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Background: The associations between gut microbiota and cardiovascular 
disease have been reported in previous studies. However, the relationship 
between gut microbiota and endocarditis remains unclear.

Methods: A bidirectional Mendelian randomization (MR) study was performed 
to detect the association between gut microbiota and endocarditis. Inverse 
variance weighted (IVW) method was considered the main result. Simultaneously, 
heterogeneity and pleiotropy tests were conducted.

Results: Our study suggests that family Victivallaceae (p  =  0.020), genus 
Eubacterium fissicatena group (p  =  0.047), genus Escherichia Shigella (p  =  0.024), 
genus Peptococcus (p  =  0.028) and genus Sellimonas (p  =  0.005) play protective 
roles in endocarditis. Two microbial taxa, including genus Blautia (p  =  0.006) and 
genus Ruminococcus2 (p  =  0.024) increase the risk of endocarditis. At the same 
time, endocarditis has a negative effect on genus Eubacterium fissicatena group 
(p  =  0.048). Besides, no heterogeneity or pleiotropy was found in this study.

Conclusion: Our study emphasized the certain role of specific gut microbiota 
in patients with endocarditis and clarified the negative effect of endocarditis on 
gut microbiota.
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1 Introduction

Endocarditis is defined as an infectious disease of the cardiac endothelium, mainly 
including infection of native or artificial heart valves (Cahill and Prendergast, 2016; Wang 
et  al., 2018). According to the Global Burden of Disease Study 2019, the incidence and 
mortality rates of endocarditis are 13.8 and 0.9 per 100,000 population, respectively, and the 
disability-adjusted life years (DALYs) are 21.9 per 100,000 population (Momtazmanesh et al., 
2022). In the United States, hospitalizations for endocarditis increased from $1.58 billion to 
$2.34 billion from 2003 to 2016 (Alkhouli et al., 2020). As is shown in previous studies, 
endocarditis causes a huge burden on society. Prevention is always more important than cure, 
and primary prevention is an important step in disease management (Cahill et al., 2017), 
which highlights the importance of studying the etiology of endocarditis.

Gut microbiota live in the gastrointestinal tract and in the main coexist harmoniously with 
humans (Adak and Khan, 2018). Bacteria are the predominant component in the gut 
microbiome, but viruses, fungi, and archaea are also present and influence gut and systemic 
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metabolism. Scientists have confirmed that gut microbes are closely 
related to human health by regulating metabolism and immune 
function (Jandhyala, 2015). Further, a number of studies have 
disclosed that gut microbiota may contribute to the development of 
neurological, metabolic, cardiovascular, and other systemic diseases 
(Chen et  al., 2021). Currently, the role of gut microbiota in 
cardiovascular disease has caught attention. Gut microbiota has been 
proven to play an important role in coronary atherosclerosis (Jie et al., 
2017), hypertension (Karbach et al., 2016), heart failure (Beale et al., 
2021) and myocardial hypertrophy (Zhao M. et  al., 2022) by 
modulating metabolites or inflammation. There is also a close 
relationship between gut microbiota and endocarditis. As a member 
of gut microbiota, Enterococcus faecalis has been widely reported as a 
risk factor for endocarditis (Ch’ng et al., 2018). It promotes the risk of 
endocarditis by producing virulence factors (Farman et al., 2019). 
Streptococcus gallolyticus is an intestinal commensal bacterium that 
promotes the risk of endocarditis in the elderly by producing gallocin 
(Kambarev et al., 2018; Harrington et al., 2021). Although endocarditis 
caused by lactic acid bacteria is rare, the mortality rate is as high as 
30% (Kothari et al., 2019). In addition, endocarditis is essentially a 
kind of bloodstream infection, and numerous studies have confirmed 
that gut microbiota may play a protective role in it. Studies pointed out 
that Barnesiellaceae, Desulfovibrio, Butyricimonas Akkermansia, and 
Lachnospiraceae (Montassier et  al., 2016; Yu et  al., 2021) play 
protective roles in bloodstream infection by reducing inflammation, 
thus reducing the risk of endocarditis.

