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Introduction: Early childhood malnutrition affects 200+ million children under

5 years of age worldwide and is associated with persistent cognitive, behavioral

and psychiatric impairments in adulthood. However, very few studies have

investigated the long-term effects of childhood protein-energy malnutrition

(PEM) on brain function using a functional hemodynamic brain imaging

technique.

Objective and methods: This study aims to investigate functional brain network

alterations using near infrared spectroscopy (NIRS) in adults, aged 45–51 years,

from the Barbados Nutrition Study (BNS) who suffered from a single episode of

malnutrition restricted to their first year of life (n = 26) and controls (n = 29). A

total of 55 individuals from the BNS cohort underwent NIRS recording at rest.

Results and discussion: Using functional connectivity and permutation analysis,

we found patterns of increased Pearson’s correlation with a specific vulnerability

of the frontal cortex in the PEM group (ps < 0.05). Using a graph theoretical

approach, mixed ANCOVAs showed increased segregation (ps = 0.0303 and

0.0441) and decreased integration (p = 0.0498) in previously malnourished

participants compared to healthy controls. These results can be interpreted as

a compensatory mechanism to preserve cognitive functions, that could also be

related to premature or pathological brain aging. To our knowledge, this study is

the first NIRS neuroimaging study revealing brain function alterations in middle

adulthood following early childhood malnutrition limited to the first year of life.
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1 Introduction

Recent reports show that childhood malnutrition still affects
more than two hundred million children under 5 years of age
worldwide and causes 45% of deaths in this population (UNICEF
et al., 2021; Zarocostas, 2023). Moderate to severe childhood
malnutrition has been associated with extensive and permanent
adverse effects on cognition and behavior (for a review, see Galler
et al., 2021). Reported effects include lower intelligence quotient
(IQ), attention and executive deficits, conduct problems and
affective and depressive symptoms (Galler et al., 2010, 2012a,b,c;
Waber et al., 2014a,b). However, few studies have investigated
the underlying cerebral alterations in the human brain that could
explain these adverse effects.

Animal research on the effects of early malnutrition
showed that perinatal malnutrition in rats is associated
with neuroanatomical and neurochemical changes. These
include alterations in cell number, synapses, myelinization
and dopaminergic and serotoninergic neurotransmission,
especially in the hippocampus and the prefrontal cortex (see
Alamy and Bengelloun, 2012 for a review). Interestingly,
nutritional rehabilitation has been shown to partially reverse
those effects (Bengelloun, 1990; Lukoyanov and Andrade, 2000).
In animal functional studies, prenatal malnutrition has also been
associated with hypoactivity in the prefrontal cortex (Rosene
et al., 2004; McGaughy et al., 2014; Rushmore et al., 2021). Using
2-deoxyglucose as a proxy for metabolic demand and quantifying
it using radiographic methods, a recent study reported lower
functional activity, clustering and local efficiency in the prefrontal
cortices of previously malnourished adult rats (Rushmore et al.,
2021). The authors also found less functional segregation in
the brain networks of these rats as measured by a lower mean
clustering coefficient. Animal studies have therefore shed some
light on the association between early childhood malnutrition and
subsequent brain alterations.

In humans, most studies investigating the neural impact of
early malnutrition are case studies or did not include sufficient
statistical analyses (see Galler et al., 2021 for a review). Nevertheless,
structural studies show severe diffuse cerebral atrophy and loss
of brain volume in children in the acute stage of childhood
malnutrition (see Gladstone et al., 2014 for a review). Early
functional studies show a persistent lower dominant frequency
in the electroencephalography (EEG) of toddlers hospitalized for
childhood malnutrition (see Gladstone et al., 2014 for a review).
Those results were confirmed by more recent studies in school-
aged malnutrition survivors who consistently found increased theta
activity and decreased alpha activity, potentially associated with
a neurodevelopmental delay (Bartel et al., 1979; Taboada-Crispi
et al., 2018; Bringas Vega et al., 2019). In another study, Xie
et al. (2019) studied the impact of faltering growth (slower rate
of weight gain than expected for age and sex) in toddlers living
in low-resource settings on EEG functional connectivity. Height-
for-age was negatively related to EEG functional connectivity in
the theta (especially for connections in the frontal lobe) and the
beta frequency bands, which in turn was negatively associated
with children’s cognitive functioning at 48 months. Although not
explicitly investigated in the context of childhood malnutrition,
these findings indicate that functional connectivity could be a

sensitive tool to predict cognitive outcomes later in life following
childhood malnutrition. The persistence of these brain alterations
following childhood malnutrition throughout adulthood remains
poorly studied.

