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Ecological and economic
influencing factors on the spatial
and temporal evolution of
carbon balance zoning in the
Taihu Basin

Yazhu Wang, Yuxiang Wang and Xuejun Duan*

Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing,
Jiangsu, China
The escalation in carbon dioxide concentration has precipitated global climate

warming, accentuating ecological and environmental concerns. Notably, China

stands as the world’s largest carbon emitter, with the Taihu Lake basin emerging

as a carbon-intensive region within the country. This paper undertakes a

comprehensive analysis spanning 2005 to 2020, calculating the economic

contribution coefficient of carbon emissions and the ecological carrying

coefficient of carbon absorption in the Taihu Lake basin. The study includes a

delineation of carbon balance zones and an exploration of the geographical and

spatial influences of both ecosystem and economic factors. The overarching

trend in carbon emissions within the Taihu Lake Basin initially exhibited rapid

growth, followed by a fluctuating decline, with the pivotal year being 2012,

recording the apex of emissions at 575.8293 million tons. Concurrently, total

carbon absorption demonstrated a fluctuating growth trajectory, ascending from

82.3503 million tons in 2005 to 85.6488 million tons in 2020. The carbon

emission intensity in the basin manifested a pattern of high concentration in

the northeast and low concentration in the southwest, while the carbon

absorption intensity displayed the inverse pattern. The carbon balance across

the Taihu Lake Basin revealed a spatial incongruity, characterized by a suboptimal

pattern in the northeast and a favorable pattern in the southwest. Zhejiang

Province emerged as an ecological stronghold within the basin, acting as the

primary carbon sink functional area. Urban built-up areas and forested regions

emerged as principal influencers of carbon balance in the Taihu Lake basin.

Urban construction land, population density, and arable land area were identified

as primary contributors to carbon emissions, whereas per capita GDP, forests,

grasslands, and water bodies were identified as main contributors to carbon

absorption in the watershed.

KEYWORDS

multiscale geographically weighted regression (MGWR), carbon balance, carbon
balance zoning, Taihu lake basin, carbon neutrality
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1 Introduction

Since the advent of the Industrial Revolution, the global

community has expressed widespread apprehension concerning the

issue of global climate change, originating from the upswing in carbon

emissions (Meinshausen et al., 2009; Al-Arkawazi, 2018). This

phenomenon poses a substantial long-term challenge to human

society, primarily materializing as greenhouse effects resulting from

heightened energy consumption and carbon dioxide emissions (Kerr,

2001;Wang and Zhao, 2018). In a bid to address global climate change

and facilitate worldwide carbon emission reduction (Chowdhury,

2012), more than 130 countries and regions have articulated

ambitious goals or visions centered around “carbon neutrality”

(Dhakal, 2009; Taylor et al., 2016). In alignment with the 2020 Paris

Agreement, the Chinese government has pledged to attain its peak

carbon emissions by 2030 and achieve carbon neutrality by 2060

(Dong et al., 2019). However, China currently contends with the status

of harboring the highest urban population, the most substantial energy

consumption, and the largest carbon emissions globally, thereby

confronting considerable pressure to mitigate its carbon footprint

(Dong et al., 2018). It is imperative to acknowledge that the climate

impacts of carbon are not solely contingent upon carbon emissions

but also on carbon sequestration (Sahe et al., 2018). Through the

application of carbon balance partitioning, the scrutiny of carbon

balance across diverse spatial units becomes feasible, providing a

valuable tool for realizing regional carbon neutrality. Consequently,

this approach assumes paramount significance in China’s pursuit of its

climate goals (Madlener and Sunak, 2011).

Carbon balance assumes a pivotal role in global climate change

research, constituting a fundamental aspect of green and low-

carbon development (Davis and Caldeira, 2010; Friedlingstein

et al., 2010). Scholars have extensively delved into diverse facets

of carbon accounting, spatiotemporal differentiation, the

interaction between carbon balance and industrial structure (Abd

Rashid and Yusoff, 2015), economic growth (Chuai et al., 2012), and

land use patterns (Anderson et al., 1996), as well as factors

influencing carbon balance (Feng et al., 2013). Furthermore,

regional disparities have given rise to divergent capacities for

carbon balance across various areas (Yao et al., 2021). The

emerging field of carbon compensation has garnered attention in

the context of global climate change and green and low-carbon

development. Numerous literature reviews have scrutinized carbon

balance, carbon equilibrium, and carbon cycling from different

research perspectives, spanning global scales (Hong et al., 2021),

national levels (Liu et al., 2020), urban agglomerations (Fu et al.,

2019; Liu et al., 2022), provincial regions (Xiong et al., 2022), cities

(Wang et al., 2017), and counties (Xiong et al., 2019). Quantitative

research models have emerged as a prominent methodological

approach, encompassing input-output analysis (Huang et al.,

2018), time series regression models (Acquaye and Duffffy, 2010),

fixed-effects models, STIRPAT model (Fu et al., 2015), IPAT

environmental pollution model (Kopidou et al., 2016), and

Granger causality tests, among others.

