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Emergence of number sense 
through the integration of 
multimodal information: 
developmental learning insights 
from neural network models
Kamma Noda †, Takafumi Soda † and Yuichi Yamashita *

Department of Information Medicine, National Institute of Neuroscience, National Center of 
Neurology and Psychiatry, Kodaira, Japan

Introduction: Associating multimodal information is essential for human cognitive 
abilities including mathematical skills. Multimodal learning has also attracted 
attention in the field of machine learning, and it has been suggested that the 
acquisition of better latent representation plays an important role in enhancing 
task performance. This study aimed to explore the impact of multimodal learning 
on representation, and to understand the relationship between multimodal 
representation and the development of mathematical skills.

Methods: We employed a multimodal deep neural network as the computational 
model for multimodal associations in the brain. We compared the representations 
of numerical information, that is, handwritten digits and images containing a 
variable number of geometric figures learned through single- and multimodal 
methods. Next, we evaluated whether these representations were beneficial for 
downstream arithmetic tasks.

Results: Multimodal training produced better latent representation in terms 
of clustering quality, which is consistent with previous findings on multimodal 
learning in deep neural networks. Moreover, the representations learned using 
multimodal information exhibited superior performance in arithmetic tasks.

Discussion: Our novel findings experimentally demonstrate that changes 
in acquired latent representations through multimodal association learning 
are directly related to cognitive functions, including mathematical skills. This 
supports the possibility that multimodal learning using deep neural network 
models may offer novel insights into higher cognitive functions.
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1 Introduction

The integration of multimodal information is essential for human cognitive abilities. 
We perceive our environment by the integration of various types of input from multiple 
sources such as vision, sound, and touch to achieve appropriate cognitive behavior. For 
example, higher-order brain functions such as language, semantic memory, and calculation 
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inevitably involve multimodal association (MMA; Büchel et al., 1998; 
Kraut et al., 2002). Additionally, while MMA provides considerable 
advantages for higher cognitive function, its failure results in a wide 
range of neuropsychological symptoms associated with 
neurodevelopmental disorders and neurodegeneration. For example, 
the core pathologies of semantic dementia (Nishio and Mori, 2009), 
calculation disorder (Rousselle and Noël, 2007), and prosopagnosia 
(Gainotti and Marra, 2011) are considered to be due to alterations in 
MMA. However, despite intensive investigations (Andersen, 1997; 
Ardesch et al., 2019), researchers have not yet established a definitive 
MMA theory. Understanding the fundamental process of MMA could 
reveal the underlying mechanisms of the human brain and 
intelligence, and also contribute to understanding the pathologies and 
prevention of neurodevelopmental disorders and neurodegeneration.

Mathematical ability is a representative example of a cognitive 
process related to MMA. Number sense (numerosity), which involves 
the ability to judge the magnitude of numbers, may form the basis of 
mathematical skills (Nieder and Miller, 2003; Dehaene, 2011). MMA, 
such as linking number sense with numerical symbols, is considered 
a crucial element in this process (Verguts and Fias, 2004; Diester and 
Nieder, 2007; Gevers et al., 2016). Indeed, Parham (1998) reported 
that the sensory integration ability, assessed through multiple tests 
measuring coordination across various sensory modalities, is 
associated with arithmetic achievement in children. Moreover, 
individuals with reduced ability in mathematics exhibited lower 
performance in tasks involving symbolic numbers rather than 
non-symbolic numbers (Rousselle and Noël, 2007). Although these 
studies imply the importance of MMA in the development of 
mathematical ability, the neural systems supporting mathematical 
skills and the contributions of MMA are not well understood. One 
major barrier to this understanding is the technical challenges 
associated with deciphering the intricate neural underpinnings of 
MMA. The complexity of brain network interactions and multilayered 
nature of cognitive processing make it difficult to isolate and study the 
precise neural systems that are involved.

Given these challenges, computational modeling using artificial 
neural networks has emerged as a promising approach. This method 
contributes to the understanding of cognitive abilities across multiple 
scales, including neurons, circuits, and cognition. For example, several 
studies have reported similarities between deep neural networks and 
the human brain (Serre, 2019; Sinz et al., 2019; Yang and Wang, 2020). 
Additionally, the concept of multimodal learning has been applied in 
the fields of machine learning and deep neural networks (Baltrušaitis 
et al., 2019; Suzuki and Matsuo, 2022). Learning by using multiple 
modalities enhances the performance of neural network models (Shi 
et al., 2019).

