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Traditional Chinese medicine (TCM) has displayed preventive and therapeutic

effects on many complex diseases. As natural biological macromolecules, TCM-

derived antiobesogenic polysaccharides (TCMPOs) exhibit notable weight-

loss effects and are seen to be a viable tactic in the fight against obesity.

Current studies demonstrate that the antiobesity activity of TCMPOs is closely

related to their structural characteristics, which could be affected by the

extraction and purification methods. Therefore, the extraction, purification and

structural-property correlations of TCMPOs were discussed. Investigation of

the antiobesity mechanism of TCMPOs is also essential for their improved

application. Herein, the possible antiobesity mechanisms of TCMPOs are

systematically summarized: (1) modulation of appetite and satiety effects, (2)

suppression of fat absorption and synthesis, (3) alteration of the gut microbiota

and their metabolites, and (4) protection of intestinal barriers. This collated

information could provide some insights and offer a new therapeutic approach

for the management and prevention of obesity.

KEYWORDS

obesity, traditional Chinese medicine, polysaccharides, structural-property, antiobesity
mechanism

Introduction

Obesity, one of the biggest challenges to public health worldwide to date, is also
thought to be an important risk indicator for numerous other metabolic illnesses, such
as hyperlipidemia, hypertension, myocardial infarction, stroke, type 2 diabetes as well
as non-alcoholic fatty liver disorder, thereby contributing to a decline in quality of life
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and longevity (1–3). There has been a significant increase within the
incidence of obesity globally, which is a major health risk to people
and an important medical issue that needs to be resolved within
various countries (2, 4, 5). Clinical strategies have been proposed to
combat obesity mainly through drug administration and bariatric
surgery (6, 7). Antiobesity drugs previously approved by the FDA,
such as sibutramine, deoxyephedrine, carbamate and fenfluramine,
have shown serious side effects, and some are no longer available
or are unsuitable for long-term use (8–10). Bariatric surgeries, like
Roux-en-Y gastric bypass (RYGB), gastric banding as well as sleeve
gastrectomy, are confirmed to be more effective than drug therapy,
but they have not been widely accepted due to their high cost, high
risk, possible complications and sequelae (7, 11). Accordingly, great
interest has been focused on exploring effective, healthy and low-
risk alternative therapies to treat or alleviate obesity along with
related metabolic disorders.

Traditional Chinese medicine (TCM) has been widely and
safely applied within China for thousands of years due to its
high efficiency and low side-effect, which is now becoming
increasingly popular worldwide and is of vital significance to
prevent disease or promote health (12, 13). As natural biological
macromolecules, TCM-derived polysaccharides (TCMPs) have
become highly attractive due to their remarkable biological
functions and pharmacological properties, such as antioxidant,
antidiabetic, antitumor, anti-inflammatory, anti-obesity, and
immunomodulatory activities (5, 12, 14). In particular, the

antiobesity activity of TCMPs has attracted the most attention.
Multiple TCM-derived antiobesogenic polysaccharides (TCMPOs),
such as Zingiber striolatum polysaccharides (13), Rosa laevigata
polysaccharides (5), Lycium barbarum polysaccharides (14),
Cymodocea nodosa polysaccharides (15), Polygonatum cyrtonema
polysaccharides (16), Laminaria japonica polysaccharides (17),
and Ganoderma lucidum polysaccharides (18), have been reported
to have antiobesity effects. Considering different therapeutic
leads, TCMPOs have two primary benefits over synthetic
medications and bariatric procedures. Initially, the historical
application of TCMs provides reliable empirical evidence
for their safety. The antiobesity activity of naturally derived
TCMPOs is more inclined to long-term effectiveness and
safety and could be more acceptable by the public due to its
distinct benefits, like affordable, few side effects as well as low
risk (12, 16). Second, the antiobesity mechanism of TCMPOs
is different from that of synthetic drugs; polysaccharides are
hardly digestible and unabsorbable and can act on intestinal
microbiota or intestinal hormones after oral administration,
thereby producing potential antiobesity effects in the host
(19, 20).

Numerous investigations have shown a close relationship
between the structural properties for TCMPOs and their
antiobesity efficacy, mainly involving the influence of molecular
weights (Mw), backbone, conformational features and functional
groups (12, 13, 21). Furthermore, the extraction and purification
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conditions of TCMPs, such as temperature, solvent and separation
medium, could also have impacts on their compositions and
structures, thus affecting their bioactivities (21–23). In addition,
the antiobesity mechanism of TCMPOs has also become a research
hotspot in recent years. Research shows that TCMPOs could exhibit
antiobesity effects through multiple targets, such as regulating
appetite, controlling the absorption and synthesis of fat, and
modifying the intestinal flora (6, 24–26). Nevertheless, currently
published reviews mostly focus on the separation, purification and
biological activity of polysaccharides, there is no available review
concerning the structural-property correlations and antiobesity
mechanism of TCMPOs, despite having been sufficiently studied by
many scholars. Therefore, our goal in this study is to methodically
compile the results of contemporary research and to present
a comprehensive understanding of the extraction, purification
techniques, structural-property correlations and antiobesity
mechanism of TCMPOs, thus drawing investigators’ attention to
the application potential and utilization of TCMPOs.

Extraction and purification of
TCMPOS

Extraction of TCMPOs

The most crucial step in the separation of TCMPOs is
extraction. Table 1 depicts the methods and techniques used
to extract, isolate and purify the polysaccharides from TCM.
Table 1 illustrates that the traditional and most popular laboratory
technique for producing TCMPOs is extract within hot or boiling
water. In order to get useful TCMPOs yields, this approach often
requires a high extraction temperature (60∼100◦C), long duration
(1∼24 h), high energy, a high water-to-material proportion, as
well as several extraction stages. However, due to its relative
conventionality, ease of control, and affordability, this approach is
still widely utilized today. Additionally, to increase the extraction
efficiency, a variety of extractant and supported techniques have
been employed, including treatment with dilute acid (23, 27–
30) or alkali (31, 32), high pressure (18, 33–35), high-power
ultrasound (36, 37). Dilute acid or dilute alkali are capable of
improving the amount extracted of polysaccharides, however
several studies have shown that this method tends to damage
the structure for TCMPOs which thus may further affect their
biological activity (12, 38). According to earlier studies, the
extraction yields of Dictyophora indusiata polysaccharides prepared
using various extraction methods ranged from 5.62 to 6.48% (22).
Compared with simple water extraction, microwave, ultrasonic
and pressurized extraction take a shorter time and have higher
extraction efficiencies (Table 1). However, in view of the above
facts, the heat and extractant-assisted extraction method of
TCMPOs is excessively conventional and has many limitations.
Hence, the development of novel technology is imperative. For
example, microwave extraction, which can generate high-frequency
concussion and evenly penetrate the material to destroy the cell wall
(39) and promote the extraction of intracellular polysaccharides
(38) in a short time, is energy-efficient and could achieve a better
yield. In addition, supercritical CO2 extraction is a productive
extraction method that identifies unique characteristics of the

extract at crucial stages (40). During this process, the use of
appropriate entrainers or modifying agents such as ethanol and
methanol (41, 42) improves the probability of obtaining TCMPOs.

Purification of TCMPOs

After the TCM water extracts are obtained, the isolation and
purification process need to be first carried out by removing
the non-polysaccharide components. The polysaccharides obtained
through ethanol precipitation has been partly cleansed through
deproteination as well as decoloration (38, 43, 44) before further
being isolated and purified via dialysis (16), ultrafiltration (29,
45), membrane separation (18, 21), ion-exchange chromatography
(46), gel filtration chromatograph (45, 47, 48), along with other
methods. Figure 1 provides a schematic representation of the
TCMPOs extraction and purification procedure. To obtain the
pure fractions of TCMPOs, elution was carried out using the
proper running buffers, then collection, concentration, dialysis,
as well as lyophilization. For example, the water-extracted
crude polysaccharides from Sargassum fusiforme were separated
through a DEAE Sepharose Fast Flow column, as well as three
polysaccharide fractions, namely, Sf-1, Sf-2, and Sf-3, were obtained
from elution with water, 0.5 M NaCl, 2 M NaCl, respectively (23,
27). Wu et al. (21) fractionated the Hirsutella sinensis water extract
into four fractions (H1, H2, H3 and H4) on the basis of their
Mw through membrane separation. Zha et al. (49) fractionated the
L. japonica water extract into the three fractions LP1, LP2, and LP3
using the ethanol precipitation method at ultimate concentrations
of 40, 60, and 80%, correspondingly. Different separation and
purification methods will lead to different TCMPOs components.
However, some research suggests that most TCMPOs obtained by
the present extraction, isolation and purification techniques are
still crude products, and the quality of TCMPOs is difficult to
control (12, 50, 51). First, the region of origin, the portions of
the plant that are collected, the time of year it is harvested, and
the technique of processing all affect how medicinally effective the
TCM is (52). Second, non-template synthesized polysaccharides
are never pure compounds regardless of how many procedures
have been applied for purification (12). The acquired TCMPOs
are always bound within either narrow or broad Mw ranges (12,
50). It is also worth noting that the extraction methods, solvent,
equipment, personal operation method and so on differed from
lab to lab. Therefore, special attention must be paid to the whole
extraction, isolation and purification procedures to obtain high-
quality TCMPOs.