To our knowledge, only two recent studies investigated brain
function in adult malnutrition survivors (Bosch-Bayard et al.,
2022; Roger et al., 2022). Bosch-Bayard et al. (2022) recently
found abnormal resting-state EEG source activity when comparing
childhood and adulthood EEGs longitudinally in previously
malnourished and healthy individuals. Overall, irrespective of age,
theta and high-alpha activity in the right superior and middle
frontal gyri (plus the precentral gyrus only for the high-alpha)
were higher, whereas the low-alpha activity in the bilateral visual
cortices was lower in the malnutrition group compared to the
control group. In the same cohort, Roger et al. (2022) also found
abnormal EEG evoked potentials during an attentional task, which
may be associated with the attention deficits previously reported
in this cohort (Galler et al., 2012b). To our knowledge, no studies
have examined the impact of childhood malnutrition on the brain
hemodynamic signal and functional brain network organization
in adulthood. Near infrared spectroscopy (NIRS) is a functional
neuroimaging technique providing a hemodynamic signal that is
becoming more widely accessible in areas where malnutrition is
prevalent (Boas et al., 2014). Using NIRS functional connectivity
and a graph theoretical approach, which has been shown to
be a promising tool for investigating the impact of childhood
malnutrition on brain network topology (Xie et al., 2019; Rushmore
et al., 2021), this study aims to investigate functional brain network
in adults who suffered from a single episode of malnutrition
restricted to their first year of life.

2 Materials and methods

2.1 Barbados Nutrition Study

The Barbados Nutrition Study (BNS) is a 50+ year longitudinal
cohort study that follows a Barbadian cohort hospitalized in the
first year of life for a single episode of protein-energy malnutrition
(PEM) and matched healthy controls (Ramsey, 1979, Galler et al.,
1983a,b). The PEM group was recruited initially between 1967 and
1972, during the children’s hospitalization for moderate to severe
PEM (Gomez et al., 1955). Inclusion criteria were: (1) they had
been diagnosed on clinical exam as showing the symptoms of PEM,
including significant weight loss (below 75% of expected weight of
age) in the absence of edema, (2) their birth weights were > 2,500 g
(to exclude those children exposed to fetal growth retardation),
and (3) they had Apgar scores ≥ 8. Exclusion criteria were: (1)
pre- or postnatal complications, (2) encephalopathic events during
childhood and (3) further malnutrition after age one. A second
set of individuals who were the same ages as the PEM and CON
participants and who had unambiguous diagnoses of kwashiorkor
(weight loss and edema) in the first year of life were added to
the BNS in 1984 (n = 54). However, these individuals were not
included in the current study. Control participants (CON) who
met the same inclusion and exclusion criteria but had no histories
of malnutrition were recruited among healthy classmates of the
PEM group and were matched to the PEM group with respect to
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age, gender and handedness. In total, the original cohort of the
BNS comprised 312 individuals, 129 PEM, 54 kwashiorkor and 129
CON participants. Following their hospitalization, the previously
malnourished children were enrolled in a government program
that provided subsidized foods, nutritional education, home visits,
medical care, and a preschool program two to three mornings
per week from the first year of life until they reached 12 years
of age (Ramsey, 1979). This intervention ensured that the history
of PEM was limited to the first year of life and allowed them
to achieve complete catch-up in physical growth by adolescence
(Galler et al., 1987).

