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Abstract: Let G be a finite group, cd(G) the set of all irreducible character degrees of G, and ρ(G) the
set of all prime divisors of integers in cd(G). For a prime p and a positive integer n, let np denote the p-
part of n. The degree prime-power graph of G is a graph whose vertex set is V(G) =

{
pep(G) | p ∈ ρ(G)

}
,

where pep(G) = max
{
np | n ∈ cd(G)

}
, and there is an edge between distinct numbers x, y ∈ V(G) if xy

divides some integer in cd(G). The authors have previously shown that some non-abelian simple
groups can be uniquely determined by their orders and degree prime-power graphs. In this paper, the
authors build on this work and demonstrate that the symplectic simple group PS p4(p) can be uniquely
identified by its order and degree prime-power graph.

Keywords: degree prime-power graph; irreducible character; degree; maximal p-part; simple group;
subnormal series
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1. Introduction

Throughout the following, all groups are assumed to be finite, and all characters are complex
characters. Let G be a group, then Irr(G) denotes the set of all irreducible characters of G, and cd(G)
denotes the set of all irreducible character degrees of G. For a positive integer n, we use π(n) to denote
the set of all prime divisors of n. For convenience, we write π(G) = π(|G|), and ρ(G) =

⋃
χ∈Irr(G) π(χ(1)).

For a prime p, the p-part of n, denoted by np, is the maximum power of p such that np | n. CFSG is the
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abbreviation for the Classification Theorem of Finite Simple Groups.
The set cd(G) is very important for studying G. Many results have been obtained about the

relationship between the set cd(G) and the structure of G. This paper’s primary focus centers on
finite non-abelian simple groups. In 2000, Huppert proposed a conjecture: “If S is a non-abelian
simple group such that cd(G) = cd(M), then G � M × A, where A is an abelian group” (see [1]).
Currently, this conjecture has not been fully proven. If Huppert’s conjecture proves valid, it would
follow naturally that all finite non-abelian simple groups could be uniquely determined by their orders
and sets of irreducible character degrees. Interestingly, provided |G| = |M| and fewer numbers in cd(G)
require consideration, one can still deduce the same conclusion more efficiently. Researchers have
shown that certain simple groups can be uniquely determined by their orders and at most three distinct
irreducible character degrees (see [2–6] etc.).

Other researchers have studied the structure of a finite group with the character degree graph ∆(G).
The vertex set of ∆(G) is ρ(G). In ∆(G), two vertices are joined by an edge if the product of them
divides some number in cd(G). The character degree graph has been widely studied, for example,
in [7]. Clearly, ∆(G) contains much less information of cd(G). An interesting fact is that some simple
groups (not all) can be uniquely determined by their orders and degree graphs.

In [8], Khosravi et al. proved that A5, A6, A7, A8, L3(3), L3(4), L2(64), L2(q) (where q is an odd
prime or a square of an odd prime, and q > 5 ), and L2 (2α) (where α is a positive integer such that 2α−1
or 2α + 1 is a prime) can be uniquely determined by their orders and character degree graphs. However,
in [9] Heydari and Ahanjideh gave a counter example of this characterization, that is, M12 and A4×M11

have the same order and character degree graph. To overcome this shortcoming, Chao Qin and Guiyun
Chen defined a new graph by using the information of cd(G) in [10], which is called the degree prime-
power graph Γ(G).

Definition. For every p ∈ ρ(G), let pep(G) = max
{
χ(1)p | χ ∈ Irr(G)

}
and V(G) =

{
pep(G) | p ∈ ρ(G)

}
.

Define the degree prime-power graph Γ(G) of G as follows: V(G) is the vertex set, and there is an edge
between distinct numbers x, y ∈ V(G) if xy divides some integer in cd(G). Denote the edge between
distinct numbers x, y ∈ V(G) by x ∼ y, and the set of all edges of Γ(G) by E(G).

Chen, Qin, Wang and et al. have proven that the group M12 can be uniquely determined by its
order and degree prime-power graph. They have also shown that all sporadic simple groups, PS L2(p),
PS L2(p − 1) (where p is a Fermat prime), PS L2(p2), and PS L2(p3) can be uniquely determined by
their orders and degree prime-power graphs (see [10–13]). In this paper, we continue this investigation
for the symplectic simple group PS p4(p). The following theorem is our main result.

Main Theorem. Let p be an odd prime, then G � PS p4(p) if and only if |G| = |PS p4(p)| and Γ(G) =

Γ
(
PS p4(p)

)
.

2. The degree prime-power graph of PS p4(p) when p is an odd prime

In this section, we present the degree prime-power graph of PS p4(p) when p is an odd prime, along
with an important proposition.

By Atlas [14] and Magma, we obtain the order and the degree prime-power graph of PS p4(p) when
p = 3, 5, 7 (see Table 1).
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Table 1. The degree prime-power graph of PS p4(p) when p = 3, 5, 7.

Groups PS p4(3) PS p4(5) PS p4(7)
Order 26 · 34 · 5 26 · 32 · 54 · 13 28 · 32 · 54 · 74

Γ(·)

If p > 7, then the order of PS p4(p) is

|PS p4(p)| =
1
2

p4
(
p2 − 1

) (
p4 − 1

)
= p4 (p − 1)2 (p + 1)2

(
p2 + 1

2

)
.

