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Abstract: Stability analysis, which was investigated in this paper, is one of the main issues related
to numerical analysis for stochastic dynamical systems (SDS) and has the same important significance
as the convergence one. To this end, we introduced the concept of p-th moment stability for the n-
dimensional nonlinear stochastic differential equations (SDEs). Specifically, if p = 2 and the p-th
moment stability constant K̄ < 0, we speak of strict mean square contractivity. The present paper
put the emphasis on systematic analysis of the numerical mean square contractivity of two kinds of
implicit balanced Milstein-type schemes, e.g., the drift implicit balanced Milstein (DIBM) scheme and
the semi-implicit balanced Milstein (SIBM) scheme (or double-implicit balanced Milstein scheme), for
SDEs with non-global Lipschitz coefficients. The requirement in this paper allowed the drift coefficient
f (x) to satisfy a one-sided Lipschitz condition, while the diffusion coefficient g(x) and the diffusion
function L1g(x) are globally Lipschitz continuous, which includes the well-known stochastic Ginzburg
Landau equation as an example. It was proved that both of the mentioned schemes can well preserve
the numerical counterpart of the mean square contractivity of the underlying SDEs under appropriate
conditions. These outcomes indicate under what conditions initial perturbations are under control
and, thus, have no significant impact on numerical dynamic behavior during the numerical integration
process. Finally, numerical experiments intuitively illustrated the theoretical results.
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1. Introduction

Assume (Ω,F , {Ft}t≥0,P) is a complete probability space with an increasing filtration {Ft}t≥0

satisfying the usual conditions (that is, it is right continuous and increasing while F0 contains all P-null
sets). Let ⟨·, ·⟩ denote the Euclidean inner product and ∥ · ∥ be the corresponding Euclidean vector norm
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in Rn. The trace norm of a matrix A ∈ Rn×n, n ∈ N is denoted by ∥A∥ :=
√

trace(AT A). E denotes
mathematical expectation. In this paper, we consider the following nonlinear systems of stochastic
differential equations (SDEs) of n-dimensional Itô type given by{

dX(t) = f (X(t))dt + g(X(t))dW(t), t ∈ [0,+∞),
X(0) = X0,

(1.1)

where E∥X0∥
2 < ∞, X(t) ∈ Rn, W(t) is a scalar Brownian motion and the drift coefficient f and diffusion

coefficient g are Borel measurable real-valued vector functions in Rn. Generally, analytical solutions
to nonlinear SDEs (1.1) are seldom available, and resorting to numerical schemes for approximating
SDEs are of significant interest in practice. Various SDEs arising from the field of applied science
[1–3] rarely satisfy the restrictive global Lipschitz condition, such as, the stochastic Ginzburg Landau
equation with a cubic nonlinear drift coefficient f (x) = −4x − 3x3, x ∈ R. Unfortunately, the well-
known Euler-Maruyama scheme generates divergent numerical approximations for SDEs with super-
linearly growing coefficients [4]. Therefore, in order to avoid the numeric divergent phenomenon,
numerous implicit schemes [5–15] and modifications of explicit schemes [16–27] attracted more and
more attention for their numerical analysis of SDEs under non-globally Lipschitz conditions.

What we focus on in this paper is investigating whether two kinds of implicit balanced Milstein-type
schemes can inherit numerically the relevant property of the mean square contractivity for nonlinear
SDEs (1.1) with non-globally Lipschitz coefficients. To this end, let us first introduce the following
definition of p-th moment stability for the SDEs (1.1) [28, 29]. Suppose Y(t) is the exact solution of
the SDEs (1.1) with initial value X(0) = Y0, where E∥Y0∥

2 < ∞.

Definition 1.1. [28,29] The analytical solution of the SDEs (1.1) is called to be p-th moment stable if
∃K̄ ∈ R

E∥X(t) − Y(t)∥p ≤ eK̄tE∥X0 − Y0∥
p, t ∈ [0,+∞), (1.2)

with p-th moment stability constant K̄.
It should be noted that we call the analytical solution of the SDEs (1.1) to be strict p-th moment

contractive if the p-th moment stability inequality (1.2) holds for K̄ < 0. More specifically, if
p = 2 and K̄ < 0, we speak of strict mean square contractivity [29], (or exponential mean-square
contractivity [30–33]). In general, strict p-th moment contractivity represents that initial perturbations
have no significant impact on the long-term dynamic behavior of the SDEs (1.1). The p-th moment
stability of nonlinear SDEs with p-th moment monotone coefficients was systematically investigated
by Schurz in Lemma 2.8 [29]. The following Theorem gives a simplified overview of the nonlinear
stability of the nonlinear SDEs (1.1) [29, 34].