The relationship between urbanization and carbon balance is

also a research hotspot (Lv et al., 2019). The impact of urbanization

on carbon balance is intricate, involving multiple factors and
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complex transmission processes (Poumanyvong and Kaneko,

2010). Generally, driving factors encompass population size,

economic level (Auffffhammer and Carson, 2008), technological

factors, industrial structure, energy consumption structure

(SimÃμes et al., 2016), and degree of openness. The urbanization

process significantly influences CO2 balance (Ponce de Leon Barido

and Marshall, 2014), as it represents a major contributor to global

carbon emissions (Dhakal, 2009; Chen and Lin, 2021) and a

key factor altering land carbon balance (Zhang et al., 2022).

Moreover, ecosystem carbon sequestration can modify carbon

emissions within human activity-intensive areas, thereby exerting

a substantial influence on global carbon balance (Lai et al., 2016).

Reflecting on prior research, the majority of studies have

predominantly examined changes in carbon emissions resulting

from human activities within cities (Satterthwaite, 2008), while

investigations on the integrated changes stemming from the

interplay between human activities and ecosystems at the river

basin scale have received less attention (Wang and Feng,

2017). Existing studies have generally overlooked the spatial

interdependence of carbon balance among research units and the

spatial heterogeneity of influential factors (Chen et al., 2018).

Moreover, they have neglected the endogenous spatial expansion

mechanism of carbon emissions, driven by variations in multi-

subject ecological and economic elements, as well as the spatial

interaction mechanism of carbon emissions within the region

(Corrado and Fingleton, 2012). Consequently, this oversight

introduces potential contingencies in research conclusions

pertaining to spatial effects (Maddison, 2006).

To bridge these gaps, this study aims to address existing gaps by

making four primary contributions. Firstly, we computed the

geographical and spatiotemporal characteristics of CO2 balance in

the Taihu Basin, investigating the patterns and scale of spatial

spillover effects. This facilitates the differentiation of emission

reduction responsibilities among regions and offers evidence for

carbon emission quota allocation (Kanaroglou et al., 2013).

Secondly, we assessed the spatial heterogeneity of ecosystem

impact factors and mechanisms related to CO2 emissions in the

Taihu Basin, a critical perspective often overlooked in numerous

studies despite its significance for CO2 emission reduction practices.

Thirdly, the research findings substantiate the spatial partitioning of

carbon balance, quantify the relationship between ecosystems,

economic development, and carbon emissions, and advocate for

diverse government departments to implement measures for carbon

emission control (Zhang et al., 2011). Finally, a robust spatial

correlation exists within the carbon balance. This article utilizes

the multiscale geographically weighted regression model,

accounting for spatial effects and thereby enhancing the precision

of the research findings (Huang et al., 2020).

The Taihu Basin holds significant importance as a terrestrial

ecological carbon sink within China. Simultaneously, it represents

an economically developed and densely populated region

characterized by substantial carbon emissions. Given the

interconnectedness and integrity of the basin’s ecological

environment, studying regional carbon balance and implementing

optimization measures within the basin becomes of immense

practical significance (Ma et al., 2022). In this study, the research
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area focuses specifically on the Taihu Basin, integrating carbon

emission data from 2005 to 2020. The county serves as the

fundamental unit, and the MGWR model is employed to examine

the spatial distribution and influencing factors of carbon emissions

and carbon absorption intensity within the basin. Additionally, the

study aims to delineate carbon balance zones, thereby providing a

scientific foundation for addressing carbon balance, ecological

governance, restoration, and consolidation efforts within the

Taihu Basin.
2 Data and methods

2.1 Study area

The Taihu Lake Basin is situated between 119°11’–121°53’ E

and 30°28’–32°15’ N at the heart of the Yangtze River Delta.

Renowned for its economic prowess, this region stands as one of

China’s most developed and densely populated areas, serving as a

focal point for the nation’s most advanced technologies. The region

contends with a conspicuous contradiction involving economic

growth, environmental considerations, and resource management

(Figure 1). Within the core of the Yangtze River Delta lies Taihu

Lake, encompassing the most thriving urban agglomeration in

China, which includes cities such as Shanghai, Suzhou,

Changzhou, Wuxi, Zhenjiang, Hangzhou, Jiaxing, Huzhou, and

several others located within the basin. Since 1980, the basin’s

economy has experienced substantial growth, marked by an average

annual gross domestic product (GDP) growth rate of 15.7%, a

population growth rate of 3.0%, and an urbanization rate of 9.2%.