Physiochemical and structural
features

The physiochemical and structural properties of TCMPOs,
as shown in Figure 1, mainly including monosaccharide
compositions, Mw, and backbone structures (configuration,
type, position of glycosidic linkage, sequence of monosaccharide),
as well as conformational features, have been investigated and
identified by various chemical and instrumental analyses, such
as acid hydrolysis, periodate oxidation analysis, methylation

Frontiers in Nutrition 03 frontiersin.org

https://doi.org/10.3389/fnut.2023.1341583
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1341583
January

13,2024
Tim

e:9:34
#

4

Z
h

ie
t

al.
10

.3
3

8
9

/fn
u

t.2
0

2
3

.13
4

15
8

3
TABLE 1 The source, geographical origins, extraction, isolation and purification of various TCMPOs.

No. Source Geographical
origins

Compound
name/
fractions

Extraction Isolation and purification Yield (%) References

Method of
extraction

Time (Min) Temperature
(◦C)

Material/
Water ratio
(g/mL)

1a Cordyceps
Sinensis

Xi’an Ruilin
Biotech Company

CSP Water extraction 120 100 1:4 Ethanol precipitation; DEAE-52 ion
exchange column; Sephadex G-100 gel
column

– (47, 58)

2b Wolfiporia
cocos

Yunnan, China WIP Alkali extraction
(0.7 m NaOH)

240 100 1:18.8 Ethanol precipitation; Dialyzed;
Water-soluble polysaccharides
removed

39.8% (31, 32)

3b Pueraria
lobata root

Bozhou, China,
harvested in
October

PLP Water extraction 24*60 25 – Dialyzed 24.3% (166, 167)

4b Lycium
barbarum

– LBP Water extraction 30 100 1:10 Ethanol precipitation – (168, 169)

5a Sargassum
fusiforme

Qingdao, China,
May

SFPs (Sf-1, Sf-2,
Sf-3, Sf-3-1,
Sf-A)

Hot-water and
acid extraction

240 – 1:30 Sf-1 was eluted by water,
Sf-2 was eluted by 0.5 M NaCl,
Sf-3 was eluted by 2 M NaCl,
Sf-3-1 was degraded from Sf-3,
Sf-A was obtained from acid
extraction of SFPs;
DEAE Sepharose Fast Flow column,
dialysis

– (23, 27)

6b Sargassum
fusiforme

Qingdao, China,
July

SFP Ultrasound-
assisted water
extraction
(400W)

150 90 1:20 Ethanol precipitation; Dialyzed 14.53% (28, 37)

7b Sargassum
fusiforme

Qingdao, China,
August

SfW Hot
water-extracted

60 – – Ethanol precipitation; Ultra-filtered – (29)

SfA Acid extraction 60 60 – Ethanol precipitation; Dialyzed –

8b Sargassum
fusiforme

Wenzhou, China
October

SFF Acid extraction 360 1:20 Ethanol precipitation; Dialyzed 7.3% (30, 170)

9b Rhodiola
rosea

Lin Chi
Pharmacy of
Zhenjiang,
(Jiangsu, China)

RRP (RRP1,
RRP2)

water extraction 120 90 1:10 RRP1 was eluted by the distilled water,
RRP2 was eluted by 0.1M NaCl
solution,
DEAE-52 chromatographic column;
Sephadex G-100 gel column

3.8% (48)

10b Polygonatum

cyrtonema

Jiuhua Medicine
Technology Co.,
Ltd. (Jiuhua,
China)

PCP Water extraction 120 90 1:10 Ethanol precipitation; Dialyzed 25.67% (16)
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TABLE 1 (Continued)

No. Source Geographical
origins

Compound
name/
fractions

Extraction Isolation and purification Yield (%) References

Method of
extraction

Time (Min) Temperature
(◦C)

Material/
Water ratio
(g/mL)

11b Astragalus
membranaceus

– APS Water extraction 360 80 1:20 Ethanol precipitation 3.47% (24)

12a Laminaria
japonica

Lianjiang, Fujian,
China.

LJP61A Water extraction 60 60 1:50 Ethanol precipitation; DEAE-cellulose
column, Sephacryl S-500 column

– (17, 137)

13a Laminaria
japonica

Lianjiang, Fujian,
China.

LP (LP1, LP2,
LP3)

Water extraction 60 60 1:50 Ethanol precipitation method at a
different final concentration,
40% ethanol precipitation (LP1)
60% ethanol precipitation (LP2)
80% ethanol precipitation (LP3)

– (49)

13b Ganoderma
lucidum

Chang Gung
Biotechnology,
China

WEGL (G1, G2,
G3)

Pressurized
water extraction

30 121 1:25 Ethanol precipitation; Membrane
separation based on molecular
weights

– (18)

14b Portulaca
oleracea L.

Jilin Farmer’s
Market

CPOP Water extraction 540 80 1:20 Ethanol precipitation 9.6% (60)

15a Ophiopogon
japonicus

Cixi, Zhejiang,
China

MDG-1 Water extraction 95∼100 1:10 Ethanol precipitation; Sephadex G-25
column

– (55, 171)

16a Ophiopogon
japonicus

Sichuan province,
China

OJP Water extraction
(Three times)

90 100 1:4
1:4
1:2

Ethanol precipitation; DEAE-52
cellulose column

– (53)

17a Liriope
spicata

Hubei province,
China

LSP

18a Liriope
muscari

Fujian province,
China

LMP

19a Mori fructus Buan-myeon,
Gochang-gun,
Jeollabuk-do,
Korea

JS-MP-1 Water extraction 360 Room
temperature

– Ethanol precipitation and
DEAE-cellulose ion exchange
chromatography

0.09% (46, 172)
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TABLE 1 (Continued)

No. Source Geographical
origins

Compound
name/
fractions

Extraction Isolation and purification Yield (%) References

Method of
extraction

Time (Min) Temperature
(◦C)

Material/
Water ratio
(g/mL)

20b Mori fructus Xinjiang, China MFP Water extraction 120 90 – Ethanol precipitation – (54)

21a Morus
Multicaulis
Perr

Shandong
Agricultural
University, Taian,
China

MLP Water extraction 240 100 – Ethanol precipitation, ultrafiltration,
DEAE Sepharose Fast Flow column,
Sephadex G-100 column

0.13% (45)

22b Dioscorea
opposita
Thunb

Jiaozuo, Henan,
China

CYP Water extraction 120 90 – Ethanol precipitation – (173)

23a Dendrobium
officinale

Yichang, Hubei,
China

DOP Water extraction 540 100 1:80 Ethanol precipitation, Sephadex G-50
column

– (174)

24a Gastrodia
rhizome

Herbal Medicine
Cooperative of
Muju, Chonbuk,
South Korea

GR-0 Water extraction 180 100 – Ethanol precipitation, Dialyzed,
DEAE-Sepharose CL-6B

– (175)

25a Hirsutella
sinensis

– H1, H2, H3, H4 Water extraction 30 121 1:25 Membrane separation based on
molecular weights

– (21)

26a Ginkgo
biloba leaf

Early November,
Shandong,
China

GBLP Water extraction 18*60 80 1:30 Ethanol precipitation, Sephadex G-75
column

4.28% (176)
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TABLE 1 (Continued)

No. Source Geographical
origins

Compound
name/
fractions

Extraction Isolation and purification Yield (%) References

Method of
extraction

Time (Min) Temperature
(◦C)

Material/
Water ratio
(g/mL)

27b Dictyophora
indusiata

Anhui Joy Lok
Food Co., Ltd.,
Ningde, Fujian
Province, China

DIP Water extraction 120 100 1:30 Ethanol precipitation 13.2% (162, 177)

28b Dictyophora
indusiata

Ya’an, China DFP-H Hot water
extraction

150 95 1:30 Ethanol precipitation 5.52% (22)

DFP-M Microwave
assisted
extraction
(480w)

20 85 1:50 6.47%

DFP-U Ultrasonic
assisted
extraction
(650w)

15 Room
temperature

1:22 6.48%

DFP-P Pressurized
assisted
extraction
(1.6 MPa)

30 55 1:30 6.39%

29b Cyclocarya
paliurus

Zhangjiajie
Nuokang
Ecological Tea Co.,
Ltd., Hunan,
China

CPP Pressurized
water extraction

45 78 – – (33, 34)

30b Gelidium
amansii

Keelung, China GHE Pressurized
water extraction

20 121 1:20 – (35)

apurified; bcrude; – not detect.
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FIGURE 1

Schematic diagram of the extraction, purification, structural features and antiobesity mechanism of TCMPOs. TCM, traditional Chinese medicine;
TCMPOs, traditional Chinese medicine-derived polysaccharides.

analysis, smith degradation, gas chromatography (GC) (49),
gas chromatography–mass spectrometry (GC–MS) (53),
ultraviolet (UV) detection (23, 32), ion chromatography (IC)
(54), infrared spectroscopy (IR) (32), Fourier transform-infrared
(FT-IR) spectroscopy (48), nuclear magnetic resonance (NMR)
spectroscopy (55), high-performance liquid chromatography
(HPLC) (56), high-performance size exclusion chromatography
(HPSEC) (57), high-performance gel permeation chromatography
(HPGPC) (58), scanning electron microscopy (SEM) (48),
atomic force microscopy (AFM) and X-ray diffraction
(XRD) (37, 48, 59). The structural characteristics of various
TCMPOs, including their monosaccharide compositions,
average Mw, backbone structures as well as conformational
structures, are exhibited in Table 2, together with the
sources, geographical origins and structural characterization
methods.

Monosaccharide composition and
proportion

Most often, the analysis of monosaccharide composition
and proportion demands cleavage for glycosidic bonds via
acid hydrolysis, followed by derivatization, detection along with
measurement through HPLC, GC, or GC/MS (38, 43, 44, 57,
60, 61). In the process of derivatization, 1-phenyl-3-methyl-5-
pyrazolone (PMP) is one of the best precolumn derivatization
reagents in the determination of monosaccharides because its

derivatives are not easy to cleave and generate isomeric peaks
(48, 62). It is noteworthy that high-performance anion-exchange
chromatography with pulsed amperometric detection (HPAEC-
PAD) was increasingly used by investigators to detect the
composition of monosaccharides because there is no need for
derivatization (35, 63).