Theorem 1.2. [29, 34] X(t) and Y(t) are analytical solutions of the SDEs (1.1) with different initial
values X0 and Y0, respectively. Suppose that the drift and diffusion coefficients f , g ∈ C1(Rn) satisfy
a respective global one-side Lipschitz condition and a global Lipschitz condition, i.e., there exists
constants µ ∈ R and L > 0, such that for ∀X,Y ∈ Rn,

⟨X − Y, f (X) − f (Y)⟩ ≤ µ∥X − Y∥2 (1.3)
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and
∥g(X) − g(Y)∥2 ≤ L∥X − Y∥2. (1.4)

For ∀t ∈ [0,+∞),
E∥X(t) − Y(t)∥2 ≤ eatE∥X0 − Y0∥

2, (1.5)

where a = 2µ + L.
The existence and uniqueness of the global solution to the SDEs (1.1) can be guaranteed [35, 36].

Under the conditions of Theorem 1.2 and supposing f (0) = 0 and g(0) = 0, then for ∀t ∈ [0,+∞),
E∥X(t)∥2 ≤ eatE∥X0∥

2.

Noting that when the diffusion coefficient g = 0, the SDEs (1.1) reduces to the corresponding
deterministic ordinary differential equations (ODEs){

dX(t) = f (X(t))dt, t ∈ [0,+∞),
X(0) = X0.

(1.6)

For any two solutions X(t) and Y(t) of ODEs (1.6) with initial data X0 and Y0, respectively, if the one-
sided Lipschitz condition (1.3) holds with negative one-sided Lipschtiz constant µ, then we have the
contractive inequality

∥X(t) − Y(t)∥ ≤ eµt∥X0 − Y0∥, ∀t ∈ [0,+∞).

Nonlinear stability has been a central concept of the qualitative theory of ODEs [37]. For the numerical
counterpart of the nonlinear stability of ODEs satisfying one-sided Lipschitz condition with one-sided
Lipschitz constant µ < 0, Dahlquist [38] presented the concept of G-stability for linear multistep
methods (LMMs) and one-leg methods, while Butcher [39] introduced the concept of B-stability for
implicit Runge-Kutta methods. We refer to the monograph [37] for more details about the contractivity
of numerical methods for ODEs satisfying one-sided Lipschitz condition.

Similarly, in the case of SDEs, the strict mean square contractivity inequality (1.5) with the
parameter a < 0 means an exponential decay of the mean square deviation between two solutions
X(t) and Y(t) of the SDEs (1.1) with different initial data X0 and Y0, respectively. The numerical
counterpart of the mean square contractivity for numerical schemes, which is omitted here, is defined in
a similar manner as that of the exact solutions of the nonlinear stochastic systems in Definition 1.1. For
numerical analysis of the mean square contractivity, Higham, Mao and Stuart [34] studied the stability
of the backward Euler and split-step backward Euler methods. Yao and Gan [40] investigated the mean
square contractivity of the drift-implicit Milstein and double-implicit Milstein schemes for nonlinear
monotone SDEs. Exponential mean-square contractivity property of the stochastic Runge-Kutta
methods [41], stochastic θ-methods [42] and stochastic linear multistep methods (mainly mentioned
two-step methods) [43] were discussed; however, it was noteworthy that the mean value theorem was
utilized in the proof of the stability theorem of the last two numerical schemes [42, 43]. Moment
stability analysis of the two-point motion of drift-implicit θ-methods (including the backward Euler
method [34] when θ = 1) for SDEs was analyzed systemically by Henri [29]. The aim of this paper
is to focus on investigating whether the drift implicit balanced Milstein (DIBM) scheme and the semi-
implicit balanced Milstein (SIBM) scheme (or double-implicit balanced Milstein scheme), which are
considered as the modifications of the drift-implicit Milstein scheme and the double-implicit Milstein
scheme [40], respectively, can also possess numeric property of mean square contractivity. Therefore,
the theorems in this paper can be identified as the extension of [40]. The rest of the paper is organized
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as follows. In the next section, two types of implicit balanced Milstein schemes are introduced. In
Section 3, sufficient conditions for the mean square contractivity for both of the mentioned implicit
balanced Milstein-type schemes are derived. In Section 4, numerical experiments are given to verify
the theoretical results. The last section presents some conclusions.