Another key aspect of studying deep neural networks is the 
acquisition of better latent representations (Bengio et al., 2013; Lu 
et al., 2017; Tschannen et al., 2018). Latent representations based on 
multimodal information are believed to play an important role in 
achieving superior performance (Guo et al., 2019). We hypothesize 
that changes in latent representations acquired through MMA are 
related to differences in cognitive abilities, including mathematical 
skills. Previous studies have reported that neural networks acquire a 
latent space that reflects number sense (Stoianov and Zorzi, 2012; 
Zorzi and Testolin, 2017; Di Nuovo and Jay, 2019; Testolin et al., 2020; 
Kim et al., 2021). For example, the neural response in an artificial 
neural network, when presented with dot stimuli representing 

varying numbers, replicates the tuning curves of neurons in monkeys 
(Nasr et  al., 2019). Furthermore, neural network models using 
multimodal information are reportedly effective in the acquisition of 
mathematical abilities (Verguts and Fias, 2004; Di Nuovo and 
McClelland, 2019; Sabathiel et al., 2020). However, these studies did 
not explore how representations related to numerosity are acquired 
by integrating multimodal information, and did not investigate the 
potential impact of these representations on subsequent 
mathematical tasks.

We aimed to use a multimodal deep neural network model as a 
computational model for MMA in the brain. We sought to determine 
the mechanisms underlying the effect of multimodal learning on the 
representation of information and its influence on cognitive task 
performance. In the experiment, we compared the representations of 
numerical information, i.e., handwritten digits and images containing 
a variable number of geometric figures learned in single and 
multimodal ways, which assumably corresponded to the human 
cognitive process of learning number sense. We tested this hypothesis 
through a subsequent experiment that investigated the effect of 
changes in representation on the performance of a downstream 
arithmetic task.

2 Materials and methods

2.1 Task

In this experiment, we targeted two tasks: a reconstruction task 
and a cross-generation task, in order to observe changes in latent 
representations when performing both tasks simultaneously or only 
the reconstruction task.

Figure 1 presents an overview of these tasks. Reconstruction refers 
to generating data within one modality (e.g., generating a symbol 
similar to the input symbol), whereas cross-modal generation refers 
to generating data with identical information as the input, but with 
different modalities (e.g., generating an image of three objects for a 
symbol of three). Performing the reconstruction and cross-modal 
generation tasks together presumably models MMA in the human 
cognitive process.

To deal with the number sense, we used symbol and object images 
as the target modalities. These modalities differ from those involved 
in human sensory modalities such as vision, sound, or touch, and 
we  refer to a modality as the mode and pattern of information 
following conventions in the machine learning domain. The concept 
of number can be represented using a symbol, such as “4,” or using 
object images, such as a picture of four squares (Figure 1). We created 
a dataset termed OSCN-CMNIST, which is a combination of the 
object-shape-color-number (OSCN) dataset and Colored Modified 
National Institute of Standards and Technology (CMNIST) database. 
Figure 2 presents sample data from OSCN-CMNIST. The OSCN refers 
to a set of synthetically created two-dimensional object images and 
represents the concept of numbers using these images. Each OSCN 
image comprises the following four factors: object layout, object color, 
object shape, and number of objects. CMNIST is a colored version of 
MNIST and is a commonly used dataset of handwritten digit images. 
The dataset represents the concept of numbers using symbolic Arabic 
numerals. An image pair was developed such that both images had 
identical numbers and colors. The shape and layout of the objects were 
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created randomly. Detailed information is provided in 
Supplementary material.