In recent years, more and more research has revealed the close 
relationship between gut microbiota and disease. As a result, fecal 
transplantation, probiotics, and phage therapy have been applied in 
clinical practice. However, the specific mechanisms, safety, and long-
term effects of these treatments are still unclear. The above treatments 
are facing certain challenges (Ooijevaar et al., 2019; Suez et al., 2019; 
Łobocka et al., 2021). Gut microbiota may be a new therapeutic target 
for endocarditis, and it is necessary to study the causal relationship 
between gut microbiota and endocarditis.

Randomized controlled trials (RCTs) are considered to provide 
the highest level of evidence for causality in clinical research (Zabor 
et  al., 2020). However, due to the limited human and financial 
resources, most of the clinical studies are observational and cannot 
eliminate reverse causality or confounding factors. This problem can 
be properly solved by MR analysis. Single nucleotide polymorphisms 
(SNPs) are randomly assigned during meiosis and are used as 
instrumental variables in MR analysis (Sekula et  al., 2016). Thus, 
confounding factors and reverse causation are avoided in MR studies. 
Due to its scientific rigor and affordability, MR analysis has seen 
increased usage in studying cardiovascular disorders in recent years 
(van Oort et al., 2020; Ai et al., 2021).

In this study, we  employed the MR method to reveal the 
relationship between gut microbiota and endocarditis. Ultimately, 
seven gut microbes were detected to be causally related to endocarditis.

2 Materials and methods

2.1 Study design

We conducted a bidirectional MR analysis using data from the 
genome-wide association study (GWAS) to establish the causal link 

between gut microbiota and endocarditis. Figure 1 exhibits the study’s 
schematic diagram. The following three assumptions (Emdin et al., 
2017) are met by this study: (1) The link between exposure and 
instrumental variables is considerable; (2) Instrumental variables and 
confounding factors are unrelated; and (3) instrumental variables only 
affect outcomes through exposure (Figure 2). To guarantee the validity 
and reliability of this study, we  complied with the STROBE-MR 
(Strengthening the reporting of observational research in 
epidemiology using MR) principles (Supplementary Table S1) 
(Skrivankova et al., 2021).

2.2 Data sources

For gut microbiota, GWAS data was collected from the MiBioGen 
consortium.1 It is the largest study of human gut microbiota, and it 
included 18,340 individuals from 24 cohorts of multiple ancestries, 
about 78% of whom were European (Kurilshikov et al., 2021). 196 taxa 
were used for MR analysis after excluding 15 unknown taxa. For 
endocarditis, the GWAS data comes from the ninth version of the 
FinnGen,2 and the samples were collected by a nationwide network of 
Finnish biobanks (Kurki et  al., 2023). By using ICD10 and ICD9 
diagnosis codes, acute endocarditis, subacute endocarditis and 
endocarditis, valve unspecified were selected as cases. Up to 11th May 
2023, it included 940 cases and 286,109 controls. There is no overlap 
between samples from the gut microbiota and endocarditis, thus 
avoiding overfitting bias. All the GWAS data is publicly available, and 
the original studies received ethical approval. No additional ethical 
approval is required.

2.3 Instrumental variables selection

196 species of bacteria were investigated in this study and can 
be sorted into five categories: phyla, class, order, family, and genus. The 
steps for selecting instrumental variables are: (1) SNPs strongly 
associated with exposure were selected, with a significance threshold 
of p < 1 × 10−5. In the study of Sanna et al. (2019), this threshold is 
considered to be the optimal threshold because it can lead to a larger 
variance explained. At the same time, this threshold has been widely 
used in previous studies (Chen et al., 2022; Yu et al., 2023). (2) As the 
linkage imbalance will lead to bias in MR analysis, it is necessary to 
remove the linkage imbalance and ensure the independence of SNPs. 
The parameters are set as follows: r2 = 0.001 and kb = 10,000. (3) When 
SNPs in the outcome are missing, we need to find proxy SNPs and use 
proxy SNPs with LD r2 > 0.8. If no proxy SNP is found, the SNP is 
discarded. (4) SNPs of exposure and outcome were harmonized, and 
the palindromic sequences were removed. (5) To avoid the association 
between instrumental variables and confounding factors, we removed 
SNPs that might be related to confounding factors, and the above 
process was performed using PhenoScanner (Staley et al., 2016).3 MR 
analysis was performed after these SNPs were removed. (6) To avoid 
weak instrumental variables, the F statistics were calculated. The 