2.2 Participants

The reader is referred to our companion paper for more
information on the selection and characteristics of the NIRS Study
participants (Bosch-Bayard et al., 2022). Briefly, in summer 2018,
a subset of 100 individuals (limited to PEM and CON) from the
original BNS cohort were selected for a 40-year follow-up study.
There were no significant differences between participants in the
2018 study and non-participants from the BNS cohort, confirming
that the 2018 subgroup was representative of the larger BNS cohort
(Bosch-Bayard et al., 2022). Although some individuals were lost
to follow-up, the sample size at this wave of data collection was
determined by funding limitations. In the current NIRS study, fifty-
five adults (from the sub-group of 100 participants) were recruited
from the Barbados Nutrition Study cohort. All participants in the
summer 2018 fNIRS data collection were between 45 and 51 years
old when tested. Participants were excluded if they were under the
influence of alcohol or drugs during data acquisition (one male
participant from the PEM group was excluded for this reason)
or if the data quality was not sufficient (one female participant
from the CON group was excluded for this reason; see section “2.5
Functional connectivity and graph theory” for specific data quality
criteria). The final NIRS sample included 53 participants: 25 PEM
participants and 28 controls.

This study has been performed in accordance with the ethical
standards proposed in the 1964 Declaration of Helsinki and its later
amendments. All study participants provided written informed
consent and were compensated for their time and travel expenses.
This study was approved by the Massachusetts General Hospital
IRB (IRB Protocol 2015P000329/MGH), Hôpital Sainte-Justine,
the Barbados Ministry of Health and Centro de Neurociencias de
Cuba’s (2017/02/17/CNEURO) Ethics’ committees.

2.3 Procedure

All participants came to the Barbados Nutrition Study Centre
in Bridgetown, Barbados, for a single visit, that included a resting-
state NIRS recording. Testing took place in a dimly lit and
air-conditioned room. Participants were seated in a comfortable
chair and fitted with an active cap with 32-NIRS optodes (16
emitters and 16 detectors yielding 64 channels with a maximum
distance of 3 cm). The NIRS signal was recorded using a
NIRScout device and the NIRStar Software (version 15, NIRx
Medical Technologies, Glen Head, NY, USA). NIRS channels were

positioned on the frontal, temporal and parietal regions (Figure 1).
Regions of interest were established based on Broadman areas
using a NIRS-MRI registration on an adult template (Tremblay
et al., 2022). The procedure yielded seven regions of interest in
each hemisphere: prefrontal cortex, Broca area, premotor cortex,
motor cortex, inferior parietal cortex, lateral temporal cortex and
temporal pole. Electroencephalography (EEG) recordings were
performed simultaneously with the NIRS. NIRS-EEG recording
was performed at rest and during a Go-No-Go attentional task, and
the whole procedure lasted around 2 h. Only the resting-state NIRS
data are reported in the current article. The EEG data and results
from the task-based recording will be reported in subsequent
publications (see also Roger et al., 2022).

The NIRS signal was recorded during a 12-min resting period.
The participants were instructed to relax and look at a cross
displayed on a monitor approximately 80 cm in front of them using
Presentation software (version 20.2, Neurobehavioral Systems,
Albany, CA, USA). They were also instructed not to fall asleep. If
they were showing signs of falling asleep, the examiner would talk
to them and offer them a break and a snack.

2.4 NIRS recording and data processing

The NIRS signal was recorded at a 7.81 Hz sampling rate.
The optical intensity (DC) was acquired using two wavelengths,
760 nm and 850 nm. The optical intensity signal was preprocessed
using the LIONirs toolbox (Tremblay et al., 2022), running
on SPM12 (Wellcome Trust Centre for Neuroimaging, UK) in
MATLAB (Version 2021b, MathWorks, Natick, MA, USA). We
first performed a phase coherence-based-cardiac detection to assess
the signal quality and reject noisy channels (Fourdain et al., 2023).
We excluded channels with a mean phase coherence below 0.85,
indicating insufficient heartbeat presence compared to the other
channels and, thus, poor signal quality. We also excluded segments
with motion artifacts using a standard deviation moving average
and manual inspection. Channels with more than 25% bad time
points were rejected. Participants with more than 50% rejected
channels were excluded from further analysis (n = 1). We then
applied a 0.01 to 0.08 Hz Butterworth digital filter to isolate
the signal frequencies typically associated with spontaneous brain

FIGURE 1

NIRS montage of the 32 optodes across the scalp over both
hemispheres. The coverage yields 64 measurement channels,
which are represented by ellipses. The color of each ellipse
indicates the region of interest of the channel.
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function and remove potential confounding signals (heartbeat
1.1 Hz, breathing 0.2 Hz, Mayer waves 0.1 Hz). The normalized
optical density (i.e., the change in optical density; dOD) was
computed by dividing each good segment’s signal by its average
to calculate the HbO and HbR concentration changes (dCON)
using the Modified Beer lambert law (Delpy et al., 1988). The
differential pathlength factor (DPF) was calculated depending on
the participant’s age using the method suggested by Scholkmann
and Wolf (2013).