2.2 Model

To model the cognitive processes required for the reconstruction 
and cross-modal generation tasks, we employed a mixture-of-experts 
multimodal variational autoencoder (MMVAE; Shi et al., 2019). The 
MMVAE is one of the generative models for multimodal learning that 
exhibits high performance in terms of generation quality. Furthermore, 
the MMVAE employs self-supervised learning, which does not rely on 
explicit teacher signals, similar to settings in the human developmental 

process. Although recent multimodal neural networks such as CLIP 
(Radford et  al., 2021) exhibited outstanding performance, their 
information processing is complex. In contrast, MMVAE has the 
advantage of a straightforward neural network architecture, which is 
useful for discussing similarities with the brain. In addition, 
representations of the learned modalities are disentangled using 
shared and private latent space (details are provided later), making it 
easy to interpret the type of information encoded, and the way in 
which information is embedded.

Figure 3A illustrates the MMVAE architecture. For multimodal 
generation, pairs of data x xM M1 2,  ( )  were the inputs for model Amulti,  
which comprised two datasets with identical information but different 
modalities, namely M M1 2, . The encoders produced latent variables, 

FIGURE 1

Example data and task overview. (A) Identical information could be presented in different ways. As an object image, the number four is presented as an 
image of four squares, whereas it is presented as the handwritten digit “4” using the symbol. (B) Reconstruction refers to the generation within one 
modality, whereas cross-modal generation refers to the generation across several modalities.

FIGURE 2

Sample data of the OSCN-CMNIST. The figure presents an 8  ×  8 example of data from OSCN and CMNIST. Images at identical positions have identical 
numbers and colors to form pairs. For example, the top left image of OSCN is “9 blue squares” and that of CMNIST is “blue 9.” Likewise, the right image 
of OSCN is “6 white squares” and that of CMNIST is “white 6.”
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namely zM1, zM 2  and each decoder D jj =( )1 2,   generated outputs 
ˆ jM
ix  for each latent variable z iMi =( )1 2, . Collectively, the model 

simultaneously performed both reconstruction and cross-
modal generation.

In artificial neural network models, because of training, 
information of input images (such as color, numbers, shapes, etc.) is 
embedded in the latent space of the network. In the case of MMVAE, 
the latent spaces may appear independent (Figure 3A); however, they 
could learn to overlap (Figure 3B). This is because the model is trained 
to output similar data regardless of the latent space from which the 
latent variable is sampled. Namely, in MMVAE, even when the 
modalities of input data differ, the same latent space is utilized. 
Therefore, it is expected that common information, such as color or 
numbers shared in both OSCN and CMNIST, utilizes a common 
mechanism in the latent space. On the other hand, in the case of the 
CMNIST modality, although it utilizes the same latent variable space 
as the OSCN modality, there is no need to leverage information such 
as the shape of the object (e.g., cross and triangle). Consequently, 
modality-specific (e.g., figure of Arabic numerals in the CMNIST and 
shape of objects in the OSCN dataset) information is represented by 
independent subspaces (private representation), whereas modality-
general (e.g., color and number label) information is represented by a 
common subspace (shared representation).

We trained other models, namely A Asingle single
1 2

,  (single-modal 
models), to learn the reconstruction only. Each Ai

single  model was 
assigned one Mi modality and did not have access to other modalities, 
making it impossible for these models to learn the relationships 
among the modalities. Unlike in the multimodal model, the latent 
space did not spontaneously overlap. For these models, we ignored the 
blue arrows shown in Figure  3A. Decoder Dj only used the 
corresponding latent variables z j to output ˆMj

jx , and the two 
variational autoencoders were trained independently.

Following training, the multi-model Amulti learned latent 
representations for both M M1 2,   modalities, whereas the 

single-modal models Asingle1 , Asingle2 only learned a latent 
representation for the corresponding modality Mi . Both models 
learned the latent representations of Mi , but in different ways. For 
training, MMVAE maximizes the following objective function (Shi 
et al., 2019):
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where NM  denotes the number of modalities, z is the latent 
variable, and x  is the input data. Intuitively, the objective function 
denotes the average of the evidence lower bounds for each generation 
path. Please refer to Supplementary material for additional details 
regarding the implementation.

3 Results

3.1 Output

Figure 4 depicts the outputs of the multimodal models trained 
using OSCN-CMNIST, including the reconstructed and cross-
generated images (images generated from other modalities). The tasks 
were successfully learned in both modalities, as the output images 
were clear and precise; however, the cross-modal generated output 
included some errors when inputting CMNIST images.