The character degrees of PS p4(p) were determined by Shahabi and Mohtadifar in [15], that is

cd
(
PSp4(p)

)
=

{
1,

1
2

p
(
p2 + 1

)
,

1
2

p(p + 1)2, p4,
1
2

p(p − 1)2, p4 − 1, (p − 1)2
(
p2 + 1

)
,

(p − 1)2 (p + 1)2 , (p + 1)
(
p2 + 1

)
, (p − 1)

(
p2 + 1

)
, p(p + 1)

(
p2 + 1

)
,

p(p − 1)
(
p2 + 1

)
,

1
2

(
p4 − 1

)
, p

(
p2 + 1

)
,

1
2

(
p2 + 1

)
,

1
2

p2
(
p2 + 1

)
,

1
2

(p − 1)2
(
p2 + 1

)
, (p − 1)2

(
p2 + 1

)
,

1
2

(p + 1)2
(
p2 + 1

)
,

1
2

(p + ε)
(
p2 + 1

)
,

1
2

p(p + ε)
(
p2 + 1

)}
where ε = (−1)(p−1)/2. We see that PS p4(p) has irreducible characters of the following degrees:

p4, (p − 1)2 (p + 1)2 , (p − 1)2(p2 + 1),
(p + 1)2

2
(p2 + 1). (2.1)

Note that

(p − 1, p + 1) = 2,
(
p − 1,

p2 + 1
2

)
=

(
p + 1,

p2 + 1
2

)
= 1,

and we have |PS p4(p)|2 =
(
(p − 1)2 (p + 1)2

)
2
, moreover, 2e2(PS p4(p)) = |PS p4(p)|2 by (2.1). Similarly,

for every r ∈ ρ(PS p4(p)) = π(PS p4(p)), one has

rer(PS p4(p)) = |PS p4(p)|r.

That means the vertex set of Γ(PS p4(p)) is

V
(
PS p4(p)

)
=

{
|PS p4(p)|r

∣∣∣∣ r ∈ π(PS p4(p))
}
.

Observing cd(PS p4(p)), the edges of Γ(PS p4(p)) can be described as
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(1) p4 is an isolated vertex,

(2) let r1, r2 ∈ π
(
PS p4(p)

)
\ {2, p}. From (2.1) there is an edge

r
er1 (PS p4(p))
1 ∼ r

er2 (PS p4(p))
2 , i.e., |PS p4(p)|r1 ∼ |PS p4(p)|r2 ,

(3) for every r ∈ π
(
(p − 1)2 (p + 1)2

)
\ {2}, there is an edge |PS p4(p)|2 ∼ |PS p4(p)|r,

(4) for every r ∈ π
(

(p+1)2

2

)
, there is not an edge |PS p4(p)|2 ∼ |PS p4(p)|r.

Apart from the above cases, the following holds.

Proposition 2.1. If p > 7 and r ∈ π(PS p4(p)) \ {p, 3}, then there is always an edge |PS p4(p)|3 ∼
|PS p4(p)|r in Γ(PS p4(p)).

Proof. By the above statements about Γ(PS p4(p)), we only need to prove

3 ∈ π
(
(p − 1)2 (p + 1)2

)
.

This is trivial, because we can obtain 3
∣∣∣ (p − 1)(p + 1) by 3 - p. �

Example. The orders of PS p4(11) and PS p4(13) respectively are

|PS p4(11)| = 114 (11 − 1)2 (11 + 1)2
(
112 + 1

2

)
= 114 ·

(
26 · 32 · 52

)
· 61,

|PS p4(13)| = 134 (13 − 1)2 (13 + 1)2
(
132 + 1

2

)
= 134 ·

(
26 · 32 · 72

)
· 5 · 17.

Using the description above, we obtain the degree prime-power graphs of PS p4(11) and PS p4(13)
(see Figure 1).

Figure 1. The degree prime-power graphs of PS p4(11) and PS p4(13).

3. The subnormal series of a non-solvable group

In this section, we study a subnormal chain of non-solvable groups through some lemmas. These
lemmas will play an important role in the proof of the main theorem.

AIMS Mathematics Volume 9, Issue 2, 2808–2823.
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Lemma 3.1. [10, Lemma 2.5] Let G be a non-solvable group. If T/S is a non-abelian chief factor of
G, then there is a normal series 1 ≤ H < K ≤ G such that K/H � T/S and G/K . Out(T/S ).

Lemma 3.2. [10, Corollary 2.1] Let G be a non-solvable group. Then there is a subnormal series

G = G0 > G1 > G2 > · · · > G2k−2 > G2k−1 > G2k > 1, (k > 1) (3.1)

such that G2k is solvable, G2i−1/G2i is a non-abelian chief factor of G2i−2, and

G2i−2/G2i−1 . Out (G2i−1/G2i)

for each 1 6 i 6 k.

For convenience, we denote the subnormal series in Lemma 3.2 by sn2k, or snH
2k if the subnormal

subgroups in the series are written as Hi, and denote the j-th term in sn2k by sn2k( j), where 0 6 j 6 2k.
Generally, sn2k is not unique for G.

