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Since the advent of anti-PD1 immune checkpoint inhibitor (ICI) immunotherapy,

cutaneous melanoma has undergone a true revolution with prolonged survival, as

available5-yearupdates forprogression-freesurvival andoverall survivaldemonstrate

a durable clinical benefit formelanomapatients receiving ICI. However, almost half of

patients fail to respondto treatment,or relapsesooneror laterafter the initial response

to therapy. Little is known about the reasons for these failures. The identification of

biomarkers seems necessary to better understand this resistance. Among these

biomarkers, HLA-DR, a component of MHC II and abnormally expressed in certain

tumor types including melanoma for unknown reasons, seems to be an interesting

marker. The aim of this review, prepared by an interdisciplinary group of experts, is to

take stock of the current literature on the potential interest of HLA-DR expression in

melanoma as a predictive biomarker of ICI outcome.
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1 Introduction

Immunotherapy with immune checkpoint inhibitors (ICI) have

revolutionized the treatment of patients with advanced solid

cancers (1). Cutaneous melanoma (CM) is one of the most

sensitive tumors to PD1 checkpoint inhibitors (nivolumab,

pembrolizumab) (2).

Despite the paradigm shift brought about by ICI (prolonged

survival and good tolerance (3–6)), 40 to 65% of metastatic

melanomas do not respond to mono- or combo-ICIs and more

than 43% of patients develop secondary resistance after a first

response at 3 years of treatment (3).

The tumor microenvironment (TME) and the interactions

between immune and non-immune tumor cells are of crucial

importance in cancer initiation and progression, for example by

delivering extracellular signals that support and promote peripheral

immune tolerance (7).

Among the components of this TME is Human Leukocyte

Antigen – DR isotype (HLA-DR), which is expressed on

professional antigen-presenting cells (pAPCs) and unexplainedly

on non-pAPC cells such as certain tumors, and in greater

proportion in melanoma (8, 9).

In this article, we first present an overview of HLA-DR with its

role in the tumor cell as well as its interaction with TME before

reviewing studies evaluating the response to ICI in melanoma based

on HLA-DR expression and, finally, we discuss how HLA-DR could

fit into therapeutic application as a biomarker.
2 HLA-DR: role and interaction with
tumor microenvironment

The efficacy of ICI immunotherapy depends on the recognition

of the antigens by T cells. This recognition is mediated by the major

histocompatibility complex (MHC) molecules that present the

antigens to the T cell receptor (TCR), with these interactions

being increased by co-receptors such as CD4 on helper T cells

and CD8 on cytotoxic T cells. MHC class I molecules (MHC-I) are

expressed by most nucleated cells and mainly present peptide

antigens of endogenous origin to CD8+ T cells. MHC class II

(MHC-II) molecules are mostly expressed by professional antigen-

presenting cells (PAPCs) such as dendritic cells (DCs), B cells and

macrophages, and mainly present peptide antigens of exogenous

origin to CD4+ T cells. Among the MHC-II components, HLA-DR

is the most frequently expressed and the most studied (10, 11).

HLA-DR is encoded by the human leukocyte antigen complex on

the region 6p21.31 of chromosome 6 (12). HLA-DR is composed of

two non-covalently associated transmembrane glycoproteins (the a
and b chains) (13, 14), and is primarily expressed on B lymphocytes,

monocytes, dendritic cells and thymic epithelial cells. In addition to

hematopoietic-lineage neoplasia, HLA-DR is likewise expressed by

certain solid tumors, including malignant CM, lung cancer, liver,

cancer, glioblastoma, renal cancer (8).

To date, no relationship between HLA-DR expression and the

aggressiveness of most tumors or their prognostic factors has been
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noted in most of the different tumor types although in CM, an

association between HLA-DR expression and the metastatic and

aggressive potential of the disease was initially suggested (15–

17).This assertion was later challenged by finding no particular

impact on the aggressive character of CM (9, 18).