2. Numerical schemes

This section mainly witnesses two types of implicit balanced Milstein schemes, which will be
investigated in the following sections. As the first implicit balanced numerical method, a class of
balanced implicit (BI) methods was proposed by Milstein, Platen and Schurz [44] for solving stiff
SDEs, namely,

xk+1 = xk + f (xk)h + g(xk)∆Wk +Ck (xk − xk+1) , (2.1)

at some grid points tk = kh, k = 0, 1, . . ., on the time interval [0,+∞) with time step h. x0 = X0 and
∆Wk = W(tk+1) −W(tk) denote the increment of Brownian motion, Ck = c0(xk)h + c1(xk)|∆Wk|.

Kahl and Schurz [45] presented a class of balanced Milstein (BM) schemes, namely,

xk+1 = xk + f (xk)h + g(xk)∆Wk +
1
2

L1g(xk)
(
|∆Wk|

2 − h
)
+Ck(xk − xk+1), k = 0, 1, . . . , (2.2)

where x0 = X0, L1g(x) = ∂g(x)
∂x g(x) with the j-th component

(
L1g(x)

)
j
=

n∑
i=1

gi(x)
∂g j(x)
∂xi
, j = 1, . . . , n.

Ck = c0(xk)h+c2(xk)
(
|∆Wk|

2 − h
)
, where control functions c0 and c2 satisfy the following condition [46,

47].

Assumption 2.1. The control functions c0 and c2 are bounded n × n-matrix-valued functions. For any
real numbers α0 ∈ [0, α̃1], α2 ∈ [−α̃2, α̃2], where α̃1 ≥ h, α̃2 ≥ ||∆Wk|

2 − h| for any step-size h under
consideration and x ∈ Rn, the n × n matrix is

M(x) = I + α0c0(x) + α2c2(x),

where I denotes the n × n identity matrix, is invertible and there exists a positive constant K satisfying

∥M(x)−1∥ ≤ K < ∞. (2.3)

For the choice of the control functions c0 and c2, Alcock and Burrage [48] investigated the choice
of optimal parameter for the BI method (2.1). Wang and Liu [46] presented three typical criterions for
one-dimension case. In practical computation, the control functions c0 and c2 are, in general matrix,
often chosen as constants satisfying Assumption 2.1 [47, 48]. For simplicity, assume that the control
functions c0 and c2 will be chosen as constant matrices, satisfying c0 and c2 as positive definite or c0−c2

and c2 as positive semi-definite [44, 45], which satisfy Assumption 2.1.
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In the following, let us introduce two kinds of implicit balanced Milstein-type schemes, e.g., the
DIBM scheme and the SIBM scheme. The DIBM approximation [49] applied to SDEs (1.1) has the
following form

xk+1 =xk + f (xk+1)h + g(xk)∆Wk +
1
2

L1g(xk)
(
|∆Wk|

2 − h
)

+Ck(xk − xk+1), k = 0, 1, . . . ,
(2.4)

where x0 = X0, Ck = c0(xk)h + c2(xk)
(
|∆Wk|

2 − h
)
. In addition, noticing the term in (2.4)

1
2

L1g(xk)(|∆Wk|
2 − h) =

1
2

L1g(xk)|∆Wk|
2 −

1
2

L1g(xk)h

and bringing partial implicitness to the DIBM scheme (2.4) leads to the following numerical method

xk+1 =xk +

(
f (xk+1) −

1
2

L1g(xk+1)
)

h + g(xk)∆Wk

+
1
2

L1g(xk)|∆Wk|
2 +Ck(xk − xk+1),

(2.5)

where x0 = X0, Ck = c0(yk)h + c2(yk)
(
|∆Wk|

2 − h
)
, k = 0, 1, . . .. This method is named the SIBM

scheme (or double-implicit balanced Milstein scheme) [49].