Lemma 3.3. Let G be a finite non-solvable group, and M be a non-abelian composition factor of G. If,
for any sn2k and any 1 6 i 6 k, the quotient group sn2k(2i−2)/sn2k(2i−1) does not have a non-abelian
composition factor which is isomorphic to M, then there exists a subnormal series

snH
2t : G = H0 > H1 > H2 > · · · > H2t−2 > H2t−1 > H2t > 1, (t > 1) (3.2)

such that H2t−1/H2t � Mm for some integer m.

Proof. If M is the unique (up to an isomorphism) non-abelian composition factor of G. By Lemma 3.2,
the conclusion is obvious. Now suppose that the non-abelian composition factor of G is not unique (up
to an isomorphism).

Assume M1 is a non-abelian composition factor of G and M1 is not isomorphic to M. Suppose T/K
is a non-abelian chief factor of G and T/K � Mm1

1 . By Lemma 3.1, there is a normal series

G = H0 > H1 > H2 > 1

such that H1/H2 � T/K � Mm1
1 and H0/H1 . Out(H1/H2). By this assumption, M is not a non-abelian

composition factor of H0/H1. Then, M is a non-abelian composition factor of H2.
If M is the unique (up to an isomorphism) non-abelian composition factor of H2, then the conclusion

holds by Lemma 3.2. If M is not unique (up to an isomorphism) non-abelian composition factor of
H2, then we assume that M2 is a non-abelian composition factor of H2 and M2 is not isomorphic to M.
Similar to the above reason, there is a normal series

H2 > H3 > H4 > 1

such that H3/H4 � Mm2
2 is a non-abelian chief factor of H2, and H2/H3 . Out(H3/H4). By this

assumption, M is a non-abelian composition factor of H4.
Repeating the above process, we obtain a subnormal series

G = H0 > H1 > H2 > · · · > H2r−2 > H2r−1 > H2r (3.3)

such that

AIMS Mathematics Volume 9, Issue 2, 2808–2823.
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(1) M is the unique (up to an isomorphism) non-abelian composition factor of H2r;
(2) H2i−1/H2i � Mmi

i is a non-abelian chief factor of H2i−2, and H2i−2/H2i−1 . Out (H2i−1/H2i) where
Mi is not isomorphic to M and i = 1, · · · , r.

By Lemma 3.2, there is a subnormal series

H2r > H2r+1 > H2r+2 > · · · > H2t−2 > H2t−1 > H2t > 1 (3.4)

such that H2t is solvable, H2i−1/H2i � Mmi is a non-abelian chief factor of H2i−2, and H2i−2/H2i−1 .
Out (H2i−1/H2i) for each r + 1 6 i 6 t. Therefore, the proof is complete by (3.3) and (3.4). �

Lemma 3.4. Let G be a group, and p be an odd prime. Suppose that
(1) |G| 6 p10, and
(2) G has a non-abelian composition factor M satisfying p

∣∣∣ |M|.
Then, there exists a subnormal series sn2k such that

sn2k(2k − 1)/sn2k(2k) � Mm,

where m is an integer. Specifically, if sn2k(2k) = 1, then there exists a subnormal subgroup of G which
is isomorphic to M.

Proof. By Lemma 3.3, we only need to prove that for any snH
2t and any 1 6 i 6 t the quotient group

snH
2t(2i − 2)/snH

2t(2i − 1) does not have a non-abelian composition factor which is isomorphic to M.
Otherwise, suppose there is a snH

2t such that snH
2t(2i − 2)/snH

2t(2i − 1) has a non-abelian composition
factor which is isomorphic to M for some 1 6 i 6 t. Note that snH

2t(2i − 1)/snH
2t(2i) is a non-abelian

chief factor of snH
2t(2i − 2), and it is a direct product of isomorphic non-abelian simple groups. Let

snH
2t(2i − 1)/snH

2t(2i) = (M1)m,

where M1 is a non-abelian simple group. Hence, we have

Out
(
snH

2t(2i − 1)/snH
2t(2i)

)
= Out (M1) o S m.

For convenience, denote snH
2t(2i − 2)/snH

2t(2i − 1) as K, then K . Out (M1) o S m. Without loss of
generality, assume K 6 Out (M1) o S m. Then

K
/
K ∩ (Out(M1))m � K · (Out(M1))m

/
(Out(M1))m

6
(

Out (M1) o S m
)/

(Out(M1))m � S m.

Since M1 is a non-abelian simple group, we know (Out(M1))m is solvable. So, K ∩ (Out(M1))m

is solvable. Because K = snH
2t(2i − 2)/snH

2t(2i − 1) has a non-abelian composition factor which is
isomorphic to M, we have

M . K
/
K ∩ (Out(M1))m . S m, then |M|

∣∣∣∣ |S m|.

Hence, p
∣∣∣∣ |S m| and p 6 m. Therefore

p10 > |G| >
∣∣∣∣snH

2t(2i − 1)/snH
2t(2i)

∣∣∣∣ =
∣∣∣∣(M1)m

∣∣∣∣ = |M1|
m

>|M1|
p > 60p.

This is a contradiction, because p10 > 60p is impossible. �
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4. The proof of the main theorem

For the main theorem, the necessity is obvious. It is enough to prove the sufficiency. To achieve
this, we need the following series of lemmas.