As shown in Table 2, most TCMPOs are mainly composed
of glucose (Glc), galactose (Gal), mannose (Man), arabinose
(Ara), rhamnose (Rha), glucuronic acid (GlcA), galacturonic
acid (GalA), xylose (Xyl), and fucose (Fuc) with different molar
ratios. It is noteworthy that G. lucidum polysaccharides were
detected to contain glucosamine (GlcN) with a percentage
of 1.1% (18). The diversity of monosaccharide composition
and their molar ratio is associated with the TCM sources,
geographical origins and harvest season. For example,
monosaccharide composition differences were discovered for
S. fusiforme harvested in Qingdao, Wenzhou, separately (27,
37). In addition, different monosaccharides were detected in
the polysaccharides of S. fusiforme that were harvested in
Qingdao in May, July, and August. The polysaccharides of
S. fusiforme harvested in July had the highest content of Xyl
and Rha (23, 28, 29, 37). The differences in monosaccharide
composition in polysaccharide fractions are also closely relevant
to the extraction and separation methods. For instance, DFP-
H, DFP-M, DFP-U as well as DFP-P were obtained from
D. indusiata with different extraction methods and possessed
similar monosaccharide compositions but exhibited different
molar ratios of constituent monosaccharides (22). LP1, LP2 along
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TABLE 2 The physiochemical and structural features of various TCMPOs.

No. Source Geogra-
phical
origins

Obtained
fractions

Monosaccharide composition Molecular
weight (Da)

Backbone
structure

Conforma-
tional

structure

Characteri-
zation

method

Refe-
rences

Glc Gal Man Ara Rha GlcA GalA Xyl GlcN Fuc

1 Cordyceps
Sinensis

Xi’an
Ruilin
Biotech
Company

CSP 90,262 526 317 264 184 151 – – – – 6.486× 104 – – HPGPC; HPLC (58)

2 Wolfiporia
cocos

Yunnan
province

WIP – – – – – – – – – – 4.031× 105

∼4.486× 106
1,3-β-D-glucan – HPLC, IR, UV

and NMR
(32)

3 Sargassum
fusiforme

Qingdao,
China,
May

Sf-1 1 – – – – – – – – 698.3/8.9× 103 – – HPSEC, HPLC,
UV

(23)

Sf-2 0.21 0.23 0.26 – – 0.30 – – – 1 95.5/9.5× 103

Sf-3 – 0.24 – – – – – – 1 2.295× 105

Sf-3-1 – 0.33 0.09 – – 0.08 – – – 1 1.0× 104

Sf-A 1.26 0.42 0.10 – – 0.05 – – – 1 46.5/5.1× 103

4 Sargassum
fusiforme

Qingdao,
China, July

SFP 2.20 – 22.77 – 1.21 18.63 – 26.15 – 29.02 19.91/5.91× 104 – No triple helix
conformation

HPLC, UV,
HPSEC, FT-IR,

SEM, AMF

(28, 37)

5 Sargassum
fusiforme

Qingdao,
China,
August

SfW 1.05 0.41 0.07 – – 0.07 – 0.14 – 1 166/5.9× 103 – – HPSEC, NMR (29)

SfA 1.13 0.38 0.05 – – 0.06 – 0.03 – 1 276/5.8× 103 – –

6 Sargassum
fusiforme

Wenzhou,
China

SFF 4.32 – 10.89 – 3.29 4.53 14.02 3.57 – 41.05 – – – HPLC, FT-IR (30)

7 Rhodiola
rosea

Lin Chi
Pharmacy
of
Zhenjiang,
(Jiangsu,
China)

RRP1 1 0.51 0.69 7.5 0.11 – 0.15 – – – 5.5× 103 1→6 or 1→
(50.63%),

1→2 or 1→4 (25.9%)
and 1→3 (23.47%)
glycosidic linkages

Possessed a
triple helical

conformation;
a small lamellar

or irregular
dendritic
structure

HPGPC, FT-IR,
NMR, XRD,
SEM, AFM

(48)

RRP2 0.18 0.47 0.15 1 0.19 – 1.01 – – – 4.257× 105 1→6 or 1→ (23.5%),
1→2 or 1→4 (60.0%)

and 1→3 (16.5%)
glycosidic linkages

No triple helix
conformation; a
smooth surface

topography with
characteristic
large wrinkles

and drop-shaped
bulges on the

edges
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TABLE 2 (Continued)

No. Source Geogra-
phical
origins

Obtained
fractions

Monosaccharide composition Molecular
weight (Da)

Backbone
structure

Conforma-
tional

structure

Characteri-
zation

method

Refe-
rences

Glc Gal Man Ara Rha GlcA GalA Xyl GlcN Fuc

8 Polygonatum
cyrtonema

Jiuhua
Medicine
Technology
Co., Ltd.
(Jiuhua,
China)

PCP 15.09 37.30 19.45 – 18.78 – 15.62 – – 5.1× 103 With both α- and
β-configurations

– HPGPC, FT-IR,
NMR

(16)

9 Astragalus
membranaceus

– APS 70.55 3.61 – 23.39 1.6 – – 0.84 – – – – GC (178)

10 Laminaria
japonica

Lianjiang,
Fujian,
China

LJP61A 1.85 2.92 1 – – – – – – – 1.96× 106
→3,6)-α-D-Manp-

(1→,
→4)-α-D-Manp-

(1→,
→4)-2-O-acetyl-β-D-

Glcp-(→,
→4)-β-D-Glcp-(1→,
→6)-4-O-SO3-β-D-

Galp-(1→,
→6)-upbeta-D-Galp-

(1→,
→3)-β-D-Galp-(1→

– GC, HPLC,
NMR

(17, 137)

11 Laminaria
japonica

Lianjiang,
Fujian,
China

LP1 0.47 1 1.46 2.63 – – – – – – 1.73× 107 ,
8.18× 106 ,
1.01× 106

(1→6)-linked;
(1→2)-/

(1→4)-linked (35%)
and (1→3)-linked

(5%) glycosyl bonds

– HPLC, GC,
FT-IR

(49)

LP2 1.19 1.64 1.28 1 0.13 – – 0.3 – – 5.74× 106 ,
2.18× 106 ,
7.74× 105

(1→6)-linked,
(1→3)-

Linked (24%) and
(1→2)-/(1→4)-

linked (6%) glycosyl
bonds

–

LP3 0.99 2.47 3.01 1 0.39 – – 0.67 – – 5.51× 106 ,
1.74× 105

(1→6)-linked,
(1→2)-/(1→4)-

linked
(17%) and

(1→3)-linked (59%)
glycosyl bonds

–

12 Ganoderma
lucidum

Chang
Gung Bio-
technology,
China

G1 26.3 16.9 47.5 2.9 2.5 – – – – 2.9 >3× 105 – – (18)
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TABLE 2 (Continued)

No. Source Geogra-
phical
origins

Obtained
fractions

Monosaccharide composition Molecular
weight (Da)

Backbone
structure

Conforma-
tional

structure

Characteri-
zation

method

Refe-
rences

Glc Gal Man Ara Rha GlcA GalA Xyl GlcN Fuc

G2 – – – – – – – – – – 1× 104
∼3× 105 – –

G3 – – – – – – – – – – <1× 104 – –

13 Portulaca
oleracea L.

Jilin
Farmer’s
Market

CPOP 3.4 1 1.9 1.1 1 – – 1.3 – – 7.3× 103

(mainly),
1.19× 104 ,
9.3× 104

– – GC, HPSEC (60)

14 Ophiopogon
japonicus

Cixi,
Zhejiang,
China

MDG-1 – – – – – – – – – – 3.4× 103 Fruf (2→1) with a
branch of Fruf

(2→6) Fruf
(2→),α-d-Glc

– NMR (55)

15 Ophiopogon
japonicus

Sichuan
province,
China

OJP – – – – – – – – – – 4.925× 103 Fruf-(2→,→2)-
Fruf-(6→,

→6)-Glcp-(1→ and
→1, 2)-Fruf-(6→)

– HPGPC, GC,
GC-MS, NMR

(53)

16 Liriope
spicata

Hubei
province,
China

LSP – – – – – – – – – – 4.742× 103

17 Liriope
muscari

Fujian
province,
China

LMP – – – – – – – – – – 4.138× 103

18 Mori
fructus

Buan-
myeon,
Gochang-
gun,
Jeollabuk-
do,
Korea

JS-MP-1 3.1 37,6 1.6 36.3 18.4 – – 1.7 – 1.3 1.639× 106 α-Araf (terminal and
1,5- linked), β-Galp
(1,3, 6-, 1, 6-, 1,4-
and 1,3-linked),
α-Rhap (1,2- and

1,2,4-linked),
α-GalAp (terminal

and 1,4-linked),
terminal

4-O-methylated
β-GlcpA

– GC-MS, HPLC,
NMR

(46, 172)

19 Mori
fructus

Xinjiang,
China

MFP 17.36 27.57 – 28.37 12.59 – 14.07 – – – 2.10× 105

(16.33%),
1.0× 105

(41.37%),
6.25× 104

(29.54%) and
2.08× 104

(12.76%)

– IC, HPSEC (54)
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TABLE 2 (Continued)

No. Source Geogra-
phical
origins

Obtained
fractions

Monosaccharide composition Molecular
weight (Da)