3. Numerical contractivity analysis

In this section, we aim to investigate the numerical counterpart of the mean square contractivity for
the above-mentioned two types of implicit balanced Milstein schemes, e.g., the DIBM scheme (2.4) and
the SIBM scheme (2.5). It is proved that both schemes can well replicate the mean square contractivity
of the refered nonlinear systems (1.1).

Assumption 3.1. Suppose there exists a constant ω, such that for ∀X,Y ∈ Rn,∥∥∥L1g(X) − L1g(Y)
∥∥∥2
≤ ω∥X − Y∥2, (3.1)〈

X − Y, L1g(X) − L1g(Y)
〉
≥ 0. (3.2)

Theorem 3.2. Under the assumptions of Theorem 1.2 and (3.1), assume 2hµK < 1. Write ā = 2µ+KL,
c1 =

2µ+KL+ 1
2 hKω

1−2hµK K. Let {xk}k∈N and {yk}k∈N be two parallel approximation sequences obtained by the
DIBM scheme (2.4) starting from two distinct initial data X0 and Y0, respectively, then

E∥xk − yk∥
2 ≤ ec1tkE∥X0 − Y0∥

2, k = 1, 2, . . . , (3.3)

where ā > 0, c1 > 0 or ā ≤ 0, 0 < h ≤ −2ā
Kω , c1 ≤ 0.

Proof. By the DIBM scheme (2.4), we have

(I +Ck)(xk+1 − yk+1) − h ( f (xk+1) − f (yk+1))

=(I +Ck)(xk − yk) + (g(xk) − g(yk))∆Wk

+
1
2

(
L1g(xk) − L1g(yk)

) (
|∆Wk|

2 − h
)
,
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which leads to
xk+1 − yk+1 − h (I +Ck)−1 ( f (xk+1) − f (yk+1))

=xk − yk + (I +Ck)−1 (g(xk) − g(yk))∆Wk

+
1
2

(I +Ck)−1
(
L1g(xk) − L1g(yk)

) (
|∆Wk|

2 − h
)
.

Therefore, squaring both sides of the above equality yields

∥xk+1 − yk+1∥
2 − 2h

〈
xk+1 − yk+1, (I +Ck)−1 ( f (xk+1) − f (yk+1))

〉
+ h2

∥∥∥(I +Ck)−1
∥∥∥2
∥ f (xk+1) − f (yk+1)∥2

=∥xk − yk∥
2 +

∥∥∥(I +Ck)−1 (g(xk) − g(yk))∆Wk

∥∥∥2

+
1
4

∥∥∥∥(I +Ck)−1
(
L1g(xk) − L1g(yk)

)
(|∆Wk|

2 − h)
∥∥∥∥2

+ 2
〈
xk − yk, (I +Ck)−1 (g(xk) − g(yk))∆Wk

〉
+

〈
xk − yk, (I +Ck)−1

(
L1g(xk) − L1g(yk)

)
(|∆Wk|

2 − h)
〉

+
〈
(I +Ck)−1 (g(xk) − g(yk))∆Wk,

(I +Ck)−1
(
L1g(xk) − L1g(yk)

) (
|∆Wk|

2 − h
)〉
.

Taking expectation and using the one-side Lipschitz condition (1.3), the global Lipschitz
condition (1.4) and inequality (3.1), we obtain

E∥xk+1 − yk+1∥
2

≤E∥xk − yk∥
2 + 2hE

〈
xk+1 − yk+1, (I +Ck)−1 ( f (xk+1) − f (yk+1))

〉
+ E

∥∥∥(I +Ck)−1 (g(xk) − g(yk))∆Wk

∥∥∥2

+
1
4
E

∥∥∥∥(I +Ck)−1
(
L1g(xk) − L1g(yk)

) (
|∆Wk|

2 − h
)∥∥∥∥2

≤E∥xk − yk∥
2 + 2hµKE∥xk+1 − yk+1∥

2 + hLK2E∥xk − yk∥
2 +

1
2

h2ωK2E∥xk − yk∥
2,

which yields

(1 − 2hµK)E∥xk+1 − yk+1∥
2 ≤

(
1 + hLK2 +

1
2

h2ωK2
)
E∥xk − yk∥

2.