To remove the remaining physiological confounds in our
frequency range of interest, we applied a principal component
analysis (PCA) filter to the data using the function available in the
Brain AnalyzIR toolbox (Santosa et al., 2018). More specifically,
we decomposed the data from each channel using singular value
decomposition and recomposed it without the first component.
The physiological noise is considered the principal source of
covariance between the channels in NIRS resting state data.
Therefore, removing the first PCA component should extract most
of this remaining noise from the signal (Santosa et al., 2020; Noah
et al., 2021; Abdalmalak et al., 2022). The NIRS signal does not
comply with the independency statistical assumption necessary in
most statistical models because it is autocorrelated (Barker et al.,
2013; Santosa et al., 2020; Abdalmalak et al., 2022; Lanka et al.,
2022). To obtain more statistically valid data we thus removed the
autocorrelation in the time series by applying the prewhitening
function of the Brain AnalyzIR toolbox to the PCA-filtered data.

2.5 Functional connectivity and graph
theory

We first performed functional connectivity analyses on the
PCA-filtered concentration change signal using the LIONirs
toolbox (Tremblay et al., 2022). We randomly selected two hundred
60-s segments in the signal. The segments were retained if at least
90% of their time points were valid. We then computed Pearson’s
correlations between all channel pairs on the retained segments and
averaged the resulting correlation matrices together. This method
ensures that the final correlation matrix is representative of the
whole 12 min-recording. A Fisher transformation was applied
to the resulting matrix to normalize the correlation coefficients
distribution. Finally, the Fisher-transformed correlations were
averaged by regions of interest (ROI) for each participant and
further used for statistical analyses.

We also performed graph theory analysis on the raw channel-
wise Pearson’s correlation matrices using the brain connectivity
toolbox (BCT; Rubinov and Sporns, 2010) and homemade scripts
in MATLAB (Version R2021b, Mathworks, Inc., Natick, MA,
USA; see Figure 2 for a visualization of the Graph Theory
analysis pipeline). Graph Theory is a branch of mathematics
used to model, estimate, and simulate the topology and dynamics
of brain networks using graphs comprising nodes linked by
edges. In the graph theory framework, a node is defined as a
measurement channel and an edge is defined as the functional
connectivity, i.e., the Pearson’s correlation, between two nodes.
Graph theory allows the indirect characterization of the level of
integration and segregation of a network. Integration is the ability
to rapidly combine specialized information from distributed brain

FIGURE 2

Graph theory analysis pipeline. The main processing steps
(thresholding, randomization, averaging, normalization and area
under the curve calculation) of the correlation matrices and the
computed graph theory metrics are outlined.

regions, while segregation is the ability for specialized processing
to occur within densely interconnected groups of brain regions
(Rubinov and Sporns, 2010). To perform graph theory analyses, the
correlation matrices were first prepared. We retained the absolute
values of the negative correlations as is frequently done in NIRS
studies since it is still unclear how to interpret negative correlations
between channels. We then applied multiple thresholds (ranging
from 0.01 to 0.85 with steps of 0.01) to each participant’s
correlation matrix to extract only the more relevant connections.
The correlation values higher than the selected threshold were
retained in the matrix, and the rest were set to 0, yielding 85
different weighted correlation matrices for each participant (“real
matrices”). One hundred random matrices were computed from
each weighted matrix using a randomization function and will
be used to normalize the graph theory metrics in further steps.
The randomization function shuffled the correlation weights while
preserving the properties of the original matrix.