Backbone
structure

Conforma-
tional

structure

Characteri-
zation

method

Refe-
rences

Glc Gal Man Ara Rha GlcA GalA Xyl GlcN Fuc

20 Morus
Multicaulis
Perr

Shandong
Agricultural
University,
Taian,
China

MLP 6.53 – 8.73 1 1.04 – – 2.13 – – 8× 103 β-glycosidic bond – HPLC, FT-IR,
HPSEC

(45)

21 Dendrobium
officinale

Yichang,
Hubei,
China

DOP 1 – 1.38 – – – – – – – 3.95× 105 – – HPGPC, GC (174)

22 Dendrobium
officinale

DOP 1 – 5.55 0.12 – – – – – – 3.938× 105 – – FT-IR, GC,
HPLC

(56, 179)

23 Ginkgo
biloba leaf

Early
November,
Shandong,
China

GBLP 9.39 32.21 20.82 6.71 14.76 – 16.11 – – – 1.2× 104 – – UV, HPGPC,
HPLC

(176)

24 Dictyophora
indusiata

Anhui Joy
Lok
Food Co.,
Ltd.,
Ningde,
Fujian
Province,
China

DIP 59.84 12.95 23.25 0.17 0.043 1.014 – 0.36 1.58 – – – HPLC (161,
162)

25 Dictyophora
indusiata

Ya’an,
China

DFP-H 10.50 2.13 2.68 1.00 0.98 – – – – 6.68× 104

∼1.55× 106
– – (22)

DFP-M 10.70 1.74 4.19 1.00 0.44 – – – – 7.8× 104

∼1.32× 106
– –

DFP-U 8.83 1.24 2.68 1.00 0.46 – – – – 5.91× 104

∼1.47× 106
– –

DFP-P 7.91 3.59 3.30 1.00 0.75 – – – – 6.11× 104

∼1.09× 106
– –

26 Gelidium
amansii

Keelung,
China

GHE 0.6 86 1.5 0.5 2.0 – 1.1 – 8.3 – – – HPAEC-PAD (35)

Glc, glucose; Gal, galactose; Man, mannose; Ara, arabinose; Rha, rhamnose; GlcA, glucuronic acid; GalA, galacturonic acid; Xyl, xylose; GlcN, glucosamine; Fuc, fucose. HPGPC, high-performance gel permeation chromatography; HPLC, high Performance Liquid
Chromatography; IR, infrared Radiation; UV, ultraviolet; HPSEC, high-performance size exclusion chromatography; NMR, nuclear magnetic resonance; FT-IR, Fourier transform-infrared; XRD, X-ray diffraction; SEM, scanning electron microscopy; AFM, atomic force
microscopy; HPAEC-PAD, high performance anion exchange chromatography-pulsed amperometric detector; GC, gas chromatography; GC-MS, gas chromatography–mass spectrometry; IC, ion chromatography; – not detect.
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with LP3 were extracted and partitioned from L. japonica
by the ethanol precipitation technique with various final
concentrations. The dominant monosaccharides of LP1 were
Ara, Man, Gal and Glu at a molar proportion for 2.63:1.46:1:0.47,
whereas LP2 as well as LP3 comprised a total made up of
Rha, Ara, Xyl, Man, Gal and Glu at molar proportions for
0.13:1:0.3:1.28:1.64:1.19 as well as 0.39:1:0.67:3.01:2.47:0.99,
correspondingly (49).

Average molecular weights

Multiple analytical techniques, including osmometry, viscosity
measurement, sedimentation, GPC, HPGPC, HPSEC, and HPLC,
are employed to determine the Mw distribution of TCMPOs,
of which HPGPC and HPSEC are the most commonly utilized
methods (38, 39, 43, 44, 64). As mentioned above, polysaccharides
are never pure compounds regardless of how many procedures have
been applied for purification. The acquired TCMPOs are always
within either narrow or broad Mw ranges (12). Therefore, only
the average Mw of TCMPOs can be detected. In addition, the
average Mw mainly depend on the separation method, such as
the different final ethanol concentrations (49), running buffers (23,
27, 48), separation membranes (18). Different Mw ranging from
∼103 to ∼107 Da were discovered under a variety of experimental
conditions and source materials, which are demonstrated in
Tables 1, 2.

Backbone structures

The core of backbone structural analysis of TCMPOs is the
sequence of monosaccharides and the configuration, type as well
as location of glycosidic linkage. Generally, the priority is to
investigate the backbone of polysaccharides with its branch link
sites, the ring type (pyran or furan), the linkage sequence and the
absolute configuration (D- or L-type) of monosaccharide residues,
the α- or β-isomeric form of each glycosidic bond and feature
groups (sulfate group, acetyl group, phosphate group, methyl group
and so on) that may connect (12, 20, 65). Due to the complex
structure of polysaccharides, the degradation (acid hydrolysis,
periodate oxidation, smith degradation, etc.) of polysaccharides is
usually performed first, followed by instrumental analysis methods
(FT-IR, NMR, GC–MS, ion mobility-mass spectrometry, etc.) to
obtain structural information (12, 48, 66, 67).

Studies have shown that the different fractions obtained from
the same TCM may share the same glycosyl linkages, while
the percentage of each glycosyl bond type varies significantly.
For example, a structural investigation of two polysaccharide
fractions (RRP1 and RRP2) from Rhodiola rosea indicated that
RRP1 consisted of 1→6 or 1→ (50.63%), 1→2 or 1→4 (25.9%)
as well as 1→3 (23.47%) glycosidic connections, while RRP2
consisted of 1→6 or 1→ (23.5%), 1→2 or 1→4 (60.0%) and 1→3
(16.5%) glycosidic connections (48). Furthermore, there were three
polysaccharide fractions (LP1, LP2 and RRP2) from L. japonica,
among which LP1 contained non-reducing terminal residues and
(1→6)-linked (60%), (1→2)-/(1→4)-linked (35%) and (1→3)-
linked (5%) glycosyl bonds, LP2 contained non-reducing terminal

residues and (1→6)-linked (70%), (1→3)-linked (24%) and
(1→2)-/(1→4)-linked (6%) glycosyl bonds, and LP3 contained
non-reducing terminal residues and (1→6)-linked (24%), (1→3)-
linked (59%) and (1→2)-/(1→4)-linked (17%) glycosyl bonds (49).
Three kinds of maidong polysaccharides were examined for their
structures, and these polysaccharides were all composed of Fruf-
(2→,→2)-Fruf-(6→,→6)-Glcp-(1→ and→1, 2)-Fruf-(6→with
molar ratios of 5.0:18.2:1.0:5.3 (Liriope spicata, LSP), 6.8:15.8:1.0:5.8
(Ophiopogon japonicus, OJP), as well as 8.3:12.3:1.0:3.9 (Liriope
muscari, LMP) (53). In addition, the extraction and isolation
method of TCMPOs may not affect their main chain structure.
For instance, DFP-H, DFP-M, DFP-U, and DFP-P were obtained
from D. indusiata with different extraction techniques, although
variations in the kinds of glycosidic linkages and polysaccharide
structures were not noticed (22). The structural characterization
of TCMPOs is shown in Table 2, which indicates that most of
the researchers actually did not further explore the structure of
TCMPOs. The structure of TCMPOs is tightly related to biological
activities (12, 57, 67), hence, it is particularly important to focus
research on primary structure identification in the future.

Conformational feature

Generally speaking, polysaccharides within aqueous solutions
show a variety of chain conformations, including aggregates,
random coils, as well as distinct helical forms (single, double, and
triple helices) (43, 68–70). Some of the advanced technologies
have been used to investigate the conformational features of
polysaccharides, such as HPLC-static light scattering (HPLC-SLS)
(70), HPLC-dynamic light scattering (HPLC-DLS) (70), viscosity
test using the hypothesis of diluted polymer solutions (69), the
Congo red test (28, 48), differential scanning calorimetry (DSC)
(19), atomic force microscopy (AFM) (28, 43), circular dichroism
(CD) (57, 69), fluorescence correlation spectroscopy (FCS) (69),
transmission electron microscopy (TEM) (71), scanning electron
microscopy (SEM) (28), and NMR spectroscopy (19, 72). For
instance, research was done on the senior structures of two
distinct polysaccharide fractions (RRP1 and RRP2) obtained from
R. rosea, which were eluted using distilled water as well as 0.1 M
NaCl solution, correspondingly (48), RRP1 was found to have a
triple-helical conformation by the Congo red test, whereas RRP2
did not. RRP1’s surface included a modest lamellar or irregular
dendritic structure, according to SEM tests, while RRP2’s surface
topography was smooth and featured big wrinkles and drop-shaped
bulges on the margins. AFM suggested that partial aggregation
was observed in the polysaccharide chains of RRP1, and RRP2
had no molecular aggregations. These findings showed that the
different elution solvents may have an impact on the advanced
structure of TCMPOs. As shown in Table 2, only very few of the
researchers have studied the senior structures of TCMPOs. The
complexity and polymorphism of polysaccharides unquestionably
bring major obstacles to their higher structural identification. Since
the superior structures of polysaccharides may be more related to
their bioactivities than to their primary structures (12, 51), further
research and confirmation still need to be conducted in the future.
Moreover, future technology development needs to concentrate
on characterizing the high-level structural dynamic changes of
polysaccharides (69).
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Correlation between the structure
and antiobesity effects of TCMPOS

Few previous studies regarding the correlations between
structure and antiobesity effects of various TCMPOs were stated,
and it is not simple to connect the structures of TCMPOs with
their antiobesity effects. Nevertheless, as shown in Figure 1, some
correlations can be inferred as follows.