The function of MHC-II expression in tumor cells has long been

unknown; recently, several studies have demonstrated that CD4 T

cells can recognize melanoma cells in an antigen-specific, MHC

class II-dependent manner (19–21).

In solid tumors, HLA-DR has been predominantly studied in

CM. Based on the results obtained - after induction using high

concentrations of the specific anti-HLA-DR monoclonal antibody

L243- in vitro in cell lines without in vivo confirmation, it appears

that tumor cells growth and aggressiveness may be due to HLA-DR-

mediated signaling that induces ILK/AKT (integrin-linked kinase/

protein kinase B), FAK/PAX/AKT (focal adhesion kinase (FAK)/

paxillin/Protein kinase B) and BRAF/ERK (extracellular signal-

related kinases) signaling pathways activation as well as the lipid

rafts recruitment of FAK and AKT proteins (22–25). Constantini

et al. have demonstrated in vitro in cell lines that HLA-DR

expression, through these signaling platforms, modulates the

interaction of melanoma cells with the microenvironment that is

considered crucial for their metastatic dissemination. MHC-II

mediated signaling, including HLA-DR, increases the expression

of integrins and cell adhesion molecule (CAM) receptors, activating

associated signaling and enhancing melanoma cell motility and

invasiveness. This signaling also modulates multiple intracellular

processes associated with cell invasion based on increased integrins

function. In addition, signal transducer and activator of

transcription 3 (STAT3), mitogen-activated protein kinase

(MAPK) and phosphatidylinositol 3-kinase (PI3K)/AKT signaling

pathways activate the expression of PD-L1 receptor, which

contributes to melanoma immune escape (25) (Figure 1).

Hemon et al. have shown in vitro in cell lines that LAG-3 can, in

addition to activating the PI3K/Akt pathway, also activate the

MAPK/Erk pathway (26) like the anti-HLA-DR antibody L243

(which only activates the MAPK/Erk pathway), but with different

kinetics (24) (Figure 1). Also based on the in vitro study of the A375

line, expressing HLA-DR, Barbieri et al. demonstrated via

stimulation with the anti-HLA-DR antibody (L243), that the

interaction between HLA-DR and the TCR leads to the activation

of c-Jun N-terminal kinase (JNK), a member of the MAPK family

which plays an essential role in regulation of cell proliferation,

metabolism, survival and death, and of DNA repair, but with no

evidence that induction of this TCR CD4+ signaling would lead to

an effect similar to that previously reported on activation of the

MAPK/Erk pathway (27). Thus, JNK activation had been shown to

promote tumor proliferation, as demonstrated in glioblastoma (28),

non-small cell lung cancer (NSCLC) (29) and pancreatic cancer (30,

31), or to immune evasion as in breast (32) and oropharynx cancers

(33). The role of this kinase is critical in tumor growth and

progression, as phosphorylated JNK dimerizes Jun proteins,

particularly c-Jun with Fos proteins (c-Fos, FosB, Fra-1, and Fra-

2) to form AP-1 (33). AP-1 is then involved in cell proliferation,

survival, differentiation, inflammation, migration, and metastasis

(34) (Figure 1). JNK contributes to immune evasion via PD-L1
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expression by modulating the activity of c-Jun, an inducible

transcription factor that directs gene expression changes such as

PD-L1, a mechanism observed in melanoma (35); or via TLR4 (toll-

like receptor 4) signaling as in bladder cancer (36) (Figure 1).