The graph theory metrics were then computed on each real
thresholded-matrix (“real metrics”) and each of its associated
100-random matrices (“random metrics”). The following graph
theory metrics were used: degree, global efficiency, local efficiency,
characteristic path length, clustering coefficient, and small-world
index. The degree (K) refers to the number of nodes connected
to each node in the matrix (i.e., the number of neighbors of each
node). The global efficiency (GE) is the average of the inverse
shortest distance between all pairs of nodes in a network and
represents how easily and effectively the network communicates
information. The local efficiency (LE) is similar to the global
efficiency but is computed on the node scale instead of the
whole matrix. It refers to how effectively the neighbors of a
node communicate with each other once this node has been
removed. The characteristic path length (LL) is the average shortest
distance between all pairs of nodes in the network. The clustering
coefficient (CC) is the fraction of a node’s neighbors that are
also neighbors of each other and relates to the tendency of
neighbors of a node to cluster together. To reduce the data
dimensionality, the nodes average of LE and CC was computed
for each participant. For each previously presented metric, we
normalized each participant’s real metric by dividing it by the mean
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of all participants’ random metrics, yielding a set of normalized
graph theory metrics (“norm metrics”). Finally, the small-world
index (SW) was computed by dividing the normalized clustering
coefficient (NormCC) by the normalized characteristic path length
(NormLL). It reflects the balance between network integration
and segregation in comparison to random networks. For more
information on graph theory metrics, see Rubinov and Sporns
(2010) or Fornito et al. (2016).

In order to isolate the most relevant thresholds to characterize
the functional brain networks differences between our groups,
we restricted our analyses to a subrange of thresholds selected
according to Bassett et al.’ 2008 criteria. Indeed, using the 0.01 to
0.85 thresholded real metrics, we identified the thresholds where
the average matrices of our participants were fully connected
(Kmin ≥ 1 and CCmin ≥ 0) and could be described as organized
in a small-world topology (SW ≥ 1), according to what is usually
expected for the brain organization. Lastly, to reduce the number
of statistical comparisons, the area under the curve (AUC) of the
normalized metrics values in the selected range of thresholds was
computed and subsequently used for statistical analyses.

2.6 Covariates

A socioeconomic (SES) index measure was collected in the first
BNS data collection when the participants were 5–11 years of age
using the Ecology Questionnaire (Galler and Ramsey, 1985; Galler
et al., 2012c). The questionnaire completed by parents/primary
caretakers included items about conditions in the home and
parental educational level, and employment history. This measure
was used in the current study to control for initial childhood
socioeconomic discrepancies between our two groups. Principal
component analysis using varimax rotation was computed on the
questionnaire data and yielded a household standard of living
factor, which was used in the current study as a childhood SES
measure (see Galler and Ramsey, 1985 for details and psychometric
properties). We adjusted for childhood socioeconomic status but
not adult socioeconomic status, because the latter was viewed
as a potential outcome of longstanding functional compromise
associated with the early malnutrition (Galler et al., 2012c). Age
and sex were also considered as covariates, but were not included in
the final analyses since there were no difference between PEM and
control groups in the mean age or percent of males and females of
the study participants.

2.7 Statistical analysis

Statistical analyses were performed using R (Version 4.2.2, R
Foundation for Statistical Computing, Vienna, Austria) and SPSS
(Version 28.0.1.0, IBM SPSS Statistics, Armonk, NY, USA). The
significant p-value was set to p ≤ 0.05. Group differences in ROI
averaged correlations were tested using permutation analysis (boot
R package) and mixed ANCOVAs (car R package), with the Group
as a between-subject factor and the SES as a covariate. More
specifically, the F values distribution is computed by randomly
permuting 2,000 times the cases in the data. The true F value
can then be compared to the F value distribution to test for a

significant effect. This procedure was done for each ROI pair to
test for Group differences. A false discovery rate correction for
multiple comparisons was also applied to the resulting p-values.
Group differences in normalized graph theory metrics’ AUC were
also tested using ANCOVAs with the Group as a between-subject
factor and SES as a covariate.

3 Results

3.1 Demographic characteristics

The demographic characteristics of the sample are reported
in Table 1. The two groups (PEM vs. Control) did not differ
in age, gender, or handedness. However, there were significant
differences in childhood standard of living, indicating lower
SES (childhood ecology factor scores) in the PEM vs. Control
groups. SES was therefore controlled in all statistical analyses. No
statistical differences (p > 0.05) were present between nutrition
groups for medical comorbidities (e.g., diabetes, hypertension,
encephalopathic events, alcoholism or cannabis abuse). These
conditions were therefore not controlled in further statistical
analyses.