To quantitatively analyze the performance of the model, 
we trained additional neural network models to determine to which 
class (e.g., number) the output of the multimodal model corresponded 
to. We  visualized the agreement rate between true labels, i.e., the 
number represented by original images before reconstructing and 
cross-generating, and predicted labels by the classifier model using 

FIGURE 3

Overview of the model architecture. (A) The encoders produce latent variables using the input, whereas the decoders generate outputs from the latent 
variables. Each encoder/decoder corresponds to one modality. (B) The latent spaces are learned to include a subspace for the shared information, and 
the remaining spaces include private information.
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reconstructed and cross-generated images (Figure  5). In both 
CMNIST and OSCN datasets, regardless of input numbers, most 
accuracies of reconstructions and cross-generation were above chance 
levels (1/9 = 0.111).

We repeated the same procedure and conducted statistical tests on 
the generation ability of 20 distinct networks. The results showed that 
the accuracy of the multimodal model outperformed significantly 
chance levels in reconstruction of the OSCN and CMNIST datasets 
[t(19) = 6.69, p < 0.0001  in the OSCN dataset and t(19) = 6.72, 
p < 0.0001  in the CMNIST dataset using one-sample t-test]. The 
accuracy of cross-generated images significantly outperformed chance 
levels when the OSCN dataset was used as inputs [t(19) = 7.19, 
p < 0.0001]. Similarly, when the CMNIST dataset was used as inputs, 
the multi-modal model performed the cross-generation task above 
chance levels [t(19) = 6.66, p < 0.0001].

3.2 Qualitative analysis of latent 
representation

Figure  6 illustrates the latent representations of the OSCN 
generated by the models using different training methods. 
We provided test data of each modality to each model to visualize the 
latent space. The model’s encoder generated the latent variables using 
the input. These variables were transformed using t-distributed 
stochastic neighbor embedding (t-SNE; van der Maaten and Hinton, 
2008) to reduce the number of dimensions from 20 (original 
dimension of the latent space) to two. In each learning method, all 
rows depict the identical latent representations, as they were estimated 
using the same images. However, different colors were assigned to 
each point (the upper, middle, and lower rows represent the number, 
color, and figure classes, respectively).

The quality of the latent representations of the numbers 
appears to improve in the multimodal model. This is because 
some clusters became more cohesive and the number of mixed 
points (points in the wrong cluster) decreased. Moreover, 
we identify an order based on the magnitude of the corresponding 

class. By using numerical order, the neural network model can 
discern size relationships, such as larger and smaller. Because of 
this, the model successfully learned to judge the magnitude of 
the numbers.

The single-modal model produced a well-clustered latent 
representation for shapes, although there was a mixing of different 
clusters for color and number classes. In contrast, the multimodal 
model appeared to mainly cluster points based on their color in 
addition to shape (identical points of similar color were adjacent). The 
increased focus on color classes may be attributed to the shared color 
modality between OSCN and CMNIST.

In summary, the multimodal model generated more divided 
clusters for the number, with the order based on the class magnitude. 
The clustering quality for shapes was similar to that of the single-
modal model; however, it focused more on color.

Figure 7 shows the latent representations of CMNIST generated 
in a manner similar to that shown in Figure 6. All rows displayed a 
similar representation; however, different colors were assigned to each 
point (the upper and lower rows visualize the number and color 
classes, respectively).

The quality of the latent representations of numbers improved 
in the multimodal learning model. This is supported by the fact 
that points belonging to the same class are not mixed in the case 
of the multimodal learning model. Additionally, an order based on 
the magnitude of the corresponding class supposedly existed in a 
multimodal manner as observed in the OSCN representation. This 
was the result of multimodal learning, in which the model 
attempted to associate the two modalities. This order was not 
observed in the representation generated by the single-modal 
model because it did not include magnitude information. 
Although mixtures were observed in the number class (e.g., 7 and 
9, as well as 3 and 5, were positioned closer to each other in the 
latent space of the multimodal model), this can be explained by 
the similarity in the shapes of Arabic numerals in the CMNIST 
images. Furthermore, the multimodal model successfully clustered 
the points based on color than the single-modal model. This is 
because OSCN and CMNIST possess common colors, and the 

FIGURE 4

Sample inputs/outputs from the trained multimodal model. The images at identical positions correspond to each other.
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multimodal model learned the colors to gain a 
shared representation.