Lemma 4.1. Let G be a finite group and K be a subnormal subgroup of G. If V(G) =
{
|G|p

∣∣∣ p ∈ π(G)
}
,

then the following statements hold.
(1) G is non-solvable.
(2) Every minimal subnormal subgroup of G is a non-abelian simple group.
(3) 1 is the unique solvable subnormal subgroup of G. Furthermore, for any sn2k, we have

sn2k(2k) = 1.
(4) If K , 1, then V(K) =

{
|K|p

∣∣∣ p ∈ π(K)
}
.

(5) If there are p, r ∈ π(K) such that |G|p ∼ |G|r is an edge of Γ(G), then |K|p ∼ |K|r is an edge of
Γ(K).

Proof. Statements (1) and (2) are Lemma 2.2 in [10]. Statement (3) is a corollary of (2).
For (4) and (5), without loss of generality we suppose K is a normal subgroup of G. Suppose that

χ ∈ Irr(G) such that χ(1)p = |G|p where p ∈ π(K). Let θ ∈ Irr(K) be a constituent of χK . Using
Corollary 11.29 in [16], we have χ(1)

θ(1)

∣∣∣∣ |G/K|. Furthermore,

χ(1)p

θ(1)p

∣∣∣∣∣∣ |G|p|K|p .
Then, θ(1)p = |K|p by χ(1)p = |G|p. Hence, |K|p ∈ V(K). This means statement (4) holds.

Let p, r ∈ π(K) such that |G|p ∼ |G|r is an edge of Γ(G), then there exists χ ∈ Irr(G) satisfying
(|G|p · |G|r)

∣∣∣∣χ(1). If φ ∈ Irr(K) is a constituent of χK , then χ(1)
θ(1)

∣∣∣∣ |G/K| by Corollary 11.29 in [16].

Hence, (|K|p · |K|r)
∣∣∣∣φ(1), i.e., |K|p ∼ |K|r is an edge of Γ(K). Statement (5) holds. �

Lemma 4.2. The following statements about the exceptional group of Lie type 2B2

(
22n+1

)
(n > 1) hold.

(1) 2B2

(
22n+1

)
is the only simple group whose order is prime to 3.

(2) Let p > 5 be a prime. If

p
∣∣∣∣ |2B2

(
22n+1

)
| and |2B2

(
22n+1

)
|

∣∣∣∣ |PS p4(p)|,

then n = 1 and p = 13.

Proof. (1) Obviously, for any alternating group An (n > 5), its order is divisible by 3. According to
Atlas [14], any sporadic simple group’s order is divisible by 3 as well as the order of 2F4(2)′.

If M is a simple group of Lie type over GF(q) with M , 2F4(2)′ and 2B2

(
22n+1

)
(n > 1), then

q(q2 − 1)
∣∣∣ |M|. Notice that 3

∣∣∣ q(q2 − 1), and we have 3
∣∣∣ |M|.

The order of 2B2

(
22n+1

)
is ∣∣∣∣2B2

(
22n+1

) ∣∣∣∣ = 22n+1(24n+2 + 1)(22n+1 − 1).

AIMS Mathematics Volume 9, Issue 2, 2808–2823.
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Since
22n+1 − 1 = (3 − 1)2n+1

− 1 ≡ −2 mod 3,
24n+2 − 1 = (3 − 1)4n+2 + 1 ≡ 2 mod 3,

the order of 2B2

(
22n+1

)
is not divisible by 3. This completes the proof of (1) by CFSG.

(2) Suppose

q = 22n+1, a = q +
√

2q + 1, b = q −
√

2q + 1, εi = 1 or − 1, (i = 1, 2).

It is not hard to prove that q2 + 1 = ab,
(
q2 + 1, q − 1

)
= 1, and (a, b) = 1. Hence,

|2B2

(
22n+1

)
| = |2B2 (q) | = q2(q − 1)(q2 + 1) = q2(q − 1)ab.

By p
∣∣∣∣ |2B2

(
22n+1

)
| , we have

p
∣∣∣ (q − 1), p

∣∣∣ a or p
∣∣∣ b.

From |2B2

(
22n+1

)
|

∣∣∣∣ |PS p4(p)|, it follows that q2
∣∣∣∣ (p + 1)2(p − 1)2, i.e., q

∣∣∣ (p + 1)(p − 1). Since(
p + 1, p − 1

)
= 2, we get

q
∣∣∣ 2(p + 1) or q

∣∣∣ 2(p − 1).

(i) If p
∣∣∣ (q − 1) and q

∣∣∣ 2(p + ε1), then there are positive integers k and m such that

q − 1 = pk and 2(p + ε1) = qm.

It follows that
2(p + ε1) = (pk + 1)m, i.e., (mk − 2)p = −m + 2ε1.

Hence p
∣∣∣ − m + 2ε1.

If −m + 2ε1 = 0, then m = 2 and ε1 = 1, moreover, q = p + 1, i.e., p = q − 1. Therefore,

|PS p4(p)| = (q − 1)4(q − 2)2q2 1
2

(
q2 − 2q + 2

)
.