3.2 Functional connectivity

Figure 3 shows mean Fisher transformed Pearson’s correlation
for each group (A: PEM; B: Control), and group differences (C:
PEM—CON). Applying FDR to correct for multiple comparisons
yielded no significant effect. Therefore, uncorrected group
differences are briefly presented. SES-corrected ANCOVAs show
stronger correlations in the frontal region for the PEM group
compared to the CON group (see Figure 4). More specifically,
there are stronger interhemispheric connections between the left
and right frontal regions in the PEM group compared to the
Control group and, to a lesser extent, within the left frontal areas.
No significant group differences, except for one connection (right
prefrontal—right Broca areas), can be found within the right
hemisphere (see Table 2 for the details).

3.3 Graph theory

Figure 5 shows the mean metrics values in function of the
threshold for each group. The area under the curve of the

TABLE 1 Demographic characteristics of participants.

Characteristic PEM Control t-test/χ 2 p

N 25 28

Males [N (%)] 14 (56.00) 14 (50.00) 0.19 0.66

Age (years) 48.70 (1.89) 48.54 (1.93) −0.30 0.39

Age range (years) 45.39–51.55 45.50–51.37

Handedness [N left (%)] 3 (12.00) 3 (10.70) 0.61

Childhood ecology factor −1.13 (0.77) −0.32 (0.75) 3.93 < 0.001

Handedness statistical tests were done using a Fisher exact test (non-parametric).
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FIGURE 3

Pearson correlation matrices for each channel pair. Hotter colors indicate stronger correlation strength, whereas colder colors indicate weaker
correlation strength. Channels are ordered from the left anterior to the right posterior location (left anterior, left posterior, right anterior, right
posterior). (A) Mean correlations of all channels for the PEM group. (B) Mean correlations of all channels for the CON group. (C) Difference in mean
correlations of all channels between the PEM and CON groups.

normalized metrics in the selected threshold range (0.30–0.41) was
computed and analyzed. ANCOVAs revealed a significant Group
effect for the clustering coefficient [CC; F(49) = 4.2709, p = 0.0441],
the local efficiency [LE; F(49) = 4.9741, p = 0.0303] and the global
efficiency [GE; F(49) = 4.0467, p = 0.0498]. The CC and the LE
AUC values were higher for the PEM group than the CON group,
whereas the GE AUC values were higher for the CON group than
the PEM group. The characteristic path length [LL; F(49) = 0.3420,
p = 0.5614] and the small-world index [SW; F(49) = 3.5382,
p = 0.0659], however, yielded no significant Group effect. Graph
theory results are summarized in Table 3.

4 Discussion

This study aimed to explore the impact of moderate to severe
protein-energy malnutrition in the first year of life on brain
function at 45–51 years of age using NIRS functional connectivity
analyses and a graph theoretical approach. Results show stronger
frontal correlations in the PEM group compared to the CON group

when controlling for SES, but not for multiplicity of comparisons.
Furthermore, graph theory analyses reveal a higher clustering
coefficient, local efficiency, and lower global efficiency in childhood
malnutrition survivors compared to controls. Overall, these results
highlight abnormal functional brain connectivity following early
childhood malnutrition, suggesting long-lasting functional cerebral
alterations following a single episode of childhood malnutrition
restricted to the first year of life.

4.1 Cerebral functional connectivity and
malnutrition

The long-term impact of malnutrition on functional brain
connectivity, notably in frontal areas, has been previously reported
in animal and human studies. Indeed, prefrontal functional
alterations have been found at rest (McGaughy et al., 2014) and
during an attention task (Rushmore et al., 2021) in prenatally
malnourished adult rats using the 2-deoxyglucose (2DG) metabolic
marker. Alterations in resting-state and task-based EEG activity
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FIGURE 4

Connectogram of the significantly different inter-ROIs Pearson
correlations between the PEM and CON groups (PEM-CON;
uncorrected). Hotter colors indicate larger correlation strength
difference, whereas colder colors indicate smaller correlation
strength difference between the groups. Regions are ordered from
more anterior locations at the top to more posterior locations at the
bottom, with the left hemisphere regions on the left side of the
connectogram and right hemisphere regions on the right side of
the connectogram.