By 2020, the total population residing in the region reached 67.55

million, while the total GDP amounted to 9,997.8 billion yuan.
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Despite occupying a mere 0.4% of China’s total land area, the Taihu

Lake Basin accounts for 4.80% of the total population and 9.80% of

the total GDP (Yang et al., 2023). However, it consumes 17.5% of

China’s total energy and is responsible for 15.5% of the nation’s

total carbon emissions. Industrial activities predominantly drive

carbon emissions exhibiting a general upward trend, with a 2.5-fold

increase from 2,076,300 tons in 2005 to 5,232,500 tons in 2020. The

region has experienced swift industrialization and urbanization,

leading to substantial changes in patterns of industrial energy

consumption, industrial enterprise, and carbon emissions.

Consequently, the Taihu Lake Basin holds pivotal significance in

China’s endeavors to achieve its “carbon peak” and “carbon

neutrality” commitments (Wu et al., 2018).
2.2 Data sources

The research incorporated adjustments for recent changes in

counties and cities based on the administrative divisions of Jiangsu

Province, Zhejiang Province, and Shanghai in 2020. The

investigation covered the period from 2005 to 2020 and utilized

GDP spatial data and land use data (1 km grid) obtained from the

Science and Environment Data Center at the Chinese Academy of

Sciences (HTTP://www.resdc.cn/). The population data is sourced

from the “China Urban Statistical Yearbook” (2001-2021) and the

statistical yearbooks of various provinces. Carbon emissions and

carbon absorption data were obtained from the China carbon

accounting database CEADS (https://www.ceads.net.cn/), which

employs the particle swarm optimization-backpropagation (PSO-

BP) algorithm to harmonize and standardize DMSP/OLS and NPP/

VIIRS satellite data with nighttime artificial light data, representing

China’s provinces and cities, as well as CO2 emission data indicating
FIGURE 1

Overview of the Taihu Lake Basin Urban Study Area.
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fossil energy consumption in China. The approach utilizes a top-

down method to estimate CO2 emissions from fossil energy

consumption at the district and county levels, leveraging the total

artificial light in each district and county as a weighting factor.

Lastly, the carbon sequestration associated with terrestrial

vegetation was assessed using the conversion coefficient for

vegetation dry matter and CO2 absorption (https://www.resdc.cn/

data.aspx?DATAID=343).
2.3 Methods

2.3.1 Economy contributive coefficient of
carbon emissions

The Economy Contributive Coefficient (ECC) was employed to

gauge the variations in carbon emissions within the basin through

an economic benefit lens (Rong et al., 2020). The calculation

formula for ECC is as follows:

ECC =

Cn
C
Dn
D

(1)

In the formula, Cn and Dn denote the GDP and carbon

emissions of the nth county, while C and D represent the GDP

and carbon emissions of the Taihu Lake Basin, respectively. An

ECC value greater than 1 signifies a high economic contribution

coefficient for carbon emissions in a county, whereas a value less

than 1 indicates the opposite scenario.

2.3.2 Carbon absorption ecological
carrying coefficient

The Ecological Support Coefficient (ESC) is a metric that

quantifies the ratio of carbon absorption to carbon emissions

within a specific region relative to a larger area, thereby serving as

an indicator of the carbon sink capacity of a given watershed

(Fotheringham et al., 2017). The calculation formula for ESC is as

follows:

ESC =

Em
E
Dm
D

(2)

In the formula, Em and Dm denote the carbon absorption and

carbon emissions of the mth county, while E and D represent the

carbon absorption and carbon emissions of the entire Taihu Lake

Basin, respectively. An ESC value greater than 1 signifies a high

carbon absorption ecological carrying capacity in a county, while a

value less than 1 indicates the opposite scenario.
2.3.3 Carbon balance zoning method
In this study, the SOM-K-means clustering model is employed

to delineate the carbon balance zoning within the Taihu Basin. The

self-organizing feature mapping neural network (SOM) is a type of

unsupervised classification neural network that effectively addresses

classification problems. Conversely, the K-means clustering

algorithm is a clustering analysis technique that utilizes the sum
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of squared errors as a criterion function to organize data samples

with similar features (Arima et al., 2003). By integrating the self-

organizing, adaptive, and fault-tolerant properties of SOM with the

high efficiency, interpretability, and rapid convergence rate of K-

means, the SOM-K-means clustering model conducts a two-stage

clustering approach on the data samples. In the first stage, SOM is

utilized to perform preliminary clustering and determine the

number of categories as well as the center points for each

category. Subsequently, in the second stage, the clustering

results from the first stage are utilized as input values, and the

K-means clustering algorithm is applied to generate the final

clustering outcomes.