In addition, HLA-DR may be involved in immune evasion, as

Oliviera et al. have identified three general types of potential

interactions between tumor-specific CD4+ tumor-infiltrating

lymphocytes (TILs) cells and melanoma in a cohort of CM. One

of these mechanisms strongly implicates MHC-II/HLA-DR. The

authors demonstrated the direct tumor specificity of over 70% of the

TCRs generated in the TME of MHC-II/HLA-DR melanomas (2/4

patients). The majority of these TCRs showed specificity for

neoantigens with avidities similar to those of exhausted

lymphocyte TCRs, suggesting that their stimulation could lead to

the activation of immunosuppressive regulatory lymphocytes CD4+

(Treg). The authors also found that MHC-II/HLA-DR melanomas

were characterized by high numbers of CD8+ TILs, due to their

association with extreme tumor mutational burden (TMB). In these

conditions, the reactivation of CD8+ responses can disrupt the

balance between effector and Treg cells, thus favoring the high

immunogenicity expected of MHC-II/HLA-DR melanomas (37).

Furthermore, Donia et al. highlighted a new mechanism of

immune escape, in an analysis of a cohort of 38 patients, 50% of

whom had native MHC-II expression. Tumor-specific CD4+ T cell

responses were dominated by tumor necrosis factor (TNF)

production. Chronic exposure to local TNF reduced CD8+ T cell

activation in Interferon-g (IFN-g)-rich TME. Conversely, direct

CD4+ T cell responses had no effect on melanoma cell

proliferation or viability (38).

MHC-II shares several characteristics with other tumor-

associated immunosuppressive molecules, such as Indoleamine

2,3-dioxygenase (IDO) and PD-L1. Indeed, MHC-II is aberrantly

activated in some melanomas and, exactly like IDO and PD-L1 (38,

39), is upregulated by IFN-g-mediated immune responses. Thus, in

situ detection of MHC class II in melanoma may represent

constitutive expression in CM cells or be induced by the presence

of IFN-g-secreting cells (e.g. tumor antigen-specific CD8+ T cells),

or both. Interestingly, CD4+ T binding to MHC-II-positive tumor

cells induces IFN-g secretion (40), which is a potent inducer of PD-

L1 (41–43) (Figure 1).

Finally, HLA-DR is also an immune control point, as it is the

ligand for lymphocyte-activation gene 3 (LAG3) (44), which is

present on the surface of T cells, NK cells and plasmacytoid

dendritic cells (45). The LAG3 protein forms a stable link to HLA

class II through its 30-amino acid loop structure, and selectively

binds to peptide-containing MHC-II (44, 46). Under normal

circumstances, LAG3 can help prevent autoimmune responses or

excessive responses against viral infections (44). However, tumor

cells can use immune checkpoints to avoid immune recognition and

deplete cytotoxic T cells. LAG3 is strongly associated and

synergistic with PD-1 as it is co-expressed with this immune

checkpoint on CD4 and CD8 T cells which blocks the anti-tumor

immune response (47). LAG3 may also be a marker of immune

exhaustion, which could be a factor in resistance to anti-PD-1 and

anti-CTLA-4 (48).
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The aim of the present paper is to review the current literature

on the potential interest of HLA-DR expression in melanoma as a

predictive biomarker of response to ICI.
3 Melanoma HLA-DR expression and
response to ICI: literature analysis

HLA-DR is normally expressed in professional antigen-

presenting cells but also on some tumor cells of certain tumors

without the explanation of this expression being elucidated at

the moment.

Well before the advent of ICI, the concept of immunotherapy

was first introduced with the use of BCG in urothelial bladder

cancer showing proven efficacy. Based on this finding, Brocker et al.

(49) evaluated BCG injections as adjuvant therapy in a population

of 107 patients with high-risk stage I melanoma. In this study, 44/

107 (41%) of them had been treated with BCG. HLA-DR expression

was assessed by immunohistochemistry with 910 D7, OKIal (Ortho

Diagnostics), 12 (Coulter Electronics), anti HLA-DR (Becton

Dickinson) and D 1 - 12 (Dr. S. Carrel, Lausanne) clones.