TABLE 2 Significantly different functional connections between the
groups (uncorrected).

F uncorrected p

Intrahemispheric L

PrefrontalL-PremotorL 4.8216 0.0340

PrefrontalL-BrocaL 3.9370 0.0450

BrocaL-PremotorL 4.3220 0.0400

PremotorL-MotorL 5.0782 0.0360

MotorL-PrefrontalL 7.6391 0.0090

Inferior ParietalL-Temporal lateralL 7.1867 0.0100

Interhemispheric

PrefrontalL-PrefrontalR 6.4137 0.0115

PrefrontalL-PremotorR 4.4980 0.0390

PrefrontalL-MotorR 5.3021 0.0300

PrefrontalL-Inferior ParietalR 5.7337 0.0225

BrocaL-PrefrontalR 4.1724 0.0345

PremotorL-BrocaR 4.6697 0.0390

MotorL-PrefrontalR 5.4037 0.0215

MotorL-PremotorR 4.9457 0.0300

MotorL-Inferior ParietalR 9.4563 0.0045

Intrahemispheric R

PrefrontalR-BrocaR 5.3372 0.0260

have also been consistently reported in children and adults
with histories of malnutrition in early childhood (Bartel et al.,
1979; Taboada-Crispi et al., 2018; Bringas Vega et al., 2019;

Bosch-Bayard et al., 2022; Roger et al., 2022). A recent study
examined the effects of famine exposure during gestation on
resting-state brain functional connectivity using fMRI in 68 years
old adults from the Dutch Famine Study (Boots et al., 2022).
Exposed participants had lower connectivity within the default
mode network (DMN; posterior cingulate cortex, medial prefrontal
cortex, medial temporal lobe, angular gyrus), within the salience
network (SN; frontoinsular cortex, dorsal anterior cingulate
cortex), and between the DMN and the central executive network
(CEN; dorsolateral prefrontal cortex, lateral posterior parietal
cortex), as well as higher connectivity within the CEN as compared
with unexposed adults. Although the timing of the nutritional
insult was different in the BNS and Dutch Famine studies, the
hyperconnectivity in the CEN found by Boots et al. (2022), being
the sole network involving only cortical regions, aligns with the
frontal hyperconnectivity we report in the current study using
fNIRS (measures only cortical and not subcortical structures).
Overall, our results in postnatally malnourished adults are in
concordance with the literature, showing a pattern of heightened
cortical functional connectivity following childhood malnutrition,
with a specific vulnerability present in the frontal cortex.

Hyperconnectivity in various brain regions and networks has
also been reported in other clinical populations. For instance, adults
with mild cognitive impairment (MCI) or Alzheimer’s disease
(AD) show patterns of hypo- and hyperconnectivity within the
DMN, as well as hyperconnectivity within the SN and the limbic
network (Badhwar et al., 2017), while typically aging adults show a
decrease in connectivity within the nodes of several resting state
networks, such as the DMN, the SN and the attention/executive
network (Sala-Llonch et al., 2015). The increased connectivity
in pathological aging has been interpreted as a compensatory
mechanism in response to neurodegeneration. According to this
compensation hypothesis (Park and Reuter-Lorenz, 2009), elderly
individuals with MCI or AD demonstrate an increase in brain
activity to compensate for declining neural structure and function.
In the current study, the hyperconnectivity found in previously
malnourished adults could thus be a compensatory mechanism for
the impact of malnutrition on the brain. Subsequent follow-up of
this cohort will be necessary to confirm this hypothesis.