By |2B2

(
22n+1

)
|

∣∣∣∣ |PS p4(p)|, we obtain

q2 + 1
∣∣∣∣ (q − 1)3(q − 2)2 1

2

(
q2 − 2q + 2

)
. (4.1)

A short calculation reveals that

q2 + 1 = (q − 2)(q + 2) + 5, and q2 − 2q + 2 = (q2 + 1) − 2(q − 1).

Then,
(
q2 + 1, q − 2

) ∣∣∣∣5 and
(
q2 + 1, q2 − 2q + 2

)
=

(
q2 + 1, q − 1

)
= 1. Consequently, by (4.1) we

know that q2 + 1
∣∣∣∣ (q − 2)2, and q2 + 1 is a power of 5. This leads to π

(
|2B2

(
22n+1

)
|
)

= {2, 5, p}. This is

a contradiction, because |2B2

(
22n+1

)
| is not a K3-simple group, where the so-called K3-simple group is

a non-abelian simple group with only three prime factors of its order.
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Now we assume −m + 2ε1 , 0. By p
∣∣∣ −m + 2ε1, it follows that m > p + 2ε1 > 3. Then, 2(p + ε1) =

mq > 3(pk + 1), i.e., 0 < (3k − 2)p 6 2ε1 − 3 < 0. This is a contradiction.
(ii) If p

∣∣∣ q + ε2
√

2q + 1 and q
∣∣∣ 2(p + ε1), then there exist positive integers k and m such that

q + ε2

√
2q + 1 = pk and 2(p + ε1) = qm. (4.2)

Then, 2(q + ε2
√

2q + 1) = 2pk = (qm − 2ε1)k. Substituting q = 22n+1 into this equation yields

2n+1
(
2n + ε2 − 2n−1mk

)
= −1 − ε1k. (4.3)

If 1 + ε1k = 0, then k = 1, ε1 = −1 and 2n + ε2 − 2n−1m = 0, i.e., ε2 = 2n−1m − 2n. It follows that
n = 1 and m = ε2 + 2 = 1 or 3. Therefore, q = 22n+1 = 8 and 2(p − 1) = 8m = 8 or 24, by (4.2). This
means that p = 5 or 13.

If 1 + ε1k , 0, then 2n+1
∣∣∣ 1 + ε1k by (4.3). We conclude that k > 2n+1 − ε1. Therefore,

2(q + ε2

√
2q + 1) = (qm − 2ε1)k > (qm − 2ε1)(2n+1 − ε1).

By q = 22n+1, the above inequality can be rewritten as

22n+1 + ε22n+1 > 23n+1m − ε1(2n+1 + 22nm).

Dividing both sides of this inequality by 2n+1, we get

2n−1[(2n+1 − ε1)m − 2
]
6 ε1 + ε2 6 2

which implies that (2n+1 − ε1)m 6 2 + 2
2n−1 6 4. This means 2n+1 − ε1 6 4, moreover,

2n+1 6 4 + ε1 6 5, i.e., n = 1.

Therefore, q = 22n+1 = 8. By p
∣∣∣ q + ε2

√
2q + 1, we obtain that p

∣∣∣ q2 + 1. Then, p = 5 or 13.
Because |2B2 (8) | = 82(82 + 1)(8− 1) = 26 · (5 · 13) · 7, |PS p4(5)| = 26 · 32 · 54 · 13, |PS p4(13)|=134 ·(

26 · 32 · 72
)
· 5 · 17, and |2B2

(
22n+1

)
|

∣∣∣∣ |PS p4(p)|, we obtain that p can only be 13. �

Lemma 4.3. If M is a simple group of Lie type over GF(q), where q = p f , then |M|p is an isolated
vertex in Γ(M).

Proof. If M is a simple group of Lie type over some GF(q) with M , 2F4(2)′, the result can be obtained
directly by Lemma 2.4 in [17]. If M = 2F4(2)′, then |M|2 = 211 is an isolated vertex in Γ(S ) by the
character table of 2F4(2)′ in [14]. �

Lemma 4.4. Let G be a group, and p > 7 be an odd prime. If

|G| = |PS p4(p)| =
1
2

p4
(
p2 − 1

) (
p4 − 1

)
, and Γ(G) = Γ(PS p4(p)),

then the following statements hold.

(1) Let M be a simple group of Lie type over GF(q) where q = r f . If p
∣∣∣ |M| and M is a subnormal

subgroup of G, then r = p or M � 2B2(8).
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(2) If T is a non-abelian composition factor of G, then p - |Out(T ).

(3) For any sn2k and any 1 6 i 6 k, the order of Out (sn2k(2i − 1)/sn2k(2i)) is not divisible by p, and
p - |sn2k(2i − 2)/sn2k(2i − 1)|.

Proof. (1) By the assumption, the vertex set of Γ(G) is V(G) = {|G|t | t ∈ π(G)}. Then, V(M) = {|M|t | t ∈
π(M)} by Lemma 4.1(4).

First, we suppose that r , p and M is not isomorphic to 2B2

(
22n+1

)
( n > 1 ).

If r = 3, then there exists an edge |G|2 ∼ |G|3 by Proposition 2.1. Because M is not isomorphic
to 2B2

(
22n+1

)
, we know 3

∣∣∣ |M| and |M|3 ∼ |M|2 is an edge of Γ(M) by Lemma 4.1(5). This is a
contradiction, because |M|r is an isolated vertex in Γ(M) by Lemma 4.3.