2.3.4 The multiscale geographically weighted
regression model

The MGWR model incorporates varying levels of spatial

smoothing for individual variables and employs distinct

bandwidths for each independent variable to capture the extent of

geographic spatial effects on dependent variables. In contrast to the

geographically weighted regression (GWR) model and multiple

linear regression models (OLS), the MGWR model better

accommodates the spatial heterogeneity inherent in geographical

processes. It was a statistical inference method for this model was

subsequently (Yu et al., 2020). The model’s structure can be

outlined as follows:

Yi = b0(Ui,Vi) +o
k

j=1
bbwj(Ui,Vi)Xij + ϵi (3)

where Yi is the attribute value of i; Ui,Vi indicates the

coordinates at position i; b0Ui,Vi is the intercept i of the model at

bwj; j represents the bandwidth used by the regression coefficient of

the first variable for which the relationship between the explanatory

variable and the dependent variable allows bbwjUi ,Vi
to change i  in j 

space, the regression coefficient ϵi is the first variable, and  i  is the

error term of the model. The quadratic kernel function and

corrected Akaike information criterion (AICc), respectively, were

adopted in this study as the model kernel function and the

broadband selection criterion (Brunsdon et al., 2002).
3 Results and discussion

3.1 Carbon emissions and their
spatiotemporal characteristics in the Taihu
Lake Basin

The results indicate a noteworthy trend in the carbon emissions

of the Taihu Lake Basin from 2005 to 2020, characterized by rapid

growth followed by fluctuating decline with 2012 as the turning

point (Figure 2). In 2005, the basin produced a total of 207.632

million tons of carbon emissions, which escalated sharply to

523.2451 million tons by 2020, reflecting an average annual

growth rate of 10.13%. In 2012, the discharge within the Taihu

Lake Basin peaked at 575.8293 million tons, representing the

highest recorded volume during the specified period. Rapid
frontiersin.org
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urbanization and industrialization have brought about sharp energy

consumption and increased carbon emissions (Miao et al., 2019).

This period can be divided into two stages: 2005 to 2012 marked by

rapid growth, and 2013 to 2020 characterized by volatile decline.

Examining different regions within the basin, Jiangsu Province

stood out with carbon emissions reaching 252.4574 million tons

in 2020, surpassing Shanghai as the highest emitter. After stabilizing

with an average annual growth rate of 9.22% post-2011, the

province held the second position with 173.5355 million tons of

emissions, yet experienced a rapid growth due to an average annual

growth rate of 9.91%. Shanghai, driven by industrial development,

claimed the leading role in carbon emissions in 2015; however,

emissions decreased with an average annual growth rate of -3.5%

after that. Zhejiang Province, with carbon emissions totaling

97.2522 million tons, ranked third in the basin from 2005 to
Frontiers in Ecology and Evolution 05
2012, showcasing an average annual carbon emissions growth rate

of 17.84%. Post-2012, carbon emissions fluctuated and declined

with an average annual growth rate of -8.11%.

From 2005 to 2020, there were notable changes in the carbon

emission intensity across different districts and counties within the

Taihu Lake Basin (Figure 3). In 2005, high-value areas of carbon

emission intensity were concentrated in the eastern Shanghai area,

extending throughout the basin. At that time, only Putuo District in

Shanghai displayed a carbon emission intensity above 6, while 35

districts and counties exhibited carbon emission intensities below

0.5, spread across Jiangsu Province and Zhejiang Province

excluding Shanghai. Throughout this period, carbon emissions

were generally higher in the east and lower in the west. By 2020,

the area of high carbon emission gradually expanded from

Shanghai, forming a region of elevated carbon emission intensity
FIGURE 3

Carbon emission intensity from 2005 to 2020 in the Taihu Lake Basin.
FIGURE 2

Trend of carbon emissions from 2005 to 2020 in the Taihu Lake Basin.
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covering the entire northern part of the basin with Shanghai at its

center. During this time, two districts, Putuo District and Hongkou

District in Shanghai, exhibited carbon emission intensities above 6.

The number of districts and counties with carbon emission

intensity below 0.5 decreased to 7, primarily located in the

southwest region of the watershed bordering Zhejiang Province.