Authors calculated the percentage of stained tumor cells and then

grouped tumors according to their “low” (0-19% tumor cells

positive/section) or “high” (20%-100% cells positive/section)

HLA-DR expression. They found that HLA-DR expression was

associated with a poor prognosis (p < 0.01) and no statistically

significant benefit from BCG treatment, although there was a trend

toward better progression-free survival (PFS) in BCG-treated

patients not expressing HLA-DR.

At the current era of ICI therapies, different studies

have evaluated the response to treatment according to HLA-DR

status in solid tumor. It concerns mainly CM but also in only

two other series non-small cell lung cancers (NSCLC) and

urothelial carcinomas.

Regarding CM, first review of literature reported that HLA-DR

expression was predictive of better survival and response to ICI, and

was also associated with PD-L1 expression (25). As an illustration,

Johnson et al. showed in their study that HLA-DR expression was

required for anti-PD-1/PD-L1 activity. Indeed, they demonstrated

in the first step of their study on 60 cell lines, that HLA-DR

expression by melanoma-cells was associated with unique

inflammatory signals that are more responsive to PD-1-targeted

therapy (9). Afterwards, they studied HLA-DR expression on

melanoma tumor tissue from 67 patients, including 53 metastatic

disease (83%). HLA-DR expression by melanoma-cells was

observed in 30.3% (20/67) of patients and tended to be more

frequent (p = 0.47) in the NRAS mutated group (43%, 6/14) than

in respectively the BRAFmutated group (23%, 3/13) and the BRAF/

NRAS wild-type group (28%, 11/39). Among 30 patients with

metastatic disease treated by ICI (anti-PD1/anti-PDL1 and anti-

CTLA4) HLA-DR expression in pre-ICI melanoma samples was

quantified by 2 independent pathologists as tumors < 5% of HLA-

DR positive melanoma cells (termed HLA-DR- with no significant

expression, 16/30; 53.3% of patients) and tumors with > 5% of

HLA-DR positive melanoma cells (termed HLA-DR+ with
frontiersin.org
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significant HLA-DR expression, 14/30; 46.7% of patients). The

objective response rate (ORR) was significantly higher in the

HLA-DR+ group than in the HLA-DR- group (79% versus 38%

respectively, p = 0.033). These results were confirmed in a second

independent external cohort of 23 melanoma treated with ICI (anti-

PD-1). Indeed, the reported ORR in the HLA-DR+ group was 75%

(6/8) versus only 27% (4/15) in the HLA-DR- group (p = 0.025).

Interestingly, responders had clinico-biological factors of poor

prognosis in this series such as bulky diseases, liver metastases

and elevated Lactate Dehydrogenase (LDH) seric levels. Based on a

5% HLA-DR positive melanoma cells threshold, PFS was superior

in the HLA-DR+ group (median not reached versus 3.2 months, p =

0.02) as well as OS (median not reached versus 27.5 months, p =

0.003). Similar results were found using HLA-DR positive

melanoma cells thresholds of 1%, 10% and 20%. Of note, in a

small group of 13 patients treated exclusively with anti-CTLA4

(ipilimumab), there was no significant association between

therapeutic response and HLA-DR expression (9).

In another retrospective study, starting from the hypothesis that

PD-1 and PD-L1 receptors must be expressed sufficiently for

patients to respond to anti-PD-1 ICI, Johnson et al. searched

correlation between expressions of PD-1, PD-L1, HLA-DR (anti-

HLA-DR clone TAL.1B5, DAKO) and IDO and treatment

responses of metastatic CM to pembrolizumab or nivolumab (50).

In a first exploratory cohort of 24 patients from their medical

center, authors showed that response to anti-PD1 was correlated

with a high expression of IDO-1+/HLA-DR+ cells (5% threshold of

positivity) with a sensitivity of 85%, a specificity of 91% and an area

under the curve (AUC) of 0.88; whereas the biomarkers taken

separately or with another combination did not allow to

differentiate responders from non-responders. In a subsequent

validation cohort of 142 patients from 10 medical centers, the

authors observed higher response rates in patients with high PD1/

PDL1 (p = 0.06) or IDO-1/HLA-DR expression scores (p = 0.0002).