Consequently, taking account of the fact that 2hµK < 1, we obtain

E∥xk+1 − yk+1∥
2 ≤

1 + hLK2 + 1
2h2ωK2

1 − 2hµK
E∥xk − yk∥

2.

(i) If ā = 2µ + KL > 0, we have 1+hLK2+ 1
2 h2ωK2

1−2hµK > 1 and

E∥xk − yk∥
2 ≤

1 + hLK2 + 1
2h2ωK2

1 − 2hµK

k

E∥X0 − Y0∥
2

=

1 + 2µ + KL + 1
2hKω

1 − 2hKµ
Kh

k

E∥X0 − Y0∥
2

≤ec1tkE∥X0 − Y0∥
2,
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where c1 =
2µ+KL+ 1

2 hKω
1−2hµK K > 0.

(ii) If ā ≤ 0, we have 0 < 1+hLK2+ 1
2 h2ωK2

1−2hµK ≤ 1 for 0 < h ≤ −2ā
Kω ,

E∥xk − yk∥
2 ≤ ec1tkE∥X0 − Y0∥

2,

where c1 ≤ 0. □

Corollary 3.3. Under the assumptions of Theorem 3.2 and f (0) = g(0) = 0, then

E∥xk∥
2 ≤ ec1tkE∥X0∥

2, k = 1, 2, . . . ,

where ā > 0, c1 > 0 or ā ≤ 0, 0 < h ≤ −2ā
Kω , c1 ≤ 0.

Note that the inequality (3.3), which can be regarded as numerical analogue of the mean square
stability inequality (1.5) for the analytic solutions of the SDEs (1.1), means that the DIBM scheme (2.4)
is mean square stable. Specifically, when ā = 2µ + KL < 0 and 0 < h < −2ā

Kω , inequality (3.3)
represents the strict mean square contractivity of the DIBM scheme (2.4), which means that any
two numerical trajectories of the stochastic dynamical system (1.1) converge to one other in mean
square at an exponential rate and that perturbations in the initial data have no significant impact on
numerical dynamic behavior along the entire time-scale [0,+∞). For strict mean square contractive
approximation sequences {xk}k∈N and {yk}k∈N, we have lim

k→+∞
E∥xk − yk∥

2 = 0.

Let us give a minute for the description of the following theorem, which sheds light on the mean
square contractivity of the SIBM scheme (2.5).

Theorem 3.4. Under the assumptions of Theorem 1.2 and Assumptions 3.1, suppose 2hµK < 1. Let
ã = 1

2 + K
[
2µ + K

(
L + 1

2ω
)]

, c2 =
1
2+K[2µ+K(L+ 1

2ω+
3
4 hω)]

1−2hµK , then numerical solutions {xk}k∈N and {yk}k∈N

with distinct initial values X0 and Y0, respectively, obtained by the SIBM scheme (2.5) satisfy

E∥xk − yk∥
2 ≤ ec2tkE∥X0 − Y0∥

2, k = 1, 2, . . . , (3.4)

where ã > 0, c2 > 0 or ã ≤ 0, 0 < h ≤ −4ã
3K2ω

, c2 ≤ 0.

Proof. By the SIBM scheme (2.5), we have

xk+1 − yk+1 − h (I +Ck)−1 ( f (xk+1) − f (yk+1))

+
1
2

(I +Ck)−1
(
L1g(xk+1) − L1g(yk+1)

)
h

=xk − yk + (I +Ck)−1 (g(xk) − g(yk))∆Wk

+
1
2

(I +Ck)−1
(
L1g(xk) − L1g(yk)

)
|∆Wk|

2.
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Squaring both sides of the above equality yields

∥xk+1 − yk+1∥
2 + h2

∥∥∥(I +Ck)−1 ( f (xk+1) − f (yk+1))
∥∥∥2

+
1
4

h2
∥∥∥∥(I +Ck)−1

(
L1g(xk+1) − L1g(yk+1)

)∥∥∥∥2

− 2h
〈
xk+1 − yk+1, (I +Ck)−1 ( f (xk+1) − f (yk+1))