Consequently, three levels of carbon emission intensity emerged in

the basin: high intensity in the northern region along the Yangtze

River, moderate intensity running through the middle of the basin

from northwest to southeast, and low intensity in the western part,

aligning in a north-south direction. Therefore, the spatial pattern of

carbon emission intensity in the Taihu Lake Basin demonstrates

higher levels in the east compared to the west and higher levels in

the north compared to the south during this period. This finding

aligns with previous research indicating substantial variations in

CO2 emissions among counties (Xiong et al., 2020).
3.2 Carbon uptake and its spatiotemporal
characteristics in the Taihu Lake Basin

From 2005 to 2020, the total carbon absorption exhibited a

fluctuating growth trend, rising from 82.3503 million tons in 2005

to 85.6488 million tons in 2020, with an average annual growth rate of

0.26% (Figure 4). This increase can be segmented into three stages:

2005 to 2008, during which absorption declined with an average

annual growth rate of -3.1%; 2009 to 2011, characterized by relatively

stable absorption and an average annual growth rate of -0.42%; and

2012 to 2020, when absorption experienced rapid growth with an

average annual growth rate of 0.18%. Examining different regions
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within the basin, Jiangsu Province exhibited a fluctuating growth trend

in carbon absorption from 2005 to 2020, with an average annual

growth rate of 0.31%, resulting in an annual carbon absorption of

39.1067 million tons in 2020, ranking first in terms of carbon

absorption. Zhejiang Province ranked second, with a carbon

absorption of 35.4185 million tons, also following a fluctuating

growth trend from 2005 to 2020 but with a higher average annual

growth rate of 0.43% compared to Jiangsu Province. Shanghai

experienced a fluctuating downward trend in carbon absorption

from 2005 to 2020, with an average annual growth rate of -0.32%.

The variability in carbon uptake across the basin is evident, likely due

to the varying regions and land use types. This has been confirmed by

numerous studies (Houghton et al., 2012; Gui et al., 2023).

The changes in carbon absorption intensity among the districts

and counties of the Taihu Lake Basin exhibited significant

fluctuations during the period from 2005 to 2020 (Figure 5). In

2005, areas with high carbon absorption were primarily concentrated

in the western and southeastern margins of the basin, with three

districts and counties showing carbon absorption intensities above

0.5: Jurong City, Pinghu City, and Xinwu District. During this

period, nine districts and counties displayed a carbon absorption

intensity below 0.1, mostly comprising large cities in the central part

of the basin. By 2020, 31 districts and counties in the western and

southeastern regions demonstrated varying degrees of increase in

carbon absorption intensity, while the number of districts and

counties with carbon absorption intensities below 0.1 increased to

11, and the carbon absorption intensity in the urban cores further

decreased. The carbon absorption intensity in the watershed

exhibited a pattern of high intensity around the perimeter and low

intensity within the urban core located in the middle. Overall, the
FIGURE 4

Carbon uptake trend in the Taihu Lake Basin from 2005 to 2020.
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pattern displayed lower intensity in the central area and higher

intensity in the surrounding regions, accompanied by significant

topographical differences.
3.3 Analysis of spatiotemporal ECC and
ESC characteristics in the Taihu Lake Basin

The results are presented in Table 1. The mean values of the

carbon emission economic contribution coefficient (ECC) for the

entire basin exhibited a downward trend, decreasing from 2.84 to

2.69 over the four time periods of 2005, 2010, 2015, and 2020.

Shanghai consistently ranked first across all four periods, while

Zhejiang Province surpassed Jiangsu Province to secure the second

position. In Shanghai, the average ECC dropped to 5.37 in 2015 and

then increased to 7.52 in 2020, indicating an overall growth trend.

Conversely, Jiangsu Province experienced a continuous decline in

the average ECC, dropping from 1.8 to 0.73. As for Zhejiang

Province, the average ECC rose to 2.22 in 2015 and then declined

to 1.86 in 2020, signifying an overall increase. Shanghai exhibited

significantly higher ECC values compared to Jiangsu and Zhejiang,

indicating superior economic efficiency and energy utilization

during this period. Turning to the carbon ecological carrying

coefficient (ESC), the average value for the four time periods

decreased from 1.46 in 2005 to 1.25 in 2020, displaying a

noticeable downward trend. Zhejiang Province ranked first,

followed by Jiangsu Province, while Shanghai had the lowest

average ESC. Shanghai’s average ESC value steadily increased,
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while Jiangsu Province displayed a downward trend on an annual

basis. In contrast, Zhejiang Province maintained a relatively stable

average ESC value, suggesting a higher carbon sink capacity

compared to Jiangsu Province and Shanghai.