They also showed significantly improved PFS (HR = 0.36; p =

0.0004) and OS (HR = 0.39; p = 0.0011) in patients with high PD1/

PDL1 and/or IDO-1/HLA-DR scores. Furthermore, multivariate

analysis revealed that survival predictions were not influenced by

commonly used clinico-biological factors, such as metastatic stage

or LDH levels (p = NS), in contrast to biomarker signature (PD1/

PDL1 or IDO-1/HLA-DR) (PFS with biomarker signature alone

HR = 0.36 [0.20-0.65] (p = 0.00065); OS with biomarker signature

alone: HR = 0.39 [0.21-0.70] (p = 0.0016). In addition, PD-L1

expression alone at any threshold (1%, 5%, or 25%) did not

significantly (p > 0.1) identify patients with better PFS or OS,

reinforcing the imperfection of this widely used biomarker prior to

anti-PD-1/PD-L1 therapeutic decision outside the field of

metastatic CM (51–54). The same authors later suggested that the

immune resistance continuum of IFN-g-mediated expression of

PDL1, HLA-DR and IDO-1 results from PDL1/PD1 and HLA-DR/

LAG3 interaction (55, 56).

Furthermore, an ancillary study to CheckMate 064 (sequential

administration of nivolumab followed by ipilimumab, or the reverse

sequence) and CheckMate 069 (nivolumab plus ipilimumab versus

ipilimumab alone), has evaluated MHC-I and MHC-II protein

expression in pre-treatment biopsy samples of untreated
Frontiers in Immunology 04
advanced melanoma. Analysis was performed in subgroups

categorized as treated with ipilimumab followed by nivolumab

(IPILIMUMAB→NIVOLUMAB), nivolumab followed by

ipilimumamb (NIVOLUMAB →IPILIMUMAB), ipilimumab

alone (IPILIMUMAB), or combination of both nivolumab and

ipilimumab simultaneously (NIVOLUMAB+IPILIMUMAB) in

the 2 clinical trials mentioned above (57). In CheckMate 064,

IHC revealed that more than 1% of melanoma cells expressed

MHC-II in 26/92 cases (28%). Otherwise, MHC-II positive

melanoma cells were concentrated at the inflammatory and

invasive margin of the tumor, that was consistent with induced

local expression of MHC-II. The proportion of cases with >1% of

MHC-II positive melanoma cells was quite similar in CheckMate

069 (29/89 cases, 33%). The authors found that MHC-II positivity

(>1%) in CheckMate 064 was associated with a significant better

outcome in subgroup NIVOLUMAB→IPILIMUMAB (p = 0.005)

compared with the IPILIMUMAB→NIVOLUMAB subgroup (p =

0.31). This finding was consistent with the Johnson et al. study

above-mentioned (9).

Then, in another study on 60 samples of CM before ICI initiation,

in increasing the multiplexing of their immunotyping analyses until

44 markers, the authors further reported that HLA-DR expression in

melanoma cells was both correlated with PFS (HR = 0.49; p = 0.0281)

and OS (HR = 0.27; p = 0.0035) (58).

From the results of these studies, HLA-DR expression on

melanoma cells could be an indicator of IFN-gamma release due

to an ongoing anti-tumor immune response.

Finally, few studies have evaluated HLA-DR expression on

tumoral microenvironment (TME) cells of melanoma and ICI

therapy. In addition, no other type of solid tumor has been

published on the subject.

A prospective phase Ib/II study had evaluated efficacy of the

combination of pembrolizumab and high-dose interferon alfa-2b in

30 patients with resectable locally advanced melanoma in

neoadjuvant strategy (59). The authors analyzed the composition of

the TME before and after surgery with IHC on the pre- and post-

surgery samples of 13 patients with residual pathological disease.