1 https://mibiogen.gcc.rug.nl/

2 https://r9.risteys.finngen.fi/

3 http://www.phenoscanner.medschl.cam.ac.uk/
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formula for calculating F is R2 (n-k-1)/k (1-R2). When F > 10, weak 
instrumental variables were considered not to exist (Pierce et al., 2011).

2.4 MR analysis and sensitivity analysis

A MR analysis was conducted to determine the causal effect of gut 
microbiota on endocarditis. There were five methods: IVW, MR Egger, 
weighted median, simple mode, and weighted mode. Among them, 
IVW is the main method, and the others were applied as 
supplementary methods (Slob and Burgess, 2020). A fixed-effect 
meta-analysis model is used in the IVW method, which incorporates 
the causal effects of each SNP. IVW has high confidence and is used 
as the main method (Burgess et al., 2013). MR Egger is employed to 
detect whether there is pleiotropy and correct the bias (Bowden et al., 
2015). The weighted median is supplemented by MR Egger, and robust 

results are still obtained even if 50% of the instrumental variables are 
invalid (Bowden et al., 2016). Simple mode and weighted mode are 
less effective at detecting causality but reduce the probability of Type 
I errors (Hartwig et al., 2017). In summary, we mainly consider the 
results of IVW, and the other four methods serve as references. When 
p < 0.05, we  believe that exposure is significantly associated with 
outcome, and this significance threshold has been widely used in 
previous MR studies on gut microbiota (Luo et al., 2023; Song et al., 
2023). Finally, we  calculated power using an online site,4 and 
power > 0.8 was considered appropriate (Verbanck et al., 2018). The 
primary results were shown as a circle heatmap, which was drawn 
using the website https://www.chiplot.online/.

4 https://shiny.cnsgenomics.com/mRnd/

FIGURE 1

Study design. An overview of the study design.
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Finally, sensitivity analyses were implemented to avoid bias caused 
by heterogeneity and pleiotropy (Hemani et al., 2018). In order to 
determine if there was heterogeneity in this study, we  employed 
Cochran’s Q test. Besides, the MR Egger intercept test was applied to 
determine if there was horizontal pleiotropy. In addition, MR-PRESSO 
analysis was used to find and eliminate outliers (Verbanck et al., 2018). 
Finally, leave-one-out analysis was carried out to determine whether 
there were outliers.

2.5 Reverse MR analysis

To detect the reverse causality between gut microbiota and 
endocarditis, we conducted a reverse MR analysis. With endocarditis 
as an exposure and gut microbiota as an outcome, a two-sample MR 
analysis was performed again. The methods used and the three 
assumptions followed were the same as described earlier.

2.6 Statistical software

All statistical works were implemented using the twoSampleMR 
package (v 0.5.6) in R software (v 4.2.1). The analysis process was 
performed in July 2023.

3 Results

3.1 Instrumental variables

According to the method mentioned earlier, we obtained a series 
of instrumental variables, including 2,142 SNPs, as shown in 
Supplementary Table S2. All SNPs satisfied the following conditions: 
(1) SNPs had a substantial correlation with exposure and p<1*10−5. (2) 
Confounding factors were not connected to SNPs. No SNPs associated 
with confounding factors were discovered by using the PhenoScanner. 

(3) The MR PRESSO test did not reveal any outliers (p > 0.05). (4) F 
statistics were determined, and they were all more than 10, indicating 
that no weak instrumental variables existed.