In summary, the multimodal model clustered the data based on 
shape and color, and simultaneously ordered points based on the 
magnitude of the number.

3.3 Quantitative analysis of latent 
representation

From the qualitative analysis, the multimodal model appeared to 
modify the clustering structure and learn better number sense. To 
confirm this observation, we introduced a silhouette coefficient to 
qualitatively measure the clustering value. The distance between 
different clusters increased as the value approached 1, concomitant 
with a decrease in the distance between points in similar clusters. 
We  calculated the silhouette coefficient using the latent values. 
Notably, the dimension reduction algorithm did not affect the results 

because the silhouette coefficient was calculated in the original latent 
space. Additional calculation details are provided in 
Supplementary material.

Figure 8 (upper) shows a comparison of the silhouette coefficients 
for each representation. For both modalities, the silhouette coefficient 
was higher when the models were learned in a multimodal manner. 
The statistical test revealed the superiority of multimodal model in the 
OSCN dataset [t(19.92) = 2.84; p = 0.0102], but not in the CMNIST 
dataset [t(21.46) = 0.71; p = 0.4826]. Therefore, multimodal learning 
has potential to improve clustering quality.

We attempted to quantitatively measure the quality of the learning 
of number sense. Upon learning a numerical quantity, the distance 
between clusters Ci, C j (defined as the distance between the average of 
the points in one cluster and that of the other cluster) is expected to 
be associated with the difference between the corresponding two class 
numbers i, j , that is i j− . For example, the difference between Clusters 
1 and 3 should be greater than that between Clusters 1 and 2. In such 
cases, the cluster distance (distance between clusters in the latent 

FIGURE 5

Confusion matrix between true number label and outputs from the trained multimodal model. (A) The reconstruction task for the OSCN images. 
(B) The cross-generation task to the CMNIST from OSCN images. (C) The reconstruction task for CMNIST images. (D) The cross-generation task to the 
OSCN from CMNIST images.
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representation) and class distance (distance between corresponding 
classes) should exhibit monotonically increasing relationships.

Figure 8 (lower) shows the correlation coefficient between the cluster 
distance and class difference. A value close to one indicates that the 
model successfully learned the magnitude relationship between numbers 
(and the number sense). The correlation coefficient increased after the 
modality was learned in a multimodal manner. In particular, the 
CMNIST representation displayed a remarkable change [t(24.57) = 4.18; 
p = 0.0003 in the CMNIST dataset]. Additionally, the coefficient of the 
multimodal model for the OSCN outperformed that of the single-modal 
learning model [t(21.83) = 4.51; p = 0.0002 in the OSCN dataset].

3.4 Downstream arithmetic task

Multimodal learning was effective for obtaining a sophisticated 
representation of data in terms of clustering and number sense. This 

warrants investigation into the usefulness of latent representations for 
downstream cognitive tasks that require number sensing. Therefore, 
the models were tested using arithmetic tasks. Figure 9 presents an 
overview of this task. For a learned latent representation that reflects 
the quantitative relationship between data, the model may perform 
addition and subtraction using the representation.

Figure  10A depicts the architecture of this task using sample 
inputs. The OSCN images of 2, 7, and 1 provided to the corresponding 
encoder produced latent variables z z z2 7 1( ) ( ) ( ), ,  and , respectively 
(assuming z i( ) to be a latent representation of the OSCN images of  
i). Subsequently, we performed addition and subtraction using these 
latent variables outside of the neural network and provided the results 
to the decoder DOSCN  to generate images as follows: 
D z z zOSCN 2 7 1( ) + ( ) − ( )( ) where D z( ) denotes an image created by 
D for a certain z. If z z z2 7 1( ) + ( ) − ( ) is close to z 8( ), the final output 
image would appear like the OSCN image of 8. This is because DOSCN 
is trained such that D z iOSCN ( )( )  and the OSCN image of i are 

FIGURE 6

Two-dimensional latent representation of the OSCN with different training types. Different color points belong to various number/color/shape classes 
in the first, second, and third rows, respectively.
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identical in appearance. The models were not trained for this task, and 
we used only the latent representations obtained through generation 
training. Figure  10B depicts the actual output when the 
z z z9 7 8( ) + ( ) − ( ) and the z z z3 5 2( ) + ( ) − ( ) was provided to DOSCN.  
Despite some errors, it produced several images depicting the 
numbers “8” and “6.”