Effect of molecular weight

It is generally accepted that the biological activities for
polysaccharides are closely correlated with their Mw. According
to related reports, TCMPOs with relatively high Mw usually
demonstrate greater antiobesogenic activity than those with lower
Mw. For example, varied Mw polysaccharides from H. sinensis oral
administration to high fat diet (HFD)-induced obese rats, the high-
Mw polysaccharides in fraction H1 (>300 kDa) showed greater
antiobesogenic effects than the low-Mw polysaccharides in fraction
H2 (10–300 kDa) as well as H3 (<10 kDa) (21). Administration
of fraction H1 decreased body weight by ∼50% after 12 weeks and
reduced the visceral fat and homeostatic model assessment-insulin
resistance (HOMA-IR) index contrasted to the HFD control group,
whereas fractions H2 and H3 only reduced the visceral fat pad mass
and produced no influence on body weight or HOMA-IR index.
In another study, the high-Mw polysaccharide PSF (≥100 kDa)
from Polygonatum kingianum displayed better regulation of lipid
metabolism via enhancing insulin sensitivity and more tightly
controlling the make-up and activities of the gut microbiota (73).
Comparable outcomes were also observed within the investigation
of G. lucidum polysaccharide (>300 kDa) (18) and Pseudostellaria
heterophylla polysaccharide (50∼210 kDa) (74).

Nevertheless, the association between the Mw of TCMPOs and
their antiobesogenic activity is not simply a positive or negative
correlation, and there are special cases that put forward different
views (22, 75, 76). For instance, the antiobesity effects of four
polysaccharides (DFP-H, DFP-M, DFP-U, and DFP-P) isolated
from D. indusiata were investigated. The Mw size of the four
polysaccharides was arranged as follows: DFP-H > DFP-P > DFP-
M > DFP-U, whereas DFP-P showed the highest cholesterol/bile
acids (BAs) attaching abilities as well as strongest inhibiting
efficiency upon pancreatic lipase (22). Furthermore, it is worth
noting that both DFP-P as well as DFP-H displayed significantly
greater in vitro attaching characteristics, which includes fat,
cholesterol as well as BAs, and lipase inhibiting properties
compared to DFP-M and DFP-U, which may be because the
relatively high Mw could reduce its water solubility, resulting
in a decrease in hydrophilicity, thus enhancing the affinity for
fat/cholesterol by increasing its surface aggregation (22, 76). The
aforementioned data suggests that polysaccharides’ antiobesity
effect is nevertheless enhanced by a reasonably high Mw. This may
be explained by the fact that polysaccharides’ structural stability
can only be preserved by a sufficiently high Mw (63). However,
based on previous studies, maintaining a conformation with high
biological activity of polysaccharides is not negatively impacted by
either an excessive or modest Mw (77, 78), and the correlation

between Mw and the antiobesogenic activity of TCMPOs should
be further investigated.

Effect of the backbone and
conformational features

The biofunctional activities of TCMPOs could be affected by
their backbones and conformational properties. Prior studies have
demonstrated that the structural properties of polysaccharides,
including types of glycosidic bonds, monosaccharide compositions
and molar ratios, degrees of branching (DBs) in the backbone,
are closely related to their biological activity (59, 79, 80). Studies
have found that β-glycosidic linkages usually exhibit stronger
antiobesity activity than α-glycosidic linkages, causing the α-
amylase in human small intestine which is specific for α-glycosidic
linkages (55, 75). Polysaccharides rich in β-glycosidic linkages
can remain undigested and are sequentially fermented by colonic
microflora, thus playing a relatively important role in weight
loss (55). DFP-H, DFP-M, DFP-U, and DFP-P obtained from
D. indusiata possessed similar monosaccharide compositions but
exhibited different molar ratios. Findings indicated that DFP-P
and DFP-H were better at binding fat than DFP-U and DFP-M,
which might be related to the higher ratios of galactose and glucose
(22). Two polysaccharide components (TSP-2 and TSP-1) were
extracted through Toona sinensis leaves. TSP-1 demonstrated more
hepatoprotective action than TSP-2, which may be related to TSP-
1’s higher galactose and glucose levels as well as its higher branching
residue concentration (81). It is worth mentioning that the DB
in the backbone is not positively correlated with activity; only the
suitable DB is advantageous to the arrangement of the triple helical
configuration (79).

The conformational features (spherical, random coil, double-
helix, triple-helix, worm-like, rod-like) of polysaccharides may be
more related to their bioactivities than the primary structures.
Polysaccharides with triple-helix conformations exhibit more
potent biological effects, including anti-inflammatory, antidiabetic
and immunomodulatory effects, than those with other structures,
and some of them, such as lentinan and schizophyllan, have been
used in clinical therapeutics (70, 82). As previously mentioned,
two polysaccharide fractions (RRP1 and RRP2) isolated through
R. rosea were identified with different conformational features, and
subsequent research demonstrated that the triple-helix structure
enabled fraction RRP1 to exhibit more prominent antioxidant
and hepatoprotective properties than RRP2 (48). Although the
above structure-bioactivity interaction analyses of TCMPOs were
not aimed at understanding their antiobesity activities, the anti-
inflammation, antioxidant and hepatoprotective activities were
considered as the potential requirements for the treatment of
obesity (83, 84). It can be inferred that the conformational features
of TCMPOs will also affect their antiobesity activity.

Effect of the functional groups

The functional group contents of polysaccharides are also
linked to their bioactivities, like uronic acid, sulfuric acid and
aminohexose (38, 85). Uronic acid residues, in particular, have the
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ability to modify the physiochemical characteristics and solubility
of the corresponding polysaccharide conjugates, hence augmenting
their biological activities. In a recent study, five fractions (MFPs-
30-60, MFPs-30-80, MFPs-90-40, MFPs-90-60 as well as MFPs-
90-80) had been purified from Fructus Mori, and in vitro studies
revealed that MFPs-90-40, MFPs-90-60, and MFPs-30-60 showed
a better capacity to bind BAs than MFPs-90-80 and MFPs-30-80,
which was attributed to the increased uronic acid concentration
and indicated that the uronic acid content was a significant signal
representing the polysaccharide fractions’ hypolipidemic effects
(86). In addition to the functional groups originally existing
in polysaccharides, structural modifications, such as sulfation,
acetylation, deacetylation, phosphorylation, acetylation, hydroxy-
methylation, selenylation as well as complexation with zinc or iron,
are of great significance to the physical and biological activities
of polysaccharides. For example, the sulfation of G. lucidum
polysaccharide (GLP) improved its antioxidant activities and BA-
binding capacities (87). According to a different study, selenium
modification may strengthen Chinese angelica polysaccharide’s
hepatoprotective as well as antioxidant properties (88). Overall, the
structure-bioactivity analyses of TCMPOs should be strengthened
to better clarify the structural basis of their antiobesogenic activity.

Antiobesity mechanism of TCMPOS

Modulation of appetite and the satiety
effect

Polysaccharides intake mainly regulates appetite and satiety
through physical effects and chemical humoral stimulation
effects (6), hence limiting the amount of food and energy
consumed to stop the development of obesity. As shown in
Figure 2, with bulking and viscosity-producing capabilities,
TCMPOs could contribute to postprandial satiety by inducing
gastric distension and delaying gastric emptying (89). Moreover,
the appropriate ingestion of TCMPOs (such as Amorphophallus
konjac polysaccharides) that, when hydrated, form viscous
colloidal dispersions impacts several aspects of gastrointestinal
(GI) function, including slowing down the transit of the small
intestine (90, 91), inhibiting dietary enzymes from adhering to their
substrates (especially fats and carbohydrates) (89), and creating an
absorbent barrier layer within the small intestine by interacting
with the mucosa (89, 91–93). This prolongation of the intestinal
phase of nutrient processing and absorption may enhance satiety
and help regulate food intake (89, 94).

More significantly, TCMPOs have the ability to control the
release of gut hormones as well as peptides that influence appetite
along with food intake, including leptin, adiponectin, glucagon-like
peptide 1 (GLP-1), and peptide YY (PYY). A study demonstrated
that Holothuria leucospilota polysaccharide (HLP) supplement
outcomes with an amelioration in the levels of leptin and
adiponectin, with the levels of leptin concentrations in the typical
range exhibit benefits for preventing appetite, improving fatty acid
oxidation, as well as decreasing body fat, but excess levels of leptin
could lead to insulin resistance (95). Most notably, HLP effectively
reversed the overexpression of hepatic acetyl-CoA carboxylase
(ACC) and CD36 to prevent fat buildup within the liver and

prevent adipocytes from secreting too much leptin (96). Another
study illustrated that P. cyrtonema polysaccharides could activate
the T1R2/T1R3-mediated cAMP signaling pathway to stimulate
GLP-1 production and decrease appetite (97). Furthermore, some
investigations have demonstrated that the microbial fermentation
of TCMPOs to form short-chain fatty acids (SCFAs) may encourage
the production of GLP-1 and PYY (discussed in detail later),
leading to elevated insulin and reduced glucagon release as well as
appetite suppression (98, 99). The sole known orexigenic or hunger
hormone, ghrelin, has been linked to the management of long-term
energy balance as well as has the ability to increase appetite and
meal initiation (4). Cholecystokinin (CCK), another anorexigenic
intestinal hormone, is released in response to meal consumption
and is involved in satiety (4). However, the potential effects of
TCMPOs on ghrelin and CCK responses and the TCMPOs-
mediated ghrelin/CCK relation to hunger and satiety ratings have
rarely been reported and still require further research.