In order to provide a more comprehensive understanding of the

differences observed in the ECC and ESC across different regions over

time, the analysis focused on the time periods of 2005, 2010, 2015, and

2020, and nuclear density curves were plotted (Figures 6, 7). The ECC

exhibited a clear unimodal pattern in all four periods, with the majority

of values below 1. The degree of polarization was high in 2005, slightly

decreased in 2010, and then increased again in 2020. Overall, there was

a rightward shift from 2005 to 2020, indicating a downward trend in

the basin’s ECC. The ESCs showed significant elongation in all four

periods, suggesting an increasing divergence in the ESCs and

expanding spatial disparities in ecological carrying capacity within

the watershed. Most ESC values for the four time periods were above 1,

indicating a right-skewed distribution and higher ESCs from 2005 to

2020. The curve for the period between 2010 and 2015 exhibited a

bimodal pattern, with peaks around one and three. The first peak was

notably higher than the second, suggesting a relatively low degree of

polarization in ESCs during this period. The curve narrowed in 2020,

indicating a higher degree of polarization in ESCs during this period.

From 2015 to 2020, the nuclear density curve remained relatively

stable, but the density of ESCs above 3 decreased significantly,

indicating an overall decline in ESC. These findings illustrate that

rapid social development has led to varying degrees of ecosystem

damage attributable to increased human activity. This observation

aligns with prior research results (Cui et al., 2018).
TABLE 1 Average ECC and ESC values from 2005 to 2020 in the Taihu Lake Basin.

2005 2010 2015 2020

ECC ESC ECC ESC ECC ESC ECC ESC

Shanghai Mean 6.71 0.19 5.80 0.20 5.37 0.21 7.52 0.25

Jiangsu Mean 1.80 1.50 1.60 1.26 1.55 1.21 0.73 1.02

Zhejiang Mean 1.35 2.41 2.12 2.40 2.22 2.39 1.86 2.40

Basin Mean 2.84 1.46 2.76 1.35 2.66 1.33 2.69 1.25
FIGURE 5

Carbon uptake intensity map for the Taihu Lake Basin from 2005 to 2020.
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3.4 Carbon balance zoning in the Taihu
Lake Basin

The carbon balance zones were identified for the years 2005,

2010, 2015, and 2020, and a comparative analysis was conducted

based on administrative divisions. Through calculations of total

carbon emissions, carbon emission intensity, economic

contribution rate, and ecological carrying coefficient for each

district and county, the basin was classified into four distinct

areas: the carbon balance area, carbon intensity control area,

carbon sink functional zone, and high-carbon optimization zone.

The carbon balance area encompasses counties and cities with ECC

> 1 and ESC > 1. These regions exhibit either low total carbon
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emissions or low carbon emissions per unit of GDP, high carbon

absorption, and relatively limited ecological pressure. The carbon

intensity control areas consist of counties and cities where ECC > 1

and ESC< 1. Despite their economic development, these districts

and counties have relatively small carbon emissions per unit of GDP

but face challenges due to insufficient ecosystem planning and

construction, resulting in high overall carbon emissions. The

carbon sink functional areas comprise districts and counties with

low absorption and ecological carrying coefficients, characterized by

ECC< 1 and ESC > 1. These regions experience high carbon

emissions per unit of GDP and possess extensive economies, but

their total carbon emissions remain low due to favorable ecological

conditions. Lastly, the high carbon optimization areas include
FIGURE 7

ESC core density map for Taihu Lake basin.
FIGURE 6

ECC core density map for Taihu Lake basin.
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counties and cities with ECC< 1 and ESC< 1. These regions exhibit

high carbon absorption and low ecological pressure; however, they

face challenges of relatively large total carbon emissions or high

carbon emissions per unit of GDP, coupled with lower carbon

absorption. The findings are presented in Figure 8.

From a basin-wide perspective, the spatial characteristics reveal

that the eastern and northern areas, primarily Shanghai, exhibit

high carbon emission intensity but low carbon absorption intensity.

Improving carbon reduction technologies in the region is the most

important. There are two types of areas: high-carbon optimization

and carbon intensity control. The western and southern areas, on

the other hand, display low carbon emission intensity and high

carbon absorption intensity. Additionally, there are two types of

areas: carbon sink function and carbon balance. Over the 15-year

period from 2005 to 2020, the number of carbon balance areas,

where ECC>1 and ESC>1, decreased from 3 in 2005 to 1 in 2020,

constituting only 1.59% of the total area. Compared to other

regions, these areas not only demonstrate high carbon emission

economic efficiency but also exhibit high carbon offset rates. The

number of carbon intensity control areas, with ECC>1 and ESC<1,

decreased to 15 in 2020, accounting for 23.81% of the total area.

Most of these areas consist of municipal districts in various cities

with relatively developed economies and high carbon intensity.