To compare the performances, we assessed several arithmetic 
expressions using different models and counted the number of 
accurate images. The arithmetic expressions were selected to 
cover various input and answer patterns (are shown in 
Supplementary material).

Figure  11 represents the accuracies estimated by the same 
classifier used in the “output” section. In Figure 11, the y-axis numbers 
represent true answers of arithmetic calculation while the x-axis 
numbers represent predictions made by classifiers that were given 
generated images by multimodal models. As shown in Figure 11, the 
multi-modal model outperformed chance levels (1/9 = 0.111) in most 
cases. Confusions were observed when the true answers had a 
moderate magnitude, such as 3, 4, and 6, in the OSCN dataset. In 
some cases, even when predictions were wrong, the answers by the 
neural network were close to the true label, e.g., when the true label is 
“5,” the “4” prediction (27%) is higher than the “9” prediction (7.7%) 
in the CMNIST dataset.

Figure  12 compares the success rates of each model. The 
multimodal model displayed better performance in both datasets 
[t(30.35) = 3.82; p = 0.0006 in the CMNIST dataset and t(20.31) = 4.71; 
p = 0.00013  in the OSCN dataset]. Through multimodal learning, 

numerosity, which was originally absent in the CMNIST modality was 
embedded in the neural network model.

4 Discussion

In this study, we  trained models in single and multimodal 
manners to compare the latent representations of symbolic numbers 
and object images. Multimodal training produced better latent 
representation in terms of clustering quality, which is consistent with 
previous findings on multimodal learning in deep neural networks 
(Suzuki et al., 2016; Guo et al., 2019). A better latent representation in 
multimodal learning is intuitively understandable because learning 
can access more diverse information during training; however, the 
underlying mechanisms remain unclear. Shared representation may 
be an important factor (Ngiam et al., 2011). In the current experiment, 
the multimodal model obtained a shared representation for color, 
which was a shared factor in the training dataset. The model 
successfully identified an association between the two datasets, 
whereas the single modal model did not learn in a similar manner (see 
Supplementary Figure S2 for a visual explanation). The number was 
another shared modality learned together in the multimodal model. 
Therefore, the multimodal representation of CMNIST reflects the 
number sense learned in the OSCN and shared across modalities. The 
representation of the number sense in CMNIST is not trivial. This is 
because CMNIST does not contain information on the magnitude of 
the numbers, unlike OSCN, which contains the number of objects as 

FIGURE 7

Two-dimensional latent representation of the CMNIST with different training types. The upper and lower row visualizations are based on the number 
and color classes, respectively. Different color points belong to dissimilar numbers/color classes in the first and second rows.
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images. The single-modal representation of CMNIST does not reflect 
number sense. However, number sense was better obtained with the 
combined learning of OSCN and CMNIST. This may be attributed to 

the use of CMNIST as a label during training, which facilitated the 
assembly of OSCN images by the presented number. Moreover, the 
representation learned by the multimodal model exhibited superior 

FIGURE 8

The quantitative analysis of latent representations. (A,B) A comparison of the silhouette coefficients for the latent representations learned in different 
ways in the OSCN (A) and CMNIST (B) datasets. (C,D) A comparison of the correlation coefficient between the latent distance (e.g., the distance 
between the average of points in the latent space belonging to “2” and “5”) and the class distance (e.g., the class distance between “2” and “5” is “3”) in 
the OSCN (C) and CMNIST (D) datasets. *p  <  0.05.

FIGURE 9

Arithmetic task overview. Identical arithmetic operations can be represented in various ways. If the model successfully learns the quantitative sense, it 
can perform additions and subtractions.
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FIGURE 12

Comparison of the success rate of the arithmetic task. The success rate of the arithmetic task when inputting the OSCN (A) and CMNIST (B) images. 
*p  <  0.05.