〉
+ h

〈
xk+1 − yk+1, (I +Ck)−1

(
L1g(xk+1) − L1g(yk+1)

)〉
− h2

〈
(I +Ck)−1 ( f (xk+1) − f (yk+1)) , (I +Ck)−1

(
L1g(xk+1) − L1g(yk+1)

)〉
=∥xk − yk∥

2 +
∥∥∥(I +Ck)−1 (g(xk) − g(yk))∆Wk

∥∥∥2

+
1
4

∥∥∥∥(I +Ck)−1
(
L1g(xk) − L1g(yk)

)
|∆Wk|

2
∥∥∥∥2

+ 2
〈
xk − yk, (I +Ck)−1 (g(xk) − g(yk))∆Wk

〉
+

〈
xk − yk, (I +Ck)−1

(
L1g(xk) − L1g(yk)

)
|∆Wk|

2
〉

+
〈
(I +Ck)−1 (g(xk) − g(yk))∆Wk, (I +Ck)−1

(
L1g(xk) − L1g(yk)

)
|∆Wk|

2
〉
.

Utilizing the one-side Lipschitz condition (1.3), the global Lipschitz condition (1.4) and
inequalities (3.1) and (3.2), we obtain

E∥xk+1 − yk+1∥
2 + h2E

∥∥∥(I +Ck)−1 ( f (xk+1) − f (yk+1))
∥∥∥2

+
1
4

h2E
∥∥∥∥(I +Ck)−1

(
L1g(xk+1) − L1g(yk+1)

)∥∥∥∥2

≤E∥xk − yk∥
2 + 2hE

〈
xk+1 − yk+1, (I +Ck)−1 ( f (xk+1) − f (yk+1))

〉
+ hE

∥∥∥(I +Ck)−1 (g(xk) − g(yk))
∥∥∥2

+
3
4

h2E
∥∥∥∥(I +Ck)−1

(
L1g(xk) − L1g(yk)

)∥∥∥∥2

+ hE
〈
xk − yk, (I +Ck)−1

(
L1g(xk) − L1g(yk)

)〉
+ 2h2E

〈
(I +Ck)−1 ( f (xk+1) − f (yk+1)) ,

1
2

(I +Ck)−1
(
L1g(xk+1) − L1g(yk+1)

)〉
≤E∥xk − yk∥

2 + 2hµKE∥xk+1 − yk+1∥
2 + hLK2E∥xk − yk∥

2

+
3
4

h2K2ωE∥xk − yk∥
2 +

1
2

h(1 + K2ω)E∥xk − yk∥
2

+ h2E
∥∥∥(I +Ck)−1 ( f (xk+1) − f (yk+1))

∥∥∥2

+
1
4

h2E
∥∥∥∥(I +Ck)−1

(
L1g(xk+1) − L1g(yk+1)

)∥∥∥∥2
,

which leads to

(1 − 2hµK)E∥xk+1 − yk+1∥
2

≤

(
1 + hK2L +

1
2

h(1 + K2ω) +
3
4

h2K2ω

)
E∥xk − yk∥

2.
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Because 2hµK < 1, consequently,

E∥xk+1 − yk+1∥
2 ≤

1 + hK2L + 1
2h(1 + K2ω) + 3

4h2K2ω

1 − 2hµK
E∥xk − yk∥

2

=
1 + 1

2h + hK2
(
L + 1

2ω +
3
4hω

)
1 − 2hµK

E∥xk − yk∥
2.

Let us consider two possible cases:
(i) If ã = 1

2 + K
[
2µ + K

(
L + 1

2ω
)]
> 0, we get 1+ 1

2 h+hK2(L+ 1
2ω+

3
4 hω)

1−2hµK > 1 and

E∥xk − yk∥
2

≤

1 + 1
2h + hK2

(
L + 1

2ω +
3
4hω

)
1 − 2hµK


k

E∥X0 − Y0∥
2

≤

1 + 1
2 + K

[
2µ + K

(
L + 1

2ω +
3
4hω

)]
1 − 2hµK

h


k

E∥X0 − Y0∥
2

≤ec2tkE∥X0 − Y0∥
2,

where c2 =
1
2+K[2µ+K(L+ 1

2ω+
3
4 hω)]

1−2hµK > 0.