We found the genes where the instrumental variables (SNPs) were 
located according to rsID, as shown in Supplementary Table S3. 
Functional enrichment analysis was performed on these genes, as 
shown in Supplementary Figures S1, S2. The results of the Gene 
Ontology (GO) analysis reveal that the main functions of these genes 
are dendrite development and cell junction assembly. The results of 
Kyoto Encyclopedia of Genes and Genomes (KEGG) show that these 
genes are associated with Circadian entrainment and Glutamatergic 
synapse. The instrumental variable (SNPs) in this study is enriched in 
the above function or pathway, thereby indirectly increasing or 
reducing the risk of endocarditis by affecting gut microbiota.

3.2 Causal effects of gut microbiota on 
endocarditis

We performed a two-sample MR analysis of gut microbiota and 
endocarditis using the TwoSampleMR Package. Five methods were 
used and IVW methods were considered the main method. p < 0.05 
was considered statistically significant. Seven microbial taxa were 
identified to have causal relationships with endocarditis. The initial 
analysis results are shown in Figure 3 and Supplementary Table S4. 
Five microbial taxa have a protective effect on endocarditis, and two 
increase the risk of endocarditis, as shown in Figures  4, 5. The 
microbial taxa that play protective roles in endocarditis are as follows: 
family Victivallaceae (OR: 0.67, 95%CI: 0.47–0.94, p = 0.020), genus 
Eubacterium fissicatena group (OR: 0.65, 95%CI: 0.42–0.99, p = 0.047), 
genus Escherichia Shigella (OR: 0.43, 95%CI: 0.21–0.89, p = 0.024), 
genus Peptococcus (OR: 0.63, 95%CI: 0.42–0.95, p = 0.028) and genus 
Sellimonas (OR: 0.60, 95%CI: 0.42–0.86, p = 0.005). Microbial taxa 
that increase the risk of endocarditis are genus Blautia (OR: 2.86, 
95%CI: 1.36–6.02, p = 0.006) and genus Ruminococcus2 (OR: 1.90, 
95%CI: 1.09–3.32, p = 0.024).

FIGURE 2

Three assumptions of MR analysis. SNP, single nucleotide polymorphisms.
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In addition, we  conducted a sensitivity analysis, as shown in 
Table  1. No heterogeneity was found by using Cochran’s Q test 
(p > 0.05), and horizontal pleiotropy was not found by using the 
MR-Egger intercept, which indicates the reliability of the above results. 
Finally, we  carried out visualization. Funnel plots and the leave-
one-out method were used. As shown in Supplementary Figures S3, S4, 
the funnel plot is symmetrical, and no outliers in the SNPs are found. 
The leave-one-out method also shows that removing a single SNP 
does not have a fundamental effect on the overall results.

3.3 Reverse MR analysis

To find out if there is reverse causality, we performed reverse MR 
analysis on the above 7 microbial taxa, taking endocarditis as exposure 
and gut microbiota as the outcome. We obtained nine instrumental 

variables, as shown in Supplementary Table S5, and we also calculated 
F statistics, which were greater than 10, avoiding the bias caused by 
weak instrumental variables. Similarly, we mainly consider the IVW 
results. The results of reverse MR analysis are shown in 
Supplementary Table S6. We found that there is a reverse causality 
relationship between the genus Eubacterium fissicatena group 
(OR = 0.940, 95%CI: 0.88–0.99, p = 0.048) and endocarditis. 
Additionally, no horizontal pleiotropy or heterogeneity were 
found either.