Inhibition of fat absorption and synthesis

Impeding the digestion and absorption of
exogenous lipids

It is common knowledge that obesity occurs when energy intake
exceeds energy consumption; thus, it works well to prevent obesity
by limiting the absorption of high-energy foods, especially fat
from food. An essential lipolytic enzyme generated and released
by the pancreas, pancreatic lipase (PL) is primarily involved in the
hydrolysis of 50–70% of total dietary fats and is essential for the
absorption of dietary triacylglycerols, which it does by hydrolyzing
them into monoacylglycerols as well as fatty acids (6, 100–102).
Emerging studies have found that TCMPOs could act as an effective
inhibitor of PL to exert potentially antiobesogenic effects (Figure 2;
Table 3). For example, Wu et al. (22) assessed the anti-pancreatic
lipase activity in vitro about four polysaccharide fractions (DFP-H,
DFP-M, DFP-U, and DFP-P) obtained from D. indusiate through
different extraction techniques, as well as the inhibition of PL has
been determined as 58.39 ± 0.98%, 52.65 ± 0.83%, 54.67 ± 1.03%,
and 63.20 ± 1.11%, correspondingly. Other researches (103–107)
also demonstrated that TCMPOs exhibit obvious inhibitory effects
on PL, which indicates that TCMPOs could be developed as
potential antiobesity agents to impede the digestion and absorption
of dietary fat.

Bile acids, another important physiological substance that
is closely related to lipid metabolism, are the end products of
cholesterol catabolism in the liver and secreted into the small
intestine, which might activate PL and form micelles containing
dietary fat and lipophilic vitamins (A, D, E, and K), thus facilitating
fat absorption, distribution, metabolism, and excretion (108–110).
Studies have shown that TCMPOs could bind with BAs (Figure 2;
Table 3) and destroy the mixed micelles formed by BAs with
dietary lipids, thus preventing the digestion and absorption of
dietary lipids. Hu et al. (106) reported the BAs-binding abilities of
Plantago asiatica L. polysaccharides, which could bind more BAs
than simvastatin (a commercially available hypolipidemic drug) at
experimental concentrations (2.5 and 10 mg/ml). Moreover, Shi
et al. (111) observed that Ophiopogon japonicus polysaccharides
(MDG-1) could reduce the synthesis of cholesterol in the liver and
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FIGURE 2

Antiobesity mechanism of TCMPOs based on the modulation of appetite and the regulation of fat absorption and synthesis. (a) TCMPOs modulate
appetite and satiety effect. (b) TCMPOs regulate the digestion and absorption of exogenous lipids. (c) TCMPOs combat obesity by weakening the
synthesis of endogenous lipids. TCMPOs, Traditional Chinese medicine-derived polysaccharides; PL, Pancreatic lipase; BAs, bile acids; PARP, poly
(ADP-ribose) polymerase; PPARγ, peroxisome proliferator-activated receptor γ; C/EBPα, CCAAT/enhancer binding protein α; LPL, lipoprotein lipase;
SREBP-1c, sterol regulatory element binding protein-1c; CPT-1α, carnitine palmitoyltransferase-1 alpha; ACC1, acetyl-CoA carboxylase 1; FAS, fatty
acid synthase; ELOVL 6, long-chain elongase; DGAT, diacylglycerol acyltransferase.

inhibit body growth within obese mice by binding to BAs in the
lumen, reducing their reflux into the liver, and suppressing the
enterohepatic circulation of BAs. In addition to the two principal
targets of preventing fat digestion and absorption demonstrated
above, the polysaccharides extracted from some kinds of TCM
could also affect how well exogenous lipids are absorbed and
digested by decreasing the activity of α-amylase, pepsin and trypsin
(103, 104, 106, 107), affecting the stability of the cholesterol-micelle
and reducing the amount of the unbroken cholesterol-micelle (22,
103, 106).

Weaken the synthesis of endogenous lipids
The size (hypertrophy) and quantity (hyperplasia) of adipocytes

define the bulk of adipose tissue (112–114). The hypertrophy
of adipocytes is mainly caused by lipid accumulation, and the
hyperplasia of adipocytes is strongly linked to the growth as
well as differentiation of preadipocytes (46, 112). Multiple reports
have demonstrated that polysaccharides from diverse TCM sources
may reduce the production of endogenous lipids by preventing
preadipocyte differentiation and promoting the apoptosis of
adipocytes (Figure 2) (46, 115, 116). For example, Morus alba
L. polysaccharides (JS-MP-1) could decrease the cell viability
of 3T3-L1 within a dose-dependent manner to 91, 75, 68, and
54% viabilities at the experimental levels of 50, 100, 200, and
500 µg/ml, correspondingly, suggesting that it might prevent
preadipocytes from growing and proliferating (46). In addition,
JS-MP-1 also induced apoptosis within 3T3-L1 preadipocyte cells

by inducing mitochondrial dysfunction and activating apoptosis-
related proteins, like caspase 9 and 3 and poly (ADP-ribose)
polymerase (PARP) (46). Poria cocos polysaccharides (PCCPs)
showed the ability to decrease 3T3-L1 cell viability and inhibit
intracellular lipid accumulation at relatively high concentrations
(117). Xu et al. (118) reported L. barbarum polysaccharides (LBPs)
presented similar inhibiting impacts upon the division for 3T3-
L1 cells, which might be attributed to the lowered expression of
the differentiation-related genes peroxisome proliferator-activated
receptor γ (PPARγ) and CCAAT/enhancer attaching protein α

(C/EBPα) after LBP treatment.
Lipoprotein lipase (LPL), a glycoprotein distinguishes free

fatty acids from triglycerides in chylomicrons (CMs) as well as
very low-density lipoproteins (VLDLs) (119–121). Accumulating
evidence has revealed that polysaccharides from various TCM
sources can reduce lipid deposition by modulating the activity
of LPL (119, 122, 123). Yang et al. (123) demonstrated that
Armillariella Mellea polysaccharides (AAMPs) enhanced the level
of LPL and the expression of two critical lipases (adipose
triglyceride lipase and hormone-sensitive lipase) and specifically
inhibited the expression of sterol regulatory element binding
protein-1c (SREBP-1c), leading to a significant reduction in
fat accumulation in the liver. Moreover, it is found that the
administration of TCM polysaccharides could also inhibit the
mRNA expression concentrations of lipogenesis-related enzyme
genes (acetyl-CoA carboxylase 1, ACC1; fatty acid synthase, FAS;
long-chain elongase, ELOVL 6 and diacylglycerol acyltransferase,
DGAT) and elevate the mRNA expression for a lipolysis-related
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TABLE 3 Effects of TCMPOs on pancreatic lipase and bile acid micelles.

No. Source Compound
fractions

Models Methods Daily
intake and
period

Inhibitory effects
on lipase

Bile Acid-Binding
Capacity

Others References

1 Plantago asiatica
L.

PLP – In vitro – At the PLP concentration of
10 mg/ml, the lipase activities
were significantly reduced

The PLP at different
concentrations
(2.5 and 10 mg/ml) bound
more BAs than that of
simvastatin

At the concentrations of 2.5 and
10 mg/ml resulted in a
significant (p < 0.05) reduction
of α-amylase activity; At a level
of 2.5 mg/ml or 10 mg/ml
Significantly decreased the
activity of pepsin; the PLP at 2.5
and 10 mg/ml affected the
stability of the
cholesterol-micelle and
significantly (p < 0.05) reduced
the amount of the unbroken
cholesterol-micelle

(106)

2 Plantago asiatica
L.

PLP – In vitro – – PLP showed significant
binding capacities against
cholic and chenodeoxycholic
acids

Exhibited scavenging abilities
against hydroxyl, peroxyl anion,
and DPPH radicals in vitro

(180)

3 Laminaria
japonica

CGF-3 – In vitro – The PL activity was
significantly decreased with
the increase concentration of
CGF-3

– – (105)

DSCGF-3 – In vitro – Showed lower inhibitory
activity on PL than that of
CGF-3 at the same
concentration

– –

4 Auricularia
auricula

AAP CED-mice In vivo 120 mg/kg of
BW for 8 weeks

– – The administration of AAP
caused increasing LPL activity

(119)

5 Cassia tora WSPs – In vitro – At the WSPs concentration of
80 mg/ml, the lipase activities
were significantly reduced

WSPs could effectively bind
BAs

High concentration of WSPs
significantly increased the
protease activity and decreased
the amount of intact cholesterol
micelle; had inhibitory effects
on the activities of α-amylase

(103)

(Continued)
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TABLE 3 (Continued)

No. Source Compound
fractions

Models Methods Daily
intake and
period

Inhibitory effects
on lipase

Bile Acid-Binding
Capacity

Others References

6 Armillariella
Mellea

AAMP HFD-mice In vivo 50∼200 mg/kg
of BW for
35 days

– – AAMP enhanced the level of
LPL and the expressions of two
critical lipases (adipose
triglyceride lipase and
hormone-sensitive lipase)

(123)

7 Dictyophora
indusiata

DFP-H
DFP-M
DFP-U
DFP-P

– In vitro – At the concentration of
5.0 mg/mL, the inhibitions
on the PL of DFP-H, DFP-M,
DFP-U, and DFP-P were
measured to be
58.39± 0.98%,
52.65± 0.83%,
54.67± 1.03%, and
63.20± 1.11%, respectively

Both DFP-P and DFP-H
showed significantly higher
BA-binding ability,
respectively, followed by
lower in DFP-M, and the
lowest in DFP-U

DFP-P had the highest
cholesterol-binding ability
among all samples

(22)

8 Stichopus
variegatus

FG
dsFG
crFG

– In vitro – At the concentration of 0.50,
1.25 and 2.00 mg/mL, the PL
activities were reduced by
16.9, 55.4, and 61.4%
Showed lower inhibitory
activity on PL than that of FG
Showed lower inhibitory
activity on PL than that of FG

– FG dose-dependently inhibited
the activity of α-amylase;
Compared with that of FG, the
inhibitory activity of dsFG and
crFG on α-amylase was
significantly decreased

(104)

PL, pancreatic lipase; BA, bile acid; LPL, lipoprotein lipase; HFD, high-fat diet; CED, cholesterol-enriched diet; – not detect.
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gene (carnitine palmitoyltransferase-1 alpha, CPT-1α) (18, 118,
124–127), thus weakening the lipogenic pathway and strengthening
the fat decomposition pathway.