Treatment response was associated with a significant increase in the

percentage of CD8 T cells (p = 0.04) in the TME. It was also

associated with a significant increase in both PD-1 (p = 0.04) and

PD-L1 expression (p = 0.02) in non-tumor cells, and in PD-1/PD-L1

interaction (p = 0.008). But tumor cells expressing IDO1 and HLA-

DR+ did not change significantly after treatment (p = 0.2). In another

sub-analysis of 14 samples (5 with pathological complete response

(pCR) and 9 without), high baseline HLA-DR values on non-tumor

cells were associated with pCR (p = 0.008) in this cohort.
4 HLA-DR as a potential
therapeutic target?

Although HLA-DR has shown interesting potential for

predicting response to ICI and participating in the definition of

hot-immune group, several limitations must nevertheless be noted.

There is no clear consensus on the antibody used for IHC,

although LN3 appears to be the most sensitive and specific (60). The
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https://doi.org/10.3389/fimmu.2023.1285895
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Amrane et al. 10.3389/fimmu.2023.1285895
threshold for significant positivity is unclear: in the series studied,

the 5% threshold had been used to establish the significance of

HLA-DR to the therapeutic response to ICI. Although similar

results were obtained using HLA-DR-positive melanoma cell

thresholds of 1%, 10% and 20%, further studies with larger

numbers could nevertheless clarify this point (9).

The HLA-DR antigen triggers signal transduction via the ILK/

AKT, FAK/PAX/AKT and BRAF/ERK signaling pathways (61) with

an action on the nuclear transcription factor AP-1 involved in cell

proliferation and invasiveness (62). With such a background, HLA-

DR blockade may be an interesting therapeutic target.

First, Altomonte et al. showed in vitro that HLA-DR blockade

by L243 antibody induced a significant (p < 0.05) and dose-

dependent growth inhibition of Mel120 metastatic melanoma cell

line as well as their homotypic aggregation (63). To date, no anti-

HLA-DR therapy has been tested in melanoma or other

solid tumors.

However, some HLA-DR therapies have been developed in

hematological malignancies, mainly in chronic lymphocytic

leukemia (CLL) and lymphoma. The most promising molecule is

apolizumab which is an IgG1 anti-1D10. The 1D10 antigen is a

polymorphic determinant of the b chain of HLA-DR and its

expression appears to be variable in humans as approximately

80% of healthy subjects express it. This antigen is expressed

primarily on antigen-presenting cells, including B cells,

monocytes and dendritic cells, and to a much lesser extent on

some activated T cells and mesenchymal cells. It has been reported

that B cells express it at the highest levels (64). The IgG1 1D10 is

capable of inducing antibody-dependent cell-mediated cytotoxicity
Frontiers in Immunology 05
(ADCC), complement-dependent cytotoxicity (CDC) and direct

apoptosis of 1D10 antigen-positive malignant B cells (64).

Three clinical trials have been initiated in humans, following

interesting and promising results in rhesus monkeys with an

acceptable safety profile, except for a type I hypersensitivity

reaction that was adequately controlled by slow injection and

anti-histamine premedication (65). First, a phase I trial in non-

Hodgkin’s lymphoma (66) was conducted with apolizumab in

combination with filgrastim to increase neutrophil counts and

stimulate IgG-mediated ADCC activity . Results were

disappointing as a PFS of 5.0 months was found after the first

injection and a significant hematoxicity was seen in almost all

patients (e.g. grade IV thrombocytopenia). However, due to the

small cohort size (n=6), it was not possible to correlate 1D10

expression levels with clinical toxicity. The second was a phase I/

II trial evaluating apolizumab in refractory CLL in 23 patients with

apolizumab dose escalation 3 times per week (1.5, 3.0, 5.0 mg/kg/

dose) for 4 weeks. The limiting toxic dose (DLT) was manifested by

aseptic meningitis and hemolytic uremia syndrome (HUS) (67).