If r , 3, then there exists an edge |G|r ∼ |G|3 by Proposition 2.1. We can obtain a contradiction
using the same method as before.

Second, assume r , p and M is isomorphic to 2B2

(
22n+1

)
(n > 1). By Lemma 4.2(2), we see that

M is isomorphic to 2B2 (8) and p = 13. This completes the proof of (1).
(2) Assume T is a non-abelian composition factor of G, and p

∣∣∣ |Out(T ). Since p is an odd prime,
T is not isomorphic to an alternating group, one of 26 sporadic simple groups or the Tits simple
group 2F4(2)′, because the outer automorphism groups of these simple groups are 1, C2, or C2 × C2.
By CFSG, T is a simple group of Lie type over some GF(q) except 2F4(2)′, where q = r f , and r is
a prime. Therefore, |Out(T) | = d f g where d, f , and g are the orders of diagonal, field, and graph
automorphisms of T , respectively. By Table 5 in [14], we know that g

∣∣∣ 6, so p - g. Therefore, if
p
∣∣∣|Out(T )|, then p

∣∣∣ d or p
∣∣∣ f .

If p
∣∣∣ d, then T is isomorphic to An(q) or 2An(q) (i.e., PS Ln+1(q) or PS Un+1(q)) by Table 5 in [14].

Assume T � An(q), then d = (n + 1, q − 1) and

|T | = |An(q)| =
1

(n + 1, q − 1)
qn(n+1)/2

n∏
i=1

(qi+1 − 1).

Hence, n + 1 > p > 7, p
∣∣∣ q− 1, and p

∣∣∣ |T |. By Lemma 3.4 and Lemma 4.1(3), there exists a subnormal
subgroup K EE G such that K � T � An(q). It follows that q = p f by (1). It contradicts to p

∣∣∣ q − 1.
Using the same method, one can demonstrate that T � 2An(q).

Now, we assume p
∣∣∣ f . It follows that q = rkp > 2p > 27. If T is not isomorphic to A1(q), then one

can obtain
|T | > q3(q + 1)

by observing the order of a simple group of Lie type over GF(q). Hence,

1
2

p4(p2 − 1)(p4 − 1) = |G| > |T | > q3(q + 1) > 23p(2p + 1).

This implies p 6 5 by Maple. This contradicts p > 7.
If T is isomorphic to A1(q), then |T | = 1

(2,q−1)q(q2 − 1). When p > 7, one can obtain the following
inequality by Maple:

1
2

p4(p2 − 1)(p4 − 1) <
1
2
· 3p(32p − 1). (4.4)
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However, since (2, q − 1) 6 2 and q = rkp, we have

1
2

p4(p2 − 1)(p4 − 1) = |G| > |T | =
1

(2, q − 1)
q(q2 − 1) >

1
2
· rkp(r2kp − 1). (4.5)

By inequalities (4.4) and (4.5), one can see that rk = 2, i.e., q = 2p. Then, |T | =
1

(2,2p−1)2
p(22p−1) =2p(22p − 1). Using Maple to solve the inequality |G| > |T |, we conclude that p 6 11,

i.e., p = 7 or 11. If p = 7, then |T | = 27 · 3 · 43 · 127 and |G| = 28 · 32 · 54 · 74. This is a contradiction to
|T |

∣∣∣ |G|. If p = 11, then |T | = 211 ·3 ·23 ·89 ·683 and |G| = 114 ·
(
26 · 32 · 52

)
·61. This is a contradiction.

Therefore, f is not divisible by p when p > 7. This completes the proof of (2).
(3) Suppose that there exists an sn2k and i such that

p
∣∣∣∣ |Out (sn2k(2i − 1)/sn2k(2i)) |.

Notice that sn2k(2i − 1)/sn2k(2i) is a non-abelian chief factor of sn2k(2i − 2), and we have

Out (sn2k(2i − 1)/sn2k(2i)) = Out(T ) o S m

where T is a non-abelian composition factor of G, and sn2k(2i − 1)/sn2k(2i) is a direct product of m
copies of T . By the proof of Lemma 3.4, we know p - |S m|. Hence, p

∣∣∣ |Out(T )|. However, this is
impossible by (2). Therefore, statement (3) is proved. �

Now we can present a proof of the main theorem based on the above lemmas.

Proof of Main Theorem. Obviously, it is enough to prove the sufficiency. We first prove the sufficiency
when p = 5. If p = 5, then |G| = |PS p4(5)| = 26 · 32 · 54 · 13 and Γ(G) = Γ(PS p4(5)). Hence,

V(G) = {|Gr | r ∈ π(G)} = {26, 32, 54, 13}, E(G) = {26 ∼ 32}.