Modification of the gut microbiota and
their metabolites

Modification of the gut microbiota
The human intestinal cavity contains a variety of

microorganisms, most notably bacteria. More and more researches
are pointing to the resident microbiota’s critical roles in a range of
physiological as well as pathological bodily processes (26, 114, 128).
Plenty of research conducted in the last few decades have focused
on the relationship between gut bacteria and obesity. Research has
indicated that a rise within the ratio of Firmicutes to Bacteroidetes
(F/B) was observed in obese individuals, and increased F/B ratio
correlates with strengthened energy absorption capacity, which
ultimately results in obesity (114, 129, 130). For example, by
transplanting the faecal microbiota from adult female twin pairs
that were discordant for obesity into germ-free mice, Ridaura et al.
(131) discovered that metabolic abnormalities linked to obesity
could be spread through uncultured faecal communities.

It has been discovered that some TCM sources include
polysaccharides that can fight obesity through altering the

gut microbiome (Figure 3; Table 4). Typically, for instance,
Stichopus japonicus polysaccharides (SCSPs) and depolymerized
SCSPs (d-SCSPs) exhibited antiobesity impacts within HFD-
fed mice through changing the proportion of F/B; enhancing
the abundances of Akkermansia muciniphila, Parabacteroides
goldsteinii as well as SCFA-producing microbiota (Bacteroides,
Alloprevotella, Ruminiclostridium, and Butyricicoccus); and
decreasing the abundances of Proteobacteria and pathogenic
Escherichia-Shigella (132–136). Furthermore, it was shown that
purified L. japonica polysaccharide (LJP61A) may also significantly
reverse the increased F/B ratio and deceased abundance of
Akkermansia induced by the HFD-diet (137). A. muciniphila,
a mucin-degrading bacterium commonly found in the gut,
was found to have close ties to intestinal barrier integrity as
well as resistant to insulin, which helps it fight obesity and
related metabolic illnesses (138–140). In addition, the increasing
abundance of P. goldsteinii was found to be mostly responsible for
the anti-obesity benefits of H. sinensis polysaccharides, which was
linked to improved intestinal integrity, decreased inflammatory
levels, as well as improved adipose tissue thermogenesis (21).
Overall, TCMPOs-dietary interventions were reported to combat
obesity by regulating the ratio of F/B, boosting the colonization
of some advantageous bacteria and decreasing the survival of
detrimental bacteria linked to inflammation and the onset of
obesity.

FIGURE 3

Antiobesity mechanism of TCMPOs based on the modulation of gut microbiota and their metabolites (¬ SCFAs;  TMA; ® Secondary BAs) and the
protection of intestinal barriers. TCMPOs, traditional Chinese medicine-derived polysaccharides; GPR41(43), G-protein coupled receptors 41(43);
GLP-1, glucagon-like peptide 1; PYY, peptide YY; SCFAs, short chain fatty acids; TMA, trimethylamine; TMAO, trimethylamine N-oxide; IGN, intestinal
gluconeogenesis; BAs, bile acids; TGR5, takeda G protein Receptor 5; FXR, farnesoid X Receptor; BSH, bile salt hydrolase; ZO-1, zonula occludens-1;
Klf4, kruppel-like factor 4; Muc2, mucin 2; LPS, lipopolysaccharide; RegIIIγ, regenerating islet-derived protein 3 γ; IL-4, interleukin-4; IL-10,
interleukin-10; TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1.
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Modification of microbially derived metabolites
Numerous routes may be involved in how TCMPOs impact

the relationship between the host’s gut flora and itself. First, as
shown in Figure 3 and Table 4, microbial fermentation of TCMPOs
in the intestine enhances the synthesis of metabolites like SCFAs,
consisting predominantly acetate, propionate, as well as butyrate,
which are essential for the health homeostasis and wellbeing of the
host. TCMPOs intervention could lead to an increased production
of SCFAs and a lower luminal pH, which effectively inhibits the
growth of pathogenic microbiota (134, 141). SCFAs were also
reported as ligands for G-protein coupled receptors (GPCRs),
GPR41 and GPR43, and propionate and butyrate showed closer
affinity for GPR41, which serves as gut microbe-related energy
sensors within the intestines and sympathetic nervous system (142–
145). Propionate and acetate were reported to be more active in
activating GPR43, which prevents fat from accumulating within
adipose tissue, inhibits insulin signaling within adipocytes, and
increases the metabolism of glucose and unincorporated lipids
within other tissues (like liver and muscle) (59, 145, 146). For
instance, treatment with Morus alba. L leaf polysaccharide (MLP)
significantly reduced body weight gain and in a dose-dependent
manner reversed the decrease in SCFAs concentration in HFD-
fed mice (84). Astragalus polysaccharides (APS) could ameliorate
hepatic lipid metabolism within HFD-fed mice by enriching the
abundance of a potent acetate-producing bacterium (Desulfovibrio
vulgaris) (147). Moreover, SCFA-mediated GPCR activation in
the gut could induce the secretion of the endocrine hormones
GLP-1, PYY, and glucose-dependent insulinotropic polypeptide
(GIP), which have been proven to be important in preventing or
treating obesity (144, 148). Additionally, by inducing intestinal
gluconeogenesis (IGN) gene expression in enterocytes, SCFAs
derived from the microbial fermentation of polysaccharides might
enhance a number of aspects of energy metabolism in both insulin-
sensitive and insensitive states (149, 150). Propionate, being an
IGN substrate, can typically directly start a gut-brain neuronal
circuit that has positive effects on energy management and glucose
regulation (149, 150). In summary, TCMPOs exhibit an antiobesity
effect by increasing the production of SCFAs, which could decrease
the pH of the lumen, activate GPR41 and GPR43, induce the
secretion of certain endocrine hormones, and activate IGN to
improve energy metabolism.

In addition to SCFAs, intestinal microorganisms can also
generate trimethylamine (TMA), which may affect host metabolism
(Figure 3). The intestinal anaerobic bacteria can metabolize choline
as well as L-carnitine from food sources (e.g., animal liver, red
meat, egg yolks and fish) to create TMA (151). This gut-microbially
produced TMA can be further decomposed into dimethylamine
(DMA) and methylamine (MA) or it can be further carried into
the liver and subsequently turned into trimethylamine N-oxide
(TMAO), which is linked to an increased risk of obesity (151–153).
Chen et al. (154) demonstrated that Flos Lonicera polysaccharide
supplementation could reverse the increase in TMAO level caused
by an HFD. Similarly, after LBP treatment, the level of plasma
TMAO was considerably lower within the HFPD (LBP + HFD-diet)
group compared with the HFD group (155). These investigations
showed that the polysaccharides of multiple TCMs could lessen
the oxidation of TMA and thereby serve as a possible dietary

supplement to help reduce obesity and related diseases via gut-
organ axes.

Aside from generating novel metabolites, intestinal bacteria
may also modify the physicochemical properties of endogenous
metabolites (Figure 3). BAs, as mentioned above, are small
molecules that have important functions in controlling lipid
metabolism. Ninety-five percent of BAs are reabsorbed efficiently
from the distal ileum, entering the enterohepatic circulation,
and are circulated back to the liver (151). In addition, BAs
can also be converted from primary to secondary BAs in the
colon, a function that is restricted to a much narrower range
of anaerobic bacteria (typically clostridial species) (156). Both
primary and secondary BAs are essential signaling molecules that
can modify energy metabolism through interact with receptors,
Takeda G protein Receptor 5 (TGR5) (157, 158), and Farnesoid X
Receptor (FXR) (6, 159). Activation of TGR5 and FXR facilitates
energy expenditure and encourage thermogenesis, especially in
the liver, muscles and brown adipose tissue (BAT), which
lowers body weight (151, 156, 158). Studies have reported that
TCMPOs supplementation (such as supplementation of PCCPs
and H. sinensis polysaccharides) raises the abundance of secondary
BA-producing bacteria (Clostridium), thus enabling the better
activation of TGR5 and FXR, which may serve as a potential
antiobesity mechanism for TCMPOs (21, 32). Moreover, HFD-
induced dysbiosis can lead to the functional loss of bile salt
hydrolase (BSH), which in the gut microbiota is in charge of
deconjugating primary conjugated BAs, resulting in an imbalance
in primary and secondary BAs in the colon, thus inducing
glycolipid metabolism-related diseases (151, 158). Huang et al.
(160) observed that Gracilaria lemaneiformis polysaccharide
intervention markedly raised the proportional abundances of
BSH-secreting microbiota (Bacteroides and Lactobacillus), hence
encouraging the conversion of primary bile acids into secondary
bile acids and the excretion of secondary bile acids, which in turn
lowers cholesterol and helps prevent fat buildup brought on by
a high-fat diet. Overall, fermentable TCMPOs could fight against
obesity by generating SCFAs and TMA/TMAO and modifying the
physicochemical properties of BAs. In addition, other microbially
derived metabolites, such as branched-chain amino acids (BCAAs)
and serotonin (5-HT), have also been found to be strongly
associated with the emergence of obesity (151). Future studies on
how TCMPOs affect the production of BCAAs and 5-HT should be
conducted.