However, the combination of apolizumab and rituximab

appears to be more effective than apolizumab alone. The reported

AEs were similar to previous published series, with a mild yet

manageable infusion reaction observed in the early cycles of

treatment; and HUS was thus reported as a DLT (68).

Although targeting HLA-DR seems attractive due to its major

signaling and activity profile observed with apolizumab, it appears

difficult to envisage a clinical development at this time given the

limiting toxicity due in part to the expression of HLA-DR in

normal tissue.
FIGURE 1

Schematic explanation of the JNK pathway and its signaling with HLA-DR. (Created with BioRender.com) JNK can be activated by a series of stimuli
via specific MAP3Ks. This activation allows transcription of various downstream targets for tumorigenesis events such as cell proliferation, survival,
differentiation, inflammation, migration, metastasis and immune evasion such as PD-L1 transcription (Abbreviations: defined in the main text).
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Although targeting HLA-DR seems attractive because of the

important signaling and activity profile observed with apolizumab, it

seems difficult to consider for clinical development at this time. This is

due in part to HLA-DR expression in normal tissues, but to its

deleterious effect on the anti-tumor response. Oh et al. investigated the

role of TCD4+ in bladder cancer and identified a perforin and

granzyme mediated cytotoxic TCD4+ population. This TCD4+

population specifically targets MHC II-expressing tumor cells (69).

This result has also been observed in melanoma (19). This mechanism

could make HLA-DR inhibition potentially counterproductive.

Even if there are no therapies directly targeting HLA-DR in

solid oncology, checkpoint inhibitors targeting its ligand, LAG3,

have been developed in recent years. Among LAG3 inhibitors, 3 are

in advanced development: ieramilimab from Novartis Lab (70),

favezelimab from MSD Lab (71), and relatlimab from Bristol Myers

Squibb Lab (72). These 3 Ac are IgG4.

In monotherapy, their activity is very modest: in a phase I trial

evaluating ieramilimab in a population of 134 pre-treated patients,

the objective response rate was 0%, with a SD assessed at 23.9%; the

same applies to favezelimab, evaluated in a population of 20 pre-

treated patients. However, relatlimab showed a response rate of

11.4% in a population of 68 pretreated patients (48). Nevertheless,

the combination with an anti-PD1 appears more promising and

may confirm the hypothesis of LAG3 is a marker of immune

exhaustion, which could be a factor in resistance to anti-PD-1

and anti-CTLA-4 (48). In fact, in pre-treated patient populations,

the combination with an anti-PD1 resulted in ORRs of 6.3% for

favezelimab-pembrolizumab (71), 10.8% for ieramilimab-

spartalizumab (70) and 44% for relatlimab-nivolumab (72). It

should be noted that none of these studies assessed the status and

quantification of LAG3, but not HLA-DR. Of the 3 molecules

developed, only relatlimab combined with nivolumab has been

approved as a first-line treatment by both the U.S. Food and

Drug Administration (73) and the European Medicine Agency,

which has restricted the indication to patients with tumor cell PD-

L1 expression < 1% (74).

Finally, new antibodies combining anti-PD1 and anti-LAG3 on

the same IgG are under development, with results that seem more

promising than with separate antibodies (75).
5 Conclusion

Although HLA-DR can induce a signaling cascade leading to

cell proliferation, its direct therapeutic targeting seems irrelevant

due to its ubiquitous expression and the toxicity it may generate.

HLA-DR is a biomarker that was studied extensively in

oncology during the 1980s before being neglected. Since the
Frontiers in Immunology 06
advent of immunotherapy, its interest has become essential to

predict response. In addition to its involvement in the definition

of the hot-immune group, the expression of HLA-DR in the tumor

microenvironment, both on tumor and non-tumor cells, conditions

the action of anti-PD1 checkpoint inhibitors and probably of the

new checkpoint inhibitors under development.
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