By Lemma 4.1, G is non-solvable and every minimal subnormal subgroup of G is a non-abelian
simple group. Let N be a minimal normal subgroup of G. Then, N is a direct product of isomorphic
non-abelian simple groups. It is enough to prove N � PS p4(5). By |N|

∣∣∣ |G|, we know that N is
isomorphic to one of A5, A5×A5, A6, PS L3(3), PS L2(25), PS U3(4), PS p4(5) by [14]. If N is isomorphic
to one of A5, A5 × A5, A6, PS L3(3), PS U3(4), then |N|2 ∼ |N |3 is not an edge of Γ(N) by checking their
character table in [14]. However, there exists an edge |N|2 ∼ |N|3 in Γ(N) by Lemma 4.1(5). This is a
contradiction. If N � PS L2(25), then

G
/(

CG(N) × N
)
. Out(N).

By |N | = |PS L2(25)| = 23 ·3 ·52 ·13 and Out(PS L2(25)) � C2×C2, we have |CG(N)| = 2α ·3 ·52, where
α = 1, 2, or 3. Notice that CG(N) C G, and we know there exists a minimal subnormal subgroup of G,
denoted by T , such that T 6 CG(N). Hence, T is isomorphic to A5. By Lemma 4.1(5), there exists an
edge |T |2 ∼ |T |3 in Γ(T ), a contradiction. Therefore, N � PS p4(5), moreover, G � PS p4(5).

When p > 7, we will discuss all non-abelian composition factors of G whose order can be divisible
by p, covering all possible cases. Our proof for this purpose will consist of 5 steps. Now, assume that
T is a non-abelian composition factor of G satisfying p

∣∣∣ |T |.
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Step 1. Give information about the degree-power graph Γ(T ).
By Lemma 4.1(3) and Lemma 3.4, there exists a subnormal subgroup of G which is isomorphic to

T . Let r ∈ π(T )\{p, 3}. Then there is an edge |T |3 ∼ |T |r in Γ(T ), by Lemma 4.1(5) and Proposition 2.1.
Step 2. Prove T is not isomorphic to an alternating group An.

On the contrary, T is isomorphic to an alternating group An. By p
∣∣∣ |T |, we know p 6 n,

moreover, p!
2

∣∣∣ |T |. Notice that |T |
∣∣∣ |G|, and we see that

p!
∣∣∣∣ p4(p2 − 1)(p4 − 1).

By
(

p+1
e

)p
< p! (e is the natural constant), the following inequality holds:(

p + 1
e

)p

< p4(p2 − 1)(p4 − 1).

Using Maple, it implies p 6 13. If p = 13, then p! = 210 · 35 · 52 · 7 · 11 · 13, p4(p2 − 1)(p4 − 1) =

27 · 32 · 5 · 72 · 134 · 17. This contradicts p!
∣∣∣ p4(p2 − 1)(p4 − 1). If p = 11, then p! = 28 · 34 · 52 · 7 · 11,

p4(p2 − 1)(p4 − 1) = 27 · 32 · 52 · 114 · 61, a contradiction. If p = 7, then |G| = 28 · 32 · 54 · 74. Therefore,
T only is isomorphic to A7 or A8 by |T |

∣∣∣ |G|. Observing the character tables of A7 and A8 in [14], there
is not an edge |T |2 ∼ |T |3 of Γ(T ). However, |T |2 ∼ |T |3 should be an edge of Γ(T ) by Step 1. This is a
contradiction.
Step 3. Prove T is not isomorphic to any sporadic simple group.

We assume that T is isomorphic to one of following simple groups:

M11, M12, M22, M23, M24, J1, J2, J3, Co1, Co2, Co3, Fi22, Fi23, Fi′24,

S uz, HS , McL, He, HN, Th, B, M, Ru.

Observing the degree prime-power graphs of the above 23 sporadic simple groups in [11], there is not
an edge |T |2 ∼ |T |3 in Γ(T ). This is a contradiction, by Step 1. Next, we analyze the remaining three
sporadic simple groups: O′N, Ly, J4.

If T is isomorphic to O′N, then π(T ) = {2, 3, 5, 7, 11, 19, 31}. By Step 1, for every r ∈ π(T ) \ {p, 3},
there is an edge |T |3 ∼ |T |r in Γ(T ). This indicates that there are at least 5 edges at vertex |T |3. However,
by the character table of O′N, we know there are only 3 edges at vertex |T |3, i.e., |T |3 ∼ |T |2, |T |3 ∼ |T |5
and |T |3 ∼ |T |31. This is a contradiction. Using the same method, one can obtain a contradiction when
T is isomorphic to Ly.

If T � J4, then |T | = 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43. Since p
∣∣∣∣ |T |, we obtain

p =7, 11, 23, 29, 31, 37 or 43. Through calculations using the Magma, we have |PS p4(p)|2
∣∣∣∣213 when

p ∈ {7, 11, 23, 29, 31, 37, 43}. This contradicts |T |
∣∣∣∣ |PS p4(p)|.

Therefore, T is not isomorphic to any sporadic simple group.

Step 4. Prove T is isomorphic to one of A1(p3)(= PS L2(p3)), A2(p)(= PS L3(p)), 2A2(p)(= PS U3(p)),
and B2(p)(= PS p4(p)).

By Steps 2 and 3, T is a simple group of Lie type over some GF(q) where q = r f . Hence, by
Lemma 4.4(1), we know r = p or T � 2B2(8).
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Assume T � 2B2(8), then r = p > 7. Since |G|p = p4, we can obtain that T is isomorphic to one of

A1(pi)(= PS L2(pi)), i = 1, 2, 3, 4; A2(p)(= PS L3(p)),
B2(p)(= PS p4(p)), 2A2(p)(= PS U3(p)).