FIGURE 10

Sample inputs/outputs and architecture for the arithmetic task. (A) Three data inputs are provided to the model. The model generates latent variables 
using the input and performed addition and subtraction in the latent space. Subsequently, the calculation result was used to produce the final output. 
(B) Actual outputs upon executing “9  +  7 − 8” and “3  +  5 − 2” using OSCN. “8” and “6” are expected to be produced.

FIGURE 11

Confusion matrix between true answers and generations by multimodal learning model. The results of the arithmetic task when inputting the OSCN 
(A) and CMNIST (B) images. The y-axis numbers represent true answers of arithmetic calculation while the x-axis numbers represent predictions made 
by classifiers that were given generated images by multimodal models.
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performance in downstream arithmetic tasks. Therefore, multimodal 
learning facilitated the learning of an improved representation of 
information and performed tasks using the target information.

In the field of machine learning, multimodal learning leads to 
more disentangled representations by visualizing latent representations 
(Suzuki et al., 2016; Zhou and Shen, 2020). Our results support these 
findings and highlight the following perspectives: (1) quantitative 
evaluation of the learned representations and (2) the contribution of 
changed representations for better performance of the downstream 
tasks. These findings reveal the fundamental advantages of multimodal 
learning, which were not considered in previous studies.

Moreover, our study introduced multimodal learning in the 
context of the computational modeling of cognitive abilities, 
particularly the acquisition of mathematical ability. With regard to 
mathematical skills, the exact process by which the human brain 
grasps the concept of symbolic numbers remains unclear (Diester and 
Nieder, 2007; Nieder and Dehaene, 2009; Testolin, 2020). Previous 
studies have reported the acquisition of number sense using 
computational models, for example, spatial filter (Park and Huber, 
2022; Paul et al., 2022), untrained neural networks (Kim et al., 2021; 
Lee et al., 2023), neural networks trained on object recognition tasks 
not limited to number images (Nasr et al., 2019; Nasr and Nieder, 
2021), and neural networks trained with number images (Stoianov 
and Zorzi, 2012; Testolin et al., 2020; Mistry et al., 2023). These studies 
commonly have indicated that acquiring number sense is possible 
using only single-modal information. Although we emphasized the 
importance of the MMA, our findings are not inconsistent with this 
hypothesis in the sense that number sense could self-organize without 
explicit instructions, as observed in the single-modal setting (OSCN 
in Figures 6, 8). Other research demonstrated that without the explicit 
use of multimodal information, the transformer model can acquire a 
well-structured latent representation similar to the mental number 
line, in which addition and subtraction calculations can be performed 
(Boccato et al., 2021). Our study distinctly showed that integrating 
symbolic numbers with object information not only facilitates 
structured latent representations but also significantly enhances the 
performance of downstream arithmetic tasks, including addition and 
subtraction beyond single-modal learning. Similar to our study, 
several studies discussed arithmetic abilities using neural networks 
that process multimodal information (Verguts and Fias, 2004; Di 
Nuovo and McClelland, 2019; Sabathiel et al., 2020). In particular, 
Verguts and Fias (2004) is one of the few exceptions that studies the 
representation of numbers by providing symbolic and non-symbolic 
information to neural network models; however, their study is limited 
in that they adapt a hard-coded model and use symbolic numbers as 
one-hot vectors. In contrast, in our study, the CMNIST images were 
handwritten, and the various visual patterns represented the same 
number of symbols; therefore, the neural network must extract latent 
information from the symbol and object images. In this respect, our 
study is similar to the multimodal setting in a real-world environment.

In addition to cognitive ability, studies on multimodal learning in 
the context of machine learning may contribute to an understanding 
of the mechanisms of neuropsychological symptoms. Synesthesia is 
an illustrative example of altered MMA, a phenomenon in which one 
sensory stimulation evokes other senses simultaneously, such as 
observing a color on a certain character (Hubbard and Ramachandran, 
2005). Several studies have attempted to computationally model 
synesthesia (Makioka, 2009; Yamaguchi et al., 2013). Our findings 

