
j=1

µ∗j∇h j(x∗r(ωq))‖]

[‖(∇ f (xk
r(ω

q)) +

n∑
i=1

λk
i∇gi(xk(ωq)) +

m∑
j=1

µk
j∇h j(xk

r(ω
q))‖

− ‖(∇ f (x∗r(ωq)) +

n∑
i=1

λ∗i∇gi(x∗r(ωq)) +

m∑
j=1

µ∗j∇h j(x∗r(ωq))‖]

≤ M4[‖∇ f (xk
r(ω

q) − ∇ f (x∗r(ωq))‖ + ‖

n∑
i=1

λk
i∇gi(xk

r(ω
p)) −

n∑
i=1

λ∗i∇gi(x∗r(ωq))‖

+ ‖

m∑
j=1

µk
j∇h j(xk

r(ω
q)) −

m∑
j=1

µ∗j∇h j(x∗r(ωq))‖]

≤ [(M1 + M2M5 + M3M6)‖xk
r(ω

q) − x∗r(ωq)‖ + M5

n∑
i=1

|λk
i − λ

∗
i | + M6

m∑
i=1

|µk
j − µ

∗
j |]

k→∞
→ 0.

(3.15)
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In addition, we also have

lim
k→∞
|‖Ψ(xk

r(ω
q), λk

i ) − Ψ(x∗r(ωq), λ∗i )‖2|

= lim
k→∞

[
√

g2
i (xk) + |λk

i |
2 − (λk

i − gi(xk))]2 − lim
k→∞

[
√

g2
i (x∗) + |λ∗i |

2 − (λ∗i − gi(x∗))]2

k→∞
→ 0.

(3.16)

To sum up,

Θk
r(xk

r(ω
q)λk, µk) − Θ∗r(x∗r(ωq), λ∗, µ∗)

=
1
Nk

∑
ωq∈Ωq

ρ(ωq)|‖(∇ f (xk
r(ω

q)) +

n∑
i=1

λk
i∇gi(xk

r(ω
q)) +

m∑
j=1

µk
j∇h j(xk

r(ω
q))‖2

− ‖(∇ f (x∗r(ωp)) +

n∑
i=1

λ∗i∇gi(x∗r(ωq)) +

m∑
j=1

µ∗j∇h j(x∗r(ωq))‖2

+ ‖Ψ(xk
r(ω

q), λk
i ) − Ψ(x∗r(ωq), λ∗i )‖2|

k→∞
→ 0.

(3.17)

We know that
lim
k→∞

Θk
r(xk

r(ω
q), λk, µk) = Θ∗r(x∗r(ωq), λ∗, µ∗) ∀r ∈ R j.

Then for (xk, λk, µk) ∈ S ∗k, we have

Θk
r(xk

r(ω
q), λk, µk) ≤ Θk

r(xr(ωq), λ, µ) ∀r ∈ R j

when k → ∞, and we obtain

Θ∗r(x∗r(ωq), λ∗, µ∗) ≤ Θ∗r(xr(ωq), λ, µ) ∀r ∈ R j.

The conclusion is proven. �

4. Stochastic equilibrium numerical example

The problem of stochastic disaster relief equilibrium has important application value in studying
its solution under uncertain conditions. Figure 1 shows a specific network [31], which contains four
nodes, where node 2 is the rescue center and node 4 is the disaster site, containing 6 paths, 4 one-way
paths and 1 bidirectional paths, and the incidence matrix between them can be expressed as

0 1 1 1
0 0 1 0
1 0 0 0
0 0 1 0
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Figure 1. Braess’ network.

Let us assume that the cost function on each road is:
S 1(x) = 10x1 + 5x2 + x6

S 2(x) = x2 + 10x4 + ε

S 3(x) = 15x3 + 5x2 + 10x4 + x5

S 4(x) = 5x4 + 10x1 + x6

S 5(x) = 25x5 + 5x2

S 6(x) = 10x6 + 5x3 + x5.

What governs variational inequality is the following problem: Find one x ∈ Kp such that

S (x)(y − x) =

6∑
i=1

S i(x)(yi − xi) ≥ 0,∀y ∈ K,

and furthermore

KP = {x ∈ R6
+ : x1 = 10ζ1, x2 = 5ζ1 + ζ2 + 10ζ3, x3 = 20ζ3, x4 ≤ 0.5ζ2 + ε, x5 + x4 = 25ζ3, x6 = 15ζ3 + 10ε}, P − a.s.

where ε is a non-negative random variable with uniform distribution over a specified interval [5,90],
ζ1 is uniformly distributed in [0,20], and ζ2, ζ3 is a random variable in normal numbers.
Then, we establish an expected residual minimization model according to the previous part,
using the sample approximation method, and we can obtain the solution of the model, x =

(101, 111, 204, 90, 168, 316)T , S 24 = 4675, S 42 = 4335.

5. Conclusions

The research focus of this paper is the problem of stochastic equilibrium, and a stochastic
equilibrium model is established by introducing stochastic variational inequality. To solve this
stochastic equilibrium model, we use the NCP function and the quasi-Monte Carlo method. By using
the NCP function, combined with the Lagrange function, the complementary constraints in the original
problem are combined with the original problem to transform into solving a model for minimizing
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the expected residuals. The quasi-Monte Carlo method provides an effective solution algorithm and
performs convergence analysis, which makes the solution effectiveness of the model feasible.

Finally, a disaster relief example is given to verify the effectiveness of the model. This model
helps decision-makers make decisions in disaster relief and optimize the allocation of disaster relief
resources.
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