Notice that
|A1(p)| =

1
2

p(p2 − 1), |A1(p2)| =
1
2

p2(p2 − 1)(p2 + 1),

|A1(p3)| =
1
2

p3(p6 − 1) =
1
2

p3(p − 1)(p2 + p + 1)(p3 + 1),

|A1(p4)| =
1
2

p4(p4 − 1)(p4 + 1), |A2(p)| =
p3(p2 − 1)
(3, p − 1)

(p3 − 1),

|2A2(p)| =
p3(p2 − 1)
(3, p − 1)

(p3 + 1).

By [18], the degrees of A1(p) and A1(p2) are

cd(A1(p)) = {1, p,
p + ε

2
, p − 1, p + 1}, (ε = (−1)(p−1)/2),

cd(A1(p2)) = {1, p2,
p2 + 1

2
, p2 − 1, p2 + 1}

respectively.
If T � A1(p2), then we can obtain that |T |3 ∼ |T |s is not an edge of Γ(T ) for every s ∈ π( p2+1

2 ),
because 3

∣∣∣ (p2 − 1) and (p2 − 1, p2 + 1) = 2. By Step 1, this is a contradiction.
If T � A1(p) and p−1

2 is an even number, then ε = −1 and cd(T ) = {1, p, p+1
2 , p − 1, p + 1} where

p+1
2 =

p−1
2 + 1 is an odd number. Hence, for every s ∈ π( p+1

2 ) and t ∈ π(p − 1) there is not an edge
|T |s ∼ |T |t in Γ(T ). Since s, t ∈ π

(
(p − 1)2(p + 1)2

)
and PS p4(p) has an irreducible character of degree

(p−1)2(p+1)2, then |G|s ∼ |G|t is an edge of Γ(G). By Step 1, T is isomorphic to a subnormal subgroup
of G. Hence, |T |s ∼ |T |t is an edge of Γ(T ) by Lemma 4.1(5). So, it is a contradiction. Using the same
method, there is a contradiction when p−1

2 is an odd number.
If T � A1(p4), then |T | > |G| obviously. This is a contradiction.
Assume T � 2B2(8), then p = 13 by Lemma 4.2. Hence, |T | = 26 ·5·7·13 and |G| = |PS p4(13)|=134 ·(

26 · 32 · 72
)
·5·17. Observing |T |2 = |G|2, we can conclude that G has only one non-abelian composition

factor. By Lemma 3.2 and 4.1(2), there is a subnormal series

snG
2 : G = G0 > G1 > G2 = 1

such that G1/G2 � T and G0/G1 . Out (T ). This will lead to a contradiction. Since the outer
automorphism group is C3, we obtain |G| = |G1/G2| · |G0/G1| 6 |T | · |C3| = 26 · 5 · 7 · 13 · 3. That is
impossible.

Based on the above discussion, T is isomorphic to one of A1(p3)(= PS L2(p3)), A2(p)(=
PS L3(p)), 2A2(p)(= PS U3(p)), and B2(p)(= PS p4(p)).
Step 5. Prove G is isomorphic to PS p4(p).

Take a subnormal series snG
k

snG
2k : G = G0 > G1 > G2 > · · · > G2k−2 > G2k−1 > G2k > 1, (k > 1).
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By Lemmas 4.1(3) and 4.4(3), we have G2k = 1 and p - |G2i−2/G2i−1| where i = 1, 2, · · · , k. It follows
that

p4

∣∣∣∣∣∣ k∏
i=1

|G2i−1/G2i|. (4.6)

Notice that every G2i−1/G2i is a product of isomorphic non-abelian simple groups, and we assume
that the direct product factor of G2i−1/G2i is Ti for i = 1, 2, · · · , k. Then there exists a T j1 such that
its order is divisible by p. By Step 4, T j1 is isomorphic to one of PS L2(p3), PS L3(p), PS U3(p), and
PS p4(p). We claim T j1 is isomorphic to PS p4(p). Otherwise, T j1 is isomorphic to PS L2(p3), PS L3(p),
or PS U3(p). Then |T j1 |p = p3, moreover G2 j1−1/G2 j1 � T j1 by |G|p = p4. Hence, there is a T j2 such that
its order is divisible by p, and |T j2 |p can only be p1. This contradicts the result in Step 4. Therefore, G
has a non-abelian composition factor that is isomorphic to PS p4(p). This means G � PS p4(p). This
completes the proof of Main Theorem. �

5. Conclusions

We have primarily investigated whether the symplectic simple group PS p4(p) can be uniquely
determined by its order and degree prime-power graph. In the main theorem, we provide a positive
answer to this question. In Lemma 3.3, a sufficient condition for adjusting the positions of specific
non-abelian composition factors in the subnormal series sn2k is provided. This condition plays a crucial
role in the proof of the main theorem. We believe that this condition is valuable for studying the
characterization of more non-abelian simple groups. Based on the results of this paper and [10–13],
we conjecture that most non-abelian simple groups can be uniquely determined by their orders and
degree prime-power graphs.
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