Despite their greater economic contributions, these regions had

relatively low ecological carrying coefficients, indicating a lack of

harmony between economic development and ecological

sustainability. The number of carbon sink functional areas, with

ECC<1 and ESC>1, decreased from 30 in 2005 to 23 in 2020,

accounting for 36.51% of the total area. These areas exhibit

relatively poor economic efficiency and small economic

contribution coefficients. However, they have extensive crop
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planting areas, abundant forest resources, high carbon absorption,

and higher carbon compensation rates compared to other regions.

The number of high carbon-optimized areas, where ECC<1 and

ESC<1, increased from 13 in 2005 to 24 in 2020, comprising 38.10%

of the total area. These areas demonstrate low economic efficiency,

relatively limited ecological carrying capacities, and carbon sink

capacities significantly lower than the carbon emissions resulting

from human activities.
3.5 Analysis of ecological and economic
factors influencing carbon balance based
on MGWR

The MGWR model utilizes the modified AICc as its criterion

for bandwidth selection. The bandwidth in this model is defined as

the number of sample points involved in the regression, thereby

influencing the regression coefficients. In this study, the bandwidth

unit is determined by the number of districts, indicating the level of

influence for a specific variable. To derive meaningful calculation

outcomes, the model incorporates various indicators include

population density, per capita GDP, construction land area,

cultivated land area, forest area, grassland area, water area, and

others (Chikaraishi et al., 2015; Shahbaz et al., 2016).The VIFs of the

explanatory variables are all less than 10, and there is no

multicollinearity. The obtained results reveal R2 and adjusted R2

values of 0.934 and 0.907, respectively, indicating a substantial fit of

the MGWR model to the actual circumstances (Table 2).

In general, the regression coefficient for urban construction land

ranges from 0.537 to 0.887, demonstrating a positive correlation in

various regions. The mean regression coefficient of 0.696 reveals a
A B
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FIGURE 8

Regional map showing the carbon balance in the Taihu Lake Basin in (A) 2005, (B) 2010, (C) 2015, and (D) 2020.
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notable impact on the elevation of carbon emission intensity,

suggesting that regions characterized by urban construction land

tend to produce heightened levels of carbon emissions (refer to

Figure 9A). The presence of compact urban construction land

contributes to the mitigation of urban carbon emissions. Analogous

findings are supported by Onafowora and Owoye (2014). Notably,

the cities in Shanghai have experienced considerable urbanization,

resulting in a distinct spatial differentiation pattern where high-

emission areas are predominantly situated in the eastern region.

Conversely, the carbon emission intensity in the southwestern part of

the watershed, which is less impacted by urban construction, remains

relatively low compared to the rest of the watershed. Specifically, the

presence of urban construction areas exerts a substantial impact on

carbon emissions in the eastern region, where Shanghai is located,

contributing to higher carbon emission intensity in this area relative

to the remainder of the watershed.

The regression coefficients associated with forest area in the

Taihu Lake Basin exhibited a range of -0.016 to -0.895, indicating

negative values across various spatial ranges (Figure 9B). The average

regression coefficient of -0.302 significantly contributes to an

increase in carbon absorption intensity. These findings suggest that

a larger forest area corresponds to a higher carbon absorption

intensity (Tang et al., 2023). Forest ecosystems have the function

offixing carbon and storing carbon. The positive impact of forests on

carbon absorption intensity reveals a spatial differentiation pattern,

characterized by higher values in the western regions and lower

values in the eastern regions. In the Taihu Lake Basin, the western

areas, primarily governed by Jiangsu and Zhejiang, feature abundant

low mountains, hills, dense vegetation, larger forest areas, and a high

carbon absorption intensity, making them significant contributors to

carbon absorption. Conversely, the eastern part of the watershed,

which is dominated by major cities such as Shanghai, exhibits lower

forest coverage and the lowest carbon sequestration intensity.

The regression coefficients for population density across distinct

regions within the basin exhibit a range from -0.097 to 0.068,

indicative of varied impact outcomes. The average regression

coefficient, standing at 0.020, contributes to an overarching

escalation in carbon emission intensity across the basin, as

illustrated in Figure 9C. More specifically, in the northeastern

watershed predominantly under the jurisdiction of Shanghai, the
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regression coefficient associated with population density amplifies

the overall carbon emission intensity. In contrast, within the

southwestern segment of the watershed, primarily governed by

Zhejiang Province, the regression coefficient linked to population

density significantly influences carbon absorption intensity,

resulting in a positive effect. This observation aligns with the

findings reported by Qin et al. (2019).