(ii) If ã ≤ 0, we have 0 < 1+ 1
2 h+hK2(c+ 1

2ω+
3
4 hω)

1−2hµK ≤ 1 for 0 < h ≤ −4ã
3K2ω

and

E∥xk − yk∥
2 ≤ ec2tkE∥X0 − Y0∥

2,

where c2 ≤ 0. □

Corollary 3.5. Under assumptions of Theorem 3.4 and f (0) = 0, g(0) = 0, then

E∥xk∥
2 ≤ ec2tkE∥X0∥

2, k = 1, 2, . . . ,

where ã > 0, c2 > 0 or ã ≤ 0, 0 < h ≤ −4ã
3K2ω

, c2 ≤ 0.
The inequality (3.4) is indicative of the mean square stability of the SIBM scheme (2.5).

Specifically, when 0 < h < −4ã
3K2ω

and ã = 1
2 + K

[
2µ + K

(
L + 1

2ω
)]
< 0, the inequality (3.4) manifests

the strict mean square contractivity of the SIBM scheme (2.5). In this situation, we can easily have that
lim

k→+∞
E∥xk − yk∥

2 = 0.

4. Numerical results

In this section, we illustrate intuitively the given theoretical analysis obtained in previous sections
through numerical examples. Let us first consider the following one-dimension stochastic Ginzburg
Landua equation with a cubic nonlinearity in the drift and linear diffusion [32, 41, 43, 50, 51]:

dx(t) = [Ax(t) + Bx3(t)]dt +Cx(t)dW(t), 0 ≤ t ≤ 100, (4.1)
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with different initial values X0 = 0 and Y0 = 1. The cubic drift coefficient is f (x(t)) = Ax(t) + Bx3(t)
and the linear diffusion function is g(x(t)) = Cx(t). We choose constants A = −4, B = −3, C = 1,
c0 = 4 and c2 = 1. Clearly, the one-side Lipschitz condition (1.3) and global Lipschitz condition (1.4)
hold with µ = −4 and L = 1, and the problem (4.1) is strict mean square contractive with a = −7,
according to Theorem 1.2. As shown in Figure 1, where the long-time development and evolution of
the mean square deviation E∥xk − yk∥

2 in logarithmic scale is depicted even for quite large step sizes
h = 1, 2, 5 and 10, both of the DIBM scheme (2.4) and the SIBM scheme (2.5) can well reproduce strict
mean square contractivity. It is well consistent with the theoretical results established in Theorems 3.2
and 3.4.
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(a) the DIBM scheme (2.4)
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(b) the SIBM scheme (2.5)

Figure 1. Pattern of the mean square deviation associated with the DIBM scheme (2.4) and
the SIBM scheme (2.5) applied to Eq (4.1) using various step sizes.

As a second example, consider the Itô SDE with nonlinear diffusion [29, 41, 43]:

dx(t) = Ax(t)dt + B sin(x(t))dW(t), 0 ≤ t ≤ 100, (4.2)

with distinct initial data X0 = 0 and Y0 = 1. The linear drift coefficient is f (x(t)) = Ax(t) and
the nonlinear diffusion function is g(x(t)) = B sin(x(t)). We choose constants A = −1 and B = 1.
According to Theorem 1.2, the problem (4.2) is strict mean square contractive with µ = −1, L = 1 and
a = −1. The numerical results, shown in Figure 2, confirm the validity of theoretical conclusions in
the previous sections.
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Figure 2. Mean square deviations over 5,000 paths for the DIBM scheme (2.4) and the SIBM
scheme (2.5) applied to Eq (4.2) with various step sizes.

5. Conclusions

Two types of implicit balanced Milstein schemes, e.g., the DIBM scheme and the SIBM scheme,
were utilized to simulate the nonlinear SDEs (1.1) with non-global Lipschitz coefficients. We have
systematically analyzed the numerical counterpart of mean square contractivity of the implicit balanced
Milstein-type schemes for the underlying SDEs (1.1) under the assumptions of Theorem 1.2 and
Assumptions 3.1. It was proved that both schemes considered can successfully inherit the property
of mean square contractivity. Numerical experiments conformed to the theoretical results obtained in
this paper.
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