4.2 Functional brain network topology
and malnutrition

Our graph theory results revealed differences in functional
brain network organization in the PEM group compared to controls
suggesting long-lasting impaired brain function organization
following childhood malnutrition. More specifically, we found
in PEM participants a higher clustering coefficient and local
efficiency, indicating an increased segregation, and lower global
efficiency indicating a decreased integration. Those results can
thus be interpreted as a disruption in the integration and the
segregation of the brain networks. To our knowledge, no other
human malnutrition study previously used graph theory measures.
However, findings from healthy aging studies can provide relevant
information for interpretation. These studies highlight an age-
related decrease in long-range connectivity (i.e., integration) and
an increase in short-range connectivity (i.e., segregation; Toussaint
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FIGURE 5

Mean graph theory metrics values (real, random and normalized) for each group according to the threshold: local efficiency (LE), global efficiency
(GE), clustering coefficient (CC), characteristic path length (LL) and small-world index (SW). The values for the PEM group are displayed in red, while
the values for the CON group are displayed in blue. Solid lines represent real values, dashed lines represent random values, and bold lines represent
normalized values.

et al., 2011; Tomasi and Volkow, 2012; Ferreira and Busatto, 2013;
Cao et al., 2014; Sala-Llonch et al., 2014). These findings are in
line with the results of the current study as brain organization
resembling that of older adults may indicate premature brain aging
following childhood malnutrition. This hypothesis was previously
put forward by another research group studying the impact of
prenatal famine exposure, who showed advanced brain aging by
about 4 years in the exposed participants compared to controls
(Franke et al., 2018). The hypothesis of premature brain aging
would also be consistent with the accelerated cognitive decline
reported in our cohort (Razzaq et al., 2020). More studies in
adult malnutrition survivors and follow up neuroimaging in this
cohort will be needed to determine if childhood malnutrition is
associated with accelerated aging. Eventually, this body of literature
may lead to the elaboration of artificial intelligence prognostic
and diagnostic models of early childhood exposures to improve
long-term brain, cognitive and behavioral outcomes and elaborate
more targeted interventions strategies (Murugesan et al., 2020;
Mofatteh, 2021). These findings could also contribute to the
conceptualization of a cumulative risk model of disease progression
applicable to vulnerable populations in low- and middle-income
settings.

4.3 Limitations

This study has several limitations that must be considered
when interpreting its results. First, the sample size is modest,
and could have prevented us from revealing other significant

TABLE 3 Significantly different graph theory metrics’ AUC values
between the groups.

F corrected p Group
difference

Clustering coefficient (CC) 4.2709 0.0441 PEM > CON

Local efficiency (LE) 4.9741 0.0303 PEM > CON

Global efficiency (GE) 4.0467 0.0498 CON > PEM

Characteristic path length (LL) 0.3420 0.5614

Small-world network index (SW) 3.5382 0.0659

effects due to a lack of statistical power or selection bias. We
found no evidence of bias between individuals who were included
(21% of the original cohort of PEM subjects) and those who
did not participate in the current study in terms of age, gender,
and nutrition group membership or childhood standard of living
(Bosch-Bayard et al., 2022), suggesting that our participants were
representative of the BNS cohort. However, there could have been
some unknown source of bias that we did not detect, potentially
compromising generalizability. Second, considering the absence of
significant correlation difference between the groups using multiple
comparison corrections, the results of the functional connectivity
analysis without applying such corrections need to be interpreted
cautiously and further replicated. Third, although we used the
best available data to control experimentally for socioeconomic
(SES) differences between previously malnourished participants
and controls, we cannot be certain that group differences were
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fully attributable to the history of early malnutrition and that there
were not undetected experiential or genetic differences between
the groups. Notably, malnutrition is a multi-dimensional condition
with co-occurring adversity factors such as poverty and child
maltreatment (Hock et al., 2020) that may play a role in the results
presented in this study. Finally, further longitudinal studies are
also needed to better understand the evolution of those alterations
over time and as the participants grow older. Overall, future
neuroimaging malnutrition studies should thus be undertaken with
a larger sample size and a longitudinal design.

5 Conclusion

This study presents evidence of functional brain alterations in
45–51 years old adults after experiencing childhood malnutrition
limited to the first year of life. They demonstrate patterns of
hyperconnectivity, increased segregation and decreased integration
compared to healthy controls with a specific vulnerability of the
frontal cortex. These results can be interpreted as a compensatory
mechanism to preserve cognitive functions. This is one of the first
studies to investigate long-term brain function alterations using
NIRS, a functional hemodynamic brain imaging technique.
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