4 Discussion

In this study, we  examined the potential causal connection 
between gut microbiota and endocarditis using the largest GWAS data 
on gut microbiota. It is the first time to study the connection between 

FIGURE 3

Causal effects of gut microbiota on endocarditis. From the inner circle to the outer circle, different statistical methods are represented: MR Egger, 
weighted median, inverse variance weighted, simple mode, and weighted mode.
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endocarditis and gut microbiota by using MR analysis. Five bacterial 
taxa, including family Victivallaceae, genus Eubacterium fissicatena 
group, genus Escherichia Shigella, genus Peptococcus and genus 

Sellimonas may play protective roles in the pathogenesis of 
endocarditis. Two bacterial taxa, including genus Blautia and genus 
Ruminococcus2, are risk factors for endocarditis. It provides new 

FIGURE 4

Forest plot of the causal effects of gut microbiota on endocarditis. OR, odds ratio.
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ideas for the diagnosis and treatment of endocarditis. Furthermore, a 
negative causal relationship between endocarditis and genus 
Eubacterium fissicatena group was confirmed.

Human health and illness are influenced by gut microbiota. Gut 
microbiota plays an important role in neurological diseases (Qiu et al., 
2022), inflammatory bowel disease (Qiu et  al., 2022), respiratory 
diseases (Ma et al., 2022), tumors (Xu et al., 2021) and cardiovascular 
diseases (Jin et al., 2019). In this study, we focused on the relationship 
between gut microbiota and cardiovascular disease. Studies have 
found that gut microbiota promotes or reduces the risk of 
cardiovascular disease by regulating metabolites (Sun et al., 2021) and 
inflammatory responses (Shikata et al., 2019; Wu et al., 2022). As the 
gut-heart axis has been proposed recently (Chen et al., 2020; Zhao 
P. et al., 2022), the link between gut microbiota and endocarditis is 

receiving more attention. It is reasonable to speculate that gut 
microbiota is related to endocarditis, and our study confirms the 
causal relationship between them.

Previous studies on the relationship between gut microbiota and 
endocarditis are very limited. The mechanism by which gut microbiota 
promotes or alleviates endocarditis is still unclear.

Our study identified that five bacterial taxa including family 
Victivallaceae, genus Eubacterium fissicatena group, genus Escherichia 
Shigella, genus Peptococcus and genus Sellimonas reduce the risk of 
endocarditis, and previous studies support our findings to some 
extent. Genus Eubacterium fissicatena group produces butyrate, which 
not only maintains normal intestinal permeability, but also exerts anti-
inflammatory effects (Cammann et al., 2023). Genus Peptococcus 
plays an important role in antioxidant and maintenance of normal 

FIGURE 5

Scatter plots of the causal effects of gut microbiota on endocarditis. (A) Family Victivallaceae; (B) genus Eubacterium fissicatena group; (C) genus 
Blautia; (D) genus Escherichia Shigella; (E) genus Peptococcus; (F) genus Ruminococcus2; and (G) genus Sellimonas.
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intestinal morphology (Zhang L. et al., 2021; Zhu et al., 2022). Besides, 
genus Sellimonas may play an important role in maintaining intestinal 
homeostasis by regulating metabolites (Munoz et al., 2020). However, 
studies on the probiotic function of family Victivallaceae and genus 
Escherichia Shigella are very limited. The mechanisms mentioned 
above might explain the probiotic functions of gut microbiota in 
endocarditis to some extent. Further, the five protective bacteria 
identified in this study may be used to prevent endocarditis through 
probiotic supplementation or fecal transplantation.

At the same time, our study also found that two bacterial taxa, 
including genus Blautia and genus Ruminococcus2, promote the risk 
of endocarditis. Genus Blautia may promote inflammatory responses 
by increasing the production of IL-6 and TNF-α (Wei et al., 2022). 
Ruminococcus2 decreases the expression of zonula occludens-1 and 
mucin 2, thereby damaging the intestinal barrier and promoting 
disease (Zhou et al., 2020). These mechanisms mentioned above may 
explain why these two bacteria promote endocarditis. Further, the 
concentration of genus Blautia and genus Ruminococcus2 in stool 
may serve as an indicator to predict the risk of endocarditis.