may provide substantial insights into the understanding of synesthesia 
as an alteration in shared and private latent representations. In 
addition, we found that multimodal representation contributed to 
enhanced performance of arithmetic tasks. This result is consistent 
with those of previous clinical studies suggesting that persons with 
synesthesia possess advantages regarding cognitive performance 
related to space/time recognition and memory (Kadosh et al., 2011; 
Ovalle-Fresa et al., 2021). As another example of neuropsychological 
symptoms, we expect that altered latent representations in the MMA 
may explain the peculiar phenomenon of savant syndrome, a rare 
condition in which patients with mental disorders exhibit superior 
talents in specific domains, such as memory, mathematics, and the 
arts (Treffert, 2009). For example, the astonishing skill of calendar 
calculation, one of the representative talents of savants, can 
be understood as a unique latent representation acquired through 
extreme MMA, with the modalities of spatial arrangements of 
numbers in calendar sheets and symbolic information of days of the 
week. This hypothesis is supported by previous studies (Bouvet et al., 
2014; Hughes et al., 2019), thereby suggesting an association between 
synesthesia and savants. Our simulation provides a computational 
explanation for this hypothesis. Additional modeling studies using the 
simulated lesion method in computational psychiatry (Yamashita and 
Tani, 2012; Idei et  al., 2021) may lead to a formal computational 
understanding of synesthesia/savant syndrome.

However, this study has some limitations. The CMNIST-OSCN 
dataset is relatively simple because it was created using a synthetic 
dataset. In addition, only modalities with vision information were 
used as multimodal information. To overcome these limitations, 
future studies should use more diverse sensory modalities and 
conduct experiments using large-scale real-world data. Given the 
simplicity of the dataset, we cannot exclude the possibility that the 
network gauges numerosity based on the total area and convex hull 
rather than the actual count of objects. To address this potential 
confounding factor, future studies should consider controlling such 
low-level visual features by drawing on the methodology of previous 
computational simulation studies (Nasr et al., 2019; Testolin et al., 
2020). Nevertheless, even if the MMVAE relies on these low-level 
visual features, its capability to extract physical magnitude from the 
OSCN and correlate the acquired representations of physical 
magnitude with CMNIST remains a consistent finding.

The dimension reduction algorithm may influence the 
visualization and qualitative results. Although a quantitative analysis 
of the latent variables was conducted before dimension reduction, 
we  could have proposed an alternative hypothesis if different 
visualization algorithms had been used. Related to this, the size effect, 
which indicates that the mental distance between numbers is not 
linear to the distance between the magnitudes of these numbers 
(Nieder and Miller, 2003), was not observed in the compressed space. 
Indeed, previous studies have suggested that numerosity is encoded 
in neurons using logarithmic transformations rather than linear ones 
(Nieder and Miller, 2003; Stoianov and Zorzi, 2012; Nasr et al., 2019). 
We conducted additional analyses based on the hypothesis that the 
latent space before dimensionality reduction encodes numerosity 
using a nonlinear scale (section 4 in Supplementary material). The 
results showed a stronger correlation between latent representations 
and numerosity under the assumption of linear relationships, rather 
than nonlinear relationships. Behind the discrepancy with previous 
studies, there may lay differences in model architecture and input 
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stimulus. Interestingly, Verguts and Fias (2004) did not clearly find 
nonlinear representation when artificial neural networks processed 
both symbols and non-symbols. This indicates that linear 
representations may be preferred in advanced cognitive processes that 
involve symbols.

Furthermore, downstream arithmetic tasks, such as addition and 
subtraction, are basic compared with human mathematical skills. 
Future studies should also include more complicated downstream 
tasks. For example, algebraic operations such as addition and 
subtraction are not learned by the neural network model because the 
latent state values obtained by inputting MINST or OSCN images 
were added or subtracted outside of the neural network. In future 
research, it will be essential to model how the neural system acquires 
algebraic operations. Incorporating insights from human neural 
representations of algebraic operations (Nakai and Nishimoto, 2023) 
may prove beneficial in the modeling process. The successful 
replication of more complicated cognitive skills should enable a 
comparison between the human brain and neural models. This, in 
turn, could reveal the detailed correspondence between the 
computational mechanisms in multimodal models and biological 
phenomena in the human brain. By addressing these challenges, a 
computational approach using artificial neural networks, as in our 
research, has the potential to offer comprehensive insights into the 
cognitive and neuroscientific mechanisms underlying MMA.
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