The regression coefficients for per capita GDP, ranging from

-0.036 to 0.035, demonstrate diverse effects on carbon emission

intensity and carbon absorption intensity in different regions. The

influence of economic development on carbon emissions exhibits a

non-linear pattern, aligning with findings from prior research

(Poumanyvong and Kaneko, 2010). The average regression

coefficient of -0.007 enhances the carbon absorption intensity, as

depicted in Figure 9D. Notably, the areas within the watershed

experiencing the most substantial increase in carbon absorption,

according to the regression coefficient for per capita GDP, are

primarily located in the southeast, encompassing Shanghai and

Zhejiang Province. This suggests that these regions, characterized

by a combination of technological innovation and economic

development, optimize their industrial growth, aligning with the

findings of Coondoo and Dinda (2008). Furthermore, the intensity

of carbon emissions has progressively decreased, while the intensity

of carbon absorption has gradually increased. In the northwestern

part of the basin, primarily represented by Jiangsu Province, the

regression coefficient of per capita GDP amplifies the carbon

emission intensity, reflecting a slightly lower level of economic

development compared to eastern Shanghai in this specific region.

The regression coefficient for cultivated land area ranges from

0.052 to 0.351, while the plot regression coefficient for grassland

area ranges from 0.064 to 0.257. These coefficients exhibit positive

values across different spatial ranges, with average regression

coefficients of 0.190 and 0.139, respectively. The slight

enhancement in these coefficients suggests a relatively similar

distribution of influence (Figures 9E, F). Within the watershed,

areas experiencing the most significant enhancement in carbon

absorption, attributed to the cultivated land area coefficient and the

grassland area coefficient, are primarily situated in the eastern part

of the watershed, dominated by Shanghai. On the contrary, the

western segment of the watershed, comprising Jiangsu and Zhejiang
TABLE 2 Statistical description of regression coefficients in the MGWR model.

Variable Mean STD Min Median Max

Intercept -0.123 0.096 -0.224 -0.160 0.051

Population density (X1) 0.020 0.050 -0.097 0.045 0.068

Per GDP (X2) -0.007 0.023 -0.036 -0.012 0.035

Impervious (X3) 0.696 0.115 0.537 0.661 0.887

Cropland (X4) 0.190 0.111 0.052 0.162 0.351

Forest (X5) -0.302 0.328 -0.895 -0.066 -0.016

Grassland (X6) 0.139 0.068 0.064 0.112 0.257

Water (X7) 0.076 0.007 0.062 0.078 0.086
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Provinces, exhibits a notable rise in carbon emissions concerning

the coefficients of cultivated land area and grassland area. The

extensive exploitation of arable land is identified as a factor

contributing to the escalation in carbon emissions (Luo et al., 2020).

The regression coefficient for water area ranges from 0.062 to

0.086, consistently exhibiting positive values across all regions, and

yielding an average regression coefficient of 0.076. This positive

coefficient is indicative of its role in augmenting carbon emissions,

as depicted in Figure 9G. Within the watershed, noteworthy

amplification in carbon absorption, attributed to the water area

coefficient, is predominantly observed in the northern segment
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between the Yangtze River and Taihu Lake. These areas delineate a

ring-like structure, with the intensity of carbon emissions impact

diminishing progressively in outward spatial progression. Notably, the

water area coefficient exerts the weakest effect on carbon emissions in

the eastern part of the watershed, dominated by Shanghai.
4 Conclusions

From 2005 to 2020, the cumulative carbon emissions in the

Taihu Lake Basin witnessed an annual upswing, reaching 523.2451
A

B
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C

FIGURE 9

Spatial distribution pattern of MGWR regression coefficients. (A) Impervious, (B) Forest, (C) Population density, (D) Per GDP, (E) Cropland, (F)
Grassland, (G) Water.
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million tons. Throughout this timeframe, the total carbon emissions

consistently exceeded the overall carbon absorption. Districts and

counties within the Taihu Lake Basin manifested divergent spatial

attributes regarding carbon emissions and absorption.

The carbon equilibrium delineation in the Taihu Lake Basin is

intricately linked to the socio-economic scale of each unit. The

eastern and northern sectors of the basin, centered around

Shanghai, predominantly constitute zones marked by high-carbon

optimization and carbon intensity control. These regions exhibit

elevated carbon emission intensity coupled with diminished carbon

absorption intensity.

In the Taihu Lake Basin, urbanized areas emerge as the primary

contributors to carbon emissions, while forested areas play a pivotal

role in carbon absorption. Both population size and density exhibit

robust positive correlations with CO2 emission levels. Larger

population sizes correlate with heightened energy consumption

and increased CO2 emissions. Per capita GDP, forest area, arable

land area, grassland area, and water area are pivotal determinants

influencing carbon absorption within the basin.
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