However, gut microbiota includes not only bacteria but also fungi 
and viruses (Fragkou et al., 2021). It is necessary to discuss the role 
of fungi and viruses in endocarditis. Previous studies have shown that 
gut fungi and viruses play an important role in endocarditis (Tattevin 
et al., 2014; Ezzatpour et al., 2023). The main components of gut fungi 
are Candida, Saccharomycetales, and Aspergillus, etc. (Zhang et al., 
2022). Besides, Candida and Aspergillus are the main causes of fungal 
endocarditis (Antinori et al., 2014). They first cause fungemia, which 
leads to the adhesion of fungi to the heart valves, thus leading to 
fungal endocarditis (Ammannaya and Sripad, 2019). The gut virome 
mainly includes bacteriophages and eukaryotic viruses 
(Bhagchandani et al., 2023), and most of which are bacteriophages. 
Bacteriophages can enter the systemic circulation and play an 

important role in pro-inflammatory and anti-inflammatory 
responses, thereby playing a positive or negative role in human health 
(Neil and Cadwell, 2018; Stockdale and Hill, 2021). We can reasonably 
speculate that gut virome may also play an important role in 
promoting or alleviating endocarditis. Finally, gut mycobiome and 
virome may lead to changes in the structure of gut bacteria or 
intestinal mucosal permeability, which may cause the host to 
be  susceptible to certain opportunistic pathogens or metabolites, 
leading to infectious diseases or noninfectious disease (Zhang F. et al., 
2021; Cao et al., 2022).

Certain strengths are worth mentioning in our study: First, the 
MR method was implemented to analyze the causal link between gut 
microbiota and endocarditis, avoiding confounding factors and 
reverse causality. Secondly, compared with randomized controlled 
trials, MR studies save time and effort and can provide possible ideas 
for RCT design. Lastly, this study used the largest GWAS database on 
gut microbiota, which makes our study reliable.

However, there are some limitations. First of all, the data on 
gut microbiota and endocarditis are from European populations, 
and the generalization of our conclusions in other populations 
has certain limitations. Secondly, while our work sheds light on 
a potential causal relationship between gut microbiota and 
endocarditis, additional research on the precise mechanism is 
required. Mendelian randomization does not explain the 
underlying biological mechanisms of the causality between 
diseases, just as classical epidemiological studies do. Basic 
experiments are needed to discover the specific mechanism. Last 
but not least, the gut microbiota includes bacteria, fungi, viruses, 
and other microorganisms. Our study only analyzes the role of 
gut bacteria in endocarditis without analyzing the influence of 
gut fungi, viruses, and other microorganisms on endocarditis, 
which makes this study have certain limitations to some extent.

TABLE 1 Result of heterogeneity and pleiotropy test.

Gut microbes

Heterogeneity MR-PRESSO Pleiotropy

Method Q Q_Pval
MR-PRESSO 

outlier-corrected
MR_PRESSO 

global test Pval
MR egger_
intercept

p

Family Victivallaceae IVW 8.224 0.693 NA 0.759 −0.148 0.247

MR egger 6.712 0.752

genus Eubacterium fissicatena group IVW 4.307 0.828 NA 0.842 −0.064 0.679

MR egger 4.121 0.766

genus Blautia IVW 10.768 0.549 NA 0.561 0.066 0.371

MR egger 9.898 0.540

genus Escherichia Shigella IVW 3.929 0.916 NA 0.444 −0.045 0.614

MR egger 3.654 0.887

genus Peptococcus IVW 8.787 0.642 NA 0.654 0.102 0.355

MR egger 7.848 0.644

genus Ruminococcus2 IVW 11.953 0.610 NA 0.667 0.084 0.150

MR egger 9.611 0.725

genus Sellimonas IVW 5.085 0.748 NA 0.831 0.103 0.526

MR egger 4.640 0.704
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5 Conclusion

In conclusion, our work reveals the causal relationship between 
gut microbiota and endocarditis, and it provides a target for the 
diagnosis and treatment of endocarditis. The application of probiotic 
supplements or fecal transplantation may be used for the prevention 
of endocarditis.
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