Protection of intestinal barriers

Numerous studies point to the interaction among intestinal
permeability as well as TCMPOs as one mechanism connecting
obesity and related diseases (Figure 3; Table 4). Oral treatment
with TCMPOs beneficially maintained intestinal barrier integrity
primarily by promoting intercellular tight junctions and
strengthening the intestinal mucous layer. As shown in Figure 3
and Table 4, various studies have reported that TCMPOs, such as
L. japonica polysaccharides and S. fusiforme polysaccharides, could
elevate the expression of tight junction proteins (TJPs), including
zonula occludens-1 (ZO-1), claudin-1 and occludin, to regulate
the tight junction structure, thus protecting the integrity of the
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TABLE 4 TCMPOs improve the gut microbiota and intestinal barrier and alleviate inflammation.

Source Compound
fractions

Models Gut microbiota SCFAs Impacts on the
intestinal barrier and
Inflammatory Cytokines

Endotoxin References

1 Laminaria japonica LJP61A HFD-fed
C57BL/6 mice

↓F/B
↑Akkermansia spp.

– ↑ZO-1, occludin, goblet cells, Muc2, Klf4
↓TNF-α,IL-6 and IL-1β

↑intestinal integrity

↓LPS (137)

2 Stichopus japonicus d-SCSP, SCSP HFD-fed mice ↓F/B
↑ Akkermansia muciniphila,
Parabacteroides goldsteinii, Bacteroides,
Alloprevotella
↓Proteobacteria, Escherichia-Shigella

↑Acetic acid
↑propionic acid
↑butyric acid

↓IL-6, IL-1β,MCP-1,
TNF-α
↑intestinal integrity

↓LPS
↓LBP

(134)

3 Ganoderma lucidum WEGL HFD-fed mice ↓F/B
↑Bacteroides, Eubacterium spp, Roseburia
spp.
↓Oscillibacter spp, E. fergusonii.
Mucispirillum spp.

– ↑ZO-1, occludin
↑intestinal integrity

↓LPS (18)

4 Ophiopogon
japonicus

MDG-1 HFD-fed
C57BL/6 mice

↓F/B ↑Vinyl acetic acid
↑butyric acid

– – (141)

5 Sargassum fusiforme SFF HFD-fed mice ↓F/B
↑Bacteroides, Lactobacillus, Alistipes
↓Helicobacter

– ↑Zo-1 and Occludin-1
↓IL-6, TNF-α, and IL-1β

↑intestinal integrity

↓LPS (30)

6 Poria cocos WIP ob/ob mice ↑Lachnospiraceae, Alloprevotella,
Clostridium IV, Parabacteroides,
Ruminococcus, Bacteroides
↓Megamonas, Proteus

↑Butyrate ↑Muc5, ZO-1, Occludin
↓TNF-α
↑intestinal integrity

↓LPS (32)

7 Hirsutella sinensis H1 HFD-fed mice ↑Parabacteroides goldsteinii, Flintibacter
butyricus, Intestinimonas
butyriciproducens, Clostridium cocleatum,
Clostridium viride and
Anaerotruncus colihominis
↓Pseudomonas aeruginosa, Escherichia coli
and Shewanella algae

↑SCFAs ↑ZO-1
↑IL-10 (anti-inflammatory)
↓IL-1β, TNF-α (pro-inflammatory)
↓intestinal permeability

↓LPS (21)

8 Holothuria
Leucospilota

HLP HFD-fed rats ↑Bacteroides, Oscillospira ↑Total SCFAs
↑acetic acid
↑propionic acid
↑butyric acid

↑IL-10
↓IL-6, IL-12, TNF-α

– (96)

9 Dictyophora
indusiata

DIP HFD-fed
BALB/c mice

↓F/B
↓Bacilli, Gammaproteobacteria
↑Bacteroidia, Lactobacillaceae,
Ruminococcaceae

↑Butyrate ↑Claudin-1, Occludin,
ZO-1, Muc2, goblet cells
↑IL-4, IL-10
↓TNF-α, IL-1b, IL-6, IL-1β

MCP-1
↑intestinal integrity

↓LPS (161, 162)

10 Polygonatum
kingianum

PSF HFD-fed rats ↓F/B
↓Lactobacillus, Psychrobacter
↑Bacteroides, Oscillibacter

↑Total SCFAs
↑acetic acid
↑propionic acid
↑butyric acid

↑Occludin, ZO-1 ↓LPS (73)

HFD, high-fat diet; F/B, Firmicutes to Bacteroidetes; SCFAs, short chain fatty acids; Klf4, kruppel-like factor 4; ZO-1, zonula occludens-1; Muc2, mucin 2; Muc-5, mucin 5; IL-1b, interleukin-1b; IL-4, interleukin-4; IL-10, interleukin-10; TNF-α, tumor necrosis factor-α;
IL-1β, interleukin-1β; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1. LPS, lipopolysaccharide; ↑, no significant difference; ↑or↓, increase or decrease significantly; – not detect.
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gut epithelium (18, 30, 32, 161, 162). Additionally, L. japonica
polysaccharide (LJP61A) administration enhanced the mRNA
levels of Kruppel-like factor 4 (Klf4, a marker of goblet cells) and
mucin 2 (Muc2, a protein secreted by goblet cells) in HFD-fed
mice, indicating that LJP61A may be able to counteract the
HFD-induced reduction in goblet cells (137). Specifically, it has
been reported that LJP61A may also elevate the relative abundance
of A. muciniphila, which is reported that it may enhance the
expression of regenerating islet-derived protein 3 γ (RegIIIγ) in
response to gram-positive bacteria in the intestine and aid in its
own survival, thereby promoting the development of the intestinal
mucus layer (137, 163). Lipopolysaccharide (LPS), a cell wall
component of gram-negative pathogenic bacteria, can enter the
circulation and trigger a variety of transcription factors associated
with inflammation, resulting in the initiation of chronic low-grade
inflammation that is known as a causal factor of obesity and hepatic
steatosis (32, 164). Oral treatment with TCMPOs could improve
the intestinal barrier to prevent LPS from entering the circulation,
hence attenuating HFD-LPS-induced inflammatory reactions and
exerting the antiobesogenic effects of TCMPOs. For example,
D. indusiata polysaccharides (DIPs) could maintain intestinal
integrity and alleviate HFD-induced obesity by significantly
reducing the levels of LPS and proinflammatory cytokines (tumor
necrosis factor-α, TNF-α; interleukin-1β, IL-1β; interleukin-6,
IL-6; monocyte chemoattractant protein-1, MCP-1) and enhancing
the secretion of anti-inflammatory cytokines (interleukin-4, IL-4;
interleukin-10, IL-10) (161, 162). It is worth noting that SCFAs,
generated by microbial fermentation of TCMPOs, are considered
vital energy sources for intestinal epithelial cells and can promote
the development of the intestinal barrier (165).

Conclusion and future perspectives

Traditional Chinese medicine-derived polysaccharides,
acting as important components with few adverse reactions
and significant biological activity, have gained increasing
attention during the last decade. In this review, the various
extraction and purification methods, structure-activity relationship
and antiobesity mechanisms of TCMPOs were systematically
summarized. In particular, the antiobesity effects of TCMPOs
were shown via mechanisms including the modulation of appetite
and satiety, inhibition of fat absorption, modification of the
gut microbiota and their metabolites as well as the protection
of intestinal barriers. Furthermore, the relationship between
TCMPOs’ antiobesity actions and structure is emphasized.
However, there are many questions yet to be noted. (1) It is
imperative to develop novel extraction technologies to improve
the extraction efficiency due to the limitations of the thermal-
assisted extraction of TCMPOs mentioned above. In addition,
the structure of TCMPOs varies with geographical origin, the
collected part of the herb, the harvesting season, and the processing
method. It is unreliable to obtain TCMPOs from different sources
of TCM with the same extraction method. Therefore, future
research should screen out specific extraction methods based on
the structural characteristics of various TCMPOs to protect the
structural integrity of the target polysaccharides. (2) Consistency,
repeatability, and reliability of the results are hard to maintain

due to different testing circumstances and the varied qualities of
raw materials. It is necessary to establish standardized procedures
for the gathering and processing of the source material as well
as for the extraction, isolation, and purification of TCMPOs. (3)
Owing to TCMPOs’ extensive structural diversity and complexity,
the senior structural characteristics have not been clarified, and
the relationships between their senior structure and antiobesity
activity have not been established. Therefore, we need to learn from
the structural identification methods of other biomacromolecules
to accelerate the structural analysis of TCMPOs. Based on the
accurate structure of TCMPOs, further research and confirmation
should focus on the structure-bioactivity interaction of TCMPOs
to better clarify the structural basis of their antiobesogenic activity.
(4) Given that obesity and associated metabolic disorders are often
multigene variant, multitarget interfered and multidisease related,
it is inappropriate to treat obesity in a single way, while TCMPOs
possess the advantages of having multiple targets, being less toxic
and having side effects in the treatment of obesity than current
therapeutics. However, the feature structure and functional groups
within TCMPOs that exert antiobesogenic activity, as well as the
antiobesity mechanism of TCMPOs, have not been systematically
clarified. Thus, there is a great need for further clarifying the feature
structure in TCMPOs and its molecular targets responsible for the
observed antiobesogenic activity. (5) Although the antiobesogenic
activity of TCMPOs has been demonstrated in many experiments,
more attention should be given to clinical studies because animal
models or human body tissues and cell experiments in vitro do not
accurately represent their existence in the human body.

This review may serve as a valuable reference to the extraction,
purification, structural-property correlations and antiobesity
mechanism of TCMPOs while offering a possible foundation
for their usage to the food along with medical fields. Future
studies should concentrate on resolving the aforementioned
issues, and therapeutic approaches utilizing TCMPOs for the
management of obesity and obesity-related disorders could
represent yet another advancement in the realms of functional
foods, pharmaceuticals, and medicine.
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